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Abstract

Understanding the relationships among genes, compounds, and their interactions
in living organisms remains limited due to technological constraints and the com-
plexity of biological data. Deep learning has shown promise in exploring these
relationships using various data types. However, transcriptomics, which provides
detailed insights into cellular states, is still underused due to its high noise levels
and limited data availability. Recent advancements in transcriptomics sequencing
provide new opportunities to uncover valuable insights, especially with the rise
of many new foundation models for transcriptomics, yet no benchmark has been
made to robustly evaluate the effectiveness of these rising models for perturbation
analysis. This article presents a novel biologically motivated evaluation framework
and a hierarchy of perturbation analysis tasks for comparing the performance of
pretrained foundation models to each other and to more classical techniques of
learning from transcriptomics data. We compile diverse public datasets from dif-
ferent sequencing techniques and cell lines to assess models performance. Our
approach identifies scVI and PCA to be far better suited models for understanding
biological perturbations in comparison to existing foundation models, especially in
their application in real-world scenarios.

1 Introduction

Living organisms are composed of countless molecular components that interact in complex and
varied ways, the majority of which remain poorly understood. This gap in understanding is partly
due to the limitations of current technological tools, which cannot fully measure or observe all the
components of life across different conditions. Although recent advances (Ståhl et al., 2016; Dixit
et al., 2016; Chandrasekaran et al., 2023) have allowed partial measurement and observation of
key components under specific circumstances, our understanding of the relationships among genes,
compounds, their functions, and their interactions remains limited (Conesa et al., 2016; Kharchenko,
2021). As a result, our view of these biological components is still partial and expensive to obtain,
preventing a complete understanding of their behavior over time or across different states.

To better understand the function of cells and their components, one common approach is to perturb
specific elements, such as genes, and observe the resulting effects on the cell and other genes.
However, with over 20,000 protein-coding genes in the human genome and around 1060 potential
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compounds in the chemical space (Reymond, 2015), manually exploring these relationships is
impractical. The complexity of these combinatorial possibilities necessitates the use of computational
methods to narrow down the problem. Recent advancements in deep learning have shown promise in
using existing data to uncover new relationships and functions. For example, deep learning models
have been used to predict protein folding from their sequences (Jumper et al., 2021), understand
binding dynamics (Corso et al., 2023; Evans et al., 2021), and identify novel biological relationships
through analysis of large-scale microscopy imaging data of perturbed cells without use of prior
knowledge (Kraus et al., 2024).

While various modalities of biological data have been successfully employed for perturbation analysis,
transcriptomics stands out by offering a structured, detailed, and near-to-biological-mechanism view
of cellular states compared to microscopy imaging of cells post-perturbation (Williams et al., 2022;
Camunas-Soler, 2024), while being faster and more cost-effective than proteomics. Despite this
potential, transcriptomics has been underutilized, primarily due to low technological maturity and a
scarcity of curated datasets linked to specific biological perturbations. However, recent developments
in transcriptomics sequencing techniques and datasets focused on perturbations, such as those
from Replogle et al. (2022) using Perturb-Seq (Dixit et al., 2016; Adamson et al., 2016), provide
new opportunities to extract valuable insights similar to those achieved with the imaging modality
(Chandrasekaran et al., 2023). Pretrained foundation models for transcriptomics, trained on large-scale
datasets using diverse techniques, offer a promising approach to harness these insights. Nevertheless,
it remains unclear which models are most effective for perturbation analysis, as this was not their
primary focus, and while exploratory efforts have been made (Ahlmann-Eltze et al., 2024), there is
no comprehensive benchmark to evaluate their performance in this context.

In this work, we tackle this challenge by developing a benchmark for biologically relevant perturbation
tasks, through the curation of existing biological tasks, and the introduction of Structural Integrity as
a new evaluation task. Using public datasets from three sequencing techniques across various cell
lines, we assess model performance on medium- to large-scale perturbation data. Our systematic
comparison identifies scVI (Lopez et al., 2018) and PCA as more effective for analyzing biological
perturbations compared to existing transcriptomics foundation models.

2 Related Works

Transcriptomics Data. Measurements of gene expression levels provide valuable insights into
cellular states, with various techniques applied in different contexts and formats. These include
single cell RNA-Seq (scRNA-Seq) (Tang et al., 2009) and bulk RNA-Seq (Emrich et al., 2007;
Mortazavi et al., 2008), which are commonly used to sequence gene expression levels, and spatial
transcriptomics (Ståhl et al., 2016), which is used to measure spatially resolved gene expression
levels on histopathology slides. Perturbation is a critical method in biology where a targeted change
is made to the abundance, state, or activity of a (macro) molecule, which helps disentangle causation
from correlation and elucidate molecular mechanisms. Both chemical and genetic perturbations can
be combined with gene expression assays. Drug-Seq (Ye et al., 2018) measures gene expression
changes resulting from chemical perturbations, while Perturb-Seq (Dixit et al., 2016; Adamson
et al., 2016) uses CRISPR gene knockouts to measure changes in genetic perturbations. Similarly,
L1000 (Subramanian et al., 2017a) is a hybridization-based approach that measures the expression
of nearly 1,000 landmark genes, allowing both chemical and genetic screens. The data from the
transcriptomics methods above is high dimensional and noisy, necessitating dimensionality reduction
and noise-reduction techniques. Historically, analysis has focused on specific datasets or sequencing
techniques, using methods such as PCA (Jolliffe & Cadima, 2016; Bao et al., 2022) and autoencoders
(Chandrasekaran et al., 2023; Lopez et al., 2018). However, with the rise of massive computational in-
frastructures, there has been a shift towards more advanced methods for learning from transcriptomics
data.

Transcriptomics Foundation Models. scVI (Lopez et al., 2018), a variational autoencoder tai-
lored for single-cell RNA sequencing, has been commonly used as the gold standard approach
for transcriptomics analysis. It focuses on efficient dimensionality reduction and denoising, often
serving as a robust baseline for comparison and has recently been adapted to support efficient transfer
learning (Lotfollahi et al., 2022). However, the growing availability of transcriptomics data has led to
the development of several foundation models trained on large-scale datasets (Megill et al., 2020).
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Transformer-based models like Geneformer (Chen et al., 2023), scGPT (Wang et al., 2023), CellPLM
(Chen et al., 2021) and UCE (Rosen et al., 2023) are designed to capture complex gene expression
patterns across different contexts, and they claim to outperform scVI on various downstream tasks.
Geneformer (Chen et al., 2023) uses a transformer architecture with universal gene embeddings to
support diverse tasks like cell type classification and perturbation prediction, and employs a rank-
based tokenization to prioritize genes with regulatory significance. scGPT (Wang et al., 2023) treats
single-cell RNA-seq data as sequences of gene tokens and uses a decoder-only transformer (GPT
architecture) to model sequential dependencies, addressing data sparsity. CellPLM (Chen et al., 2021)
introduces a Gaussian mixture latent space, enabling the model to capture both intra- and intercellular
information using masked language modeling to learn gene and cell relationships. Universal Cell
Embeddings (UCE) (Rosen et al., 2023) uses protein embeddings as tokens for each gene, providing
a unified representation space for cross-dataset comparisons. Overall, scVI, Geneformer, scGPT,
CellPLM, and UCE are widely used due to their proclaimed diverse capabilities and performance
across various transcriptomic analyses.

Perturbation Analysis and Benchmarks. The assays of genetic perturbations described above
are designed to capture the effects of targeted molecular changes that are both multitudinous, and
often subtle. Existing computational models (Chen et al., 2021; Wang et al., 2023; Hrovatin et al.,
2023) and benchmarks (Boiarsky et al., 2023; Alsabbagh et al., 2023; Kedzierska et al., 2023) alike
often focus on broad biological tasks like cell type classification, clustering, and batch integration.
Limited studies include the occasional perturbation-oriented metric (e.g. metrics on post-perturbation
expression in both scEval (Liu et al., 2023) and scGPT (Wang et al., 2023)). Beyond just transcrip-
tomics, recent efforts, such as those to standardize perturbation metrics on mean average precision
(Kalinin et al., 2024) or establish application-ready pipelines to benchmark and generate biological
maps from perturbational data, EFAAR (Celik et al., 2024) have made strides in scoring especially,
but not only, microscopy-based perturbation studies. For instance such methods proved useful in
evaluating representations of self-supervised models like Masked Autoencoders (Kraus et al., 2024)
and Set-DINO (Yao et al., 2024) for microscopy-based perturbation studies. However, a compre-
hensive benchmark that unifies all perturbation-related evaluation tasks across the Transcriptomics
modality is still lacking, despite its importance for advancing the predictive capabilities of models in
understanding cellular responses and therapeutic development.

3 Perturbation Hierarchy of Evaluation Metrics

Understanding how biological systems respond to interventions—such as gene knockouts or drug
treatments—requires models that can accurately recognize and predict these effects. However,
evaluating these models is complex because a model may excel in one area but struggle in another,
making it difficult to assess its overall usefulness. To address this challenge, we propose a structured
hierarchy of evaluation metrics to assess models in a clear and systematic way. By progressing
through this hierarchy in order, a model demonstrates both technical competence and real-world
applicability for perturbation analysis. The structure ensures that fundamental criteria are met first
before moving on to more specific or complex tasks, allowing for a more holistic evaluation. Detailed
mathematical descriptions of each metric are provided in the Appendix.

3.1 Data Integration and Batch Effect Reduction

In biological experiments, data often come from different batches. A batch is a sets of samples
processed at different times or under slightly different conditions. These batch differences can
introduce artificial variations known as batch effects, which can obscure true perturbation or treatment
response signals. For perturbation analysis, it is crucial that a model can integrate data from multiple
batches seamlessly, ensuring that comparisons between samples reflect real biological differences, not
technical artifacts. We use the Integration Local Inverse Simpson’s Index (iLISI) metric (Korsunsky
et al., 2019) to measure how well a model reduces batch effects. This metric assesses how well samples
from different batches are mixed within the model’s representation space. If, in the neighborhood
of any given sample, there’s a good mix of samples from all batches, it suggests that the model has
effectively minimized batch effects.

To compute the iLISI score, we first define the conditional probability pij of sample i selecting
sample j as a neighbor, with dij being the distance between samples i and j :
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pij =
exp(−βidij)∑

l∈Ni
exp(−βidil)

Where βi is a scaling parameter adjusted such that the entropy H(Pi) = log(k) of the distribution
Pi = {pij} ensures the number of nearest neighbors matches the target number of neighbors k, and
Ni is the set of k nearest neighbors of sample i.

With n being the total number of samples, C the set of all possible categories (batch labels), and lj
the label (e.g., batch category) of neighbor j, the iLISI score is then calculated as:

iLISI =
1

n

n∑
i=1

∑
c∈C

∑
j∈Ni
lj=c

pij


2

−1

3.2 Latent Space Linear Separability of Known Perturbations

After ensuring that batch effects are minimized, the next step is to verify that the model can distinguish
between different perturbations. In other words, the model’s internal "map" (or latent space) should
reflect the biological differences caused by various perturbations in its global structure. This
capability is crucial for mapping how different interventions affect biological systems. We assess this
by checking if samples subjected to different perturbations can be separated using a simple linear
classifier for linear probing. Specifically, we add a straightforward linear layer on top of the model’s
representations to classify samples based on their perturbations. We then evaluate the classifier’s
performance on the same perturbations but on new biological batches of data that the model hasn’t
seen before. This step ensures that the model is not just memorizing noise patterns of the training
data but can generalize to new, unseen data.

