
Tuning the Hyperparameters of Anytime Planning:
A Deep Reinforcement Learning Approach

Abhinav Bhatia, Justin Svegliato, Shlomo Zilberstein
College of Information and Computer Sciences

University of Massachusetts Amherst
{abhinavbhati, jsvegliato, shlomo}@cs.umass.edu

Abstract

Many anytime algorithms have adjustable hyperparameters
that affect their speed and accuracy. However, while existing
work on metareasoning has focused on deciding when to in-
terrupt an anytime algorithm and act on the current solution,
there has not been much work on tuning the hyperparameters
of an anytime algorithm at runtime. This paper introduces a
decision-theoretic metareasoning approach that can optimize
both the hyperparameters and the stopping point of adjustable
algorithms with deep reinforcement learning. First, we pro-
pose a generalization of an anytime algorithm called an ad-
justable algorithm that has hyperparameters that can be tuned
at runtime. Next, we offer a meta-level control technique that
monitors and controls an adjustable algorithm by using deep
reinforcement learning. Finally, we demonstrate that an ap-
plication of our approach to anytime weighted A* is effective
on a range of common benchmark problems.

Introduction
Anytime algorithms often have hyperparameters that can be
tuned to optimize their performance in a specific scenario—
given a certain problem instance and time constraint. Simply
put, an anytime algorithm is an algorithm that gradually im-
proves its solution at runtime and can be interrupted for its
solution at any time (Zilberstein 1996). This offers a trade-
off between the quality and computation time of a solution
that has proven to be useful in many real-time decision-
making problems, such as motion planning (Karaman et al.
2011), heuristic search (Burns, Ruml, and Do 2013; Cserna,
Ruml, and Frank 2017), object detection (Karayev, Fritz,
and Darrell 2014), belief space planning (Pineau, Gordon,
and Thrun 2003; Spaan and Vlassis 2005), and probabilis-
tic inference (Ramos and Cozman 2005). Existing work on
metareasoning that manages this trade-off focuses on decid-
ing when to interrupt an anytime algorithm and act on the
current solution. However, the scope of metareasoning can
be extended to tune the hyperparameters of an anytime algo-
rithm at runtime in order to optimize its performance.

There has been substantial work on developing metar-
easoning techniques for determining when to interrupt an
anytime algorithm and act on the current solution. Gener-
ally, these techniques monitor and control an anytime al-
gorithm in order to track its performance and calculate its
stopping point at runtime. For example, an early technique

models optimal stopping as a sequential decision problem
and derives a meta-level control policy using dynamic pro-
gramming (Hansen and Zilberstein 2001) while a more re-
cent technique estimates the optimal stopping point using
online performance prediction (Svegliato, Wray, and Zilber-
stein 2018). These techniques, however, cannot tune the hy-
perparameters of the anytime algorithm at runtime.

Metareasoning techniques for tuning the hyperparameters
of an anytime algorithm at runtime have typically been de-
signed for specific anytime algorithms. For instance, there
has been work on tuning the weight of an anytime heuris-
tic search algorithm called anytime weighted A* by select-
ing the best weight for a problem (Hansen and Zhou 2007),
choosing the best weight for an instance of a problem (Sun,
Druzdzel, and Yuan 2007), and modifying the weight heuris-
tically (Thayer and Ruml 2009). There has also been work
on tuning the growth factor of an anytime motion planning
algorithm called RRT* (Urmson and Simmons 2003). Nev-
ertheless, these techniques often have several drawbacks be-
cause they cannot determine the optimal stopping point, re-
quire expertise in the implementation of the anytime algo-
rithm, and lack generality or formal analysis.

We therefore propose a decision-theoretic metareasoning
approach for optimal stopping and hyperparameter tuning
of adjustable algorithms. This approach models monitor-
ing and controlling adjustable algorithms as a Markov de-
cision process with four main attributes. The states reflect
the quality and computation time of the current solution and
any other features needed to summarize the internal state
of the adjustable algorithm, the instance of the problem,
and the performance of the system. The actions reflect ei-
ther interrupting or executing the adjustable algorithm for
another time step while tuning its internal hyperparameters.
However, while the reward function can be determined eas-
ily, the transition function is unknown given the consider-
able complexity and uncertainty over the states and actions.
In response, we use deep reinforcement learning, which is
a model-free approach, to learn when to stop and how to
tune the hyperparameters of the anytime algorithm online
by learning through a series of episodes that each use the
adjustable algorithm to solve an instance of a problem on
the system. Generally, reinforcement learning is a robust ap-
proach to metareasoning for adjustable algorithms given the
abundance of data that can be generated through simulation.

Our primary contributions in this paper are: (1) a gener-
alization of an anytime algorithm called an adjustable algo-
rithm, (2) a meta-level control technique that monitors and
controls an adjustable algorithm based on deep reinforce-
ment learning, (3) an application of our approach to anytime
weighted A*, and (4) a demonstration that the application of
our approach to anytime weighted A* is effective on a range
of common benchmark problems.

