
Code Prompting Elicits Conditional Reasoning Abilities
in Text+Code LLMs

Anonymous ACL submission

Abstract

Reasoning is a fundamental component of lan-001
guage understanding. Recent prompting tech-002
niques, such as chain of thought, have consis-003
tently improved LLMs’ performance on vari-004
ous reasoning tasks. Nevertheless, there is still005
little understanding of what triggers reasoning006
abilities in LLMs in the inference stage. In this007
paper, we introduce code prompting, a chain008
of prompts that transforms a natural language009
problem into code and directly prompts the010
LLM using the generated code without resort-011
ing to external code execution. We hypothesize012
that code prompts can elicit certain reasoning013
capabilities of LLMs trained on text and code014
and utilize the proposed method to improve015
conditional reasoning, the ability to infer differ-016
ent conclusions depending on the fulfillment of017
certain conditions. We find that code prompting018
exhibits a high-performance boost for multiple019
LLMs (up to 22.52 percentage points on GPT020
3.5, 7.75 on Mixtral, and 16.78 on Mistral)021
across multiple conditional reasoning datasets.022
We then conduct comprehensive experiments023
to understand how code prompts trigger reason-024
ing abilities and which capabilities are elicited025
in the underlying models. Our analysis of GPT026
3.5 reveals that the code formatting of the input027
problem is essential for performance improve-028
ment. Furthermore, code prompts improve sam-029
ple efficiency of in-context learning and facili-030
tate state tracking of variables or entities.1031

1 Introduction032

Reasoning is a fundamental component of both033

human and artificial intelligence (AI) and the back-034

bone of many NLP tasks, such as question answer-035

ing and textual entailment. Recently, intensive stud-036

ies have been performed on mathematical (Patel037

et al., 2021; Chen et al., 2021; Cobbe et al., 2021),038

logical (Liu et al., 2020, 2023a; Sinha et al., 2019),039

and commonsense reasoning (Madaan et al., 2022;040

1Our code and prompts are available at this URL

Figure 1: Code prompting converts a natural language
problem into a code prompt and prompts a large lan-
guage model with such code to generate an answer.

Liu et al., 2022a,b; Wang et al., 2023). Conditional 041

reasoning, a primary yet complex reasoning ability 042

that draws alternative conclusions depending on 043

the fulfillment of certain conditions, remains un- 044

derstudied. These conditions are stated in the text, 045

making the problem self-contained, which allows 046

us to study the semantic inferencing capabilities 047

of the underlying model, i.e., identifying relevant 048

premises and ascertaining the presence of total evi- 049

dence (Nolt et al., 1988; Cabria and Magnini, 2014) 050

without the requirement for, and confounding ef- 051

fects of external knowledge. Conditional reasoning 052

is also a fundamental form of logical reasoning 053

useful in many practical scenarios, such as answer- 054

ing real-world questions about the eligibility for a 055

visa or a loan. Despite the recent introduction of 056

some benchmarks (Saeidi et al., 2018; Sun et al., 057

2022; Kazemi et al., 2023), conditional reasoning 058

abilities of LLMs remain unknown. 059

Recently, researchers have improved perfor- 060

mance on reasoning tasks by combining LLMs 061

with symbolic interpreters such as the Python run- 062

time (Gao et al., 2023; Chen et al., 2023; Lyu et al., 063

2023) or SATisfiability solvers (Ye et al., 2023). 064

Here, LLMs pretrained on code or a combination of 065

text and code (henceforth text+code LLM) are used 066

to convert the input task into a symbolic language 067

(e.g., Python or SAT problems), which is then fed 068

into an external interpreter to make use of its sym- 069

1

https://anonymous.4open.science/r/arr-feb-2024-code-prompting-006F/README.md

bolic execution. In such a setup, the LLM is mainly070

used for the linguistic dimension of reasoning (i.e.,071

identifying the premises from text) and planning072

how to solve the problem, while the logical reason-073

ing component (i.e., solving the actual logical prob-074

lem) is offloaded to an external execution module,075

confounding our understanding of the reasoning076

abilities of the underlying model. In particular, the077

fundamental questions of what contributes to the078

reasoning abilities and how reasoning abilities are079

triggered remain open. Nevertheless, pretraining080

on code is considered an important component that081

contributes to and explains the improved reasoning082

ability of LLMs. State-of-the-art LLMs such as083

GPT 3.5 (Kojima et al., 2022), GPT 4 (OpenAI,084

2023), Mixtral (Jiang et al., 2024), and Mistral 7B085

(Jiang et al., 2023) have been pretrained on both086

text and code and have demonstrated considerable087

boosts in many reasoning benchmarks.088

In this work, we focus on improving the logi-089

cal reasoning dimension of semantic inference and090

investigate which aspects of code prompts, and in091

which way, elicit conditional reasoning abilities of092

several text+code LLMs (GPT 3.5, Mixtral, and093

Mistral), across three datasets: (1) ConditionalQA094

(Sun et al., 2022), (2) BoardgameQA (Kazemi et al.,095

2023) and (3) ShARC (Saeidi et al., 2018). To un-096

derstand the benefit of code as an intermediate rep-097

resentation, we devise a chain of prompts, code098

prompting, that transform a natural language (NL)099

task into code and directly prompts the LLM with100

the generated code. The code contains the logi-101

cal structure needed to solve the problem, along102

with the original natural language text as code com-103

ments. An illustration is provided in Figure 1. This104

setup has multiple benefits. Firstly, we fully utilize105

the LLM’s reasoning abilities without offloading106

any subtask to an external interpreter. In this way,107

we can conduct a fair comparison between text and108

code prompts without external variables such as109

interpreters. Secondly, enforcing compilability and110

executability of the generated code is not required,111

resulting in fewer interpreter-driven errors.112

Our contributions are summarized as follows:113

• We devise a chain of prompts that transforms114

a NL task into code to trigger conditional rea-115

soning abilities in text+code LLMs.116

• We conduct a comprehensive study to com-117

pare code prompts with text prompts, show-118

ing (i) large performance gains on the three119

LLMs (up to 22.52 points for GPT3.5, up to120

7.75 for Mixtral, and up to 16.78 for Mistral), 121

while (ii) being more efficient with regard to 122

the number of demonstrations. 123

• We conduct an extensive analysis to under- 124

stand why code prompts efficiently elicit con- 125

ditional reasoning abilities, and show that 126

prompting with code results in largely im- 127

proved variable state tracking. 128

2 Background and Related Work 129

Semantic Inference. It is important to under- 130

stand the framework within which we conduct our 131

experiments. Question answering can be seen as a 132

chain of semantic inferences. Semantic inference 133

can be decomposed into (1) the linguistic dimen- 134

sion, which identifies implications from natural 135

language text and (2) the logical dimension, where 136

reasoning, deductive, inductive or abductive, is con- 137

ducted given the identified premises (Cabria and 138

Magnini, 2014). The logical dimension resides on 139

four major criteria which a reasoning model should 140

validate (Nolt et al., 1988): (a) the truth of premises, 141

(b) validity and inductive probability of premises, 142

(c) relevance of premises to the conclusion, and 143

(d) requirement of total evidence. In the scope of 144

our work, we focus on improving deductive rea- 145

soning along the logical dimension. We assume 146

the truthfulness of information presented within 147

the datasets, making the task of the analyzed LLM 148

to (c) identify relevant premises and (d) ascertain 149

whether total required evidence is present, which 150

is the focus of conditional reasoning. 151

Code LLMs. Most works that generate code to 152

solve natural language tasks use an external sym- 153

bolic interpreter to run the resulting code. Chen 154

et al. (2023) and Gao et al. (2023) showed consis- 155

tent gains on mathematical problems, symbolic rea- 156

soning, and algorithmic problems by using LLMs 157

aided by external code interpreters. Lyu et al. 158

(2023) further showed the improvement in multi- 159

hop QA, planning, and relational inference. In con- 160

trast, Ye et al. (2023) used an external automated 161

theorem prover with declarative code and showed 162

consistent gains w.r.t. imperative code-interpreter- 163

aided LLMs on arithmetic reasoning, logical rea- 164

soning, symbolic reasoning, and regex synthesis 165

tasks. Lastly, Pan et al. (2023) did not use any inter- 166

preter and instead created programs composed of 167

multiple subroutines and used smaller specialized 168

2

Figure 2: Code prompting converts natural language descriptions into code to be solved with a large language
model. The figure shows a transformed instance from the ConditionalQA dataset.