3.3 Perturbation Consistency

Recognizing different perturbations is important, but it is equally critical that the model represents
each perturbation consistently across various samples and batches. This consistency ensures the
model’s robustness, making its representations reliable and not influenced by noise or outliers. To
measure this, we use the Perturbation Consistency metric introduced in (Celik et al., 2024).

For each gene perturbation g, we calculate the cosine similarity between all pairs of its embeddings
from different samples and batches. The average of these similarities gives the perturbation similarity
score for that perturbation. Formally, let xg,i be the embedding vector for the i-th sample of
perturbation g, and ng be the number of samples for g. A per-perturbation similarity score avgsimg
is computed as:

avgsimg =
1

n2
g

ng∑
i=1

ng∑
j=1

⟨xg,i,xg,j⟩
∥xg,i∥ ∥xg,j∥

This similarity score is then compared to a null distribution generated from unexpressed genes or
genes that are inactive in the dataset. Unexpressed genes are selected based on their consistently low
expression levels, with at least 1000 unexpressed genes required for meaningful results. For each
unexpressed gene g′k, k = 1, . . . ,K, we compute their average cosine similarity avgsimg′

k
in the

same way. Using a permutation test, we assess whether the observed similarity for perturbation g is
significantly higher than what would occur by chance. The consistency p-value for each gene g is
given by:

pg =
max

{
#
(

avgsimg′
k
≤ avgsimg

)
, 1
}

K

Gene perturbations that achieved a consistency p-value < 0.05 are considered significant. The
Perturbation Consistency metric reports the fraction of such significant genes compared to all gene
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perturbations. A high perturbation consistency score indicates that the model consistently recognizes
the effect of a perturbation across different batches and experiments. Conversely, a low score suggests
that the model may not fully capture the perturbation’s effect, potentially classifying it correctly in
other metrics simply because of outlier behavior or similarity to other cases.

3.4 Latent Space Direct Organization

Beyond perturbation consistency, we aim for the model’s latent space to self-organize without extra
help or training. A linear classifier can still perform well even if clusters are fuzzy or poorly separated,
as it focuses on global structure of the latent space. Thus, a high linear separability score does not
necessarily mean the latent space is locally well organized. Once the global structure is validated, we
focus on the local structure of the perturbation space, useful for tasks like retrieval. We achieve that
by directly evaluating how well-defined and locally organized perturbation clusters are, especially in
unseen data. Such a local organization is crucial for the model to be useful in practical, exploratory
settings where we would like to retrieve and compare cells from different conditions but similar
perturbations. To assess this, we apply a k-Nearest Neighbors (kNN) algorithm using two different
datasets with the same perturbations (a query set and reference set), but with no overlap of biological
batches. For each sample in the test set, we identify its closest neighbors in the latent space of
the reference set. We compute the kNN accuracy using the samples from the query batches that
correspond to the same perturbation as their (k = ⌊

√
n⌋, n being the total number of samples in

reference set) closest neighbors from the reference set of batches.

3.5 Zero-Shot Retrieval of Known Biological Relationships

A strong model should be able to capture biological relationships between genes and even discover
new ones, without being explicitly trained to find these connections. This ability is essential for
generating new insights and validating the model’s biological relevance. To evaluate this, we use
the known relationships retrieval metric introduced by (Celik et al., 2024), which assesses how well
gene-to-gene distances in the model’s latent space can retrieve known relationships from curated
gene/protein interaction databases like CORUM (Giurgiu et al., 2019), HuMAP (Drew et al., 2021),
Reactome, SIGNOR, and StringDB (Celik et al., 2024). This metric evaluates the model’s ability
to discover relationships that exist but were not explicitly provided during training, highlighting its
potential in exploratory settings where unknown relationships are sought.

We compute our metric by first calculating pairwise cosine similarities between the aggregated
perturbation embeddings of all perturbed genes. We exclude self-links (similarities of a gene with
itself) since their similarity is always one, which would distort the results. Next, we selected the
strongest relationships with cosine similarities falling below the 5th percentile or above the 95th
percentile as “predicted links”. We focus on recall as a metric because we are primarily interested
in how many true relationships the model can identify from its top predictions. Precision is not
applicable for evaluation as we lack ground truth of the other relationships’ correctness. We then
compute the recall by comparing these predicted links with known gene-gene relationships from the
benchmark databases. For each database, recall is defined as the proportion of true relationships (i.e.,
known links) retrieved by the model, relative to the total number of known gene-gene relationships in
that database that are also present in the perturbation dataset. This adjustment ensures fairness when
comparing datasets with different numbers of genes. The recall values are then multiplied by 100 to
express them as percentages.

3.6 Linear Interpretability of Latent Space

A key goal is to interpret a good model’s internal representations in terms of actual gene activity. By
decoding the latent space back into gene expression profiles, we can better understand the biological
basis for the model’s predictions and discoveries. To fairly evaluate how accurately the latent
embeddings can be decoded into gene expression data, we train a simple linear multilayer perceptron
(MLP) on top of a frozen model to map the latent space back to gene expression counts. We assess the
quality of this reconstruction using Spearman correlation between true and reconstructed expressions.
This metric shows strong correlation with MSE, MAE and Pearson correlation (See Appendix). These
metrics provide insight into how well the latent space reflects true gene expression patterns.
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Table 1: Summary of datasets used for model evaluation

Dataset Replogle et al. (2022) L1000 CRISPR Joung et al. (2023)

Sample Type Single-cell Bulk Single-cell
Number of Samples 1.98M 443,365 1.38M
Control Samples 75,328 87,565 173,211
Perturbations 9,866 Knockouts 5,157 Knockouts 1,762 Overexpression
Cell Lines 1 (K562) 31 1 (H1 hESC)
Measured Genes 8,248 1K (+11K Inferred) 37,528
Batches/Experiments 267 1,188 2
Usage Train/Eval Train/Eval Train

We also introduce the notion of Structural Integrity, a novel metric designed to assess how well a
model’s embeddings preserve the relationship between control and perturbation conditions within
each biological batch in the gene activity dimension. This is crucial for utilizing reconstructed gene
expression profiles to study gene expression changes under different conditions. Specifically, we
first center the log-transformed gene expression profiles by subtracting the corresponding control
(predicted vs. actual) within each biological batch from the perturbed gene expression profiles. This
centering accounts for batch-specific variability and focuses on the perturbation effects. The structural
distance is then computed for each batch b as the Frobenius norm of the difference between the
centered predicted and centered actual gene expression matrices:

Structural Distance =
1

B

B∑
b=1

1

nb

∥∥∥Ỹ (b)
pred − Ỹ

(b)
actual

∥∥∥
F
, (1)

where B is the total number of batches, and nb is the number of samples in batch b. Ỹ (b)
pred and Ỹ

(b)
actual

are the centered predicted and actual gene expression matrices for batch b, respectively, and ∥ · ∥F
denotes the Frobenius norm. The theoretical upper bound for the structural distance, given the number
of unique measured genes g and assuming the gene library size is M , is:

Structural Distancemax =
2

B

B∑
b=1

M
√
nb × g ≈ 2

B

B∑
b=1

1

nb

∥∥∥Ỹ (b)
actual

∥∥∥
F
, (2)

Then, the Structural Integrity is computed as:

Structural Integrity = 1− Structural Distance
Structural Distancemax

. (3)

Higher values of Structural Integrity indicate better preservation of the structural relationships in
gene expression data. This metric provides an assessment of how well the model captures the overall
structure of gene expression changes while accounting for batch-specific variability.

4 Benchmark Experimental Setup

We benchmark several advanced models for zero-shot single-cell analysis, such as scGPT (Wang
et al., 2023), Geneformer (Chen et al., 2023), CellPLM (Chen et al., 2021), and Universal Cell
Embeddings (UCE) (Rosen et al., 2023), against simpler baselines like PCA and scVI (Lopez et al.,
2018). These models, built on transformer architectures (Vaswani et al., 2017) and trained on massive
datasets (Megill et al., 2020), differ in how they handle gene expression data. For instance, scGPT
and Geneformer focus on gene-gene relationships, while CellPLM uses a latent space to capture
both intra- and intercellular interactions. UCE integrates gene and protein data for a more universal
representation. Further implementation details are provided in the Appendix.

We apply several post-processing approaches to the embeddings from each model to determine which
works best for each model and task. A baseline method for aligning perturbation units involves
using control units in each batch to center and scale features. Additionally, we implement Typical
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Table 2: Comparison of model performance on the Replogle and L1000 datasets across the hierarchy
of tasks. Higher is better for all metrics. Each score is the average of 5 different runs. Std and detailed
scores are available in Appendix.

Task Metric Rand. Labels Geneformer UCE cellPLM scGPT scGPT finetuned Transfer scVI scVI PCA
(Replogle et al., 2022)

1 iLISI 1.000 0.979 0.931 0.839 0.941 0.954 0.881 0.874 0.919

2 Top5 lin. 0.005 0.005 0.008 0.009 0.011 0.005 0.010 0.032 0.058
Top1 lin. 0.001 0.002 0.003 0.003 0.004 0.002 0.004 0.016 0.033

3 Pert Cons. 0.051 0.063 0.105 0.111 0.115 0.092 0.118 0.102 0.119

4 Top5 knn 0.054 0.054 0.055 0.056 0.056 0.054 0.055 0.061 0.061
Top1 knn 0.053 0.053 0.053 0.053 0.053 0.054 0.053 0.054 0.054

5

CORUM 0.107 0.149 0.366 0.284 0.389 0.166 0.443 0.503 0.450
HuMAP 0.102 0.135 0.253 0.272 0.323 0.149 0.346 0.388 0.359
Reactome 0.090 0.117 0.170 0.144 0.166 0.116 0.174 0.225 0.213
SIGNOR 0.097 0.108 0.128 0.121 0.123 0.111 0.123 0.147 0.150
StringDB 0.102 0.148 0.329 0.305 0.402 0.170 0.428 0.497 0.475

6 Spear. Corr 0.000 0.001 0.172 0.169 0.180 0.131 0.218 0.265 0.215
Struct. Int. 0.525 0.528 0.538 0.538 0.540 0.532 0.548 0.551 0.550

L1000 Assay
1 iLISI 1.000 0.691 0.699 0.100 0.660 0.682 0.467 0.408 0.398

2 Top5 lin. 0.017 0.022 0.022 0.022 0.022 0.022 0.026 0.044 0.053
Top1 lin. 0.007 0.008 0.008 0.008 0.008 0.008 0.010 0.021 0.027

3 Pert Cons. 0.047 0.059 0.058 0.068 0.056 0.058 0.064 0.082 0.073

4 Top5 knn 0.261 0.262 0.262 0.270 0.263 0.262 0.269 0.268 0.271
Top1 knn 0.256 0.256 0.256 0.258 0.256 0.256 0.256 0.256 0.256

5

CORUM 0.111 0.141 0.163 0.111 0.160 0.117 0.203 0.190 0.174
HuMAP 0.113 0.124 0.121 0.116 0.147 0.107 0.173 0.170 0.153
Reactome 0.109 0.128 0.141 0.124 0.124 0.119 0.141 0.149 0.144
SIGNOR 0.120 0.145 0.204 0.114 0.128 0.104 0.164 0.134 0.139
StringDB 0.109 0.150 0.146 0.147 0.137 0.127 0.165 0.162 0.161

6 Spear. Corr 0.002 0.748 0.253 0.811 0.833 0.757 0.903 0.928 0.882
Struct. Int 0.938 0.955 0.942 0.960 0.962 0.955 0.970 0.977 0.974

Variation Normalization (TVN) (Ando et al., 2017), which aligns not only the first-order statistics
but also the covariance structures of the data. We also compare using raw embeddings without
any post-processing. Since our evaluation emphasizes practical use cases related to perturbations,
and because different models respond differently to various post-processing methods, we select the
best-performing post-processing for each model in each task. It is important to note that the optimal
post-processing method can vary, not only between models but even across different tasks for the
same model. In a real-world scenario, users would choose the post-processing technique that yields
the best results for their specific application. Therefore, we report the best post-processing method
for each model and task in the benchmark. Full results, including scores for all models, tasks, and
post-processing approaches, are available in the appendix.