Related Work
Approaches to automatic hyperparameter tuning for general
algorithms fall into two main categories. On the one hand,
model-based approaches typically interleave fitting a model
with selecting hyperparameters based on that model. No-
tably, building on earlier work in sequential model-based
optimization (Bartz-Beielstein, Lasarczyk, and Preuss 2005;
Hutter et al. 2009a, 2010), SMAC selects the hyperparam-
eters of an algorithm using a model represented as a ran-
dom forest (Hutter, Hoos, and Leyton-Brown 2011). On the
other hand, while model-free approaches do not fit any kind
of model, they have still been shown to be effective across
a range of domains. Limited to numerical hyperparameters,
CALIBRA uses experimental designs to find initial hyperpa-
rameters followed by local search to improve those hyper-
parameters (Adenso-Diaz and Laguna 2006) while F-Race
leverages racing algorithms from machine learning (Birat-
tari et al. 2002, 2010) to select the hyperparameters of
an algorithm. Extending this work to categorical hyperpa-
rameters, GGA employs parallel gender-based genetic al-
gorithms (Ansótegui, Sellmann, and Tierney 2009) while
ParamILS performs iterated local search (Hutter, Hoos, and
Stützle 2007; Hutter et al. 2009b) to select the hyperparam-
eters of an algorithm.

However, while all of these methods have mostly been de-
signed for general algorithms, they often do not take advan-
tage of the benefits of anytime algorithms. By using deep
reinforcement learning to monitor and control anytime al-
gorithms in particular, our metareasoning approach avoids
many drawbacks of earlier work. First, while some existing
methods are limited to numerical hyperparameters and de-
terministic algorithms, our approach can support both cate-
gorical hyperparameters and stochastic algorithms as well.
Next, unlike existing methods that only optimize the hy-
perparameters for a single problem instance, our approach
can optimize the hyperparameters for multiple problem in-
stances. In fact, our approach can not only select the hyper-
parameters of an anytime algorithm for a specific problem
instance but also adjusts the hyperparameters of an anytime
algorithm as it runs. Finally, though some existing methods
cannot terminate a trial early, our approach can naturally ter-
minate trials early by using deep reinforcement learning.

There has also been an orthogonal line of research on us-
ing a portfolio of algorithms to solve different instances of
hard computational problems. In fact, it has been recognized
that different algorithms tend to dominate each other on dif-
ferent instances of a problem because there is often no sin-
gle best algorithm (Leyton-Brown et al. 2003). This has re-
sulted in methods that can use portfolios of algorithms for

satisfiability (Gomes and Selman 2001; Xu et al. 2008), en-
semble methods in machine learning (Dietterich 2000; Fern
and Givan 2003), and multiple methods in real-time problem
solving (Wagner, Garvey, and Lesser 1998; Zilberstein and
Mouaddib 2000). More recently, SATzilla (Xu et al. 2008),
an efficient solver that uses a portfolio of algorithms to solve
difficult satisfaction problems, has won multiple competi-
tions and continues to dominate the field.

Optimal stopping for anytime algorithms but not hyper-
parameter tuning has been well-studied as well. The earliest
approach, fixed allocation, executes the anytime algorithm
until a stopping point determined prior to runtime (Horvitz
1987; Boddy and Dean 1994). While fixed allocation is ef-
fective given negligible uncertainty in the performance of
the anytime algorithm, there is often considerable uncer-
tainty in real-time planning problems (Paul et al. 1991). In
response, a more sophisticated approach, monitoring and
control, tracks the performance of the anytime algorithm and
estimates a stopping point at runtime periodically (Horvitz
1990; Zilberstein and Russell 1995; Hansen and Zilberstein
2001; Lin et al. 2015; Svegliato, Wray, and Zilberstein 2018;
Svegliato, Sharma, and Zilberstein 2020). We note that our
approach not only determines the stopping point of an any-
time algorithm but also tunes its hyperparameters.

With respect to heuristic search, there is some recent work
on dynamically selecting the heuristic function using deep
reinforcement learning (Speck et al. 2021) and dynamically
adjusting the broader search strategy in classical planning
using evolutionary strategies (Gomoluch et al. 2020). How-
ever, our work is not specific to heuristic search and focuses
on anytime algorithms.

Meta-Level Control Problem
We begin by reviewing the standard meta-level control prob-
lem for anytime algorithms. This requires a function that de-
scribes the utility of a solution computed by an anytime algo-
rithm in terms of its quality and computation time (Horvitz
and Rutledge 1991). We define this function below.

Definition 1. A time-dependent utility function U : Φ ×
Ψ→ R represents the utility U(q, t) of a solution of quality
q ∈ Φ at time step t ∈ Ψ.

A time-dependent utility function can often be expressed
as the difference between an intrinsic value function and a
cost of time (Horvitz 1988; Hansen and Zilberstein 2001).
An intrinsic value function represents the utility of a solution
given its quality but not its computation time while a cost of
time represents the utility of a solution given its computation
time but not its quality. We define this property below.

Definition 2. A time-dependent utility function U : Φ ×
Ψ → R is time-separable if the utility U(q, t) of a solution
of quality q ∈ Φ at time step t ∈ Ψ can be expressed as the
difference between two functions U(q, t) = UI(q) − UC(t)
where UI : Φ → R+ is the intrinsic value function and
UC : Ψ→ R+ is the cost of time.

The standard meta-level control problem for anytime al-
gorithms is the problem in which an intelligent system must

determine the point at which to interrupt an anytime algo-
rithm and act on the current solution (Horvitz 1990; Zilber-
stein 1996). The anytime algorithm should ideally be inter-
rupted at the optimal stopping point since it is the optimum
of the time-dependent utility function. However, the opti-
mal stopping point is often challenging to determine due to
substantial uncertainty over the performance of the anytime
algorithm and urgency for the solution.