models to run them. In this way, they outperform169

text prompts on text LLMs for fact-checking tasks.170

All these works employ an external solver sys-171

tem to run the code; therefore, the LLM is not172

conducting part of the reasoning. Some works173

(Madaan et al., 2022; Liu et al., 2023b) suggest174

that LLMs trained on code may possess superior175

reasoning abilities than LLMs trained only on nat-176

ural language text. Madaan et al. (2022) observed177

improved commonsense reasoning, while Liu et al.178

(2023b) report superior causal reasoning. The latter179

work is based on the intuition that large amounts180

of if statements in the pretraining corpus enhance181

causal reasoning abilities because they represent182

explicit causal relations. They conducted experi-183

ments on abductive and counterfactual reasoning184

tasks and showed that translating NL problems into185

code and then generating functions that return the186

answer to the problem with a code LLM outper-187

forms prompting the same NL task in a text LLM.188

However, most popular LLMs are trained on text189

and code (e.g., GPT 3.5; Kojima et al. 2022, GPT190

4; OpenAI 2023). Therefore, it remains unclear191

whether code prompts also outperform text prompts192

in text+code models and, if so, why code prompts193

elicit reasoning abilities. In our work, we aim to194

answer these questions.195

To the best of our knowledge, only the concur-196

rent work of Hussain et al. (2023) investigates the197

conditional reasoning abilities of LLMs. However,198

they only analyze the abilities of text-only LLMs199

after training them on ConditionalQA (Sun et al.,200

2022). Instead, we investigate how to use prompts201

to elicit conditional reasoning in text+code LLMs.202

3 Code Prompting 203

3.1 Definition 204

We hypothesize that querying text+code LLMs 205

with instances translated to code will result in im- 206

proved conditional reasoning capabilities. Our hy- 207

pothesis is motivated by prior works showing that 208

program-aided LMs exhibit superior results on rea- 209

soning tasks than regular text prompts (Gao et al., 210

2023; Chen et al., 2023; Lyu et al., 2023; Ye et al., 211

2023). Thus, it comes naturally that prompting 212

text+code LLMs with instances translated to code 213

could cause the underlying model to exhibit su- 214

perior reasoning abilities when compared to text 215

prompts. We formalize our hypothesis as follows: 216

∑
p∈P

σ(LLM(T (p)), p) ≤
∑
p∈P

σ(LLM(C(p)), p) 217

where p is a problem instance from the set of prob- 218

lems P , σ is an evaluation function that returns the 219

quality of an answer for a given problem, and T 220

and C are functions that create a natural language 221

Text prompt and Code prompt, respectively, for the 222

same given problem. 223

We define code prompts as prompts that model 224

a natural language (NL) problem with code. The 225

code contains the logical structure needed to solve 226

the problem, along with the original natural lan- 227

guage text as code comments. To solve an NL task 228

with code prompts, we define a chain of prompts 229

that i) transform the NL text into code, and ii) use 230

this code to generate the answer in natural language. 231

Figure 1 illustrates this pipeline. 232

The prompt transforming the NL problem into 233

code is composed of code that closely follows the 234

3

original NL text. In particular, it creates variables235

for key entities in the question and documents and236

if blocks for each conditional statement in the doc-237

uments. Figure 2 exemplifies this transformation.238

3.2 Coding Features239

To generate code as close as possible to the NL text,240

we use a programming language based on a simpli-241

fication of Python. We only use boolean variables242

or variables that contain lists of strings. Variables243

follow the snake case naming convention. We also244

employ if statements to model conditional reason-245

ing, but we do not use loops, functions, or classes.246

We create a code comment with the original NL247

text for each input sentence, and right after the code248

comment, we generate the code that represents the249

semantics of that sentence. However, we do not250

enforce the generated code to be a runnable script.251

4 Experimental Setup252

4.1 Datasets253

Throughout our experiments, we use three question-254

answering (QA) datasets for conditional reason-255

ing: ConditionalQA (CondQA; Sun et al., 2022), a256

scenario-based question answering (QA) dataset,257

BoardgameQA (BGQA; Kazemi et al., 2023), a258

boardgame-base QA dataset with conflicting rules,259

and ShARC (Saeidi et al., 2018), a conversational260

QA dataset with natural language rules. Solving261

these datasets requires advanced conditional and262

compositional reasoning capabilities.263

We focus on the QA task of CondQA. For BGQA,264

we focus on the main partition, which includes265

three subsets BGQA-1, BGQA-2, and BGQA-3, where266

the number indicates the reasoning hops needed267

to answer. Lastly, while ShARC encompasses dia-268

logue generation, we aim to evaluate specific capa-269

bilities unrelated to conversational flow. Therefore,270

we isolated the QA pairs from the provided dia-271

logues, resulting in a dataset where the model has272

to answer yes, no, or not enough information.2273

We include more details about the datasets in274

Appendix A, a formal definition of the prompts in275

Appendix B, and examples in Appendix K.276

4.2 LLM Setup277

We perform our study using gpt-35-turbo3278

through the Azure OpenAI service, Mixtral 7x8B279

2In the full task, not enough information would trigger
another step in a pipeline to generate a follow-up question.

3https://platform.openai.com/docs/models/
gpt-3-5-turbo

(Jiang et al., 2024), and Mistral 7B (Jiang et al., 280

2023) with a Nvidia A100. The use of these models 281

allows us to investigate whether our approach holds 282

across different model sizes. In particular, Mistral 283

7B contains 7 billion parameters, and Mixtral 7x8B 284

46.7 billion. All of our prompting methods are im- 285

plemented using the Langchain library.4 We set 286

the decoding temperature to zero and use greedy 287

sampling to make the outputs deterministic. We 288

execute our prompts with in-context learning and 289

provide one demonstration per class. For each ex- 290

periment, we use a random sample from the train- 291

ing set as demonstrations. The LLM generating 292

the code for code prompts is the same one as the 293

one running the code to generate the final answer. 294

We evaluate each model and prompt in the dev 295

set of each dataset with two random seeds. Since 296

the demonstrations are selected randomly, the seed 297

determines them. The seed that yields the best per- 298

formance on the dev set is then used for the final 299

evaluation on the test set. We provide more details 300

on the models and the costs in Appendix C and D. 301

4.3 Evaluation 302

We follow the evaluation metrics used in the orig- 303

inal datasets. For CondQA, we report the F1 token 304

overlap between the predicted answer and the la- 305

bel, while for BGQA and ShARC, we report the macro 306

F1 score. We run the main experiments two times 307

with different random seeds (0 and 1). We report 308

the average and standard deviation performance 309

across these runs. For the subsequent analyses of 310

code prompts, we run each experiment once only 311

on GPT 3.5 due to the inference costs. 312

5 Experiments 313

We first compare the performance of the two 314

prompting methods — text prompts and code 315

prompts on three LLMs across three datasets (§5.1). 316

We then conduct extensive ablation experiments 317

on the dev set of the datasets with GPT 3.5, the 318

best-performing and largest model, to understand 319

the reason behind the performance gain from code 320

prompting. In particular, we study whether code 321

syntax or the implicit text simplification from the 322

code translation is what improves performance 323

(Section 5.2). We also check if the improvement is 324

caused by the models merely being exposed to code 325

within prompts and not necessarily the instances 326

translated to code (Section 5.3). Finally, we show 327

4https://github.com/langchain-ai/langchain

4

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://github.com/langchain-ai/langchain

Model Prompt CondQA ShARC BGQA-1 BGQA-2 BGQA-3 ∆CP
Test Set

GPT 3.5 Text 58.70 63.78 51.15 37.42 27.77 9.17Code 60.60 59.54 58.67 55.56 50.29

Mixtral Text 48.17 60.29 56.38 39.64 30.15 3.66Code 44.73 62.77 53.33 47.39 44.72

Mistral Text 35.74 37.70 47.40 48.78 47.86 4.83Code 33.28 54.48 53.80 51.27 48.79

Dev Set

GPT 3.5 Text 56.54± 0.08 63.91± 0.95 53.16± 1.67 33.71± 10.37 31.5± 13.39 9.79Code 57.64± 1.42 58.13± 1.62 68.60± 1.09 55.85± 4.06 47.57± 2.68

Mixtral Text 46.60± 0.99 53.55± 1.58 58.31± 1.77 36.77± 0.09 32.06± 1.79 2.76Code 40.88± 1.84 58.03± 2.81 57.94± 5.52 45.32± 0.54 38.90± 7.33

Mistral Text 28.84± 0.02 37.30± 1.69 47.61± 0.92 47.29± 1.97 46.56± 2.92 5.05Code 28.26± 10.03 52.90± 1.08 52.21± 0.95 54.27± 1.42 45.22± 10.75

Table 1: Comparison (F1 score) of text prompt and code prompts. All results use one demonstration per class.
∆CP = Code Prompt - Text Prompt, i.e., the average performance gain from code prompts across all datasets.