We use three primary open source datasets (Table 1) : the single-cell gene knockout dataset (Replogle
et al., 2022), the bulk L1000 CRISPR assay (Subramanian et al., 2017b), and the single cell gene
overexpression dataset (Joung et al., 2023), each capturing different aspects of gene perturbations.
Detailed dataset characteristics can be found in Table 1. (Joung et al., 2023) dataset is used mainly
for training models on gene overexpression, before evaluating the trained model on gene knockout
on different cell lines. For consistency, we preprocess all datasets to use the same metadata and
structure, and retain samples with total raw counts above 1,000. For evaluation, we apply a 70%
train/test split for linear probing and kNN, ensuring distinct batches in the test set but retaining the
same perturbations. Reconstruction tasks use different batches and perturbations in the test set, and
all data is used for perturbation consistency and known relationship recall tasks.

5 Results

5.1 Current Foundation models do not generalize to perturbation related tasks

The results in Table 2 demonstrate that current foundation models do not generalize well to
perturbation-related tasks compared to simpler approaches like PCA and scVI. PCA, which is
applied on raw gene counts, and scVI, trained from scratch on the same dataset, consistently outper-
form foundation models across most tasks, except for batch effect reduction (Task 1). Notably, scVI
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Figure 1: Known biological relationship recall scores for (Replogle et al., 2022) and L1000 Assay for
scVI, trained using different gene distributions. Different datasets and sequencing approaches benefit
from different gene distributions.

achieves strong performance in both scenarios: when trained directly on the evaluation dataset (scVI)
and when used in a zero-shot transfer learning context (Transfer scVI), in which it is pre-trained on
a different cell line, perturbation type, and sequencing technique (Joung et al., 2023) before being
evaluated on (Replogle et al., 2022) and L1000 data. Transfer scVI ranks third overall, after PCA
and scVI, highlighting its robustness in handling strong out-of-distribution scenarios. Interestingly,
Transfer scVI consistently surpasses scVI for batch effect reduction, as this metric is easily optimized
by capturing higher levels of noise, which is the case for transfer learning zero-shot applications.
Additionally, PCA shows higher structural integrity than Transfer scVI for both the L1000 assay and
the (Replogle et al., 2022) dataset, while Transfer scVI achieves a higher Spearman correlation for
reconstructing expression counts. This can be explained by the fact that PCA preserve the original
data structure, while Transfer scVI conserves (Joung et al., 2023) original data structure, even if
trained to reconstruct (Replogle et al., 2022) and L1000 dataset. Such cases suggest that structural
integrity and Spearman correlation capture different aspects of model performance and complement
each other.

Foundation models such as Geneformer and scGPT show competitive performance only in batch
effect reduction, where random embeddings achieve near-optimal results, but they struggle across
more biologically meaningful tasks. This suggests that their training objectives, which likely focus
on reducing batch effects, are insufficient for capturing nuanced biological insights required for
perturbation tasks. Interestingly, finetuning scGPT on the same evaluation data improves its per-
formance on batch effect reduction but has little to no effect on linear separability of perturbations
(Task 2) and dramatically reduces performance on zero-shot recall of known biological relationships
(Task 5). This hints that its learning objective is not adapted to learning relevant representations of
perturbation biology even when trained on its evaluation data. The overall results indicate that while
foundation models can be tuned for specific technical metrics, they do not yet effectively generalize
to biologically complex tasks like perturbation analysis, where scVI and PCA remain more reliable.

5.2 Gene distribution matters and is dataset-dependent

We trained scVI using three different distributions: Zero-Inflated Negative Binomial (ZINB), Negative
Binomial (NB), and Poisson, and evaluated their performance on the Replogle et al. (2022) and
L1000 Assay datasets, reporting results on zero-shot recall of known biological relationships (Task 5)
in Figure 1. For Replogle et al. (2022), the ZINB distribution, originally introduced for scVI (Lopez
et al., 2018), achieves the best performance, slightly outperforming NB, while Poisson performs
slightly worse. However, scVI’s performance remains stable across all gene distributions on this
dataset, consistently surpassing the best-performing foundation models for this task. In contrast, for
the L1000 dataset, Poisson distribution yields the highest performance, substantially outperforming
ZINB and NB. This discrepancy can be attributed to the nature of the L1000 assay, where gene
expression levels are measured as continuous values rather than discrete counts typically obtained
from sequencing. As a result, the Poisson distribution, which can accommodate continuous data
under certain conditions, yields better performance compared to ZINB and NB distributions designed
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Figure 2: Training scVI on different amounts of samples, using distinct batches and perturbations,
before evaluating known biological relationship retrieval. scVI is robust to very low data regime, and
shows strong data scaling laws on single cell data.

for overdispersed count data. Thus, gene distribution plays a crucial role in determining scVI’s overall
performance, particularly for different assay techniques like L1000 and the associated datasets.

5.3 scVI robustly learns from small-scale single cell perturbation data

We trained scVI on different subsets of the Replogle and L1000 datasets, varying the number of
samples used for training, and evaluated the models on the full datasets for the zero-shot recall of
known relationships (Task 5). The subsets were created by selecting batches that constituted the
target ratio, ensuring that most batches and perturbations present in the evaluation data were unseen
during training to mimic a real-world scenario where data is acquired incrementally. We used the
ZINB gene distribution for Replogle et al. (2022), and used the Poisson distribution for the L1000
assay. The results in Figure 2 show that scVI consistently learns useful representations for zero-shot
biological tasks, even when trained on minimal data, with performance remaining above that of
foundation models even in the lowest data regime (1000 samples). Moreover, for Replogle et al.
(2022), scVI exhibits clear scaling behavior, with zero-shot performance improving as more data is
included, underscoring its robustness for single-cell perturbation analysis. In contrast, the L1000
assay does not show the same scaling pattern, with scVI performance varying unpredictably as data
size changes, except for the CORUM task. This lack of scaling pattern on L1000 assay may be due to
the noise and uncertainty inherent in the assay (Subramanian et al., 2017a), as well as the fact that
scVI’s gene distribution assumptions, optimized for single-cell data, may not be well-suited for bulk
readouts like L1000. Nonetheless, scVI consistently performs above random for L1000, even when
trained on only 200 samples, demonstrating its robustness under less ideal conditions.

6 Conclusion

This study presents a biologically motivated benchmarking tool for evaluating model performance
on perturbation relevant tasks, while introducing Structural Integrity as a new metric for assessing
gene activity structure preservation. Through systematic comparisons using public datasets across
different sequencing techniques and cell lines, we uncover using this set of tasks that simpler models
like scVI and PCA outperform current transcriptomics foundation models in most perturbation-
related tasks. Specifically, scVI exhibits strong performance both when trained directly on evaluation
datasets and in zero-shot transfer learning scenarios, highlighting its robustness and adaptability to
diverse conditions. scVI also maintains robust performance even with minimal training data, and
scales its performance with more training data in single-cell perturbation contexts. Our findings
indicate that foundation models, while effective in batch effect reduction, struggle with more complex
biological tasks, suggesting that their training objectives may not fully capture the nuances required
for perturbation analysis. Additionally, we show that gene distribution assumptions significantly
impact model performance and are highly dataset-dependent. These results indicate the need for
developing models with biologically tailored objectives, and we offer a curated evaluation set designed
to assess performance across a wider range of biologically relevant tasks, thereby measuring the
utility of future models in uncovering complex biological relationships.
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Marek Żyła, Shantanu Singh, and Anne E Carpenter. JUMP cell painting dataset: morphological
impact of 136,000 chemical and genetic perturbations. bioRxiv, March 2023.

Tiffany K. Chen, Zichen Wang, Xiaoman Li, Yan Li, and Kuan Huang. Geneformer: A foundation
model for generalizable gene expression learning. bioRxiv, pp. 2023.01.14.524028, 2023.

Yixuan Chen, Qi Li, Guolin Ke, Zhirong Sun, Yingce Yin, Deqing Zou, Jinhui Tang, Tie-Yan Liu,
and Ming Yang. Single-cell rna sequencing data analysis by single-cell model pretrained language
model. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1736–1746. ACM, 2021.

10

https://doi.org/10.1371/journal.pcbi.1012463


Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra Cervera, Andrew
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A Transcriptomics Foundation Models

A.1 Universal Cell Embeddings (UCE) Model

The Universal Cell Embeddings (UCE) model (Rosen et al., 2023) is a foundational approach
designed to generate a universal latent space that captures the biological variation of cells from
multiple species and tissues. It leverages single-cell RNA sequencing (scRNA-seq) data to create
a shared representation space that enables zero-shot inference for unseen datasets without further
training.

UCE takes as input the gene expression count matrix of single cells and maps each cell into a
unified embedding space through a series of transformations and self-supervised training. The
model can handle cells from different species and datasets, addressing batch effects and variations
in gene expression measurements. It achieves this by encoding gene information into a numerical
representation using a pre-trained protein language model and subsequently applying a transformer
architecture.

The input to the UCE model consists of two key elements:

• Gene expression counts (xi ∈ RKi): The expression counts of Ki genes in cell ci. This
can vary across cells and datasets due to differing gene availability.

• Protein embeddings (pg ∈ Rdp): Each gene g is represented by a protein embedding
obtained using the ESM2 model (Lin et al., 2022), which takes an amino acid sequence as
input and outputs a dp-dimensional embedding vector.

The model represents each cell by constructing a "cell sentence" Si, which includes tokens repre-
senting the expressed genes and their protein embeddings. The set of expressed genes for each cell
is denoted as G+

i , while the non-expressed genes are represented as G−
i . The expressed genes are

sampled with replacement based on their expression levels, as defined by the probability:

P (g | ci) =
log(xg

i )∑
g′∈G+

i
log(xg′

i )
, (4)

where xg
i is the expression count of gene g in cell ci.

The sampled genes are organized by chromosome, grouped together using special start and end tokens
for each chromosome, and then concatenated to form the cell sentence Si. The cell sentence Si is
then passed into a transformer architecture.

UCE uses a transformer network with nlayers layers and nheads attention heads per layer. Each
gene’s protein embedding is reduced to a lower-dimensional space using a multi-layer perceptron
(MLP) before being processed by the transformer. A special classification token (CLS) is added to
the beginning of the cell sentence, and its final output after passing through the transformer represents
the cell embedding hcell

i .

The UCE model is trained in a self-supervised manner using masked gene prediction. During training,
a random subset of the expressed genes G+

i is masked, forming a masked set GM+
i ⊂ G+

i . The
model predicts the expression status of both masked and non-expressed genes, formulated as a binary
classification problem using the following loss function:

L = − 1

N

N∑
i=1

1

Nloss

Nloss∑
j=1

[yij log(p(yij)) + (1− yij) log(1− p(yij))] , (5)

where yij is the true binary label indicating if gene j is expressed in cell ci, Nloss the number of
genes being predicted, and p(yij) is the predicted probability of gene expression.

The resulting UCE model can directly embed new datasets into the same latent space without any
additional fine-tuning or training. This zero-shot capability enables UCE to generalize to new
biological contexts and datasets, maintaining consistency across species and tissues.