Adjustable Algorithms
We propose an adjustable algorithm, a generalization of an
anytime algorithm, with internal state that can be monitored
and internal hyperparameters that can be controlled to either
interrupt or execute the algorithm for another time step and
adjust the internal operation of the algorithm. This results in
a new meta-level control problem that involves optimal stop-
ping and optimal hyperparameter tuning of the adjustable
algorithm. Generally, our approach monitors and controls
an adjustable algorithm by expressing this novel meta-level
control problem as a deep reinforcement learning problem.
Hence, an adjustable algorithm is defined as follows.

Definition 3. An adjustable algorithm, Λ, has internal
state that can be monitored and internal hyperparameters
{Θ0,Θ1, . . . ,ΘNΘ

} that can be controlled such that the in-
ternal hyperparameter Θ0 = {STOP,CONTINUE} either in-
terrupts or executes the algorithm for another time step and
the internal hyperparameters {Θ1, . . . ,ΘNΘ

} adjust the in-
ternal operation of the algorithm.

Anytime weighted A*, a popular anytime algorithm
that extends the well-known A* heuristic search al-
gorithm (Hansen, Zilberstein, and Danilchenko 1997;
Likhachev, Gordon, and Thrun 2004; Aine, Chakrabarti, and
Kumar 2007; Hansen and Zhou 2007; Thayer and Ruml
2010), is an example of an adjustable algorithm. We describe
anytime weighted A* in detail to illustrate our approach.
Anytime weighted A* (1) uses an inadmissible heuristic to
quickly find suboptimal solutions, (2) continues the search
after each solution is found, (3) provides an error bound
on each suboptimal solution, and (4) guarantees an optimal
solution once terminated. Notably, the standard evaluation
function f(n) = g(n) + h(n) used to select the next node
for expansion from the open list is replaced with a weighted
evaluation function fw(n) = g(n) + w · h(n), where the
path cost g(n) is the cost of the path from the start node
to a node n and the heuristic h(n) is the estimated cost
from a node n to the goal node. Given a weight w>1, the
weighted heuristic becomes potentially inadmissible and the
algorithm prioritizes expanding a node that appears closer to
a goal node by weighting the heuristic component h(n) more
heavily than the path cost component g(n). This causes the
algorithm to speed up computation time at the expense of
solution quality, which is inversely proportional to cost.

Figure 1 shows typical performance curves for two exe-
cutions of anytime weighted A* that solve an instance of a
problem with different weights. This figure illustrates two
cases. With deadlines, a weight of 2.0 leads to better quality
at Contract 1 while a weight of 1.5 results in better qual-
ity at Contract 2. Without deadlines, a weight of 2.0 leads

Figure 1: An example of two executions of anytime A*.

to better quality in the short term but worse quality in the
long term while a weight of 1.5 results in worse quality in
the short term but better quality in the long term. This raises
two important question: (1) How can metareasoning dynam-
ically tune the hyperparameters of an adjustable algorithm
at runtime in order to optimize the trade-off between solu-
tion quality and computation time with or without deadlines?
(2) Can a general approach be developed to learn to perform
this optimization automatically? We answer these questions
by offering a disciplined general-purpose metareasoning ap-
proach to optimal stopping and optimal hyperparameter tun-
ing of adjustable algorithms in this paper.

Our approach to monitoring and controlling adjustable al-
gorithms uses deep reinforcement learning to express the
meta-level control problem as a Markov decision process
(MDP) (Bellman 1966). An MDP is a formal decision-
making model for reasoning in fully observable, stochastic
environments that can be defined by a tuple 〈S,A, T,R, s0〉,
where S is a finite set of states, A is a finite set of ac-
tions, T : S × A × S → [0, 1] represents the probabil-
ity of reaching a state s′ ∈ S after performing an action
a ∈ A in a state s ∈ S, R : S × A × S → R represents
the expected immediate reward of reaching a state s′ ∈ S
after performing an action a ∈ A in a state s ∈ S, and
s0 ∈ S is a start state. A solution to an MDP is a policy
π : S → A indicating that an action π(s) ∈ A should be
performed in a state s ∈ S. A policy π induces a value func-
tion V π : S → R representing the expected discounted cu-
mulative reward V π(s) ∈ R for each state s ∈ S given a
discount factor 0 ≤ γ < 1. An optimal policy π∗ maxi-
mizes the expected discounted cumulative reward for every
state s ∈ S by satisfying the Bellman optimality equation
V ∗(s) = maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′)+γV ∗(s′)].

We express the meta-level control problem for monitoring
and controlling adjustable algorithms as an MDP with two
primary attributes. First, the set of states has state factors
that reflect the quality and computation time of the current
solution but can also have state factors that represent the
internal state of the algorithm, the instance of the problem,
or the performance of the system. Second, the set of actions
has an action factor that reflects the internal hyperparameter
that either interrupts or executes the algorithm for another
time step but can also have action factors that represent the
internal hyperparameters that adjust the internal operation of
the algorithm. We present a description of this MDP below.

Definition 4. The meta-level control problem for monitor-
ing and controlling an adjustable algorithm, Λ, is repre-
sented by an MDP 〈Φ,Ψ, F, S,A, T,R, s0〉 given a time-
dependent utility function U : Φ×Ψ→ R:

• Φ = {q0, q1, . . . , qNΦ
} is a set of qualities.

• Ψ = {t0, t1, . . . , tNΨ
} is a set of time steps.

• F = F0 × F1 × · · · × FNF
is a set of features that sum-

marize the internal state of the algorithm, the instance of
the problem, or the performance of the system.

