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Abstract

Graph Transformers (GTs) have emerged as a powerful paradigm for graph repre-
sentation learning due to their ability to model diverse node interactions. However,
existing GTs often rely on intricate architectural designs tailored to specific inter-
actions, limiting their flexibly. To address this, we propose a unified hierarchical
mask framework that reveals an underlying equivalence between model architecture
and attention mask construction. This framework enables a consistent modeling
paradigm by capturing diverse interactions through carefully designed attention
masks. Theoretical analysis under this framework demonstrates that the probability
of correct classification positively correlates with the receptive field size and label
consistency, leading to a fundamental design principle: An effective attention mask
should ensure both a sufficiently large receptive field and a high level of label consis-
tency. While no single existing mask satisfies this principle across all scenarios, our
analysis reveals that hierarchical masks offer complementary strengths—motivating
their effective integration. Then, we introduce M3Dphormer, a Mixture-of-Experts
based Graph Transformer with Multi-Level Masking and Dual Attention Compu-
tation. M3Dphormer incorporates three theoretically grounded hierarchical masks
and employs a bi-level expert routing mechanism to adaptively integrate multi-level
interaction information. To ensure scalability, we further introduce a dual attention
computation scheme that dynamically switches between dense and sparse modes
based on local mask sparsity. Extensive experiments across multiple benchmarks
demonstrate that M3Dphormer achieves state-of-the-art performance, validating
the effectiveness of our unified framework and model design. The source code is
available for reproducibility at: https://github.com/null-xyj/M3Dphormer.

1 Introduction

As a fundamental data structure, graphs have been widely used to model complex and diverse
interactions in real-world systems, such as social networks and brain networks. To learn high-quality
node representations, a variety of Graph Neural Networks (GNNs) have been proposed [23, 38, 16].
However, their performance is inherently constrained by the message-passing mechanism, which
imposes a strong locality inductive bias. Inspired by the success of Transformers [37] across various
machine learning domains [12, 13], adapting Transformer architectures to graphs has emerged as a
promising direction, owing to their strong capability to model interactions over a broader range.

Graph Transformers (GTs) leverage the core component of the Transformer architecture, Multi-Head
Attention (MHA), to adaptively model diverse node interactions and learn expressive representations.
One prominent line of research treats the entire graph as fully connected and applies attention
mechanisms to capture pairwise node dependencies [42, 43, 11]. Another line constructs a token

∗Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/null-xyj/M3Dphormer


sequence for each node, typically via node sampling or feature aggregation, and adopts a Transformer
to capture multi-scale interactions. [5, 15, 41]. Besides, several studies leverage graph partitioning to
enable efficient interaction modeling and learn high-quality representations. [18, 20, 44].

While many GTs have been proposed, they often rely on intricate architectural design tailored to
specific types of node interactions, which limits their ability to model other important interactions.
This raises a natural question: Does there exist a unified perspective of GTs that allows for flexible
modeling of diverse node interactions? To address this question, we propose a unified hierarchical
mask framework, developed through a thorough analysis of existing GTs. Our analysis reveals
that various GT architectures inherently model interactions at different levels—local, cluster, and
global—corresponding to the hierarchical organization of relational patterns in graphs. Furthermore,
we find that these hierarchical interactions can be uniformly modeled through the design of appropriate
attention masks, and that many existing GTs can be interpreted as implicitly corresponding to specific
masks. This unified perspective reveals an underlying equivalence between model architecture and
mask construction, offering a more flexible approach to GT design.

Under this unified framework, diverse node interactions can be modeled in a consistent manner
through the construction of appropriate attention masks, avoiding the need to design intricate network
architectures as in traditional methods. Moreover, it facilitates theoretical analysis, proving that both
the lower and upper bounds of the probability of correct classification correlate positively with the
size of the receptive field and the degree of label consistency. This leads to a fundamental design
principle for attention masks: An effective attention mask should ensure a sufficiently large receptive
field and a high level of label consistency. Further analysis of masks derived from existing GTs shows
that no single mask consistently satisfies this principle across all scenarios. However, hierarchical
masks exhibit complementary strengths in node classification, suggesting that integrating multi-level
masks provides a natural and effective way to adhere to this principle.

Then, we conduct experiments on real-world datasets to investigate the effectiveness of combining
masks across multiple levels. Specifically, we construct three GTs, each designed to capture a
single level of interaction—local, cluster, or global—using a corresponding attention mask. We
then apply three ensemble strategies to integrate their outputs: Mean, Max, and an idealized Oracle.
The node classification results show that: 1) The Oracle strategy significantly outperforms all other
models, demonstrating the potential of comprehensively leveraging multi-level interactions. 2)
Naive ensemble methods (Mean and Max) often underperform than the best individual-mask model,
highlighting a core challenge in effectively integrating hierarchical information. In addition, the
excessive memory usage on medium-scale graphs further reveals a key efficiency challenge in GTs.

