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Abstract

Despite the complex nature of hate speech,
studies focus primarily on detecting its binary
categories, often overlooking the continuous
spectrum of offensiveness and hatefulness in-
herent in the message. This study presents
benchmark datasets for Amharic, comprising
8,258 tweets annotated for three distinct tasks:
category classification, identification of hate
targets, and rating of offensiveness and hate-
fulness intensities. Our study highlights that
a considerable majority of tweets belong to
the less offensive and less hateful intensity lev-
els, underscoring the need for early interven-
tions by stakeholders. The prevalence of eth-
nic and political hatred targets, with significant
overlaps in our dataset, emphasizes the com-
plex relationships within Ethiopia’s sociopolit-
ical landscape. This study revealed that hate
and offensive speech cannot be addressed by
simplistic binary classification methods. In-
stead, they manifest themselves as variables
across a continuous range of values. The Afro-
XLMR-large model exhibits the best perfor-
mance, achieving F1 scores of 75. 30%, and
70. 59% for the category and target classifica-
tion tasks, respectively. The 80.22% correlation
coefficient of the Afro-XLMR-large and Afro-
XLMR-large-with-active-learning models ex-
hibits strong alignments in the regression tasks.

1 Introduction

Many studies, including those by Davidson et al.
(2017); Fortuna et al. (2020); Waseem and Hovy
(2016); Mathew et al. (2021); Plaza-del arco et al.
(2023); Clarke et al. (2023); Caselli and Veen
(2023) and others, adopt a binary approach to hate
speech classification. These works aim to distin-
guish and label content as either hate or non-hate.
However, this binary viewpoint lacks the capac-
ity to capture the diverse and context-dependent
features of hate speech, which resist easy classi-
fication. We posit that hate speech classification
demonstrates a spectrum of continuity (Bahador,

2023). In contemporary studies, this limitation
has been recognized, prompting a shift towards the
adoption of multifaceted methodologies to better
understand the nature, dimension, and intensity of
hate speech (Beyhan et al., 2022; Sachdeva et al.,
2022). This further enhances hate speech detection
capabilities and employs more effective mitigation
strategies to address its propagation on social me-
dia and its impact on the physical world.

Studies on hate speech in low-resource lan-
guages, particularly Amharic, such as those con-
ducted by Abebaw et al. (2022); Mossie and Wang
(2018); Ayele et al. (2022b); Tesfaye and Kakeba
(2020); Ayele et al. (2023, 2022a), predominantly
focused on the classification of hate speech as a
binary concept, overlooking its varying levels of
intensities and targeted groups. In this study, we
go beyond the traditional binary classification by
examining the varying intensities of hate and of-
fensive speech, as well as the specific communities
targeted by such hatred. For the intensity rating
approach, we adopt the Likert rating scale during
annotation. Likert rating scale is a commonly used
tool to measure attitudes, opinions, or perceptions
of respondents toward a particular topic, where re-
spondents are asked to choose the options that best
reflect their point of view for each item (Subedi,
2016). Likert rating scale provides a quantitative
measurement of qualitative data, which helps re-
searchers analyze attitudes or opinions in a struc-
tured and comparable manner (Joshi et al., 2015).

The study addresses the following research ques-
tions:

• Do hate and offensive speech represent dis-
crete binary categories, or exist on a continu-
ous spectrum of varying intensities?

• What is the extent to which hate speech specif-
ically targets certain groups?

• How frequently do tweets containing hate
speech targeting multiple groups appear?



2 Data Collection and Annotation

The dataset has been collected from X/formerly
Twitter. We used different data selection strategies
such as hate and offensive lexicon entries. The
dataset comprised 8.3k tweets, each annotated by
5 native speakers covering three distinct types of
tasks namely; category, target, and intensity level.
The category annotation includes hate, offensive,
normal, and indeterminate classes. In addition,
the annotators were requested with identifying the
targets of hateful tweets, such as ethnicity, poli-
tics, religion, gender, and disability. They were
also asked to rate the intensity of hatefulness and
offensiveness of each tweet on a 5-point Likert
scale, with ratings ranging from 1 to 5. The entire
annotation consists of a pilot and five subsequent
main annotation batches and achieved a Fleis kappa
agreement score of 0.49. More than 83% of the
hateful tweets in the target dataset exhibited over-
lapping occurrences.

Within the annotated dataset, there have been
large considerable of hateful tweets targeting peo-
ple based on their political, ethnic, and religious
identities. Politics and ethnic identities mainly ap-
peared together within hateful tweets in the dataset
as indicated in Figure 1.