that code prompting is more sample efficient (Sec-328

tion 5.4) when compared to text prompting and that329

models prompted with code exhibit superior state330

tracking capabilities (Section 5.5).331

5.1 Code Prompting Improves over Text332

Prompting333

Table 1 shows the model performance on the de-334

velopment and test sets. Code prompts outperform335

text prompts in the majority of cases on the test336

set (11 out of 15). This trend holds true across337

models, with each achieving peak performance338

through code prompts for most datasets (i.e., GPT-339

3.5 in 4/5, Mixtral in 3/5, Mistral in 4/5). Notably,340

code prompts consistently surpass text prompts on341

BGQA-2 and BGQA-3, the most reasoning-intensive342

datasets (see Appendix A), for all models. This343

is particularly evident for GPT-3.5, where gains344

exceed 18 points. Conversely, the advantage is nar-345

rower on CondQA, where the linguistic dimension346

plays the biggest role (see Appendix A). This sug-347

gests that code prompts elicit conditional reasoning348

abilities and are most suited for reasoning-intensive349

tasks. Furthermore, in the cases where text prompts350

are superior, their average gains are only 3.29. In351

contrast, code prompts lead to significantly larger352

mean and median gains of 10.48 and 7.75, respec-353

tively, in the cases where they are superior. Ad-354

ditionally, an experiment with Phi-2, a small lan-355

guage model, reveals a substantial 15-point per-356

formance improvement using code prompts (see357

Appendix E).358

To shed light on the performance gains driven by359

code prompts, we delve into the confusion matri- 360

ces (attached in Appendix J) and discover that text 361

prompts in Mistral predict “not enough information” 362

much less than code prompts for BGQA. This is par- 363

ticularly noticeable in BGQA-1, where text prompts 364

do not predict a single “not enough information,” 365

while code prompts do. On the other hand, text 366

prompts in GPT 3.5 and Mixtral overpredict “not 367

enough information” on BGQA and ShARC, leading 368

to a low number of true positives for the conclusive 369

answers. We hypothesize that this model hesita- 370

tion could stem from the alignment tax (Ouyang 371

et al., 2022) of reinforcement learning from human 372

feedback models. This potential barrier may be 373

alleviated by code prompts because they indicate 374

to the model the variable that answers the question 375

and instruct the model to track the entailment status 376

of variables within the given code. 377

These consistent and substantial gains from code 378

prompts are obtained despite a straightforward 379

transformation of text prompts, which does not 380

incorporate new information, as shown in Figure 2. 381

This finding strongly suggests that code possesses 382

specific characteristics that effectively elicit condi- 383

tional reasoning abilities within text+code LLMs. 384

5.2 Code Syntax Elicits Reasoning Abilities 385

We now want to delve into the source of the perfor- 386

mance gains observed when using code prompting. 387

We investigate whether these improvements stem 388

from the simplification of text into premises fa- 389

cilitated by code, effectively reducing the task to 390

a form of semantic inference within the linguis- 391

5

tic dimension, or if there are inherent properties392

of code syntax that contribute to enhanced perfor-393

mance. To investigate this, we devise experiments394

with prompts that represent the intermediate states395

between natural language and code.396

I. Atomic Statements. Inspired by Min et al.397

(2023), we transform each NL sentence5 into a398

sequence of atomic statements, which we then ap-399

pend to the original sentence. In this way, the400

atomic statements can be seen as defining variables401

for each key entity in the text. Hence, this new402

prompt would resemble code but without control403

flow and in natural language form. The prompt404

retains access to the original instance text (i.e., no405

loss of information) but is also augmented by sim-406

plified sentences in the form of atomic statements.407

This setup allows us to investigate whether the sim-408

plicity of the input triggers improves reasoning abil-409

ities, regardless of the text and code syntax.410

II. Back-Translated Code. In our second experi-411

ment, we investigate whether the semantics of the412

code statements and not the code syntax are the rea-413

son behind the performance boost. For this purpose,414

we back-transform the code prompts into NL such415

that the reasoning statements (i.e., the if conditions)416

are clearly and concisely stated in natural language.417

Specifically, we map every variable into the for-418

mat Key entity: variable without snake case. For419

instance, the variable husband_pass_away from420

Figure 2 would be back-transformed as Key en-421

tity: husband pass away. To transform the if state-422

ments, we create a translation prompt by providing423

four demonstrations. These demonstrations sim-424

ply translate the conditional statements within the425

code-formatted instance back into natural language.426

We also translate the variables in the same manner.427

This makes the back-translated text as close as pos-428

sible to the code text. We provide examples of this429

in Table 11 from Appendix H.430

Results. The results6 in Table 2 show that (1)431

prompting with atomic statements does not reach432

the performance of code prompts, and (2) mapping433

back from code to NL results in a performance434

drop compared to code prompts. These findings435

suggest that code prompts enhance LLM perfor-436

mance beyond mere text simplification. This con-437

5We only transform the facts in BGQA since transforming
the rules into atomic statements as well yields worse results.

6We do not conduct ablation tests on ShARC because,
as explained in Section 5, these ablations aim to understand
why code prompts outperform text prompts using the highest
performing model.

Dataset ∆ Atomic St. ∆ Code → NL
CondQA −2.66 −4.72
BGQA-1 −4.37 −1.43
BGQA-2 −8.72 −5.39
BGQA-3 −19.26 −3.68

Table 2: Performance gap of atomic statements and
back-translated code when compared to code prompts
using GPT 3.5. Results from the dev set of each dataset.

clusion is supported by the observation that these 438

alternative text simplification approaches, despite 439

offering similar semantics to code prompts, fail 440

to replicate the performance gains observed with 441

code prompts. Therefore, these results imply that 442

specific syntactic features embedded within code 443

directly contribute to performance improvement. 444

Lastly, our evaluation on BGQA-3 reveals a sig- 445

nificantly larger performance decline when using 446

atomic statements compared to back-translated 447

code. This disparity likely stems from the dataset’s 448

inherent structure. The method we employ for gen- 449

erating atomic statements (Min et al., 2023) was 450

specifically designed for general text formats like 451

Wikipedia pages. However, BGQA is a logic-based 452

dataset where input "facts" are already presented as 453

minimally informative statements, deviating from 454

the typical structure of general documents. As a 455

result, generating atomic statements from these 456

sentences can unintentionally disrupt the sentence 457

structure, making it difficult to track the attributes 458

of subjects and objects within the text. This ob- 459

servation is further supported by our results on 460

CondQA, a dataset with longer documents, where 461

atomic statements achieve higher performance than 462

back-translated code. 463

5.3 Code Semantics are Important 464

Previously, we have shown that code syntax is nec- 465

essary to elicit the reasoning abilities of text+code 466

LLMs. Now, we aim to investigate which aspects 467

of code are pivotal. In particular, we evaluate the 468

impact of retaining the natural language text of the 469

original instance within the code comments and the 470

importance of the code semantics. To analyze the 471

former, we have (1) removed the code comments 472

that include the original natural language text from 473

the input and evaluated the performance of the new 474

prompts. To analyze the latter, we (2) perturbed 475

the code to anonymize the variables and functions, 476

as well as (3) added random code whose seman- 477

tics are completely irrelevant to the original natural 478

6

Prompt CQA CQA-YN BG1 BG2 BG3

Anonym. −1.62 −2.90 −6.60 −4.80 −4.00
Random −3.40 −2.67 −7.40 −9.20 −9.80
- Comments N.A. −14.02 −16.70 −16.20 −5.20

Table 3: Performance gap to code prompts for each code
perturbation. cQA stands for CondQA, CQA-YN for
the partition of CondQA with yes-no answers, BG for
BGQA. Results reported on the dev set of each dataset.

language text. In the latter two cases, the code com-479

ments remain unmodified (examples illustrating480

them are provided in Table 12 from Appendix H).481

Since CondQA includes span answers and removing482

the NL text would make it impossible for the model483

to generate the span, we only report performance484

on the yes-no answers partition (CondQA-YN).485

Table 3 shows that removing the NL text in the486

code comments yields a performance drop of 14.02487

points on CondQA and a performance drop between488

16.7 and 5.2 on BGQA. This significant and consis-489

tent decrease in all datasets confirms that retaining490

NL text in comments is vital for the LLM to under-491

stand the input problem.492

Effect of Code Perturbations. Code perturba-493

tions (anonymous code and random code) confirm494

the importance of code semantics in eliciting rea-495

soning abilities. When we use anonymized code,496

we observe a performance reduction of almost 2497

points on CondQA and a decrease between 6.6 and 4498

in BGQA. The decrease is even larger when the code499

is randomized, with drops of more than 3 points500

on CondQA and between 7.4 and 9.8 on BGQA. This501

more pronounced drop is expected since the seman-502

tics and logic of the code mismatch the NL text,503

whereas anonymous code maintains the same logic504

on both NL and code. Furthermore, we also ob-505

serve that the performance drop of random code506

prompts is similar to that of text prompts (Table 1)507

on CondQA and BGQA-1. This can be interpreted as508

the model being able to identify the irrelevance of509

the code to the text. Hence, the model disregards510

the code to solely focus on the code comments (i.e.,511

the natural language text). This could be possible512

thanks to the provided demonstrations, which show513

answers that only refer to the natural language text.514

These results confirm that code alone does not515

trigger reasoning abilities, and instead, the combi-516

nation of code that represents the original natural517

language instance and the NL text is able to unlock518

the potential of LLMs.519

5.4 Code Prompts are More Sample-Efficient 520

at Eliciting Reasoning Abilities 521

Given our observations that code prompts trig- 522

ger conditional reasoning abilities better than text 523

prompts, it is natural to ask the follow-up question: 524

are code prompts also more sample-efficient than 525

text prompts? To answer this, we evaluate how the 526

overall performance of GPT 3.5 changes with re- 527

spect to the number of demonstrations for the two 528

prompting methods. 529

Figure 3 shows that when we only provide 530

one demonstration per class (i.e., answer type in 531

our datasets), the performance gap is the largest 532

across all datasets. As expected, this gap de- 533

creases when we provide more demonstrations. 534

Moreover, we also observe that code prompts with 535

only one demonstration per class even outperform 536

text prompts with three demonstrations per class, 537

which further shows the sample efficiency of code 538

prompts. These results indicate that code prompts 539

trigger conditional reasoning more efficiently than 540

text prompts on GPT 3.5, and this is one of the 541

reasons for its superior performance. 542

Figure 3: Performance comparison of GPT 3.5 between
text prompts (green) and code prompts (blue) using 1,
2, and 3 demonstrations per class. Results from the dev
set of each dataset.

