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Abstract. Kidney cancer is aggressive cancer that accounts for a large
proportion of adult malignancies. Computed tomography (CT) imaging
is an effective tool for kidney cancer diagnosis. Automatic and accu-
rate kidney and kidney tumor segmentation in CT scans is crucial for
treatment and surgery planning. However, kidney tumors and cysts have
various morphologies, with blurred edges and unpredictable positions.
Therefore, precise segmentation of tumors and cysts faces a huge chal-
lenge. Consider these difficulties, we propose a cascaded deep neural net-
work, which first accurately locate the kidney area through 2D U-Net,
and then segment kidneys, kidney tumors, renal cysts through Multi-
decoding Segmentation Network(MDS-Net) from the ROI of the kidney.
We evaluated our method on the 2021 Kidney and Kidney Tumor Seg-
mentation Challenge (KiTS21) dataset. The method dice score achieves
93.40%, 68.32%, 64.26% for kidney, kidney mass, and kidney tumors,
respectively. The model of cascade network proposed in this paper has a
promising application prospect in kidney cancer diagnosis.
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1 Introduction

Renal cell carcinoma(RCC) is a malignant tumor formed by the malignant trans-
formation of epithelial cells in different parts of the renal tubule [6]. Its incidence
accounts for 80% to 90% of adult renal malignant tumors, and the prevalence of
men is higher than that of women [5,1,4]. The incidence of kidney cancer is closely
related to genetics, smoking, obesity, hypertension, and anti-hypertensive ther-
apy, which is second only to prostate cancer and bladder cancers among tumors
of the urinary system. Accurate segmentation of tumors from 3D CT remains a
challenging task due to the unpredictable shape and location of tumors in the
patient, as well as the confusion of textures and boundaries. [9,19].

The traditional method of manually segmenting tumors is not only time-
consuming and laborious, but also has the problem of inconsistent results during
segmentation by senior doctors, which leads to unsatisfactory results in clinical
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applications [13,6,17]. Therefore, computer-assisted kidney tumor segmentation
methods have attracted much attention.In recent years, deep learning has pen-
etrated into various application fields, and its performance in many fields such
as image detection, classification, and segmentation has exceeded the most ad-
vanced level [7]. Among current CNN-based methods,the popular U-Net [16]
and 3D U-Net [3] architecture have exhibited promising results in medical image
segmentation tasks [10], such as pancreas segmentation [14] , prostate segmen-
tation [18] and brain segmentation [15]. Although 3D Fully Convolutional Net-
work(FCN) [12] segmentation performance is higher than 2D FCN, it requires
greater memory consumption. Zhang et al.[20] proposed a cascaded framework
network for automatic segmentation of kidneys and tumors, which alleviates the
problem of inaccurate segmentation caused by insufficient network depth due
to excessive memory consumption. With extremely limited data,a cascaded 3D
U-Net with a active learning function can improve training efficiency and reduce
labeling work [8].

Recently, Li et al. [10] proposed a 3D U-Net based on memory efficiency and
non-local context guidance, which captures the global context through a non-
local context guidance mechanism and fully utilize long-distance dependence in
the feature selection process.In the 3D U-Net, this method complements high-
level semantic information with spatial information through a layer skip con-
nection between the encoder and the decoder, and finally realizes the precise
segmentation of the kidney and the tumor.

In this work, we develop a fully automatic cascaded segmentation network
with multi-decoding paths. The kidney area is first located through 2D U-Net.
The area is cropped according to the region of interest located in the first stage
and input it into MDS-Net to accurately segment the kidney, renal tumor and
renal cyst. General, the contributions of our work can be summarized in the
following three aspects:

1. We develop a two-stage cascaded segmentation network with multi-decoding
paths and evaluate it on the 2021 Kidney and Kidney Tumor Segmentation
Challenge (KiTS21) dataset.

2. We propose a fusion module based on global context (GC)[2], which can real-
ize the attention to channel and spatial context to achieve noise suppression
and enhancement of useful information.

3. We present a regional constraint loss function, which is used to measure the
constraint relationship of impassable regions.