• S = Φ × Ψ × F is a set of states of computation: each
state s ∈ S indicates that the algorithm has a solution of
quality q ∈ Φ at time step t ∈ Ψ with a feature f ∈ F .

• A = Θ0 × Θ1 × · · · × ΘNΘ
is a set of actions

of computation: the internal hyperparameter Θ0 =
{STOP,CONTINUE} either interrupts or executes the al-
gorithm for another time step while the internal hyper-
parameters Θ1, . . . ,ΘNΘ adjust the internal operation of
the algorithm.

• T : S × A× S → [0, 1] is an unknown (possibly nonsta-
tionary) transition function that represents the probability
of reaching a state s′ = (q′, t′, f ′) ∈ S after performing
an action a ∈ A in a state s = (q, t, f) ∈ S.

• R : S × A× S → R is a reward function that represents
the expected immediate reward, R(s, a, s′) = U(q′, t′)−
U(q, t), of reaching a state s′ = (q′, t′, f ′) ∈ S after
performing an action a ∈ A in a state s = (q, t, f) ∈ S.

• s0 ∈ S is a start state s0 = (q0, t0, f0) ∈ S that indicates
that the algorithm has a solution of quality q0 ∈ Φ at time
step t0 ∈ Ψ with a feature f0 ∈ F .

Note that the reward function is consistent with the objective
of optimizing the time-dependent utility function: executing
the adjustable algorithm until a solution of quality q ∈ Φ at
time step t ∈ Ψ with a feature f ∈ F gives a cumulative
reward that is equal to the time-dependent utility U(q, t).

Many approaches to meta-level control of anytime algo-
rithms use solution quality and computation time for the
state of computation (Zilberstein and Russell 1995). Such
a state of computation, however, may not satisfy the Markov
property. It could therefore benefit from features that sum-
marize the internal state of algorithm, the instance of the
problem, or the performance of the system. For example, in
a domain where anytime weighted A* solves an instance of
a TSP, there could be features for the mean and standard de-
viation of the g- and h-values across the nodes on the open
list of anytime weighted A*, the number of cities in the in-
stance of the TSP (Hutter et al. 2014), or the processor usage
or memory pressure of the system. Our metareasoning ap-
proach for adjustable algorithms can employ a more sophis-
ticated and rich representation for the state of computation
thanks to deep reinforcement learning.

We show that an optimal policy of the meta-level con-
trol problem produces optimal meta-level control of an ad-
justable algorithm under certain conditions below.

Remark 1. If the change in the current solution of the ad-
justable algorithm given a state of computation s ∈ S and

Algorithm 1 Our technique that uses DQN to learn the op-
timal stopping point and hyperparameters.
Require: An anytime algorithm Λ, an action-value network N , a

step size α1, a target action-value network step size α2, an ex-
ploration strategy E , an experience buffer capacity `1, a num-
ber of episodes `2, an initialization period `3, a minibatch size
`4, and a duration ∆

1: B ← EXPERIENCEBUFFER(`1)
2: Q← NEURALNETWORK(N)

3: Q̂← Q
4: for i = 1, 2, . . . , `2 do
5: P ← SAMPLEPROBLEMDISTRIBUTION()
6: Λ.SETUP(P)
7: t← 0
8: st ← (q0, t0,Λ.GETF ())

9: at ← πQ
E (st)

10: Λ.START(at.Θ1, . . . , at.Θ`Θ)
11: SLEEP(∆)
12: while Λ.RUNNING() do
13: t′ ← t+ ∆
14: st′ ← (Λ.GETΦ(),Λ.GETΨ(),Λ.GETF ())
15: rt ← R(st, at, st′)
16: B.APPEND((st, at, rt, st′))
17: if B.SIZE() ≥ `3 then
18: M ← B.SAMPLEMINIBATCH(`4)

19: L̂(r, s′) := r + γmaxa′∈A Q̂(s′, a′)

20: L(s, a, r, s′) := [L̂(r, s′)−Q(s, a)]2

21: Q.BACKPROPAGATE(M,L, α1)

22: Q̂← (1− α2) · Q̂+ α2 ·Q
23: t← t′

24: at ← πQ
E (st)

25: if at.Θ0 = STOP then
26: Λ.STOP()
27: break
28: Λ.CONTINUE(at.Θ1, . . . , at.Θ`Θ)
29: SLEEP(∆)

30: return Q

an action of computation a ∈ A satisfies the Markov prop-
erty, the optimal policy π∗ : S → A results in optimal stop-
ping and optimal hyperparameter tuning.

Proof Sketch. This follows directly from the Markov prop-
erty: a transition to a successor state of computation s′ ∈ S
only depends on the current state of computation s ∈ S and
the current action of computation a ∈ A. Note that while
using only quality and time for the state of computation is
unlikely to satisfy the Markov property, this richer represen-
tation allows for a better approximation.

Meta-Level Control Technique
Our meta-level control technique monitors and controls ad-
justable algorithms by performing episodes that each use the
adjustable algorithm to solve an instance of a specific prob-
lem on a given system with deep reinforcement learning.