5.5 Code Prompts Improve Variable Tracking 543

in LLMs 544

We hypothesize that one of the reasons for the supe- 545

rior performance of code prompting is an improved 546

ability to identify and track the states of key vari- 547

ables or concepts. This hypothesis is based on the 548

intuition that, for natural language in general, lo- 549

cal context is the most important part to generate 550

the next token (Khandelwal et al., 2018; Sun et al., 551

2021). However, generating code is often more 552

challenging because code frequently refers to pre- 553

viously defined functions and variables, which can 554

be dozens or even hundreds of lines apart. This 555

resembles multi-hop reasoning, where the model 556

may need to reference a key entity dozens of lines 557

7

Correct Ans. Incorrect Ans.
Dataset Text Code Text Code
CondQA 71.08 4.39 60.79 11.39
BGQA-1 39.33 8.84 51.65 22.12
BGQA-2 44.79 15.04 52.54 24.75
BGQA-3 54.01 14.21 52.13 16.98

Table 4: Comparison of the percentage of memory er-
rors made by GPT 3.5. For each dataset, we separately
compute memory errors for the instances where the
model gives the correct and incorrect answers. Lower is
better. Results from the dev set of each dataset.

before. Therefore, an improved ability to look for558

distant co-references caused by training on code559

can be beneficial for multi-hop reasoning, which is560

also needed to solve our datasets.561

To test our hypothesis, we devise the following562

experiment. Firstly, we define reasoning step as563

each output sentence split by “\n.” After generating564

each reasoning step, we stop the model generation565

and query about all key entities defined in the input566

prompt. In the case of text prompts, we query the567

model whether the given facts are true or not, and568

for code prompts, we query for the value of the569

(boolean) variables. In all cases, the model only570

has to generate True, False, a string, or unknown.571

Then, we compare the percentage of errors in text572

and code prompts. This number represents the573

memory errors committed by the model. The more574

memory errors there are, the more difficult it is for575

the model to track and remember entities/variables.576

We provide further details on how we extracted the577

key entities to ask for, how we identified the reason-578

ing steps in the chain of thought used to stop the579

model for conducting the probes, and examples of580

the prompt probes in Appendix I and its Table 13.581

Does Generated Text reflect Model Beliefs? As582

the generated text may not be faithful to the internal583

beliefs of the model (Lyu et al., 2023), we first test584

the validity of this experiment as a proxy metric585

of the internal belief of the model. To do this,586

we compare the memory error percentage of the587

prompting methods in instances where the model588

solves (i.e., correct instances) and does not solve589

(i.e., incorrect instances) the question. If incorrect590

instances yield a higher memory error, this would591

indicate that the model struggles more to remember592

the variable states on those instances, which in turn593

would make it more likely to fail when conducting594

the reasoning process. Therefore, our probes would595

be a proxy metric of the internal belief of the model.596

Table 4 shows the results of this comparison. We 597

observe that all prompting methods in all datasets 598

consistently make more memory mistakes on in- 599

correct instances than on correct instances, with 600

the exception of text prompts on CondQA. However, 601

the memory error in this case is significantly high, 602

which may suggest that the model is not able to 603

track entities correctly in either case. Therefore, 604

we can use this experiment as a proxy measure of 605

the memory of the model. 606

Code Prompting improves State Track- 607

ing. From Table 4, we further observe that Text 608

Prompts make significantly more memory errors 609

than code prompts on all datasets. Specifically, 610

the gap is consistently more than 30% with 611

peaks on CondQA (66.69%) and BGQA-3 (39.8%). 612

Therefore, this experiment empirically confirms 613

our hypothesis that code prompts improve state 614

tracking of the key entities and variables when 615

compared to text prompts. 616

6 Conclusions and Future Work 617

This work demonstrates that conditional reasoning 618

abilities can be triggered by using code prompts 619

in large language models (LLMs) of text and code. 620

These code prompts contain the original natural 621

language (NL) formulation as a code comment and 622

code that formulates the logic of the text. To cre- 623

ate these code prompts, we use in-context learning 624

to teach an LLM how to conduct such a transfor- 625

mation automatically. Through multiple experi- 626

ments on three LLMs and three datasets, we show 627

that code prompts trigger conditional reasoning 628

abilities, with large performance gains w.r.t. text 629

prompts (up to 22.52 percentage points on GPT 3.5, 630

7.75 on Mixtral, and 16.78 Mistral). Our experi- 631

ments show that even simple code can be beneficial 632

as long as it closely follows the semantics of the 633

NL text and is accompanied by the original NL 634

text. We also show that code prompts are more 635

sample-efficient than text prompts and that their 636

performance boost stems from their superior abil- 637

ity to identify and track the state of key variables or 638

entities, a central aspect of the logical dimension 639

of semantic inference. 640

In our future work, we plan to extend to a wider 641

range of reasoning abilities, such as multi-hop rea- 642

soning, to verify the generalization of our findings. 643

We also plan to conduct experiments investigating 644

how pretraining on text, code, and text+code affects 645

the triggering of reasoning abilities. 646

8

Limitations647

Transforming a natural language problem into code648

requires an intermediate step that raises the cost649

of the whole pipeline. However, this mapping is650

not a complicated task, as even the smallest models651

we considered were able to perform it successfully.652

Therefore, we believe it would be possible to train653

a small generative model to do it instead of using654

a large language model. In this way, we could655

minimize the cost of using code prompts without656

affecting its performance.657

We only ran the experiments on the dev set with658

two different random seeds due to the costs of659

running large language models and because we660

prioritized experimenting on multiple models and661

datasets. Nevertheless, the results of all models662

exhibit similar patterns, which confirms the repre-663

sentativeness of our results. Also, we conduct the664

ablations only on GPT 3.5, the best-performing and665

largest model. However, confirming that the find-666

ings from these ablations also hold on the smaller667

models would be interesting.668

Lastly, we conduct our experiments on data in669

English. Analyzing whether our findings hold true670

in other languages would be interesting. However,671

the lack of conditional reasoning datasets in other672

languages would make this study difficult.673

Ethics and Broader Impact Statement674

It is our sincere goal to contribute to the social675

good in multiple ways. Firstly, we note that large676

language models are massively being adopted by677

companies to improve their products. However, it678

is also known their limitations, such as hallucina-679

tions and lack of faithfulness, among others. Our680

work aims to improve the reasoning abilities of681

LLMs. Also, the use of code prompts may simplify682

the explainability of the model responses since we683

can inspect the entailment status of the variables.684

We hope these results contribute to enhancing the685

trustworthiness and safety of LLMs. Nevertheless,686

every development may pose some risks. In our687

case, the improvement of the reasoning abilities in688

LLMs may utilized by malicious actors to propa-689

gate more persuasive disinformation.690

References691

Elana Cabria and Bernardo Magnini. 2014. Decom-692
posing semantic inference. Linguistic Issues in Lan-693
guage Technology, 9.694

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 695
William W. Cohen. 2023. Program of thoughts 696
prompting: Disentangling computation from reason- 697
ing for numerical reasoning tasks. Transactions on 698
Machine Learning Research. 699

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena 700
Shah, Iana Borova, Dylan Langdon, Reema Moussa, 701
Matt Beane, Ting-Hao Huang, Bryan Routledge, and 702
William Yang Wang. 2021. FinQA: A dataset of nu- 703
merical reasoning over financial data. In Proceedings 704
of the 2021 Conference on Empirical Methods in Nat- 705
ural Language Processing, pages 3697–3711, Online 706
and Punta Cana, Dominican Republic. Association 707
for Computational Linguistics. 708

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 709
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 710
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 711
Nakano, et al. 2021. Training verifiers to solve math 712
word problems. arXiv preprint arXiv:2110.14168. 713

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 714
Pengfei Liu, Yiming Yang, Jamie Callan, and 715
Graham Neubig. 2023. Pal: program-aided lan- 716
guage models. In Proceedings of the 40th Interna- 717
tional Conference on Machine Learning, ICML’23. 718
JMLR.org. 719

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 720
César Teodoro Mendes, Allie Del Giorno, Sivakanth 721
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 722
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 723
you need. arXiv preprint arXiv:2306.11644. 724

Syed-Amad Hussain, Parag Pravin Dakle, SaiKrishna 725
Rallabandi, and Preethi Raghavan. 2023. Towards 726
leveraging llms for conditional qa. arXiv preprint 727
arXiv:2312.01143. 728

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 729
sch, Chris Bamford, Devendra Singh Chaplot, Diego 730
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 731
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 732
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 733
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 734
and William El Sayed. 2023. Mistral 7b. arXiv 735
preprint arXiv:2310.06825. 736

Albert Q Jiang, Alexandre Sablayrolles, Antoine 737
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 738
ford, Devendra Singh Chaplot, Diego de las Casas, 739
Emma Bou Hanna, Florian Bressand, et al. 2024. 740
Mixtral of experts. arXiv preprint arXiv:2401.04088. 741

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung 742
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra- 743
machandran. 2023. BoardgameQA: A dataset for 744
natural language reasoning with contradictory infor- 745
mation. In Thirty-seventh Conference on Neural In- 746
formation Processing Systems Datasets and Bench- 747
marks Track, pages 1–23. 748

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. 749
2018. Sharp nearby, fuzzy far away: How neural lan- 750
guage models use context. In Proceedings of the 56th 751