2 Methods

Figure 1 shows the two-stage cascaded deep neural network for kidney tumor
segmentation. First input the pre-processed image to locate the kidney through
2D U-Net to obtain an accurate kidney area, then use the kidney area as the
bounding box of the original CT, cropping to get the input image, and train the
MSD-Net to segment kideney, tumors and cysts.
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Fig. 1. The Kidney Localization Network (U-Net)
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Fig. 2. The Kidney Localization Network (U-Net)

2.1 Kidney Localization Network

For the localization of the kidney, we trained a 2D U-Net for kidney segmen-
tation and localization. As shown in Figure 2, the encoding path composed of
four encoder blocks, and each block is composed of 2D convolution, Batchnorm,
LeakyReLU and downsampling. On the decoding path, each decoding block is
composed of convolution, Batchnorm, ReLU, and upsampling. After upsampling
on the last layer, the image undergoes a 3×3 convolution. The input of the net-
work is a 256×256 image, and the output is divided into the background and
the kidney through a softmax function. The loss function used is Dice loss

LossKI = 1−DSC(LKI , L̂KI), (1)

where DSC(A,B) calculates the Dice similarity coefficient of A and B, LKI and
L̂KI are the corresponding gold standard and predicted label of whole regions
including the kidneys, tumors, and cysts. For the segmentation results, we per-
formed connected components analysis and selected the largest two connected
component to locate the kidney.

2.2 Multi-decoding Segmentation Network

Multi-decoding segmentation network (MDS-Net) is designed to segment nor-
mal kidneys, kidney tumors, and kidney cysts. The Figure 3 shows the design
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of MDS-Net, which consists of an encoding path, three decoding paths, and a
fusion prediction branch. The image patch obtained by the first stage cropping
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Fig. 3. Multi-decoding Segmentation Network

is input to the encoding path for feature extraction, and three segmentation re-
sults (L̂KI ,L̂MA,L̂TU ) are obtained by the three decoding paths. Fusion of the
features obtained by the three decoding paths to obtain the final segmentation
result L̂KTC .

Due to the imbalance of the segmentation classes, e.g. the cyst does not exist
in any cases or only occupies a small area, which makes the network difficult to
train. Therefore, we set the three regions of the target segmentation as KI is the
entire kidney region, including normal kidney, tumor and cyst, MA is kidney
masses that include tumors and cysts region, and TU is the region of tumors
only. By decomposing the original multi-label segmentation task into these three
single-label segmentation tasks, the impact of category imbalance is reduced.

In the encoding path, feature extraction is performed by a convolutional layer
and four encode blocks, and each encode block is composed of a 3D convolutional
layer, Batchnorm, LeakyRelu, and downsampling. The future map obtained af-
ter downsampling is used as the input of the next module, and is also input into
the decoding path through a skip connection. Each decoding branch is composed
of a feature global context fusion block(see 2.3 for details), decoder, and a con-
volutional layer. The decode block is similar to the encode block, while the last
layer is upsampling. The fusion block fuses and corrects the output feature maps
from the previous layer and skip connection. The features obtained by the three
decoding paths are output through the Sigmoid layer to obtain (L̂KI ,L̂MA,L̂TU )
separately, the corresponding loss functions are

LossKI = 1−DSC(LKI , L̂KI), (2)

LossMA = 1−DSC(LMA, L̂MA), (3)
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LossTU = 1−DSC(LTU , L̂TU ), (4)

where (LKI ,LMA,LTU ) is the ground truth of region (KI,MA,TU). Finally,
the feature map output by each layer of decoding path is fused using the fusion
module, and then the final segmentation result is predicted, and the loss function
is

LossKTC = 1−DSC(LKTC , L̂KTC) + LossRC , (5)

LKTC is defined as the ground stand of the three categories kidneys, kidney
tumors, kidney cysts. So the loss function of the entire network is

Loss = LossKTC + LossKI + LossMA + LossTU + LossRC , (6)

LossRC is the regional constraint loss(see 2.4 for details).

2.3 Global Context Fusion Block

Inspired by [21,11], the GCFB is designed to fuse and calibrate feature maps to
achieve noise suppression and enhancement of useful information. As shown in
Figure 4, the Global Context (GC) block that combines Nonlcoal and Sequeze
and Excitation (SE) block is used to calibrate the features, which can realize the
attention to the channel and spatial context, and obtain the fused feature map
through the convolutional layer and Relu.
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Fig. 4. Global Context Fusion Block

In GCFB, first concat the input on the channel to get ZC . The GC blcok
can be defined as:

Z
′

C = ZC ⊗ Softmax(W1ZC), (7)
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ZGC = ZC +W3ReLU(LN(W2Z
′

C)), (8)

W∗ is the parameters of the convolution layers. Therefore, the final ouput of
GCFB is

ZGCFB = ReLU(BN(W4ZGC)). (9)

2.4 Regional Constraint Loss Function

As shown in Figure 5, there are regional relationships in different regions of
the kidney, the region of KI contains MA, TU is in MA. In order to achieve

Kidney Tumor and cyst Tumor

Fig. 5. Regional constraint of kidney

the constraint of this relationship, the overlap degree of different regions[11] is
calculated to measure whether the constraint relationship between the regions
is satisfied. The regional constraint loss function is

LossRC = 1− 1

2
(

∑
x∈Ω

L̂KI(x) · L̂MA(x)∑
x∈Ω

L̂MA(x)
+

∑
x∈Ω

L̂MA(x) · L̂TU (x)∑
x∈Ω

L̂TU (x)
), (10)

where (L̂KI ,L̂MA,L̂TU ) is predicted result from three decoding path from MDS-
Net(see Figure 3), the Ω is the common spatial space.