Deep reinforcement learning has been effective across
a wide range of applications, including Atari (Mnih et al.
2015), chess (Silver et al. 2018), and StarCraft (Vinyals
et al. 2019). A deep reinforcement learning agent learns a

Internal State

Problem System

Internal Parameters Anytime Weighted A*

Object-Level Process

Meta-Level Process

State Action

controlmonitor

Figure 2: The metareasoning architecture that has a meta-
level process and an object-level process.

value function or a policy expressed as a neural network
by taking actions and observing rewards in its environment.
This makes it a natural approach to adjustable algorithms
for three reasons (Sutton and Barto 1998). First, by bal-
ancing exploitation with exploration, it can learn a policy
that tunes the internal hyperparameters of an adjustable al-
gorithm without knowing the transition function. Next, by
ignoring large regions of the state space not reached in prac-
tice, it can reduce the overhead of learning a policy that tunes
the internal hyperparameters of an adjustable algorithm. Fi-
nally, by using a neural network that can learn complex pat-
terns between massive input and output spaces, it can learn
the effect of the internal hyperparameters on the internal
state of an adjustable algorithm.

Algorithm 1 shows our metareasoning technique for mon-
itoring and controlling adjustable algorithms using DQN,
deep Q-learning (Mnih et al. 2015), as described below.

Reinforcement Learning Episode Loop The experience
buffer is initialized to a capacity (Line 1). The current action-
value function is initialized to the action-value network and
the target action-value function is initialized to the current
action-value function (Lines 2-3). A loop iterates over each
episode (Line 4). For each episode, the following phases are
performed for setup (Lines 5-11), monitor (Lines 12-15), up-
date (Lines 16-22), and control (Lines 23-29). The action-
value function is returned (Line 30).

Episode Setup Phase An instance of the problem is sam-
pled from the problem distribution and the anytime algo-
rithm is setup to solve the instance (Line 5-6). The current
time is initialized to zero (Line 7). The current state is ini-
tialized to the quality and computation time of the initial so-
lution along with any extra features while the current action
is initialized to the policy calculated from the current action-
value function and an exploration strategy at the current state
(Lines 8-9). The algorithm starts to solve the problem in-

insert()insert() insert()

delete()

*

Figure 3: A modified implementation of anytime weighted
A* that maintains multiple open lists.

stance with hyperparameters set according to the initial ac-
tion (Lines 10-11).

Episode Monitor Phase A loop runs until the algorithm
is interrupted early or terminated naturally (Line 12). The
successor state is set to the quality and computation time of
the new solution and any extra features while the reward is
calculated from the current state, the current action, and the
successor state (Line 13-15). The experience buffer is ap-
pended with the current state, the current action, the reward,
and the successor state (Line 16).

Episode Update Phase The phase occurs if the size of
the experience buffer is greater than an initialization pe-
riod (Line 17). A minibatch is sampled from the experience
buffer (Line 18). The loss function is defined as the square
of the temporal-difference error (Line 19-20). The current
action-value function represented as a neural network is up-
dated via backpropagation from the minibatch and the loss
function (Lines 21). The target action-value function is set
to the current action-value function (Lines 22).

Episode Control Phase The current time is incremented
and the new current action is set to the policy calculated from
the current action-value function and an exploration strategy
at the new current state (Line 23-24). If the action indicates
to stop the algorithm, the algorithm is interrupted and the
loop goes to the next episode (Lines 25-27). Otherwise, the
algorithm execution continues after tuning its internal hy-
perparameters (Line 28-29).

Anytime Weighted A*
We now apply our approach to anytime weighted A*. Recent
work on the algorithm focuses on selecting the best static
weight for a problem (Hansen and Zhou 2007), choosing
the weight for an instance of a problem (Sun, Druzdzel, and
Yuan 2007), and modifying the weight at runtime heuristi-
cally (Thayer and Ruml 2009). The algorithm can also be
improved via restarting when a solution is found (Richter,
Thayer, and Ruml 2010). There has even been work that an-
alyzes the failure conditions of the algorithm (Wilt and Ruml
2012). Overall, tuning the weight of anytime weighted A* at
runtime has consistently proven to be challenging.

The meta-level control problem for anytime weighted A*,
Λ, is an MDP 〈Φ,Ψ, F, S,A, T,R, s0〉. Φ = [0, 1] is a set of
qualities of the current solution. Ψ = [0, τ] is a set of time

steps with a deadline τ . F = W ×R9× [−1, 1]×K× [0, 1]
is a set of features such that the feature w ∈W is the current
weight, the features µg ∈ R and µh ∈ R are the mean of the
g- and h-values on the open list, the features σg ∈ R and
σh ∈ R are the standard deviation of the g- and h-values on
the open list, the features g ∈ R and h ∈ R are the mini-
mum g- and h-values on the open list, the feature ζ ∈ R is
the value log(n) for the number of nodes n on the open list,
the feature q̄ ∈ R is the h-value of the initial state divided
by the minimum f -value on the open list, the feature h0 is
the h-value of the initial state, the feature ρg,h ∈ [−1, 1] is
the correlation between the g- and h-values on the open list,
the feature κ ∈ K is a set of settings for the instance of the
problem, and the feature χ ∈ [0, 1] is the processor usage
of the system. A = Θ0 × Θ1 is a set of actions such that
the internal hyperparameter, Θ0 ∈ {STOP,CONTINUE}, in-
terrupts or executes the algorithm for another time step and
the internal hyperparameter, Θ1 = {⊕,	}, tunes the weight
w ∈ W by a value ν ∈ {−1,− 1

4 ,
1
4 , 1} within the bounds

1 ≤ w ≤ 5. Note that S, A, T , R, and s0 follow from the
meta-level control problem for adjustable algorithms.

The metareasoning architecture for anytime weighted A*
in Figure 2 has a meta-level process that monitors and con-
trols an object-level process that executes the algorithm.