9

https://aclanthology.org/2014.lilt-9.4
https://aclanthology.org/2014.lilt-9.4
https://aclanthology.org/2014.lilt-9.4
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://dl.acm.org/doi/10.5555/3618408.3618843
https://dl.acm.org/doi/10.5555/3618408.3618843
https://dl.acm.org/doi/10.5555/3618408.3618843
https://arxiv.org/abs/2312.01143
https://arxiv.org/abs/2312.01143
https://arxiv.org/abs/2312.01143
https://arxiv.org/abs/2310.06825
https://arxiv.org/pdf/2401.04088.pdf
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027

Annual Meeting of the Association for Computational752
Linguistics (Volume 1: Long Papers), pages 284–294,753
Melbourne, Australia. Association for Computational754
Linguistics.755

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-756
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-757
guage models are zero-shot reasoners. In Advances in758
Neural Information Processing Systems, volume 35,759
pages 22199–22213. Curran Associates, Inc.760

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,761
Benoit Steiner, Carson Denison, Danny Hernan-762
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-763
son Kernion, et al. 2023. Measuring faithful-764
ness in chain-of-thought reasoning. arXiv preprint765
arXiv:2307.13702.766

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan767
Duan, Ming Zhou, and Yue Zhang. 2023a. Logiqa768
2.0—an improved dataset for logical reasoning in769
natural language understanding. IEEE/ACM Trans-770
actions on Audio, Speech, and Language Processing,771
31:2947–2962.772

Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He,773
Sean Welleck, Hannaneh Hajishirzi, and Yejin Choi.774
2022a. Rainier: Reinforced knowledge introspector775
for commonsense question answering. In Proceed-776
ings of the 2022 Conference on Empirical Methods777
in Natural Language Processing, pages 8938–8958,778
Abu Dhabi, United Arab Emirates. Association for779
Computational Linguistics.780

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-781
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh782
Hajishirzi. 2022b. Generated knowledge prompting783
for commonsense reasoning. In Proceedings of the784
60th Annual Meeting of the Association for Compu-785
tational Linguistics (Volume 1: Long Papers), pages786
3154–3169, Dublin, Ireland. Association for Compu-787
tational Linguistics.788

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,789
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-790
lenge dataset for machine reading comprehension791
with logical reasoning. In Proceedings of the Twenty-792
Ninth International Joint Conference on Artificial793
Intelligence, IJCAI-20, pages 3622–3628. Interna-794
tional Joint Conferences on Artificial Intelligence795
Organization. Main track.796

Xiao Liu, Da Yin, Chen Zhang, Yansong Feng, and797
Dongyan Zhao. 2023b. The magic of IF: Investi-798
gating causal reasoning abilities in large language799
models of code. In Findings of the Association for800
Computational Linguistics: ACL 2023, pages 9009–801
9022, Toronto, Canada. Association for Computa-802
tional Linguistics.803

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,804
Delip Rao, Eric Wong, Marianna Apidianaki, and805
Chris Callison-Burch. 2023. Faithful chain-of-806
thought reasoning. arXiv preprint arXiv:2301.13379.807

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, 808
and Graham Neubig. 2022. Language models of code 809
are few-shot commonsense learners. In Proceedings 810
of the 2022 Conference on Empirical Methods in Nat- 811
ural Language Processing, pages 1384–1403, Abu 812
Dhabi, United Arab Emirates. Association for Com- 813
putational Linguistics. 814

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, 815
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle- 816
moyer, and Hannaneh Hajishirzi. 2023. FActScore: 817
Fine-grained atomic evaluation of factual precision 818
in long form text generation. In Proceedings of the 819
2023 Conference on Empirical Methods in Natural 820
Language Processing, pages 12076–12100, Singa- 821
pore. Association for Computational Linguistics. 822

John Eric Nolt, Dennis Rohatyn, and Achille Varzi. 823
1988. Schaum’s outline of logic. McGraw Hill Pro- 824
fessional. 825

OpenAI. 2023. Gpt-4 technical report. arXiv preprint 826
arXiv:2303.08774. 827

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 828
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 829
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 830
2022. Training language models to follow instruc- 831
tions with human feedback. Advances in Neural 832
Information Processing Systems, 35:27730–27744. 833

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan 834
Luu, William Yang Wang, Min-Yen Kan, and Preslav 835
Nakov. 2023. Fact-checking complex claims with 836
program-guided reasoning. In Proceedings of the 837
61st Annual Meeting of the Association for Compu- 838
tational Linguistics (Volume 1: Long Papers), pages 839
6981–7004, Toronto, Canada. Association for Com- 840
putational Linguistics. 841

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 842
2021. Are NLP models really able to solve simple 843
math word problems? In Proceedings of the 2021 844
Conference of the North American Chapter of the 845
Association for Computational Linguistics: Human 846
Language Technologies, pages 2080–2094, Online. 847
Association for Computational Linguistics. 848

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer 849
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume 850
Bouchard, and Sebastian Riedel. 2018. Interpretation 851
of natural language rules in conversational machine 852
reading. In Proceedings of the 2018 Conference on 853
Empirical Methods in Natural Language Processing, 854
pages 2087–2097, Brussels, Belgium. Association 855
for Computational Linguistics. 856

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle 857
Pineau, and William L. Hamilton. 2019. CLUTRR: 858
A diagnostic benchmark for inductive reasoning from 859
text. In Proceedings of the 2019 Conference on 860
Empirical Methods in Natural Language Processing 861
and the 9th International Joint Conference on Natu- 862
ral Language Processing (EMNLP-IJCNLP), pages 863
4506–4515, Hong Kong, China. Association for Com- 864
putational Linguistics. 865

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.18653/v1/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://arxiv.org/pdf/2303.08774.pdf
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458

Haitian Sun, William Cohen, and Ruslan Salakhutdinov.866
2022. ConditionalQA: A complex reading compre-867
hension dataset with conditional answers. In Pro-868
ceedings of the 60th Annual Meeting of the Associa-869
tion for Computational Linguistics (Volume 1: Long870
Papers), pages 3627–3637, Dublin, Ireland. Associa-871
tion for Computational Linguistics.872

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-873
Micke, and Mohit Iyyer. 2021. Do long-range lan-874
guage models actually use long-range context? In875
Proceedings of the 2021 Conference on Empirical876
Methods in Natural Language Processing, pages 807–877
822, Online and Punta Cana, Dominican Republic.878
Association for Computational Linguistics.879

Wenya Wang, Vivek Srikumar, Hannaneh Hajishirzi,880
and Noah A. Smith. 2023. Elaboration-generating881
commonsense question answering at scale. In Pro-882
ceedings of the 61st Annual Meeting of the Associa-883
tion for Computational Linguistics (Volume 1: Long884
Papers), pages 1619–1635, Toronto, Canada. Associ-885
ation for Computational Linguistics.886

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten887
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,888
and Denny Zhou. 2022. Chain-of-thought prompt-889
ing elicits reasoning in large language models. In890
Advances in Neural Information Processing Systems,891
volume 35, pages 24824–24837. Curran Associates,892
Inc.893

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023.894
Satlm: Satisfiability-aided language models using895
declarative prompting. In Proceedings of NeurIPS,896
pages 1–33.897

A Datasets898

ConditionalQA is a QA dataset where the an-899

swers are applicable under specific scenarios (i.e.,900

conditional answers). Therefore, along with each901

question, the dataset provides a scenario that de-902

scribes the background of the person posing such903

a question. Questions require multi-hop, composi-904

tional, and conditional logic over documents about905

public policies (e.g., the eligibility for a subsidy).906

Answers can be a span of the document, yes, and907

no. We use an oracle retriever to select the relevant908

passages to the question so that we can isolate the909

analysis of conditional reasoning abilities in LLMs910

from the retrieval component. The expected out-911

put is a chain of thought (CoT; Wei et al. 2022)912

followed by the final answer. To create the CoT,913

we use the annotated evidence sentences. We use914

an oracle retriever to retrieve the relevant passages915

to the question. This retriever is based on the sen-916

tences annotated as evidence for the answer (i.e.,917

rationales). We concatenate all sections that in-918

clude one rationale and use the resulting passage919

as input document.920

BoardgameQA is a dataset that evaluates the abil- 921

ity to reason with contradictory information guided 922

by preferences. For example, given a question 923

about traveling abroad, information found online 924

about regulations can be contradictory because 925

rules may change over time. Answering questions 926

in this dataset requires complex multi-hop reason- 927

ing with conditional, deductive, and compositional 928

abilities. The domain of the problems is board 929

games, which allows us to analyze the conditional 930

reasoning abilities in a completely different domain 931

from CondQA. BGQA is divided into multiple parti- 932

tions focusing on different characteristics, such as 933

the depth of the reasoning tree, the need for exter- 934

nal information, etc. We focus on the main par- 935

tition and its subpartitions (i.e., BGQA-1, BGQA-2, 936

BGQA-3), where the number refers to the number 937

of reasoning hops required to answer the ques- 938

tion. This dataset also includes annotated chain-of- 939

thoughts (CoT); therefore, we use their annotated 940

input (“example”) as the input prompt and their 941

annotated CoT (“proof ”) as the expected output. 942

ShARC is a conversational QA dataset with nat- 943

ural language rules where most questions are un- 944

derspecified. Therefore, the model may need to 945

ask a follow-up question to know more about the 946

background of the interlocutor to return an answer. 947

The documents are of legal domain retrieved from 948

the web pages of different governments and state 949

agencies. Since this is a conversational QA and 950

we are not interested in evaluating the conversa- 951

tional abilities of LLMs, we transform the task into 952

regular QA, instead of conversational QA. To do 953

this, the model must answer yes, no, or not enough 954

information for each question. In the original task, 955

not enough information, would lead to the gener- 956

ation of a follow-up question. The test set was 957

released less than one week before the deadline for 958

submission of this paper.7 Therefore, at the time of 959

experimentation, we randomly divided the dev set 960

into two equal partitions and used one for dev and 961

the other one for test. 962

Complexity of the datasets. We analyze the 963

complexity of the datasets by counting the percent- 964

age of reasoning operations (i.e., if statements) in 965

the code prompt generated by GPT 3.5. This analy- 966

sis shows that the most difficult dataset is BGQA-3 967

with 21.58% of reasoning operations, followed 968

by BGQA-2 (16.99%), CondQA (14.66%), BGQA-1 969

7https://sharc-data.github.io/index.html

11

https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2023.acl-long.90
https://doi.org/10.18653/v1/2023.acl-long.90
https://doi.org/10.18653/v1/2023.acl-long.90
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/pdf?id=TqW5PL1Poi
https://openreview.net/pdf?id=TqW5PL1Poi
https://openreview.net/pdf?id=TqW5PL1Poi
https://sharc-data.github.io/index.html