UCE is implemented using the PyTorch library and consists of 33 transformer layers with 650 million
parameters. The model was trained on over 300 datasets from 8 species, encompassing 36 million
cells. Training was performed on 24 A100 GPUs for 40 days, using the CellXGene corpus (Megill
et al., 2020) as the primary data source.
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A.2 scGPT Model

The scGPT model (Wang et al., 2023) is a foundation model for single-cell multi-omics based on
a generative pretraining approach using the transformer architecture. The core idea behind scGPT
is to leverage the self-attention mechanism to capture complex relationships between genes and
cells by learning meaningful embeddings. The model is pretrained on a large-scale single-cell RNA
sequencing (scRNA-seq) dataset containing over 33 million human cells across various tissues and
conditions.

scGPT consists of two main training stages: a general-purpose pretraining phase and a fine-tuning
phase. In the pretraining stage, the model is trained in a self-supervised manner using a masked
language modeling objective. This involves randomly masking out a portion of gene expression
values and training the model to predict these masked values based on the remaining genes. To adapt
the transformer architecture to non-sequential omics data, a specialized attention mask is introduced
in the transformer’s multi-head attention blocks. The attention mechanism enables the model to
attend to gene–gene and cell–gene interactions simultaneously, allowing for effective learning of
gene expression patterns.

The input to the model consists of gene tokens, expression values, and condition tokens (e.g., batch,
modality, or perturbation conditions). Each input token is embedded into a high-dimensional vector
space, and the embeddings are combined through element-wise addition. The embeddings are then
processed through multiple layers of transformer blocks, each consisting of a masked multi-head
attention layer followed by a feed-forward layer. During the pretraining phase, scGPT learns both
cell and gene embeddings, which capture biological variations and interactions within the data.

For downstream applications, such as cell type annotation, multi-omic integration, or perturbation
response prediction, the pretrained model is fine-tuned on specific datasets using supervised objectives.
For cell type annotation, for example, a neural network classifier is added on top of the pretrained cell
embeddings, and the whole model is trained using cross-entropy loss. The fine-tuned model is then
used to predict cell types on new, unseen datasets, demonstrating the model’s capability for transfer
learning.

The scGPT model also enables multi-batch and multi-omic integration by learning unified cell
representations that can recover masked gene expression patterns across different modalities. For
gene regulatory network (GRN) inference, the attention weights and learned gene embeddings can be
utilized to identify interactions and regulatory relationships between genes, making scGPT a versatile
tool for various single-cell analysis tasks.

The mathematical formulation for the masked language modeling objective used during pretraining is
as follows:

LMLM = −
∑
i∈M

logP (xi | x̂M\{i}, θ)

where M is the set of masked gene indices, xi is the masked gene expression value, and x̂M\{i}
denotes the remaining observed gene expression values. The model parameters θ are optimized to
maximize the likelihood of recovering the masked values.

A.3 CellPLM Model

CellPLM (Cell Pre-trained Language Model) (Chen et al., 2021) is a novel framework designed to
address the challenges in single-cell transcriptomic data analysis by leveraging concepts from natural
language processing (NLP). It models cells as tokens and tissues as sentences, incorporating both
gene expression data and spatially-resolved transcriptomic (SRT) data to capture complex cell-cell
relationships.

The architecture of CellPLM consists of four primary components: a gene expression embedder, an
encoder, a Gaussian mixture latent space, and a decoder.

The gene expression embedder projects input gene expressions into a low-dimensional feature space.
Each gene type j is assigned a learnable embedding vector hj ∈ Rd, where d is the hidden dimension.
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For each cell i, the gene expression embedding matrix Ei is computed as:

Ei =

k∑
j=1

Xi,jhj , (6)

where X ∈ RN×k represents the cell-by-gene expression matrix, N is the number of cells, k is the
number of gene types, and Xi,j denotes the expression level of gene j in cell i.

CellPLM uses a transformer encoder to capture intercellular relationships by treating cells as tokens.
The encoder operates on a set of cell embeddings and applies multi-head self-attention mechanisms.
Given L stacked transformer layers, the representation of cells at layer l is:

H(l) = TransformerLayer(l)(H(l−1)), (7)

where H(l−1) is the cell representation from the previous layer. The input representation H(0) is the
sum of gene expression embeddings E and positional encodings P .

The latent space in CellPLM employs a Gaussian mixture model to better capture biological structures
and overcome batch effects. The generative process for each cell i is defined as:

p(yi;π) = Multinomial(π), (8)

p(zi | yi) =
L∏

l=1

N (µyi,l, diag(σ2
yi,l)), (9)

pθdec(xi | zi) = N (µzi , σ
2I), (10)

where yi is the latent cluster variable, π is its prior, µyi,l and σ2
yi,l

are the mean and variance of the
l-th Gaussian component, and zi is the latent variable for cell i.

The decoder reconstructs masked features and removes batch effects by using a series of feed-forward
layers. It incorporates a batch embedding b for each cell, formulated as:

h(0) = z + b, h(l) = FFLayer(l)(h(l−1)), (11)

where h(l) is the hidden vector at layer l.

Pre-training is performed on a masked language modeling task, where certain gene expressions are
masked, and the model is trained to reconstruct the original values. The objective function is defined
as:

LCellPLM = Lrecon + Lcond + LY , (12)
where Lrecon is the reconstruction loss, Lcond ensures the consistency between the posterior and
conditional prior, and LY aligns the latent cluster distribution with the prior. The reconstruction loss
is computed as:

LMSE =
∥∥∥M ⊙

(
H(L) − (1−M)⊙X

)∥∥∥2
F
, (13)

where M is the mask indicator matrix, H(L) is the output from the decoder, and ⊙ denotes element-
wise multiplication.

Fine-tuning uses the pre-trained parameters as initialization and adapts them to specific downstream
tasks, such as cell type annotation and spatial transcriptomic imputation, using task-specific loss
functions.

For SRT data, CellPLM incorporates additional positional information through 2D coordinates of
cells, which is encoded into a positional encoding matrix P ∈ RN×d. This enables the model
to integrate spatial context into the cell representations, facilitating the understanding of cell-cell
interactions.

A.4 Geneformer Model

Geneformer (Chen et al., 2023) is a context-aware, attention-based deep learning model designed
for predictions in network biology using transfer learning. The model was pretrained on a corpus of
29.9 million single-cell transcriptomes, known as Genecorpus-30M, from a broad range of tissues
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using a self-supervised masked learning objective. During pretraining, Geneformer learned to encode
network hierarchies and gene interactions by predicting masked genes within the context of unmasked
genes for each cell state. This approach enabled the model to capture fundamental network dynamics
in a completely unsupervised manner, which can then be transferred to diverse downstream tasks that
may have limited data.

The architecture of Geneformer consists of six transformer encoder layers. Each encoder layer
contains a self-attention layer and a feed-forward neural network layer. The model uses full dense
self-attention over an input size of 2,048 genes, representing 93% of rank value encodings in the
Genecorpus-30M. Each gene is encoded into a 256-dimensional space, and Geneformer uses a rank
value encoding where genes are ranked by their expression levels, normalized across the entire dataset.
This rank-based encoding provides a non-parametric representation of the transcriptome of each
single cell, deprioritizing housekeeping genes while prioritizing genes that distinguish specific cell
states, such as transcription factors.

The self-supervised pretraining was accomplished by masking 15% of the genes within each tran-
scriptome and training the model to predict the masked genes. This objective is similar to the masked
language modeling objective used in natural language processing. The pretraining allows the model
to learn which genes are most relevant within a cell’s context, thus establishing an understanding of
network dynamics that is robust to technical noise and batch effects.

The Geneformer model is implemented with self-attention mechanisms, where each attention head
learns which genes to focus on in different contexts. During training, the attention weights are
optimized iteratively to generate gene embeddings that best inform the correct answer for the learning
objective. Specifically, Geneformer uses multiple attention heads per layer, each capturing distinct
aspects of the gene regulatory networks, allowing the model to pay attention to diverse features
simultaneously.

Mathematically, given an input transcriptome matrix X ∈ RN×d, where N is the number of genes
and d is the embedding dimension, Geneformer applies self-attention mechanisms as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where Q, K, and V are the query, key, and value matrices derived from the input matrix X . The
attention scores are computed by taking the dot product of Q and K, scaled by

√
dk (the square root

of the key dimension) and normalized with a softmax function.

The embeddings are then passed through multiple transformer encoder layers, each performing layer
normalization, multi-head attention, and position-wise feed-forward neural networks:

FFN(x) = max(0, xW1 + b1)W2 + b2

The final output of the pretraining is a set of contextualized gene and cell embeddings that can be
used for downstream analyses, such as predicting gene dosage sensitivity or chromatin dynamics.

A.5 Architecture Implementation of scVI

Single-cell Variational Inference (scVI) (Lopez et al., 2018) is a probabilistic model designed for
analyzing single-cell RNA sequencing (scRNA-seq) data, addressing challenges like technical noise,
dropout events, and batch effects. The model is based on a hierarchical Bayesian framework,
leveraging deep neural networks for representation learning and scalable variational inference.

The input to scVI is an N ×G count matrix x that records the number of transcripts measured for G
genes across N cells. To account for technical variation, such as differences in capture efficiency or
sequencing depth, scVI introduces two types of latent variables:

1. Biological Latent Variable zn: Represents the low-dimensional latent space capturing the
biological variability between cells. This variable is drawn from a standard multivariate
normal distribution:

zn ∼ N (0, I).
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2. Scaling Factor ℓn: Models cell-specific variation due to sequencing depth or capture
efficiency. It is drawn from a log-normal distribution:

ℓn ∼ LogNormal(µℓ, σ
2
ℓ ).

The generative process of scVI can be summarized as follows:

• Sample zn and ℓn for each cell n.

• Compute a batch-corrected representation ρgn for each gene g and cell n, using neural
networks fw and fh:

ρgn = fw(zn, sn),

where sn is the batch annotation for cell n.

• Draw wng from a gamma distribution:

wng ∼ Γ(ρgn, θg),

where θg is a gene-specific inverse dispersion parameter.

• Given ℓn and wng , sample yng from a Poisson distribution:

yng ∼ Poisson(ℓnwng).

• Include zero-inflation to account for dropout events by introducing a Bernoulli variable hng

for each gene g and cell n:

hng ∼ Bernoulli(fh(zn, sn)).

• The observed expression count xng is defined as:

xng =

{
yng if hng = 0,

0 if hng = 1.

In essence, the model assumes that the expression values xng are generated through a zero-inflated
negative binomial (ZINB) distribution:

xng ∼ ZINB(ℓnρgn, θg, fh(zn, sn)).

Due to the non-conjugacy and complex nature of this distribution, exact Bayesian inference is not
feasible. Therefore, scVI uses a variational approximation q(zn, log ℓn|xn, sn) with a Gaussian form.
The variational parameters are optimized using stochastic gradient descent.

B Hierarchy of metrics for Transcriptomics Benchmarking

B.1 Formulation of the iLISI Score

The Integration Local Inverse Simpson’s Index (iLISI) is a metric used to quantify the extent to
which samples from different batches are well integrated within the latent space of a model. In
biological experiments, data is often collected in multiple batches, where each batch consists of
samples processed under slightly different conditions or at different times. These batch differences
can introduce batch effects, which are unwanted variations that can obscure true biological signals.
The iLISI score measures how well a model reduces these batch effects by assessing the mixing of
samples from different batches in the neighborhood of each cell or sample.

The iLISI score is computed as follows:

1. Calculate Neighborhood Probabilities: For each sample i, identify its set of k-nearest neighbors,
denoted as Ni. The distance between samples i and j in the latent space is represented by dij . Using
this distance, the conditional probability pij that sample i selects sample j as a neighbor is defined as:

pij =
exp(−βidij)∑

l∈Ni
exp(−βidil)

,
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where dij is the distance between sample i and sample j, and βi is the scaling parameter that ensures
the entropy H(Pi) of the distribution Pi = {pij} is equal to log(k). This scaling ensures that the
neighborhood size matches the target number of neighbors k.