In this paper, we propose M3Dphormer, a novel Mixture-of-Experts based Graph Transformer with
Multi-Level Masking and Dual Attention Computation. Specifically, M3Dphormer employs three
theoretically grounded attention masks for comprehensive modeling of hierarchical interactions,
including local, cluster, and global associations. To effectively integrate information across these
interaction levels, we design a bi-level expert routing mechanism, where each expert is a multi-head
attention module associated with a specific mask. Furthermore, a dual attention computation strategy
is introduced to enhance scalability and computational efficiency.

Our main contributions are summarized as follows:

• We propose a unified hierarchical mask framework that reveals an underlying equivalence be-
tween model architecture and attention mask construction, enabling diverse node interactions
to be consistently modeled through carefully designed masks.

• Theoretical analysis within this framework reveals that the probability of correct classifica-
tion is positively correlated with both the receptive field size and label consistency. This
leads to a guiding principle for designing attention masks: an effective mask should ensure
a sufficiently large receptive field and a high level of label consistency.

• We propose M3Dphormer, a novel Graph Transformer that captures hierarchical interactions
comprehensively and efficiently through multi-level masking, bi-level expert routing, and
dual attention computation, thereby adhering to the proposed design principle.

• We perform extensive experiments on 9 benchmark datasets, showing that M3Dphormer
consistently outperforms 15 strong baselines, demonstrating its effectiveness.
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2 Preliminary

We denote an attributed graph as G = (V, E ,X), where V = {0, 1, · · · , N − 1} is the set of N
nodes, E is the set of E edges, and X = [xu] ∈ RN×din is the node feature matrix, with xu ∈ Rdin

representing the din-dimensional feature vector of node u. The adjacency matrix is denoted as
A = [auv] ∈ {0, 1}N×N , where auv = 1 if there exists an edge from node u to node v, and auv = 0
otherwise. For node classification, we define the set of labels as Y , and represent the node labels by
Y = [yu] ∈ {0, 1}N×|Y|, where yu ∈ {0, 1}|Y| is the one hot label of node u. The whole node set
can be divided into the training set Vtrain, the valid set Vvalid, and the test set Vtest.

Graph transformers: The core component of GTs is the MHA, formulated as follows:

headi(H,M) = Softmax
(

Mask
(
Â(i),M

))
V(i), i = 1, . . . ,H

Â(i) =
Q(i)K(i)⊤

√
dh

, Q(i) = HW
(i)
Q , K(i) = HW

(i)
K , V(i) = HW

(i)
V

Mask(Â(i),M) =

{
Â

(i)
u,v, if Mu,v = 1

−∞, if Mu,v = 0

(1)

Here, H ∈ RN×d denotes the input representations, where N is the number of nodes and d is the
representation dimension. W(i)

Q ,W
(i)
K ,W

(i)
V ∈ Rd×dh are trainable projection matrices specific to

the i-th head, and dh is the hidden dimension of each head. The attention score matrix Â(i) is masked
by M ∈ {0, 1}N×N , where Mu,v = 1 indicates the validity of the attention from node u to node v.
During masking, attention scores corresponding to invalid positions are set to −∞, ensuring that their
contribution becomes zero after the Softmax operation. The outputs of all heads are concatenated to
produce the final output: MHA(H,M) = Concat(head1, . . . , headH).

3 Revisiting GTs through a unified hierarchical mask framework

u5

u1 u2
u3

u4

Figure 1: Hierarchical interactions.

Interactions in graphs typically exhibit a hierarchical organiza-
tion, including local connectivity, cluster relations, and global
associations. Each level provides essential information for ef-
fective graph representation learning. An illustrative example
for the importance of hierarchical interactions is provided in
Figure 1, where node labels are indicated by different colors.
Due to local homophily, node u1 can be accurately classified, as
most of its neighbors share the same label. However, such local
interactions are insufficient for classifying nodes u2 and u3. By
leveraging cluster interactions, node u2 can be correctly identified, as it lies within a coherent cluster
(the blue region). Furthermore, assuming that nodes labeled green follow a representation distribution
distinct from the blue and yellow ones, global interactions-represented by the dotted lines—can be
adaptively learned to further enhance the classification of u3. Here, we propose a unified hierarchical
mask framework that enables GTs to consistently model such multi-level interactions.