Figure 1: Major overlapping hatred target occurrences
across hateful tweets in the dataset.

We mapped offensiveness and hatefulness inten-
sities of messages, representing in a continuum of
ranging between 0 and 10, where 0 denotes a nor-
mal speech. Offensiveness intensities have been
represented in a range of 1-5 while hatefulness
mapped with 6-10 intensities, perfectly creating an
11-scale intensity dataset as depicted in Figure 2.

3 Results and Discussion

After a comprehensive analysis of the dataset, a
clear pattern emerged, highlighting the prominence

of political and ethnic targets, which mirrors the
complex and unstable sociopolitical situations in
Ethiopia. Notably, these two targets often co-exist
in hateful tweets, underscoring the intricate nature
of Ethiopia’s sociopolitical dynamics, especially
within ethnic contexts. Our findings also showed
variations in toxic intensities of tweets, emphasiz-
ing the need to develop regression models capable
of predicting the level of hatefulness and offensive-
ness in tweets. The majority of hateful (69%) and
offensive (72%) tweets fall into less hate and less
offensive categories, respectively. Although severe
offensive tweets constitute 8%, extreme hateful
tweets that could call for violence and genocide
accounts 11% of the hateful category. These re-
sults signify the need for early interventions from
stakeholders to mitigate hate speech in Amharic.

This study employed a 70:15:15 data-split strat-
egy for train, development, and test sets construc-
tion across all tasks and models. We conducted a
comprehensive exploration of various models for
the detection of hate speech categories, their as-
sociated targets, and their intensity levels. The
study employed models such as AmRoBERTa (Yi-
mam et al., 2021), XLMR-Large-fintuned (Con-
neau et al., 2019), AfroXLMR-large (Alabi et al.,
2022), and variants of AfriBERTa; small, base,
large (Ogueji et al., 2021) and AfroLM-Large-
with-active-learning (Dossou et al., 2022) for all
experiments. Afro-XLMR-large demonstrated su-
perior performance across all tasks category clas-
sification, target classification and intensity pre-
diction. It achieved 75.30% and 70.59% F1 scores
on both tweet category and hatred target classifica-
tion tasks, respectively. We performed regression
tasks using the intensity rating scale data, where
the models achieved Pearson’s r correlation coeffi-
cients ranging from 74.94% to 80.22%, indicating
strong correlations, as shown in Figure 3. These
findings denote a robust relationship between the
predicted values and the actual observations, under-
scoring promising performance outcomes across
all models. The Afro-XLMR-large and AfroLM-
Large (w/ AL) models presented the best results in
the regression tasks, which is 80.22%.

As presented in Figure 4, the majority of errors,
47.84%, within the predicted intensities showed
only 1 scale variation with the actual annotation
scores. The second majority presented a 2 scale
differences between the actual and predicted in-
tensities, which accounts 28.36% of the errors.



Figure 2: Distributions of 0-10 rating scales

Figure 3: Confusion matrix from Afro-XLMR-large.

Over 76% of the predictions are closer to the ac-
tual values, with 1 or 2 intensity scale differences.
Such small variations are also common experiences
among human experts due to subjectivity.

Figure 4: Variations within actual and predicted inten-
sity ratings of tweets.

4 Conclusion

This paper introduces datasets comprising 8,258
annotated tweets for categorizing hate speech, iden-
tifying targets such as ethnicity, politics, and re-
ligion, and assigning intensity levels using Likert
scales. With five annotators, a Fleiss kappa score of

0.49 was achieved. The analysis indicates that po-
litical and ethnic targets frequently co-occur within
Ethiopia’s sociopolitical landscape, necessitating
regression models to predict intensity levels. The
Afro-XLMR-large model performed exceptionally
well across all tasks, illustrating that offensiveness
and hatefulness can be treated as continuous vari-
ables. Future research could focus on refining in-
tensity levels and leveraging the dataset for con-
flict monitoring and peace-building efforts. The
datasets, guidelines, models, and source code will
be released under a permissive license.

5 Limitations

The research study faces several limitations affect-
ing its findings. The small dataset of 8,258 tweets
limits the robustness and generalizability of the
results. Furthermore, the low availability of nor-
mal and offensive class instances may hinder ac-
curate detection of these categories. The dataset’s
extreme imbalance, primarily focused on political
and ethnic targets, could overlook other types of
hate speech. The pre-selection of tweets through
dictionaries also distorts the true distribution of
hateful content. Lastly, the underrepresentation of
certain intensity levels may impair the performance
of both classification and regression models. These
issues underscore the necessity for future research
using larger and more balanced datasets.
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