2. Compute Batch Probability for Each Sample: Let C be the set of all batch labels, and lj denote
the batch label of neighbor j. For each sample i, calculate the sum of probabilities for neighbors that
belong to batch c ∈ C:

pic =
∑
j∈Ni
lj=c

pij .

This value pic represents the probability that a neighbor of sample i is from batch c.

3. Calculate the Inverse Simpson’s Index: For each sample i, the Inverse Simpson’s Index ISIi is
computed as:

ISIi =

(∑
c∈C

p2ic

)−1

.

The Inverse Simpson’s Index measures the diversity of batches in the neighborhood of each sample.
A high value indicates that the neighbors are well-distributed across different batches, suggesting
effective mixing and reduced batch effects.

4. Compute the Final iLISI Score: The overall iLISI score is the average of ISIi over all n samples:

iLISI =
1

n

n∑
i=1

ISIi =
1

n

n∑
i=1

(∑
c∈C

p2ic

)−1

.

The iLISI score provides an indication of how well the batches are mixed in the latent space. An
ideal iLISI score would be close to the number of unique batches in the dataset, before normalization.
This would indicate that, on average, the neighbors of each sample are evenly distributed across all
batches, implying that the model has effectively minimized batch effects. Conversely, a low iLISI
score would suggest poor mixing, indicating that the model has not successfully integrated samples
from different batches.

B.2 Formulation of the Perturbation Consistency Score

The Perturbation Consistency score is designed to evaluate how consistently a model represents the
effect of a perturbation across different samples and batches. This metric is crucial for ensuring that
the model’s representations of perturbations are robust, reliable, and not influenced by random noise
or technical artifacts. The Perturbation Consistency score quantifies the similarity of the model’s
embeddings for samples subjected to the same perturbation, thereby providing a measure of how well
the perturbation’s effect is captured and maintained throughout the representation space.

The computation of the Perturbation Consistency score involves the following steps:

1. Calculate Pairwise Cosine Similarities for Each Perturbation: For each perturbation g,
represented as a set of samples, we compute the cosine similarity between the embeddings of every
pair of samples. Let xg,i be the embedding vector for the i-th sample of perturbation g. The cosine
similarity between two sample embeddings xg,i and xg,j is given by:

cos(xg,i,xg,j) =
⟨xg,i,xg,j⟩
∥xg,i∥ ∥xg,j∥

,

where ⟨xg,i,xg,j⟩ denotes the dot product between xg,i and xg,j , and ∥xg,i∥ is the Euclidean norm
of xg,i.

2. Compute the Average Cosine Similarity: For each perturbation g, with ng samples, the average
cosine similarity avgsimg is computed by averaging over all pairs of embeddings:

avgsimg =
1

n2
g

ng∑
i=1

ng∑
j=1

cos(xg,i,xg,j).
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This average similarity score provides a measure of how close the representations of samples under
the same perturbation are, indicating the degree of consistency.

3. Comparison to Null Distribution: To determine if the observed consistency score avgsimg
is significant, it is compared to a null distribution generated from unexpressed or inactive genes.
These genes are selected based on consistently low expression levels across all samples, and their
embeddings are used to compute a null average similarity avgsimg′

k
for each unexpressed gene g′k,

where k = 1, . . . ,K.

4. Permutation Test: For each perturbation g, the consistency p-value is calculated using a permuta-
tion test. The p-value is defined as the fraction of unexpressed genes with average similarity scores
less than or equal to avgsimg:

pg =
max

{
#
(

avgsimg′
k
≤ avgsimg

)
, 1
}

K
.

This step ensures that the significance of the observed similarity is evaluated against what would be
expected by chance.

5. Final Perturbation Consistency Score: Gene perturbations with a consistency p-value less than
0.05 are considered significant, indicating that the perturbation’s effect is consistently represented
across different samples and batches. The overall Perturbation Consistency score is reported as the
fraction of significant gene perturbations out of the total number of perturbations evaluated. It is
formally defined as:

Perturbation Consistency =
#(Significant Perturbations)

#(Total Perturbations)
.

A high Perturbation Consistency score indicates that the model reliably captures the effect of each
perturbation across all samples, suggesting that the model’s representations are robust to noise and
batch effects. In contrast, a low score suggests that the model may fail to capture the perturbation
effect consistently, potentially due to noise, batch-specific artifacts, or poor representation learning.
Thus, this metric is essential for validating the stability and reliability of a model’s performance in
perturbation analysis.

B.3 Formulation of the Structural Integrity Score

The Structural Integrity score is a metric designed to evaluate how well a model preserves the
relationship between control and perturbation conditions within each biological batch in terms of
gene activity. This score is particularly useful for analyzing gene expression changes under different
conditions by comparing the predicted and actual gene expression profiles. The structural integrity
score is computed based on the Frobenius norm of the difference between the centered predicted and
centered actual gene expression matrices for each batch, providing a measure of how accurately the
model reconstructs gene expression while accounting for batch-specific variability.

The computation of the Structural Integrity score involves the following steps:

1. Centering the Gene Expression Profiles: For each batch b, the (log-transformed) gene expression
profiles are centered by subtracting the corresponding control condition within that batch. This
operation is performed separately for both the predicted gene expression matrix Y

(b)
pred and the actual

gene expression matrix Y
(b)

actual. The centered matrices are denoted as Ỹ (b)
pred and Ỹ

(b)
actual, respectively:

Ỹ
(b)

pred = Y
(b)

pred − Y
(b)

pred, control, Ỹ
(b)

actual = Y
(b)

actual − Y
(b)

actual, control,

where Y
(b)

pred, control and Y
(b)

actual, control represent the control condition matrices for batch b.

2. Compute Structural Distance: The structural distance quantifies the deviation between the
centered predicted and actual gene expression matrices for each batch b. It is defined as the Frobenius
norm of the difference between these two matrices, averaged over all batches:

Structural Distance =
1

B

B∑
b=1

1

nb

∥∥∥Ỹ (b)
pred − Ỹ

(b)
actual

∥∥∥
F
,
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where B is the total number of batches, nb is the number of samples in batch b, and ∥ · ∥F denotes
the Frobenius norm, which is computed as:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij ,

for any matrix A ∈ Rm×n.

3. Derivation of the Maximum Structural Distance: The Structural Distance measures the average
discrepancy between the centered predicted and actual gene expression profiles across all biological
batches. To derive the upper bound, we consider the maximum possible difference between these
profiles. After centering the gene expression profiles by subtracting the corresponding control within
each batch, the maximum possible value for any element in the adjusted matrices Ỹ (b)

pred and Ỹ
(b)

actual
depends on the data but can be bounded. Assuming the gene expression values are normalized and
bounded within a range [0,M ], the centered gene expression values are bounded within a range
[−M,M ], thus the maximum difference per element between the centered predicted and actual
matrices is 2M .

For each batch b, the maximum possible Structural Distance is given by:

Max Structural Distanceb =
∥∥∥Ỹ (b)

pred − Ỹ
(b)

actual

∥∥∥max

F
= 2M

√
nb × g,

where nb is the number of samples in batch b, g is the number of genes and ∥ · ∥F denotes the
Frobenius norm.

The overall maximum Structural Distance across all batches is then computed as:

Structural Distancemax =
1

B

B∑
b=1

2M
√
nb × g.

This theoretical maximum serves as a normalization factor to evaluate the structural distance relative
to an upper bound. This measure can be approximated to the distance of centered actual gene
expression profiles to their negative value, which can be defined as follow :

Structural Distancemax ≈ 2

B

B∑
b=1

1

nb

∥∥∥Ỹ (b)
actual

∥∥∥
F
, (14)

4. Compute the Structural Integrity Score: The Structural Integrity score is calculated as:

Structural Integrity = 1− Structural Distance
Structural Distancemax

.

This formula provides a normalized measure of how well the model preserves the structural relation-
ships in gene expression data. A Structural Integrity score close to 1 indicates high preservation of
the control-perturbation relationship, while a score closer to 0 indicates poor preservation.

C Experimental Setup

C.1 Embedding Post-Processing

C.1.1 Centering

Centering is the process of adjusting the data such that the mean of each feature (or dimension) is
zero. This operation is performed by subtracting the mean value of each feature from the data. For a
given feature matrix X ∈ Rn×m, where n is the number of samples and m is the number of features,
the centered matrix X̃ is obtained as:

X̃ij = Xij −
1

n

n∑
k=1

Xkj , ∀i = 1, . . . , n, ∀j = 1, . . . ,m.
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This transformation removes the mean from each feature, thus translating the data so that it is centered
around zero. In the context of batch-corrected biological data, centering is often applied to the final
embeddings to remove the negative control embeddings, allowing focus on perturbation effects.

C.1.2 Center Scaling

Center scaling further extends centering by normalizing the variance of each feature. After centering,
the data is scaled such that each feature has unit variance. For a centered feature matrix X̃ , the scaled
matrix X̂ is obtained as:

X̂ij =
X̃ij

σj
, σj =

√√√√ 1

n

n∑
k=1

X̃2
kj , ∀i = 1, . . . , n, ∀j = 1, . . . ,m,

where σj is the standard deviation of the j-th feature. By performing both centering and scaling, the
features become comparable, which is essential when using techniques such as Principal Component
Analysis (PCA) that are sensitive to the scale of the data.

C.1.3 Typical Variation Normalization (TVN)

Typical Variation Normalization (TVN) is a normalization technique designed to enhance the repre-
sentation of biological data by reducing batch effects and highlighting subtle phenotypic differences.
TVN is particularly useful in high-content imaging screens and other applications where there is
substantial variability between experimental batches.

TVN operates by first computing the principal components of control samples (negative control
conditions) to identify the axes of typical variation in the data. The principal component analysis
(PCA) is performed on the centered control embeddings X̃control, resulting in a set of principal
components {v1, . . . ,vm}. Each component represents a direction in the data space that explains a
certain amount of variance. The principal components are then used to normalize the embeddings as
follows:

1. Centering and Scaling of Negative Controls: The negative control embeddings X̃control are
centered and scaled using their respective means and standard deviations, such that:

X̂control =
X̃control − µcontrol

σcontrol
,

where µcontrol and σcontrol are the mean and standard deviation of the negative control embeddings,
respectively.

2. Principal Component Analysis (PCA): PCA is applied to X̂control to compute the principal
components. Let W ∈ Rm×m be the matrix whose columns are the principal component vectors vj .

3. TVN Transformation: The transformation matrix T is derived from the principal components
such that the variance along each axis is normalized:

T = W ·D−1/2 ·W⊤,

where D is a diagonal matrix containing the eigenvalues associated with the principal components.

4. Application to All Embeddings: The TVN transformation is applied to both control and
experimental condition embeddings Xall:

XTVN = T ·Xall.

This step reduces the impact of nuisance variation in the embeddings, ensuring that the embeddings
are desensitized to batch-specific differences while amplifying the axes of variation that capture
subtle or rare biological phenotypes.

C.2 Data Format and Splits

We utilize three primary open-source datasets in this study: the single-cell gene knockout dataset
(Replogle et al., 2022), the bulk L1000 CRISPR assay dataset (Subramanian et al., 2017b), and the
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single-cell gene overexpression dataset (Joung et al., 2023). Each dataset captures distinct aspects of
gene perturbation and expression, providing a comprehensive benchmark for evaluating the models
under different experimental conditions and perturbation types.