3.1 The unified hierarchical mask framework for Graph Transformers

To formalize this framework, we categorize node interactions into three types: (1) N-N: interactions
between individual nodes; (2) N-S: interactions between a node and a node set; and (3) S-S: inter-
actions between node sets. For N-N, we directly set Mu,v = 1 to indicate a connection from node
u to v. For N-S and S-S, we treat each node set as a virtual super node v′, and extend the node set
as V = V ∪ {v′}. This allows both N-S and S-S to be equivalently modeled as N-N, enabling a
unified and flexible mask design across different interaction levels. Based on this unified framework,
we further illustrate how existing GTs implicitly design their attention masks to model hierarchical
interactions across local, cluster, and global levels. A summary table is provided in Table 4.

Local interactions: Modeling local interactions typically involves capturing information from K-hop
neighborhoods. GOAT explicitly models N-N interactions between a target node and its K-hop
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neighbors, which corresponds to the mask Ml1 = AK [24]. GNN–Transformer hybrid architectures
implicitly adopt the mask Ml2 = A through their GNN modules, and aggregating K-hop information
recursively across layers [43, 11, 44]. Some tokenized GTs aggregate node features at multiple hops
as input tokens of a Transformer, effectively applying a set of masks {Ak : 1 ≤ k ≤ K} [5, 15, 6].

Cluster interactions: Several recent GTs have focused on capturing cluster-level interactions by
partitioning the graph into disjoint clusters with METIS[22]. We define the partition function
P(u) = p to denote the cluster index assigned to node u and the reverse partition function P−1(p) =
{u : Cu,p = 1} to denote the set of nodes belong to cluster p. By treating each cluster as a virtual
super node, we denote the set of such nodes as Vp. Graph ViT [18] models interactions between
clusters (S–S interactions), which corresponds to applying a mask Mc1, where Mc1

u,v = 1 if u, v ∈ Vp.
Cluster-GT [20] models more fine-grained N–S interactions, where each cluster attends to all real
nodes. This leads to a mask Mc2, defined as Mc2

u,v = 1 if u ∈ Vp and v ∈ V . To differentiate
contributions from different clusters, attention scores are further modulated by the connectivity
between clusters and refined via cluster attention implicitly induced by Mc1. CoBFormer [44]
focuses on N–N interactions within each cluster by implicitly applying a mask Mc3, where Mc3

u,v = 1

if u, v ∈ V and P(u) = P(v). It additionally applies Mc1 to capture inter-cluster interactions.

Global interactions: A common strategy for capturing global N–N interactions is to treat the entire
graph as fully connected, corresponding to a global mask Mg1 = 1N×N [42, 43, 11]. In contrast,
Exphormer [34] approximates global dependencies through an N–S interaction scheme by introducing
a set of virtual super nodes Vg , each connected bidirectionally to all real nodes. This yields a global
mask Mg2, where Mg2

u,v = 1 if u ∈ V and v ∈ Vg , or u ∈ Vg and v ∈ V .

3.2 Theoretical analysis

To investigate the distinct contributions of hierarchical masks to node classification, we develop a
theoretical framework based on a class-conditional representation model. Specifically, let G be a graph
with label set Y , and assume a uniform label distribution across nodes. The initial representation of a
node with label c is sampled from a d-dimensional Gaussian distribution: z ∼ N (µc, σ

2
cI), where

|µc|22 = 1, and the class prototypes are assumed to be orthogonal, i.e., µ⊤
c µc′ = 0 for all c ̸= c′.

Let node u have ground-truth label c, and its receptive field be specified by the mask vector Mu,:,
which contains k non-zero entries. Define ρc′ as the fraction of nodes labeled c′ within this receptive
field, and αc′ as the average attention weight assigned to those nodes. Let ẑu denote the attention-
updated representation of node u. We consider a similarity-based classifier that predicts label c
correctly if ẑ⊤

uµc ≥ δc, where δc is a decision threshold implicitly learned by models.

Theorem 3.1. The updated representation of node u follows a Gaussian distribution:

ẑu ∼ N

 |C|∑
i=1

kρiαiµi,

|C|∑
i=1

kρiα
2
iσ

2
i I

 (2)

Assume the classifier is well-trained such that δc − kρcαc ≤ 0, and the attention weights satisfy the
constraint 0 ≤ αc′ ≤ 1

k ≤ αc ≤ 1
kρc

. Then, the probability that node u is correctly classified by a
similarity-based classifier is bounded as:

1− Φ

 δc − kρcαc√
kρcα2

cσ
2
c +

1−ρc

k · σ2
m

 ≤ P (ẑ⊤
uµc ≥ δc) ≤ 1− Φ

(
δc − kρcαc√
kρcα2

cσ
2
c

)
, (3)

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal distribution,
and σ2

m = maxi ̸=c σ
2
i is the maximum variance among non-target classes.

Both the lower and upper bounds are monotonically increasing with respect to k, ρc, and αc, and
decreasing with respect to the set of class-wise variances {σi : 1 ≤ i ≤ |Y|}.