Anytime weighted A* involves a simple modification to
allow its weight to be adjusted at runtime. Instead of insert-
ing/deleting a node into/from a single open list for a static
weight, the algorithm inserts/deletes this node into/from |W |
open lists each ordered by the fw-value of a weight w ∈ W
as illustrated in Figure 3. Consequently, each open list has
a different ordering of the same set of nodes. Note that the
time complexity of inserting/deleting a node across all open
lists of size n sequentially is O(|W | log n).

Experiments
In this section, we compare our approach for monitoring and
controlling anytime weighted A* to a standard approach that
uses a range of static weights of 1, 1.5, 2, 3, 4, and 5.

Experimental Setup Each approach is evaluated using the
mean solution quality on an identical set of 500 random in-
stances after being trained for 12000 episodes across each
benchmark problem. Note that training uses randomization
seeds that are different than the randomization seeds used for
evaluation and takes approximately one day for each bench-
mark problem on our system. Intuitively, a solution quality
q = 0 represents no solution while a solution quality q = 1
represents an optimal solution. Formally, we define solution
quality as the approximation ratio, q = c∗/c, where c∗ and
c is the cost of the optimal solution and the current solu-
tion. However, since it is infeasible to calculate the cost of
the optimal solution, we estimate solution quality as the ap-
proximation ratio, q = h(s0)/c, where h(s0) and c is the
heuristic value of the initial state and the cost of the current
solution, like earlier work (Hansen and Zilberstein 2001).

A meta-level control problem has a time-dependent util-
ity function. However, while it is possible to use any time-
dependent utility function, we consider a contract setting in
which the adjustable algorithm must terminate before a du-

ration of τ sec to avoid a significant utility penalty Υ. This
is common in robotics where a system has a fixed duration
for planning before execution. Formally, given a solution of
quality q ∈ Φ at time step t ∈ Ψ, the time-dependent utility
function is U(q, t) = [t ≤ τ] · UI(q) − [t > τ] · Υ, where
UI(q) = ιq is the utility of a solution of quality q ∈ Φ for
an intrinsic value multiplier ι.

Our meta-level control technique in Algorithm 1 has the
hyperparameters below. The action-value network N is a
fully connected neural network with two hidden layers of 64
and 32 nodes with ReLU activation and a linear output layer
of 5 nodes. The last 5 observations are stacked and provided
to the input layer of the neural network to observe 1 sec of
runtime. The step size α1 is 0.0001. The target action-value
network step size α2 is 0.001. The exploration strategy E is
ε-greedy action selection with an exploration probability ε
that is annealed from 1 to 0.1 over 1000 episodes. The expe-
rience buffer capacity `1 is∞. The number of episodes `2 is
12000. The initialization period `3 is 10000. The minibatch
size `4 is 64. The duration ∆ is 0.2 sec.

Each approach must solve benchmark problems that re-
flect domains that require different static weights and for
which recent work reported counterintuitive behavior of
anytime weighted A* (Wilt and Ruml 2012). Their settings
are chosen to avoid trivializing the problem by either allow-
ing too little time so that no approach finds a solution or too
much time so that every approach finds the optimal solution.

Sparse Traveling Salesman Problem An STSP instance
has a set of J cities that must be visited along an optimal
route given a cost for each edge between a pair of cities
where a percentage of edges have an infinite cost. The to-
tal distance of a minimum spanning tree across the unvisited
cities is used as an admissible and consistent heuristic func-
tion. The number of cities J is chosen randomly between
15 and 25. The percentage of edges with an infinite cost is
chosen randomly between 0% and 30%. The cost between
each pair of cities is chosen randomly. The MDP has a set
of features K = κ1 × κ2 that represent the number of cities
κ1 ∈ N+ and the percentage of edges with an infinite cost
κ2 ∈ [0, 1].

City Navigation Problem A CNP instance simulates nav-
igating between two locations in different cities (Wilt and
Ruml 2012). There is a set of J cities scattered randomly on
a j × j square such that each city is connected by a random
tour and to a set of its nearest nJ cities. Each city contains
a set of I locations scattered randomly throughout the city
that is an i × i square such that each location in the city is
connected by a random tour and to its nearest nI locations.
The edge between a pair of cities costs the Euclidean dis-
tance plus an offset β1. The edge between a pair of locations
within a city costs the Euclidean distance scaled by a random
number sampled between 1 and a maximum β2. The goal is
to find an optimal path from a randomly selected location in
one city to randomly selected location in another city. The
Euclidean distance from the current location to the target lo-
cation is used as an admissible and consistent heuristic. The
settings are chosen such that J = 150, j = 100, nJ = 3,
I = 150, i = 1, nI = 3, α = 2, and β = 1.1. The MDP does

Figure 4: The box and whisker plots for the final solution qualities of each approach over all instances of SP, ISP, STSP, and
CNP (left to right) The crosses denote the mean and the bullets denote the outliers. The median and the upper quartiles are even
zero for some approaches.

Figure 5: The analysis charts for SP from left to right: (a) A line chart showing how the solution quality, solution quality
upper bound, and weight (plotted on secondary y-axis) change with computation time for a select instance. The faded line and
shaded region indicate the mean weight and its standard deviation over all instances. (b) A line chart showing how the final
solution quality and mean weight (on secondary y-axis) of an episode change with training episodes. (c) A histogram showing
the distribution of all instances over solution quality error for our approach. Solution quality error is the normalized difference
between the final solution quality of our approach and the final solution quality of the best approach. (d) A bar chart showing
the percentage importance of the top 10 features that are learned by our approach. Importance is the mean absolute weight on
a feature in the input layer of the neural network.

not include any instance specific features for this problem.