The single-cell gene knockout dataset (Replogle et al., 2022) contains 1.98 million samples derived
from a single cell line (K562), covering 9,866 genetic knockouts across 267 different biological
batches/experiments. The dataset includes 75,328 control samples and measures the expression of
8,248 genes. In contrast, the bulk L1000 CRISPR assay dataset (Subramanian et al., 2017b) consists
of 443,365 samples from 31 different cell lines, including 5,157 genetic knockouts and 87,565
control samples across 1,188 batches. This dataset directly measures around 1,000 genes and infers
the expression of an additional 11,322 genes. Finally, the single-cell gene overexpression dataset
(Joung et al., 2023), designed for out-of-distribution training, includes 1.38 million samples from a
single cell line (H1 hESC), covering 1,762 genetic overexpression perturbations applied across two
batches/experiments and measuring 37,528 genes. It also contains 173,211 control samples. This
dataset is primarily used for training models on gene overexpression before evaluating the trained
model on gene knockout in different cell lines.

To maintain consistency, all datasets are preprocessed to use the same metadata and structure, ensuring
compatibility during model training and evaluation. Only samples with total raw counts above 1,000
are retained for analysis. For each dataset, we split the data into training and test sets based on distinct
biological batches. This approach ensures that the test set contains batches not seen during training,
minimizing potential information leakage and providing a more rigorous evaluation of the model’s
ability to generalize to new conditions. For linear probing and kNN evaluation, we employ a 70%
train/test split, ensuring that the test set contains distinct biological batches while retaining the same
perturbations as the training set. In contrast, the reconstruction test set is designed to evaluate the
model’s capacity to generalize to new perturbations. It contains distinct perturbations and batches
that were not present in the training set. The complete datasets are used for perturbation consistency
and zero-shot known relationship recall tasks.

For the L1000 assay dataset, the training set comprises 234,571 samples from 831 distinct biological
batches, including 61,839 control samples and 3,603 unique perturbations. The test set used for
linear probing and k-Nearest Neighbors (kNN) evaluation consists of 100,153 samples from 356
distinct batches, with 25,691 control samples and the same 3,603 perturbations as in the training set.
A separate reconstruction test set is used for evaluating representation learning. This reconstruction
set includes 57,956 samples from 354 distinct batches, with 25,572 control samples and 1,549
unique perturbations not present in the training set. For the Replogle single-cell gene knockout
dataset (Replogle et al., 2022), the training set includes 992,027 samples from 186 biological batches,
with 52,900 control samples and 6,905 unique perturbations. The linear probing and kNN test set
consists of 424,942 samples from 81 distinct batches, with 22,428 control samples and the same 6,905
perturbations as the training set. Similar to the L1000 data, a separate reconstruction test set is utilized,
containing 194,178 samples from 81 distinct batches, with 22,428 control samples and 2,960 unique
perturbations that are not present in the training set. The single-cell gene overexpression dataset
(Joung et al., 2023) is primarily used for training models on gene overexpression perturbations before
evaluating them on gene knockout tasks. This dataset is not split further for evaluation purposes as its
primary role is to serve as an out-of-distribution training set. The generalization of models trained on
this dataset is assessed using the gene knockout datasets.

C.3 PCA, scVI and finetuning scGPT

For training the scVI model, we configure it with a latent space size of 256 and set the hidden
space dimension to nhidden with 2 layers. The number of highly variable genes selected differs based
on the dataset: 15,000 genes for the Joung overexpression dataset, 8,000 genes for the Replogle
dataset, and 12,000 genes for the L1000 assay. The dispersion parameter is set to "gene", and the
latent distribution follows a normal distribution. We test various gene likelihood models, including
Zero-Inflated Negative Binomial (ZINB), Negative Binomial (NB), and Poisson distributions. To
ensure consistent comparison, we normalize the data to a library size of 10,000 counts per sample and
apply log-transformation prior to training scVI. The normalization and transformation procedures
help mitigate the effect of varying library sizes and improve model stability during training.
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For data analysis using Principal Component Analysis (PCA), we apply the PCA transformation on
the gene expression profiles prior to normalization and log transformation. This ensures that the PCA
captures the intrinsic variability in the raw expression data without additional preprocessing artifacts.

To fine-tune the scGPT model, we configure the model with an embedding dimension of 512, a hidden
layer size of 512, and 12 Transformer layers with 8 attention heads. The input sequence is padded to
a maximum length of 1,536, and special tokens such as "<pad>", "<cls>", and "<eoc>" are included
in the vocabulary. The training uses a learning rate of 10−5 with a batch size of 32 and is carried
out for 15 epochs. The scGPT model is trained using masked language modeling (MLM), with no
additional objectives such as cell-type classification or contrastive cell embedding. The optimizer
used is Adam, and a learning rate scheduler is applied at an interval of 1 epoch, with a decay factor
of 0.9. Gradient scaling is enabled using mixed precision training to accelerate computations and
reduce memory usage. 5000 most variable genes were used for training.

C.4 Evaluation Parameters

For training on the L1000 and Replogle datasets, distinct configurations are used for kNN, linear
evaluation, and reconstruction tasks. During kNN and linear probing, the training data is fed with a
batch size of 2048, and optimization is performed using AdamW with a learning rate of 0.001 and a
weight decay of 1 × 10−6. The learning rate follows a warmup cosine decay schedule, starting at
3× 10−5 for the initial 10 epochs and decaying to zero over 250 epochs. The model is set to evaluate
its performance using a linear classifier, and leverages 251 neighbors for kNN evaluation. For both
datasets, We perform training with five distinct but fixed seeds to ensure reproducibility, and each
training is conducted using mixed precision on a single H100 GPU. We take the average and standard
deviation across the 5 training runs with distinct seeds.

Reconstruction tasks use a smaller batch size of 512 samples and a lower learning rate of 0.0001. The
model undergoes training for a maximum of 30 epochs, utilizing the same optimizer and warmup
cosine learning rate schedule as in linear probing. We use two stacked linear layers to decode the
latent space into into log transformed gene expression profiles, and MSE loss for the reconstruction.

D Detailed Results
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Table 3: Replogle et al. (2022) dataset full results

Model Type Processing Method iLISI Top1 Linear Acc Top5 Linear Acc

Geneformer

Center Scaling 21.361 ± 0.051 0.021 ± 0.001 0.101 ± 0.003
Centering 22.069 ± 0.028 0.112 ± 0.007 0.490 ± 0.007
Raw Embeds 22.273 ± 0.017 0.155 ± 0.001 0.536 ± 0.002
TVN 6.845 ± 1.114 0.015 ± 0.001 0.083 ± 0.002

PCA

Center Scaling 20.909 ± 0.497 3.269 ± 0.004 5.765 ± 0.007
Centering 16.789 ± 0.043 3.094 ± 0.005 5.480 ± 0.008
Raw Embeds 15.016 ± 0.066 3.221 ± 0.008 5.668 ± 0.004
TVN 16.637 ± 0.477 2.922 ± 0.006 5.219 ± 0.004

Transfer scVI

Center Scaling 20.041 ± 0.084 0.371 ± 0.002 0.895 ± 0.003
Centering 12.436 ± 0.189 0.384 ± 0.001 0.930 ± 0.003
Raw Embeds 14.887 ± 0.158 0.389 ± 0.002 0.973 ± 0.005
TVN 16.401 ± 1.096 0.300 ± 0.002 0.759 ± 0.001

UCE

Center Scaling 21.187 ± 0.033 0.205 ± 0.002 0.572 ± 0.002
Centering 21.185 ± 0.037 0.262 ± 0.002 0.772 ± 0.002
Raw Embeds 17.495 ± 0.015 0.224 ± 0.001 0.725 ± 0.004
TVN 11.409 ± 1.073 0.065 ± 0.001 0.206 ± 0.001

cellPLM

Center Scaling 11.879 ± 0.036 0.274 ± 0.002 0.837 ± 0.004
Centering 19.091 ± 0.037 0.247 ± 0.004 0.803 ± 0.005
Raw Embeds 17.952 ± 0.017 0.234 ± 0.002 0.770 ± 0.005
TVN 14.883 ± 0.107 0.313 ± 0.003 0.873 ± 0.003

scGPT

Center Scaling 21.407 ± 0.024 0.438 ± 0.004 1.113 ± 0.005
Centering 20.561 ± 0.033 0.269 ± 0.002 0.809 ± 0.002
Raw Embeds 15.935 ± 0.027 0.231 ± 0.001 0.750 ± 0.003
TVN 8.216 ± 1.147 0.191 ± 0.002 0.506 ± 0.002

scGPT finetuned

Center Scaling 20.665 ± 0.016 0.037 ± 0.000 0.167 ± 0.002
Centering 20.756 ± 0.021 0.118 ± 0.004 0.480 ± 0.007
Raw Embeds 21.707 ± 0.017 0.155 ± 0.001 0.533 ± 0.001
TVN 10.038 ± 1.473 0.018 ± 0.000 0.104 ± 0.001

scVI

Center Scaling 19.869 ± 0.146 1.589 ± 0.005 3.190 ± 0.003
Centering 14.842 ± 0.141 1.607 ± 0.004 3.218 ± 0.002
Raw Embeds 14.896 ± 0.099 1.566 ± 0.005 3.128 ± 0.002
TVN 15.088 ± 1.598 1.430 ± 0.005 2.896 ± 0.004

25



Table 4: Replogle et al. (2022) dataset full results

Model Type Processing Method Pert Consistency Top1 KNN Acc Top5 KNN Acc

Geneformer

Center Scaling 6.000 ± 0.000 5.280 ± 0.007 5.384 ± 0.006
Centering 5.200 ± 0.000 5.280 ± 0.006 5.381 ± 0.008
Raw Embeds 5.300 ± 0.000 5.280 ± 0.007 5.384 ± 0.006
TVN 6.300 ± 0.000 5.281 ± 0.007 5.365 ± 0.007

PCA

Center Scaling 11.900 ± 0.000 5.348 ± 0.017 5.865 ± 0.055
Centering 9.400 ± 0.000 5.375 ± 0.008 6.136 ± 0.008
Raw Embeds 9.200 ± 0.000 5.382 ± 0.006 6.111 ± 0.010
TVN 11.600 ± 0.000 5.361 ± 0.005 5.960 ± 0.019

Transfer scVI

Center Scaling 10.600 ± 0.000 5.285 ± 0.006 5.470 ± 0.005
Centering 10.700 ± 0.000 5.285 ± 0.006 5.477 ± 0.010
Raw Embeds 4.800 ± 0.000 5.282 ± 0.006 5.450 ± 0.006
TVN 11.800 ± 0.000 5.282 ± 0.006 5.399 ± 0.011