(10.55%), and lastly, ShARC (8.32%).970

We also analyze the length of the documents of971

each dataset and find that BGQA-3 has the longest972

documents with an average of 39 lines of code, fol-973

lowed by CondQA (38), BGQA-2 (25), ShARC (22),974

and lastly BGQA-1 (15). It is worth noting that975

the documents from CondQA are the short docu-976

ments extracted with the oracle retriever described977

above, instead of the full documents, which are978

much longer (up to 9k tokens).979

These two analyses suggest that BGQA-3 and980

BGQA-2 are the most reasoning-intensive datasets981

due to the high proportion of reasoning operations.982

In contrast, CondQA is the dataset where the lin-983

guistic dimension plays the biggest role because984

their documents are among the longest ones while985

it contains much less proportion of reasoning opera-986

tions than the other datasets with similar document987

lengths.988

Dataset sizes, licenses, and safety. The sizes989

and licenses of all the datasets used in this work990

are provided in Table 5. Our use of these datasets991

is consistent with their intended use, i.e., academic992

research to evaluate question-answering systems.993

As far as we know, these datasets do not contain994

any personal information or offensive content. Al-995

though we did not explicitly analyze this, the au-996

thors of these datasets did not mention including997

such content, and we did not observe such content998

during our use of the datasets. All these datasets999

are in English.1000

Dataset Training Dev Test License
CondQA 2338 285 804 BSD 2
BGQA-1 1000 500 1000 CC BY
BGQA-2 1000 500 1000 CC BY
BGQA-3 1000 500 1000 CC BY
ShARC 21890 1135 1135 CC-BY-SA-3.0

Table 5: Sizes of the datasets.

B Prompt Formulation1001

CONDQA. Firstly, we define the different compo-1002

nents of a data point: scenario (S), question (Q),1003

document (D), rationales (R), and answer (A).1004

Then, the text prompt tp is defined as follows:1005

tp = "Question:" + S +Q+ "Document:" +D

+"Let’s think step by step"
(1)

1006

where + represents the string concatenation op- 1007

erator. Then, the output format, to is: 1008

to = R+ "Answer:" +A (2) 1009

For code prompts, we first define a function 1010

C : NL → C that maps a natural language text into 1011

code as shown in Figure 2. Then, we define code 1012

prompt cp as follows: 1013

cp = "#Question:" + C(S) + C(Q)+

"#Document:" + C(D)

+"#Let’s think step by step"

(3) 1014

Similarly, we define the output format, co, as: 1015

co = R+ "#Answer:" +A (4) 1016

BGQA. Firstly, we define the components of a data 1017

point in this dataset: facts (F), rules (R), and ques- 1018

tions (Q). Therefore, our text prompt is defined as 1019

follows8: 1020

tp = F +R+Q (5) 1021

This dataset also provides the CoT that leads to the 1022

answer. Therefore, we use that CoT as the expected 1023

output. 1024

For code prompts, we follow the same approach 1025

as with the previous dataset. We define code 1026

prompts, cp, as follows: 1027

tp = C(F) + C(R) + C(Q) (6) 1028

with the output format (co) being: 1029

co = C(cot) (7) 1030

ShARC. Firstly, we define the components of a 1031

data point in this dataset: question (Q), scenario 1032

(S), document (D), and conversation history (H). 1033

Then, the text prompt tp is defined as follows: 1034

tp = "Question:" + S +Q+ "Document:" +D

+"Conversation history:" +H

+"What is the answer to the question:" +Q

(8)

1035

the output format is the answer label directly, which 1036

can be yes, no, or not enough information. 1037

8BGQA provides a field example with all the variables of
the dataset concatenated with descriptions. We use this field
as text prompt.

12

Similarly to the other datasets, we defined code1038

prompts cp as follows:1039

tp = "#Question:" + C(S) + C(Q)+

+"#Document:" + C(D)

+"#Conversation history:" + C(H)

+"#What is the answer to the question:" + C(Q)

(9)

1040

Lastly, the output format is the answer label di-1041

rectly, which in this case are True, False, or None.1042

C LLM Setup1043

The exact models we used are the following: gpt-1044

3.5-16k-0613 for CondQA and BGQA. For ShARC,1045

since the documents are shorter, we used GPT-3.5-1046

0301 due to the lower costs. In both cases, we1047

run the models through the Azure AI service. We1048

also use Mixtral 8x7B with 4-bit quantization for1049

all the datasets using one Nvidia A100 in our own1050

server. Lastly, we use Mistral 7B v0.1 for CondQA1051

and BGQA. However, this model yields very poor1052

results on ShARC, so we use the instruct-v0.2 vari-1053

ant to be able to make a fair comparison between1054

text and code prompts on this dataset using Mistral1055

7B. We use fp16 quantization for the Mistral 7B1056

experiments and run them on our own server with1057

one Nvidia A100.1058

The number of demonstrations used to translate1059

the documents into code is specified in Table 6.1060

Note that this number differs from the number of1061

demonstrations used to generate the answer, which1062

is always three.1063

The best random seeds found (and consequently1064

used for the test set evaluation) are described in1065

Table 7 and Table 8.1066

Dataset GPT Mixtral Mistral

CondQA 4 4 4
ShARC 5 4 4
BGQA-1 4 3 3
BGQA-2 4 3 4
BGQA-3 4 3 4

Table 6: Number of demonstrations for code transla-
tions. Note this is not the number of demonstrations to
generate the answer.

D Costs1067

Running a data instance from ConditionalQA with1068

gpt-3.5-16k-0613 using code prompts costs $0.041069

Dataset GPT Mixtral Mistral

CondQA 0 0 0
ShARC 0 1 1
BGQA-1 1 0 1
BGQA-2 1 0 0
BGQA-3 0 1 0

Table 7: Best seeds for code prompts

Dataset GPT Mixtral Mistral

CondQA 0 1 0
ShARC 0 0 0
BGQA-1 1 0 1
BGQA-2 0 1 1
BGQA-3 0 1 0

Table 8: Best seeds for text prompts

while with text prompts $0.01. On BoardgameQA- 1070

depth 3 (i.e., the partition with the most expensive 1071

prompts), with the same model, the costs per ques- 1072

tion are $0.02 and $0.03 for text and code prompts, 1073

respectively. Lastly, on ShaRC, using gpt-3.5-0301, 1074

the costs per question are $0.0006 and $0.005 for 1075

text and code prompts, respectively. 1076

E Results on Small LMs with Short 1077

Context Window 1078

We have shown the effectiveness of code prompting 1079

in the most popular sizes of LLMs in table 1 from 1080

section 5.1. However, it is becoming increasingly 1081

popular the development of small language mod- 1082

els (sLMs) due to their cheaper inferece cost and 1083

higher token thoughput (Gunasekar et al., 2023). 1084

Therefore, we have conducted a preliminary ex- 1085

periment with Phi-29, a text+code model of 2.7B 1086

parameters on BGQA-1 to show that our prompting 1087

methodology also holds in sLMs. As we can show 1088

on table 9, code prompting yields a remarkable per- 1089

formance boost of 15 points. However, due to the 1090

limited context window of Phi-2, it is not straight- 1091

forward to conduct in-context learning on our other 1092

datasets. 1093

F Qualitative Analysis 1094

Our previous experiments have focused on the ac- 1095

curacy of the answers. Obtaining a correct an- 1096

swer is correlated to a correct reasoning process. 1097

9https://huggingface.co/microsoft/phi-2

13

https://huggingface.co/microsoft/phi-2

Prompt BGQA-1

Text 33.20± 1.42
Code 48.32 ± 1.65

Table 9: Comparison of text prompt and code prompts
with Phi-2 on the validation set. Metric: F1 score. One
demonstration per class is provided.