Sliding Puzzle An SP instance has a set of J = j2 − 1
tiles with each tile i labeled from 1 to J in a j × j grid that
must be moved from an initial position to a desired position
given a unit cost c(i) = 1 for moving a tile i. The sum of the
Manhattan distances from the current position of each tile
to a desired position is used as an admissible and consistent
heuristic function. The number of tiles is 15. The difficulty
of the initial position, as measured by the heuristic function
is chosen randomly between 35 and 45, and included in the
feature space of the MDP.

Inverse Sliding Puzzle An ISP instance is the same as an
SP instance except that there is an inverse cost c(i) = 1/i for
moving a tile i. This means that the sum of the Manhattan
distances from the current position of each tile to the desired
position, weighted by the cost for moving each tile, is used
as an admissible and consistent heuristic function.

The duration τ is 10 sec for SP and ISP, 5 sec for STSP,
and 4 sec for CNP corresponding to 6000, 3000, and 2400
node expansions on an AMD Ryzen 3900X processor with
32 GB of 3200 MHz memory. Each approach runs until the
node expansion limit instead of the duration for experimen-
tal consistency and reproducibility.

Experimental Results Our approach solves more prob-
lem instances and produces higher average solution quality
compared to the standard approach with any static weight.

Figure 4 shows the results for SP, ISP, STSP, and CNP.
Our approach beats the standard approach with the best
static weight: it has a substantially higher mean solution
quality in SP for w = 4 and ISP for w = 1.5, a compa-
rable mean solution quality in STSP for w = 2, and fairly
higher mean solution quality in CNP for w = 2.

Figure 5 shows four analyses for SP. In Figure 5(a), our
approach adjusts the weight based on solution quality and
the other features that are not listed. Generally, the mean
weight increases as the computation time increases to en-
sure generating at least one solution. In Figure 5(b), our ap-
proach improves its final solution quality with each training
episode by learning gradually. In fact, the average weight
initially increases but then decreases to generate higher qual-
ity solutions. In Figure 5(c), our approach exhibits a solu-
tion quality error of 0 for over 350 instances. While roughly
50 instances have a solution quality error of 1, this is still
better than the standard approach. Figure 5(d) shows that
our approach takes advantage of the other features, such as
the current weight, the upper bound on solution quality, and
the initial heuristic value, in addition to solution quality and
computation time.

Our open source library1 provides an OpenAI Gym en-
vironment for monitoring and controlling adjustable algo-
rithms using deep reinforcement learning.

1https://github.com/bhatiaabhinav/model-free-metareasoning

Conclusion
This paper introduces a nonmyopic, decision-theoretic, and
general-purpose metareasoning approach that optimizes the
hyperparameters and stopping point of adjustable algo-
rithms. First, we propose a generalization of an anytime
algorithm called an adjustable algorithm. We then offer a
meta-level control technique that monitors and controls an
adjustable algorithm by using deep reinforcement learning.
Finally, we apply our approach to anytime weighted A* and
show that it is effective on a range of problems. Future work
will explore how to apply our approach to other common
task and motion planning algorithms, such as tuning the
growth factor of the motion planning algorithm RRT*.

Acknowledgments
This work was supported in part by the NSF Graduate
Research Fellowship DGE-1451512, and NSF grants IIS-
1813490 and IIS-1954782.

References
Adenso-Diaz, B.; and Laguna, M. 2006. Fine-tuning of
algorithms using fractional experimental designs and local
search. Operations Research 54(1): 99–114.

Aine, S.; Chakrabarti, P.; and Kumar, R. 2007. AWA*: A
window constrained anytime heuristic search algorithm. In
Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence, 2250–2255.

Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configura-
tion of algorithms. In Proceedings of the Fifteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming, 142–157. Springer.

Bartz-Beielstein, T.; Lasarczyk, C. W.; and Preuss, M. 2005.
Sequential parameter optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation, volume 1,
773–780. IEEE.

Bellman, R. 1966. Dynamic programming. In Science.
American Association for the Advancement of Science.

Birattari, M.; Stützle, T.; Paquete, L.; and Varrentrapp, K.
2002. A racing algorithm for configuring metaheuristics. In
Proceedings of the Fourth Genetic and Evolutionary Com-
putation Conference, volume 2.

Birattari, M.; Yuan, Z.; Balaprakash, P.; and Stützle, T. 2010.
F-Race and iterated F-Race: An overview. Experimental
Methods for the Analysis of Optimization Algorithms 311–
336.

Boddy, M.; and Dean, T. L. 1994. Deliberation scheduling
for problem solving in time-constrained environments. Ar-
tificial Intelligence 67(2): 245–285.

Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search
when time matters. Journal of Artificial Intelligence Re-
search 47: 697–740.