UCE

Center Scaling 9.800 ± 0.000 5.288 ± 0.007 5.499 ± 0.008
Centering 9.500 ± 0.000 5.288 ± 0.007 5.495 ± 0.008
Raw Embeds 4.600 ± 0.000 5.288 ± 0.007 5.485 ± 0.006
TVN 10.500 ± 0.000 5.297 ± 0.009 5.397 ± 0.011

cellPLM

Center Scaling 5.800 ± 0.000 5.291 ± 0.007 5.537 ± 0.004
Centering 6.000 ± 0.000 5.292 ± 0.007 5.568 ± 0.006
Raw Embeds 5.400 ± 0.000 5.291 ± 0.007 5.544 ± 0.004
TVN 11.100 ± 0.000 5.301 ± 0.005 5.483 ± 0.010

scGPT

Center Scaling 9.700 ± 0.000 5.299 ± 0.007 5.577 ± 0.009
Centering 10.200 ± 0.000 5.299 ± 0.007 5.580 ± 0.012
Raw Embeds 4.100 ± 0.000 5.295 ± 0.007 5.530 ± 0.008
TVN 11.500 ± 0.000 5.314 ± 0.006 5.478 ± 0.009

scGPT finetuned

Center Scaling 6.200 ± 0.000 5.282 ± 0.006 5.374 ± 0.008
Centering 6.500 ± 0.000 5.280 ± 0.006 5.375 ± 0.007
Raw Embeds 6.000 ± 0.000 5.280 ± 0.006 5.381 ± 0.007
TVN 9.200 ± 0.000 5.280 ± 0.006 5.372 ± 0.009

scVI

Center Scaling 9.400 ± 0.000 5.367 ± 0.011 6.133 ± 0.018
Centering 9.500 ± 0.000 5.366 ± 0.009 6.126 ± 0.005
Raw Embeds 10.200 ± 0.000 5.356 ± 0.009 6.028 ± 0.016
TVN 9.600 ± 0.000 5.309 ± 0.009 5.622 ± 0.015
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Table 5: Replogle et al. (2022) dataset full results

Model Type Processing Method CORUM HuMAP Reactome SIGNOR StringDB

Geneformer

Center Scaling 0.099 ± 0.000 0.103 ± 0.000 0.117 ± 0.000 0.108 ± 0.000 0.108 ± 0.000
Centering 0.096 ± 0.000 0.097 ± 0.000 0.109 ± 0.000 0.106 ± 0.000 0.103 ± 0.000
Raw Embeds 0.149 ± 0.000 0.135 ± 0.000 0.106 ± 0.000 0.108 ± 0.000 0.148 ± 0.000
TVN 0.099 ± 0.000 0.099 ± 0.000 0.101 ± 0.000 0.100 ± 0.000 0.102 ± 0.000

PCA

Center Scaling 0.450 ± 0.000 0.359 ± 0.000 0.213 ± 0.000 0.135 ± 0.000 0.475 ± 0.000
Centering 0.257 ± 0.000 0.249 ± 0.000 0.136 ± 0.000 0.150 ± 0.000 0.307 ± 0.000
Raw Embeds 0.202 ± 0.000 0.200 ± 0.000 0.125 ± 0.000 0.137 ± 0.000 0.247 ± 0.000
TVN 0.425 ± 0.000 0.356 ± 0.000 0.202 ± 0.000 0.124 ± 0.000 0.461 ± 0.000

Transfer scVI

Center Scaling 0.443 ± 0.000 0.344 ± 0.000 0.172 ± 0.000 0.122 ± 0.000 0.423 ± 0.000
Centering 0.443 ± 0.000 0.342 ± 0.000 0.171 ± 0.000 0.123 ± 0.000 0.420 ± 0.000
Raw Embeds 0.138 ± 0.000 0.163 ± 0.000 0.087 ± 0.000 0.082 ± 0.000 0.144 ± 0.000
TVN 0.420 ± 0.000 0.346 ± 0.000 0.174 ± 0.000 0.115 ± 0.000 0.428 ± 0.000

UCE

Center Scaling 0.366 ± 0.000 0.253 ± 0.000 0.170 ± 0.000 0.128 ± 0.000 0.329 ± 0.000
Centering 0.344 ± 0.000 0.231 ± 0.000 0.162 ± 0.000 0.126 ± 0.000 0.306 ± 0.000
Raw Embeds 0.132 ± 0.000 0.102 ± 0.000 0.097 ± 0.000 0.096 ± 0.000 0.111 ± 0.000
TVN 0.285 ± 0.000 0.249 ± 0.000 0.141 ± 0.000 0.115 ± 0.000 0.309 ± 0.000

cellPLM

Center Scaling 0.250 ± 0.000 0.263 ± 0.000 0.107 ± 0.000 0.102 ± 0.000 0.284 ± 0.000
Centering 0.271 ± 0.000 0.272 ± 0.000 0.113 ± 0.000 0.106 ± 0.000 0.299 ± 0.000
Raw Embeds 0.128 ± 0.000 0.230 ± 0.000 0.070 ± 0.000 0.078 ± 0.000 0.156 ± 0.000
TVN 0.284 ± 0.000 0.259 ± 0.000 0.144 ± 0.000 0.121 ± 0.000 0.305 ± 0.000

scGPT

Center Scaling 0.389 ± 0.000 0.285 ± 0.000 0.161 ± 0.000 0.123 ± 0.000 0.373 ± 0.000
Centering 0.371 ± 0.000 0.263 ± 0.000 0.155 ± 0.000 0.123 ± 0.000 0.353 ± 0.000
Raw Embeds 0.121 ± 0.000 0.107 ± 0.000 0.093 ± 0.000 0.103 ± 0.000 0.108 ± 0.000
TVN 0.383 ± 0.000 0.323 ± 0.000 0.166 ± 0.000 0.116 ± 0.000 0.402 ± 0.000

scGPT finetuned

Center Scaling 0.126 ± 0.000 0.112 ± 0.000 0.110 ± 0.000 0.111 ± 0.000 0.131 ± 0.000
Centering 0.119 ± 0.000 0.111 ± 0.000 0.106 ± 0.000 0.110 ± 0.000 0.126 ± 0.000
Raw Embeds 0.143 ± 0.000 0.135 ± 0.000 0.098 ± 0.000 0.094 ± 0.000 0.139 ± 0.000
TVN 0.166 ± 0.000 0.149 ± 0.000 0.116 ± 0.000 0.110 ± 0.000 0.170 ± 0.000

scVI

Center Scaling 0.503 ± 0.000 0.377 ± 0.000 0.225 ± 0.000 0.146 ± 0.000 0.494 ± 0.000
Centering 0.501 ± 0.000 0.377 ± 0.000 0.224 ± 0.000 0.147 ± 0.000 0.492 ± 0.000
Raw Embeds 0.224 ± 0.000 0.211 ± 0.000 0.103 ± 0.000 0.084 ± 0.000 0.243 ± 0.000
TVN 0.502 ± 0.000 0.388 ± 0.000 0.219 ± 0.000 0.137 ± 0.000 0.497 ± 0.000

Rand Labels Raw Embeds 0.107 ± 0.018 0.102 ± 0.012 0.090 ± 0.008 0.097 ± 0.013 0.102 ± 0.012
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Table 6: Replogle et al. (2022) dataset full results

Model Type Processing Method Spearman Corr Structural Integrity

Geneformer

Center Scaling 0.152 ± 0.0016 0.523 ± 0.0107
Centering 0.150 ± 0.0046 0.526 ± 0.0119
Raw Embeds 0.149 ± 0.0020 0.528 ± 0.0105
TVN -0.0003 ± 0.0010 0.520 ± 0.0114

PCA

Center Scaling 0.187 ± 0.0019 0.548 ± 0.0099
Centering 0.207 ± 0.0021 0.548 ± 0.0110
Raw Embeds 0.215 ± 0.0021 0.551 ± 0.0098
TVN 0.196 ± 0.0024 0.546 ± 0.0110

Transfer scVI

Center Scaling 0.202 ± 0.0025 0.547 ± 0.0099
Centering 0.205 ± 0.0022 0.548 ± 0.0099
Raw Embeds 0.218 ± 0.0023 0.549 ± 0.0098
TVN 0.203 ± 0.0026 0.545 ± 0.0111

UCE

Center Scaling 0.151 ± 0.0018 0.534 ± 0.0116
Centering 0.172 ± 0.0030 0.537 ± 0.0113
Raw Embeds 0.170 ± 0.0026 0.538 ± 0.0101
TVN 0.142 ± 0.0022 0.533 ± 0.0117

cellPLM

Center Scaling 0.160 ± 0.0029 0.535 ± 0.0108
Centering 0.164 ± 0.0032 0.537 ± 0.0111
Raw Embeds 0.169 ± 0.0033 0.538 ± 0.0101
TVN 0.167 ± 0.0028 0.537 ± 0.0113

scGPT

Center Scaling 0.168 ± 0.0026 0.539 ± 0.0101
Centering 0.180 ± 0.0030 0.540 ± 0.0101
Raw Embeds 0.180 ± 0.0029 0.540 ± 0.0101
TVN 0.159 ± 0.0031 0.536 ± 0.0114

scGPT finetuned

Center Scaling 0.098 ± 0.0026 0.529 ± 0.0104
Centering 0.131 ± 0.0034 0.532 ± 0.0102
Raw Embeds 0.128 ± 0.0034 0.532 ± 0.0102
TVN 0.084 ± 0.0021 0.525 ± 0.0117

scVI

Center Scaling 0.247 ± 0.0016 0.549 ± 0.0098
Centering 0.250 ± 0.0015 0.549 ± 0.0099
Raw Embeds 0.265 ± 0.0015 0.551 ± 0.0098
TVN 0.254 ± 0.0016 0.547 ± 0.0110

Rand Labels Raw Embeds 0.001 ± 0.0005 0.526 ± 0.0111
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Table 7: L1000 dataset full results

Model Type Processing Method iLISI Top1 Linear Acc Top5 Linear Acc

Geneformer

Center Scaling 26.151 ± 0.021 0.071 ± 0.004 0.279 ± 0.014
Centering 26.510 ± 0.015 0.138 ± 0.031 0.536 ± 0.073
Raw Embeds 25.010 ± 0.022 0.833 ± 0.010 2.197 ± 0.015
TVN 6.094 ± 0.050 0.091 ± 0.004 0.432 ± 0.016

PCA

Center Scaling 15.276 ± 0.294 2.691 ± 0.029 5.225 ± 0.044
Centering 13.760 ± 0.038 2.628 ± 0.019 5.328 ± 0.030
Raw Embeds 1.519 ± 0.000 2.067 ± 0.021 4.920 ± 0.048
TVN 2.295 ± 0.024 1.745 ± 0.035 3.914 ± 0.025

Transfer scVI

Center Scaling 17.934 ± 0.069 0.662 ± 0.009 1.693 ± 0.019
Centering 14.630 ± 0.165 0.683 ± 0.017 1.819 ± 0.035
Raw Embeds 2.122 ± 0.001 1.019 ± 0.011 2.580 ± 0.017
TVN 2.870 ± 0.007 0.506 ± 0.007 1.521 ± 0.034

UCE

Center Scaling 26.303 ± 0.021 0.042 ± 0.003 0.187 ± 0.011
Centering 26.744 ± 0.019 0.073 ± 0.005 0.353 ± 0.015
Raw Embeds 26.820 ± 0.011 0.833 ± 0.010 2.183 ± 0.015
TVN 25.916 ± 0.092 0.075 ± 0.006 0.293 ± 0.009

cellPLM

Center Scaling 2.802 ± 0.014 0.469 ± 0.034 0.942 ± 0.034
Centering 2.512 ± 0.005 0.717 ± 0.008 1.002 ± 0.014
Raw Embeds 3.861 ± 0.001 0.830 ± 0.010 2.187 ± 0.013
TVN 1.795 ± 0.008 0.482 ± 0.018 1.883 ± 0.043

scGPT

Center Scaling 25.327 ± 0.029 0.159 ± 0.014 0.528 ± 0.015
Centering 25.297 ± 0.026 0.188 ± 0.036 0.636 ± 0.074
Raw Embeds 11.346 ± 0.011 0.834 ± 0.010 2.190 ± 0.015
TVN 5.206 ± 0.037 0.121 ± 0.010 0.484 ± 0.009

scGPT finetuned

Center Scaling 25.771 ± 0.039 0.126 ± 0.003 0.393 ± 0.011
Centering 26.187 ± 0.036 0.158 ± 0.081 0.568 ± 0.157
Raw Embeds 22.416 ± 0.030 0.833 ± 0.010 2.196 ± 0.015
TVN 6.155 ± 0.047 0.115 ± 0.008 0.501 ± 0.012

scVI

Center Scaling 15.171 ± 0.173 2.121 ± 0.034 4.370 ± 0.022
Centering 15.650 ± 0.108 2.105 ± 0.038 4.336 ± 0.027
Raw Embeds 2.249 ± 0.002 1.837 ± 0.030 4.205 ± 0.046
TVN 2.503 ± 0.026 1.565 ± 0.041 3.608 ± 0.014
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Table 8: L1000 dataset full results