However, it is possible to obtain a correct answer1098

despite an incorrect reasoning chain. Due to the1099

difficulty of automatically evaluating the chain of1100

thoughts, we perform a limited human evaluation.1101

We sample ten instances from BGQA-3 (i.e., the1102

dataset with the most complex reasoning chains)1103

where both text and code prompts return the cor-1104

rect answer and manually inspect the quality of1105

the reasoning chains. Based on this limited sam-1106

ple, we observe that text prompts conduct a 100%1107

correct reasoning chain in only two cases, while1108

code prompts do so in three cases. We identify two1109

main types of errors: (1) wrong conditional rea-1110

soning and (2) commonsense errors. We provide1111

examples of those in Table 10. This observation1112

raises the question of whether the generated chain1113

of thought is not faithful to the internal reasoning1114

of the model, as suggested by Lyu et al. (2023) or1115

whether the model generated the right answer from1116

a greedy attempt to reach the closest plausible con-1117

clusion (code prompts shows a reasoning error in1118

the last step of the CoT in three out of seven cases).1119

We leave the analysis of faithfulness of chains of1120

thoughts as future work.1121

G Atomic Statements1122

Original sentence: <p>Applying for the legal right1123

to deal with someone’s property, money and posses-1124

sions (their estate) when they die is called applying1125

for probate.</p> Atomic statements: Applying for1126

the legal right is a process. The process is called1127

’applying for probate’. The legal right is to deal1128

with someone’s property, money, and possessions.1129

The someone is a person who has died. The prop-1130

erty, money, and possessions are collectively called1131

the ’estate’.1132

H Examples of Code Ablations1133

An example of a back-translated code into natural1134

language is provided in Table 11. We can observe1135

in both examples that the resulting natural language1136

(NL) text is extremely similar to the original code.1137

In addition, in the second example (BGQA), Rule2 1138

is much simpler after the back-translation than its 1139

original description in NL. 1140

Table 12 shows examples of the multiple code 1141

ablations we conducted in Section 5.3. Random 1142

code replaces the code with a piece of code from 1143

another data point. In this way, the semantics of 1144

the text and code mismatch while we keep the code 1145

syntactically correct. 1146

I Variable Tracking Setup 1147

Extracting key entities in BoardgameQA. This 1148

dataset provides a list of “facts,” which are short 1149

and concise sentences describing the state of a key 1150

entity. Therefore, we use them without alterations 1151

as the key entities to ask for. 1152

Extracting key entities in ConditionalQA. This 1153

dataset provides a scenario describing the back- 1154

ground information of the person posing the answer. 1155

Since this scenario is a free-form text, we follow 1156

(Min et al., 2023) to extract atomic statements and 1157

use them as the key entities to ask for. 1158

Code Prompting variables . To probe the vari- 1159

able tracking abilities of code prompts, we use the 1160

variables defined in the “facts” and “scenario” of 1161

BoardgameQA and ConditionalQA, respectively. 1162

Probing memory at different steps in the Chain- 1163

of-Thought. Inspired by Lanham et al. (2023), 1164

we truncate the Chain-of-Thought (CoT) at differ- 1165

ent completion states and probe the memory of the 1166

model. To break down the CoT, we split it by the 1167

character “\n”, which usually represents the end of 1168

a reasoning step. This is possible because our in- 1169

context learning demonstrations follow this format. 1170

Number of probes. For each dataset instance, we 1171

run num_facts× num_steps_cot probes, which 1172

makes this experiment very costly. Thus, we aim 1173

to maximize the number of instances probed while 1174

keeping the costs down. To do so, we use a sam- 1175

ple of 50 instances for each dataset partition of 1176

BoardgameQA, except for Board3, where we used 1177

20 instances (≈ 700 probes) because of the cost of 1178

the experiment. Due to the length of the demonstra- 1179

tions of ConditionalQA and its impact on the costs, 1180

we sample five facts and three partial CoTs for each 1181

instance, yielding an upper-bound of 15 probes per 1182

instance, and run the probes for 30 instances for 1183

each dataset partition (i.e., correct and incorrect 1184

instances). 1185

14

Error Type Example Explanation

Commonsense We know the catfish has a harmonica, and according
to Rule3 "if the catfish has something to sit on, ...

The model believes a har-
monica is something to sit
on.

Conditional
Reasoning

We know the lion does not remove from the
board one of the pieces of the dog, and according to
Rule5 "if something becomes an enemy of the squid
but does not remove from the board one of the
pieces of the dog, then it steals five points from the
mosquito."
become_enemy(lion, squid)==True
not remove_piece(lion, dog)==True
steal_points(lion,mosquito,5)=rule5(lion)
steal_points(lion, mosquito, 5)==True

We do not know
become_enemy(lion,
squid) == True, but if we
assume this, we reach the
question variable, so we get
an answer to the question.

Table 10: Examples of reasoning errors on correct instances by text and code prompts. Underline text is the cause of
the error.

Prompt Probes. In all cases, we follow the fol-1186

lowing format: Sys. Prompt; ICL Demonstrations;1187

Input Instance; Partial CoT; Probe.1188

The probe for text and code prompts in1189

BoardgameQA is: “Now, I want to ask you about1190

the value of some key entities you used. Your an-1191

swers must be ‘yes‘, ‘no‘, or ‘unknown‘. It is very1192

important that you only write one word. Is it true1193

that {fact}?”1194

The probe for text prompts in ConditionalQA1195

is: “Now, I want to ask you about the value of1196

some key entities you used. Your answers must be1197

“True”, “False”, “unknown”, or a string. It is very1198

important that you only write the exact value. From1199

the speaker perspective, is it true that {fact}?”1200

The probe for code prompts in ConditionalQA1201

is: “Now, I want to ask you about the value of1202

some key entities you used. Your answers must1203

be “True”, “False”, “unknown”, or a string. It is1204

very important that you only write the exact value.1205

What is the value of the variable {var}?” A real1206

example is provided in Table 13.1207

J Confusion Matrices1208

Figure 4 shows the confusion matrices of all our1209

models using text and code prompts for all the1210

datasets except CondQA. We cannot include this1211

one because it is a span-extraction task, not a clas-1212

sification task.1213

K Prompt Examples1214

15

Type Text

Code # <p>You can apply to become the estate’s administrator if you are 18 or over and
you are the most ‘entitled’ inheritor of the deceased’s estate. This is usually the
deceased’s closest living relative.</p>
if applicant_age >= 18 and entitled_inheritor and closest_relative:
can_apply_estate_administrator = True

Code → NL <p>You can apply to become the estate’s administrator if you are 18 or over and
you are the most ‘entitled’ inheritor of the deceased’s estate. This is usually the
deceased’s closest living relative.</p>
if you are 18 or over and you are the most entitled inheritor of the deceased’s
estate and you are the closest living relative, you can apply to become the estate’s
administrator

Code # Rule2: Be careful when something removes from the board one of the pieces of
the dog and also becomes an enemy of the catfish because in this case it will surely
not burn the warehouse of the mosquito (this may or may not be problematic)
rule2(something) = remove(something, piece_of(dog)) & enemy(something, cat-
fish) => not burn(something, warehouse_of(mosquito))

Code → NL Rule2: If something removes from the board one of the pieces of the dog and
also becomes an enemy of the catfish, then it does not burn the warehouse of the
mosquito

Table 11: Example of a back-translation NL → C in ConditionalQA and BGQA-3. Text in bold represents the main
modification.

Type Text

Original
Code

<p>To be eligible you must have left your country and be unable to go back because
you fear persecution.</p>
if left_country_and_fear_persecution:
eligible_for_asylum = True

Anonymous
Code

<p>To be eligible you must have left your country and be unable to go back because
you fear persecution.</p>
if var_1
var_2 = True

Random
Code

<p>To be eligible you must have left your country and be unable to go back because
you fear persecution.</p>
if value_of_property_gone_down_by_more_than_50:
eligible_to_claim = True
getting_housing_benefit = True

Table 12: Examples code ablations.

16

Section Role Message

Problem
instance

Human Question: My brother and his wife are in prison for car-
rying out a large fraud scheme. Their 7 and 8 year old
children have been living with me for the last 4 years. I want to become
their Special Guardian to look after them permanently. How long will it be
before I hear back from the court?
Document: <h1>What is a special guardian</h1> <p>You can apply to be
a child’s special guardian when they cannot live with their birth parents and
adoption is not right for them.</p> ...
Answers can be "yes" or "no". Let’s think step by step:

Partial
CoT

AI <p>Within 10 days of receiving your application the court will send you a
case number and a date for a meeting to set out:</p>\n

Probe Human Now, I want to ask you about the value of some key entities you used. Your
answers must be ‘True‘, ‘False‘, ‘unknown‘, or a string. It is very important
that you only write the exact value. From the speaker perspective, is it true
that the children have been living with me for the last 4 years?

Probe AI True

Table 13: Variable Tracking Example. Underlined text represents the variable to probe. Partial CoT is not the
complete answer. The generation was stopped, and only the first step was used in this probe.