Cserna, B.; Ruml, W.; and Frank, J. 2017. Planning time
to think: Metareasoning for on-line planning with durative

actions. In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling.
Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In Proceedings of the First International Workshop on
Multiple Classifier Systems, 1–15.
Fern, A.; and Givan, R. 2003. Online ensemble learning: An
empirical study. Machine Learning 53(1-2): 71–109. ISSN
0885-6125. doi:10.1023/A:1025619426553. URL https://
doi.org/10.1023/A:1025619426553.
Gomes, C. P.; and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence 126(1-2): 43–62.
Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone, A.
2020. Learning neural search policies for classical plan-
ning. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, 522–530.
Hansen, E. A.; and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28: 267–297.
Hansen, E. A.; and Zilberstein, S. 2001. Monitoring and
control of anytime algorithms: A dynamic programming ap-
proach. Artificial Intelligence 126(1-2): 139–157.
Hansen, E. A.; Zilberstein, S.; and Danilchenko, V. A. 1997.
Anytime heuristic search: First results. Technical Report
97-50, Computer Science Department, University of Mas-
sachussetts Amherst.
Horvitz, E. 1988. Reasoning under varying and uncertain
resource constraints. In Proceedings of the Seventh AAAI
National Conference on Artificial Intelligence, 111–116.
Horvitz, E.; and Rutledge, G. 1991. Time-dependent utility
and action under uncertainty. In Proceedings of the Seventh
Conference on Uncertainty in Artificial Intelligence, 151–
158.
Horvitz, E. J. 1987. Reasoning about beliefs and actions
under computational resource constraints. In Proceedings of
Third Workshop on Uncertainty in Artificial Intelligence.
Horvitz, E. J. 1990. Computation and action under bounded
resources. Ph.D. thesis, Stanford University, CA.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In Proceedings of the Fifth International Con-
ference on Learning and Intelligent Optimization, 507–523.
Springer.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Murphy,
K. 2010. Time-bounded sequential parameter optimization.
In Proceedings of the Fourth International Conference on
Learning and Intelligent Optimization, 281–298. Springer.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Murphy,
K. P. 2009a. An experimental investigation of model-based
parameter optimisation: SPO and beyond. In Proceedings of
the Eleventh Annual Conference on Genetic and Evolution-
ary Computation, 271–278.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T.
2009b. ParamILS: An automatic algorithm configuration
framework. Journal of Artificial Intelligence Research 36:
267–306.

Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic al-
gorithm configuration based on local search. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelli-
gence, volume 7, 1152–1157.

Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm runtime prediction: Methods & evaluation. Arti-
ficial Intelligence 206: 79–111.

Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; and
Teller, S. 2011. Anytime motion planning using the RRT*.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 1478–1483.

Karayev, S.; Fritz, M.; and Darrell, T. 2014. Anytime recog-
nition of objects and scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
572–579.

Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003. Boosting as a metaphor for al-
gorithm design. In Proceedings of the Ninth International
Conference on Principles and Practice of Constraint Pro-
gramming, 899–903.

Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Neural Information Processing Systems.

Lin, C. H.; Kolobov, A.; Kamar, E.; and Horvitz, E. 2015.
Metareasoning for planning under uncertainty. In Proceed-
ings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529–533.

Paul, C. J.; Acharya, A.; Black, B.; and Strosnider, J. K.
1991. Reducing problem-solving variance to improve pre-
dictability. Communications of the ACM 34(8): 80–93.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, 1025–1032.

Ramos, F. T.; and Cozman, F. G. 2005. Anytime anyspace
probabilistic inference. International Journal of Approxi-
mate Reasoning 38(1): 53–80.

Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In Pro-
ceedings of the Twentieth International Conference on Au-
tomated Planning and Scheduling, 137–144.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419): 1140–1144.

Spaan, M. T.; and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artifi-
cial Intelligence Research 24: 195–220.

Speck, D.; Biedenkapp, A.; Hutter, F.; Mattmüller, R.; and
Lindauer, M. 2021. Learning heuristic selection with dy-
namic algorithm configuration. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, volume 31, 597–605.
Sun, X.; Druzdzel, M. J.; and Yuan, C. 2007. Dynamic
weighting A* search-based MAP algorithm for Bayesian
networks. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, 2385–2390.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Svegliato, J.; Sharma, P.; and Zilberstein, S. 2020. A model-
free approach to meta-level control of anytime algorithms.
In IEEE International Conference on Robotics and Automa-
tion. Paris, France.
Svegliato, J.; Wray, K. H.; and Zilberstein, S. 2018. Meta-
level control of anytime algorithms with online performance
prediction. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence.
Thayer, J.; and Ruml, W. 2009. Using distance estimates in
heuristic search. In Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling.
Thayer, J.; and Ruml, W. 2010. Anytime heuristic search:
Frameworks and algorithms. In Proceedings of the Third
Annual Symposium on Combinatorial Search, 121–128.
Urmson, C.; and Simmons, R. 2003. Approaches for heuris-
tically biasing RRT growth. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
volume 2, 1178–1183. IEEE.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature
575(7782): 350–354.
Wagner, T.; Garvey, A.; and Lesser, V. R. 1998. Criteria-
directed task scheduling. International Journal of Approxi-
mate Reasoning 19(1-2): 91–118.
Wilt, C.; and Ruml, W. 2012. When does weighted A* fail?
In Proceedings of the Fifth Annual Symposium on Combina-
torial Search, 137–144.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32: 565–606.
Zilberstein, S. 1996. Using anytime algorithms in intelligent
systems. AI Magazine 17(3): 73.
Zilberstein, S.; and Mouaddib, A.-I. 2000. Optimal schedul-
ing of progressive processing tasks. International Journal of
Approximate Reasoning 25(3): 169–186.
Zilberstein, S.; and Russell, S. J. 1995. Approximate rea-
soning using anytime algorithms. In Natarajan, S., ed., Im-
precise and Approximate Computation, 43–62. Springer.