3 Experimental Results

3.1 Dataset

The KiTS21 Challenge provides contrast-enhanced CT scans and annotation
data from 300 patients who underwent partial or radical nephrectomy for sus-
pected renal malignant tumors at M Health Fairview or Cleveland Clinic Medical
Center between 2010 and 2020,which provides us with three annotation data,
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and we finally chose the voxel-wise majority voting aggregations for training and
validation. The size, shape and density of the tumor are various in different CT
scans. Moreover, only a few images of existing cysts. The annotation work is
completed by experienced experts, trainees and laid-off workers together, and
the annotated data is used as the ground truth of the training.Since only the
training set data was provided, we randomly divided the data of the 300 cases
into 5 pieces, each with 60 cases. One of the 5 pieces was selected in turn as the
verification set and the other 4 pieces as the training set.

3.2 Implementation Details

Data processing: Before training our cascade model, we first performed a
crop slice operation to make all volume slices the same thickness to reduce GPU
memory consumption and training time. For the first network, we input 2D axial
slices, which are obtained by extracting slices from the original 3D CT along the
z-axis and adjusting the size from 512 × 512 to 256 × 256. For the second
network MDS-Net, according to the maximum rectangular frame range of the
region of each kidney, the size of the block of the region of interest extracted is
128×128×128. Then, we truncated the image intensity values of all images to
the range of [-100,500] HU to remove the fat area around the kidney and remove
irrelevant details.

Implementation Details: As an experimental environment, we choose Py-
torch to implement our model and use NIVIDIA Tesla P100 16GB GPU for
training.The input size of the first network is 256 × 256 with a batch size of 16,
The input size of the second network is 128×128×128 with batch size of 4. In
our model, we set the epoch to 200, and the initial learning rate is 1 × 10−2.

Evaluation metrics: We employ the DSC and the Surface Dice provided in the
KiTS21 toolkit as the primary evaluation criteria for evaluating segmentation
performance. For KiTS21, the following hierarchical classes are used to evaluate
the DSC and the Surface Dice.

– Kidney and Masses (KI): Kidney + Tumor + Cyst,
– Kidney Mass (MA): Tumor + Cyst,
– Tumor (TU): Tumor only.

3.3 Results

To evaluate the effectiveness of our method, we compared our network with
other state-of-the-art methods, including 2D U-Net and 3D U-Net. Furthermore,
to explore the advantage of GCFB and LossRC , we also compared our method
with the method without GCFB and LossRC . We perform visual and statistical
comparisons under the same data set and data parameters. In addition, in order
to explore the advantages of our method, we use the evaluation index Dice
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Table 1. Dice score and Surface Dice of the proposed method and other
baseline methods on the validation set.

Method
Dice (%) Surface Dice

KI MA TU KI MA TU

2D U-Net 90.78 43.61 44.86 83.30 28.21 29.51
3D U-Net 91.59 59.29 57.71 83.76 40.55 39.95

Ours (wo GCFB) 92.55 63.23 58.63 83.84 42.11 39.11
Ours (wo LossRC) 93.12 67.91 62.78 85.75 46.37 42.25

Ours 93.48 68.32 64.26 86.29 45.90 43.34

coefficient and the Surface Dice to verify our method on the KiTS 21 data
set.We compared the results of our method with four different methods:

From Table 1, compared to 2D U-Net and 3D U-Net, our proposed meth-
ods performed better both in Dice and Surface Dice. It also that our proposed
methods with GCFB and LossRC can achieve better results than our methods
without GCFB or LossRC . In addition, Figure 6 shows the visualization re-
sults of different methods. In Figure 6, our method is more effective than other
methods in easier cases and challenging cases.

Ground TruthOursOurs wo 𝐿𝑜𝑠𝑠𝑅𝐶Ours wo GCFB3D U-Net 2D U-Net 

Fig. 6. Visualization results of different methods.The segmentation contained in the
yellow dashed box is our concern.

4 Conclusion

In this work, we proposed a novel two-stage cascade and multi-decoding method
for kidney segmentation. We utilized Unet to achieve the location and extraction
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of the region of kidney, and then designed MSD-Net for the final segmentation.
For MSD-Net, we developed a segmentation network with multiple decoders,
combined the features of the three decoding paths with GCFB, and obtained
the final segmentation result. Besides, we presented a regional constraint loss
function to predict the segmentation result with more reality. It has been evalu-
ated on the dataset from KITS 2021. Experimental results show that this method
obtains good segmentation results on kidney tumors.
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