System: You are a helpful assistant that answers questions given a document. Answers must be a short
span of the document. You have to extract the span from the document. Do not write anything else. I will
give you some examples first.
ICL Demonstrations...
Human: Question: My brother and his wife are in prison for carrying out a large fraud scheme. Their
7 and 8 year old children have been living with me for the last 4 years. I want to become their Special
Guardian to look after them permanently. How long will it be before I hear back from the court?
Document: <h1>What is a special guardian</h1>
<p>You can apply to be a child’s special guardian when they cannot live with their birth parents and
adoption is not right for them.</p>
<p>You’ll be responsible for looking after the child until they’re 18 (unless the court takes your responsi-
bility away earlier).</p>
<p>You’ll make all day to day decisions about the child, for example schooling and medical treatment.
You do not have to discuss these decisions with the birth parents.</p>
<p>You’ll need to get the consent of everyone who has parental responsibility for the child before you
make some important decisions, for example:</p>
changing the child’s surname
putting the child up for adoption
taking the child abroad for more than 3 months
the child having surgery for reasons other than improving health, such as circumcision, sterilisation or
cosmetic surgery
<p>If you cannot get consent, you can ask the court to decide. Use the form ‘Make an application in
existing court proceedings related to children’ (form C2).</p>
<h1>After you apply</h1>
<p>Within 10 days of receiving your application the court will send you a case number and a date for a
meeting to set out:</p>
a timetable for your case
how it will be dealt with
<p>This meeting is called a ‘first directions hearing’.</p>
<p>You must go to all hearings you’re told to unless the court excuses you. If you’re not able to go,
contact the court office.</p> Answers must be a short span of the document. You have to extract the span
from the document. Do not write anything else. Let’s think step by step:

Table 14: Text prompt Example for ConditionalQA

17

System: You are a helpful assistant. Your task is to process a pseudo-code that describes a question and a
document. You need to reason using that document and the comments to return the answers. Answers
must be a short span of the document. You have to extract the span from the code comments. Do not write
anything else. I will give you some examples first.
ICL Demonstrations...
Human: # Question: My brother and his wife are in prison for carrying out a large fraud scheme. Their
7 and 8 year old children have been living with me for the last 4 years. I want to become their Special
Guardian to look after them permanently. How long will it be before I hear back from the court?
maximum_redundancy_pay = 16320
housing_standards_and_procedures_in_Northern_Ireland = True
ensure_vehicle_taxed_in_UK = True immigration_advisers_can_help_with_representation_at_tribunal =
True
supply_protective_clothing_and_equipment = True
CBT_required_for_moped_and_motorcycle = True
court_response_time = None # This is the variable that answers the question
<h1>What is a special guardian</h1>
<p>You can apply to be a child’s special guardian when they cannot live with their birth parents and
adoption is not right for them.</p>
if attorneys_appointed_jointly:
all_attorneys_must_agree_to_make_decision = True
disability_or_severe_disability_element_of_working_tax_credit = True
mugging_without_physical_harm_emergency = True
<p>You’ll be responsible for looking after the child until they’re 18 (unless the court takes your
responsibility away earlier).</p>
work_temporarily_for_hirer = True
<p>You’ll make all day to day decisions about the child, for example schooling and medical treatment.
You do not have to discuss these decisions with the birth parents.</p>
accounts_and_tax_returns_cover_financial_year = "1 June to 31 May"
employer_operating_PAYE = True
<p>You’ll need to get the consent of everyone who has parental responsibility for the child before you
make some important decisions, for example:</p>
changing the child’s surname
putting the child up for adoption
taking the child abroad for more than 3 months
the child having surgery for reasons other than improving health, such as circumcision, sterilisation
or cosmetic surgery
managed_by_fit_and_proper_persons = True
check_court_order_for_authorization = True
considering_fostering = True
if not_connected_to_mains_sewer:
septic_tank_used = True
can_claim_tax_relief_if_taxed_twice = True
extra_support_for_disability = True
if operator_of_septic_tank_or_treatment_plant:
follow_general_binding_rules = True
<p>If you cannot get consent, you can ask the court to decide. Use the form ‘Make an application in
existing court proceedings related to children’ (form C2).</p>
appeals_decision_time = "several months"
if worker and informal_resolution_not_satisfactory:
formal_grievance_complaint_possible = True
time_limit_for_backdating_claims_services = 6
<h1>After you apply</h1>
<p>Within 10 days of receiving your application the court will send you a case number and a date for a
meeting to set out:</p>
a timetable for your case
how it will be dealt with
<p>This meeting is called a ‘first directions hearing’.</p>
committee_recommendations_go_to_Prime_Minister = True
check_adviser_registration = True
meet_manning_levels = True
recognised_as_charity_or_CASC = True
apply_for_visa_for_other_reasons = True
debt_paid_off = True
if special_educational_needs_and_disabilities:
affects_behaviour_or_socialisation = True
<p>You must go to all hearings you’re told to unless the court excuses you. If you’re not able to go,
contact the court office.</p>
payslip_can_include_tax_code = True
VAT_zero_rate = 0
gas_equipment_installed_and_maintained_by_Gas_Safe_registered_engineer = True
Question: My brother and his wife are in prison for carrying out a large fraud scheme. Their 7 and 8
year old children have been living with me for the last 4 years. I want to become their Special Guardian to
look after them permanently. How long will it be before I hear back from the court?
Answers must be a short span of the document. You have to extract the span from the code comments.
Do not write anything else.
Let’s think step by step:

Table 15: Code Prompt Example for ConditionalQA

18

System: You are a question-answering system that solves the problem of reasoning with contradictory
information guided by preferences over sources of information. You must explain your answers step
by step.
ICL Demonstrations ...
Human: A few players are playing a boardgame
The current state of the game is as follows
The amberjack struggles to find food
And the rules of the game are as follows
Rule1: If the amberjack has difficulty to find food, then the amberjack removes from the board one
of the pieces of the carp
Based on the game state and the rules and preferences, does the amberjack remove from the board
one of the pieces of the carp?
AI:

Table 16: Text prompt Example for BGQA-1

System: You are a large language model of code that can interpret code. You are given a pseudo-code
that resembles to first-order logic that models some scenario. You will be given a question and you
have to answer it step by step. You can use a rule if and only if you know the antecedent of the rule.
ICL Demonstrations
Human: # A few players are playing a boardgame
The rules of the game are as follows
Rule1: If the amberjack has difficulty to find food, then the amberjack removes from the board one
of the pieces of the carp.
rule1() = difficulty_finding_food(amberjack) => remove_piece(amberjack, carp)
The current state of the game is as follows
The amberjack struggles to find food.
difficulty_finding_food(amberjack) = True
Based on the game state and the rules and preferences, does the amberjack remove from the board
one of the pieces of the carp?
question = remove_piece(amberjack, carp)
AI:

Table 17: Code prompt Example for BGQA-1

19

System: You are a question answering system that answers questions given a document and a conversation
history. The conversation history gives information about the background of the person posing the question.
You must answer ‘yes‘, ‘no‘, or ‘not enough information‘ to the question and nothing else.
ICL Demonstrations...
Human: Question: The item is not equipment for audio books or newspapers, and I’m not selling lifeboats
or anything related to that. It’s for medicine and medicinal ingredients. Can I apply zero VAT to this item?
Document:
Items that qualify for the zero rate
You may be able to apply zero VAT when you sell the following to an eligible charity:
* equipment for making ‘talking’ books and newspapers
* lifeboats and associated equipment, including fuel
* medicine or ingredients for medicine
* resuscitation training models
Conversation history:
Q: Is it equipment for making ‘talking’ books and newspapers?
A: No
Q: Are you selling lifeboats and associated equipment, including fuel?
A: No
Q: Are you selling medicine or ingredients for medicine?
A: Yes
What is the answer to the question: Can I apply zero VAT to this item? You must answer ‘yes‘, ‘no‘, or
‘not enough information‘ to the question and nothing else.
AI:

Table 18: Text prompt Example for ShARC.

System: You are a question-answering system that answers questions based on a document, and conversa-
tion history. The text is pseudo-code that models the document and conversation history. You must run
the code and update the value of the variable that answers the question. The values can be True, False, or
None.
ICL Demonstrations...
Human:
Question: # The item is not equipment for audio books or newspapers, and I’m not selling lifeboats or
anything related to that. It’s for medicine and medicinal ingredients. Can I apply zero VAT to this item?
equipment_for_audio_books_or_newspapers = False
selling_lifeboats_or_related_equipment = False
selling_medicine_or_ingredients_for_medicine = True
can_apply_zero_VAT = None # This is the variable that answers the question.
Other variables needed for the document:
Document:
Items that qualify for the zero rate
You may be able to apply zero VAT when you sell the following to an eligible charity:
* equipment for making ‘talking’ books and newspapers
if equipment_for_audio_books_or_newspapers: can_apply_zero_VAT = False
* lifeboats and associated equipment, including fuel
if selling_lifeboats_or_related_equipment: can_apply_zero_VAT = False
* medicine or ingredients for medicine
if selling_medicine_or_ingredients_for_medicine: can_apply_zero_VAT = True
* resuscitation training models
resuscitation_training_models = None can_apply_zero_VAT =
AI:

Table 19: Code prompt Example for ShARC.

20

Figure 4: Confusion matrices of text and code prompts for each model on all datasets.

21

	Introduction
	Background and Related Work
	Code Prompting
	Definition
	Coding Features

	Experimental Setup
	Datasets
	LLM Setup
	Evaluation

	Experiments
	Code Prompting Improves over Text Prompting
	Code Syntax Elicits Reasoning Abilities
	Code Semantics are Important
	Code Prompts are More Sample-Efficient at Eliciting Reasoning Abilities
	Code Prompts Improve Variable Tracking in LLMs

	Conclusions and Future Work
	Datasets
	Prompt Formulation
	LLM Setup
	Costs
	Results on Small LMs with Short Context Window
	Qualitative Analysis
	Atomic Statements
	Examples of Code Ablations
	Variable Tracking Setup
	Confusion Matrices
	Prompt Examples