Model Type Processing Method Pert Consistency Top1 KNN Acc Top5 KNN Acc

Geneformer

Center Scaling 5.900 ± 0.000 25.605 ± 0.111 26.180 ± 0.088
Centering 4.800 ± 0.000 25.605 ± 0.111 26.183 ± 0.085
Raw Embeds 4.600 ± 0.000 25.605 ± 0.111 26.181 ± 0.103
TVN 5.700 ± 0.000 25.606 ± 0.111 25.978 ± 0.115

PCA

Center Scaling 7.300 ± 0.000 25.605 ± 0.111 26.733 ± 0.123
Centering 4.900 ± 0.000 25.605 ± 0.111 26.752 ± 0.094
Raw Embeds 6.100 ± 0.000 25.605 ± 0.111 27.102 ± 0.096
TVN 6.800 ± 0.000 25.605 ± 0.111 26.510 ± 0.102

Transfer scVI

Center Scaling 6.100 ± 0.000 25.605 ± 0.111 26.350 ± 0.084
Centering 6.000 ± 0.000 25.605 ± 0.111 26.380 ± 0.103
Raw Embeds 4.100 ± 0.000 25.605 ± 0.111 26.855 ± 0.107
TVN 6.400 ± 0.000 25.605 ± 0.111 26.296 ± 0.100

UCE

Center Scaling 5.800 ± 0.000 25.605 ± 0.111 26.303 ± 0.021
Centering 5.600 ± 0.000 25.605 ± 0.111 26.744 ± 0.019
Raw Embeds 4.600 ± 0.000 25.605 ± 0.111 26.820 ± 0.011
TVN 5.500 ± 0.000 25.613 ± 0.112 25.916 ± 0.092

cellPLM

Center Scaling 6.800 ± 0.000 25.600 ± 0.113 26.244 ± 0.101
Centering 5.800 ± 0.000 25.605 ± 0.111 26.233 ± 0.112
Raw Embeds 5.800 ± 0.000 25.609 ± 0.111 26.887 ± 0.107
TVN 2.900 ± 0.000 25.778 ± 0.122 27.032 ± 0.115

scGPT

Center Scaling 5.100 ± 0.000 25.605 ± 0.111 26.209 ± 0.109
Centering 4.700 ± 0.000 25.605 ± 0.111 26.150 ± 0.096
Raw Embeds 3.200 ± 0.000 25.605 ± 0.111 26.345 ± 0.113
TVN 5.600 ± 0.000 25.605 ± 0.111 25.986 ± 0.124

scGPT finetuned

Center Scaling 5.400 ± 0.000 25.605 ± 0.111 26.155 ± 0.107
Centering 5.800 ± 0.000 25.605 ± 0.111 26.143 ± 0.092
Raw Embeds 4.500 ± 0.000 25.605 ± 0.111 26.184 ± 0.120
TVN 5.600 ± 0.000 25.607 ± 0.113 26.003 ± 0.130

scVI

Center Scaling 7.800 ± 0.000 25.605 ± 0.111 26.651 ± 0.104
Centering 8.200 ± 0.000 25.605 ± 0.111 26.581 ± 0.092
Raw Embeds 3.400 ± 0.000 25.605 ± 0.111 26.780 ± 0.103
TVN 7.300 ± 0.000 25.605 ± 0.111 26.489 ± 0.133

Rand Labels Raw Embeds 4.740 ± 1.137 25.605 ± 0.111 38.344 ± 0.055
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Table 9: L1000 dataset full results

Model Type Processing Method CORUM HuMAP Reactome SIGNOR StringDB

Geneformer

Center Scaling 0.108 ± 0.000 0.109 ± 0.000 0.113 ± 0.000 0.095 ± 0.000 0.115 ± 0.000
Centering 0.108 ± 0.000 0.106 ± 0.000 0.110 ± 0.000 0.091 ± 0.000 0.117 ± 0.000
Raw Embeds 0.141 ± 0.000 0.124 ± 0.000 0.128 ± 0.000 0.145 ± 0.000 0.150 ± 0.000
TVN 0.095 ± 0.000 0.114 ± 0.000 0.111 ± 0.000 0.096 ± 0.000 0.122 ± 0.000

PCA

Center Scaling 0.174 ± 0.000 0.153 ± 0.000 0.115 ± 0.000 0.120 ± 0.000 0.143 ± 0.000
Centering 0.154 ± 0.000 0.132 ± 0.000 0.109 ± 0.000 0.139 ± 0.000 0.134 ± 0.000
Raw Embeds 0.112 ± 0.000 0.124 ± 0.000 0.133 ± 0.000 0.104 ± 0.000 0.157 ± 0.000
TVN 0.123 ± 0.000 0.134 ± 0.000 0.144 ± 0.000 0.099 ± 0.000 0.161 ± 0.000

Transfer scVI

Center Scaling 0.201 ± 0.000 0.168 ± 0.000 0.130 ± 0.000 0.164 ± 0.000 0.163 ± 0.000
Centering 0.203 ± 0.000 0.173 ± 0.000 0.133 ± 0.000 0.161 ± 0.000 0.165 ± 0.000
Raw Embeds 0.096 ± 0.000 0.114 ± 0.000 0.130 ± 0.000 0.082 ± 0.000 0.147 ± 0.000
TVN 0.112 ± 0.000 0.126 ± 0.000 0.141 ± 0.000 0.101 ± 0.000 0.161 ± 0.000

UCE

Center Scaling 0.098 ± 0.000 0.110 ± 0.000 0.104 ± 0.000 0.107 ± 0.000 0.103 ± 0.000
Centering 0.095 ± 0.000 0.106 ± 0.000 0.101 ± 0.000 0.105 ± 0.000 0.103 ± 0.000
Raw Embeds 0.163 ± 0.000 0.121 ± 0.000 0.141 ± 0.000 0.204 ± 0.000 0.146 ± 0.000
TVN 0.092 ± 0.000 0.099 ± 0.000 0.099 ± 0.000 0.098 ± 0.000 0.097 ± 0.000

cellPLM

Center Scaling 0.111 ± 0.000 0.111 ± 0.000 0.107 ± 0.000 0.105 ± 0.000 0.106 ± 0.000
Centering 0.101 ± 0.000 0.091 ± 0.000 0.102 ± 0.000 0.101 ± 0.000 0.107 ± 0.000
Raw Embeds 0.105 ± 0.000 0.104 ± 0.000 0.104 ± 0.000 0.114 ± 0.000 0.106 ± 0.000
TVN 0.074 ± 0.000 0.116 ± 0.000 0.123 ± 0.000 0.080 ± 0.000 0.147 ± 0.000

scGPT

Center Scaling 0.160 ± 0.000 0.146 ± 0.000 0.111 ± 0.000 0.128 ± 0.000 0.136 ± 0.000
Centering 0.156 ± 0.000 0.147 ± 0.000 0.114 ± 0.000 0.126 ± 0.000 0.137 ± 0.000
Raw Embeds 0.090 ± 0.000 0.099 ± 0.000 0.113 ± 0.000 0.085 ± 0.000 0.130 ± 0.000
TVN 0.102 ± 0.000 0.105 ± 0.000 0.124 ± 0.000 0.095 ± 0.000 0.135 ± 0.000

scGPT finetuned

Center Scaling 0.103 ± 0.000 0.107 ± 0.000 0.089 ± 0.000 0.094 ± 0.000 0.108 ± 0.000
Centering 0.097 ± 0.000 0.107 ± 0.000 0.088 ± 0.000 0.098 ± 0.000 0.106 ± 0.000
Raw Embeds 0.140 ± 0.000 0.100 ± 0.000 0.087 ± 0.000 0.082 ± 0.000 0.147 ± 0.000
TVN 0.117 ± 0.000 0.100 ± 0.000 0.112 ± 0.000 0.097 ± 0.000 0.127 ± 0.000

scVI

Center Scaling 0.182 ± 0.000 0.158 ± 0.000 0.122 ± 0.000 0.134 ± 0.000 0.151 ± 0.000
Centering 0.190 ± 0.000 0.170 ± 0.000 0.127 ± 0.000 0.129 ± 0.000 0.161 ± 0.000
Raw Embeds 0.132 ± 0.000 0.123 ± 0.000 0.149 ± 0.000 0.119 ± 0.000 0.159 ± 0.000
TVN 0.109 ± 0.000 0.130 ± 0.000 0.137 ± 0.000 0.084 ± 0.000 0.159 ± 0.000

Rand Labels Raw Embeds 0.111 ± 0.008 0.113 ± 0.008 0.109 ± 0.005 0.120 ± 0.011 0.109 ± 0.002
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Table 10: L1000 dataset full results

Model Type Processing Method Spearman Corr Structural Integrity

Geneformer

Center Scaling 0.402 ± 0.007 0.938 ± 0.003
Centering 0.382 ± 0.005 0.943 ± 0.002
Raw Embeds 0.734 ± 0.003 0.955 ± 0.002
TVN 0.748 ± 0.003 0.954 ± 0.003

PCA

Center Scaling 0.717 ± 0.005 0.953 ± 0.002
Centering 0.730 ± 0.013 0.954 ± 0.003
Raw Embeds 0.882 ± 0.004 0.974 ± 0.001
TVN 0.882 ± 0.003 0.971 ± 0.002

Transfer scVI

Center Scaling 0.669 ± 0.009 0.948 ± 0.002
Centering 0.764 ± 0.005 0.955 ± 0.002
Raw Embeds 0.903 ± 0.001 0.970 ± 0.002
TVN 0.821 ± 0.004 0.962 ± 0.002

UCE

Center Scaling 0.202 ± 0.015 0.934 ± 0.003
Centering 0.217 ± 0.006 0.942 ± 0.002
Raw Embeds 0.236 ± 0.009 0.942 ± 0.002
TVN 0.250 ± 0.024 0.928 ± 0.004

cellPLM

Center Scaling 0.462 ± 0.017 0.944 ± 0.003
Centering 0.440 ± 0.004 0.943 ± 0.002
Raw Embeds 0.812 ± 0.002 0.960 ± 0.002
TVN 0.592 ± 0.224 0.938 ± 0.025

scGPT

Center Scaling 0.715 ± 0.004 0.953 ± 0.002
Centering 0.690 ± 0.006 0.954 ± 0.002
Raw Embeds 0.833 ± 0.002 0.963 ± 0.002
TVN 0.766 ± 0.004 0.957 ± 0.003

scGPT finetuned

Center Scaling 0.700 ± 0.007 0.951 ± 0.003
Centering 0.461 ± 0.006 0.946 ± 0.002
Raw Embeds 0.636 ± 0.008 0.951 ± 0.002
TVN 0.758 ± 0.005 0.956 ± 0.003

scVI

Center Scaling 0.744 ± 0.008 0.955 ± 0.002
Centering 0.778 ± 0.006 0.958 ± 0.002
Raw Embeds 0.928 ± 0.002 0.977 ± 0.001
TVN 0.881 ± 0.004 0.971 ± 0.002

Rand Labels Raw Embeds 0.001 ± 0.001 0.939 ± 0.002
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