The proof can be found in Appendix A. Theorem 3.1 shows that the probability of correct classification
primarily depends on the factors: k, ρc, αc, and the set of variances {σi : 1 ≤ i ≤ |Y|}. Since αc and
σi are affected by the training dynamics and input distribution, respectively, we focus our analysis
on k and ρc, which are determined by the attention mask. Theorem 3.1 demonstrates that larger
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values of k and ρc lead to higher lower and upper bounds on the probability of correct classification.
This gives rise to a fundamental principle for mask construction: An effective attention mask should
ensure a sufficiently large receptive field and a high level of label consistency.

Building on this theorem, we further analyze the applicability of hierarchical masks derived from
existing GTs under several representative scenarios: 1) For nodes with strong local homophily,
using local masks (e.g., Ml1, Ml2) is effective due to their typically large ρc. 2) For nodes near
cluster boundaries, local homophily weakens as some neighbors belong to other clusters. In such
cases, cluster masks (e.g., Mc3) can yield higher ρc and a larger k, potentially leading to improved
classification performance, assuming the partitioning is accurate. 3) For heterophilic nodes with
minority labels in their cluster, local or cluster masks may result in very small ρc, even below 1

|Y| .
Here, the global mask Mg1 is preferable, as it ensures ρc = 1

|Y| and provides a large k = N . By
contrast, the use of Mg2 may be less effective, as the global virtual nodes lack explicit label semantics.
4) Some prior works approximate global interactions through inter-cluster attention (e.g., via Mc1).
However, as shown in Equation 2, cluster-level representations are dominated by the majority label.
During inter-cluster aggregation, this bias is further amplified, increasing the risk of misclassifying
minority-label nodes as the dominant class. 5) For nodes belonging to classes with well-defined
representation distributions (i.e., small variance σc), the attention weights αc can be effectively
learned to approximate 1

kρc
, leading to a higher probability of correct classification regardless of the

specific mask employed.

The above analysis suggests that no single mask consistently satisfies the proposed principle across
all scenarios. However, hierarchical masks at different levels offer complementary strengths in node
classification, and their integration provides a natural means of aligning with the principle.

Table 1: Accuracy comparison of individual masks, ensemble strategies, and the oracle case.
Dataset Local Cluster Global Mean Max Oracle

Cora 87.71±1.30 82.10±1.53 73.03±1.53 86.41±1.72 86.82±2.32 93.41±1.38

Citeseer 77.02±2.10 71.43±2.39 72.94±2.10 76.16±2.10 75.73±2.08 84.32±2.10

Pubmed 89.77±0.46 87.96±0.35 87.51±0.42 89.31±0.28 89.19±0.35 93.68±0.25

Photo 94.25±0.46 94.26±1.06 85.61±4.26 95.14±0.52 94.77±0.74 97.50±0.40

Computer 91.57±0.63 89.33±0.79 82.78±1.21 91.41±0.92 90.45±0.73 95.59±0.37

Squirrel 38.67±1.72 38.03±1.10 38.64±1.68 38.53±1.16 38.78±1.34 53.72±1.30

Chameleon 41.97±3.90 42.24±3.35 43.50±2.97 42.96±4.29 42.60±4.58 64.57±4.05

3.3 Experimental analysis

To further investigate whether combining masks across multiple interaction levels yields benefits in
real-world scenarios, we construct three GTs trained separately with the local mask Ml2, cluster mask
Mc3, and global mask Mg1 on seven node classification datasets. Then we apply three ensemble
strategies to integrate their outputs: Mean: averaging the predicted probabilities; Max: selecting the
maximum predicted probability; and Oracle: an idealized upper bound where the best prediction is
always selected. The performance of individual models and ensemble methods is reported in Table 1,
with three key observations: 1) The strong performance of Oracle indicates that properly integrating
complementary information from multiple interaction levels can yield substantial performance gains.
2) Naive ensemble methods, such as Mean and Max, underperform the best single-mask model on
5 out of 7 datasets, revealing a key challenge for Graph Transformers: How to effectively integrate
multi-level interaction information?

Moreover, our experiments reveal a significant efficiency issue: even a 2-layer Transformer with 2
heads and a single mask, consumes 21 GB of GPU memory on the PubMed. Although several efficient
Transformer variants—such as kernel-based linear attention methods [8, 35] and FlashAttention
[9]—have been proposed to alleviate the O(N2) complexity, their applicability to graphs remains
limited due to the irregular and diverse patterns of graph masks [39]. This leads to another key
challenge: How to efficiently implement GTs with irregular masks on large-scale graphs?

4 Method
In this section, we propose M3Dphormer, a novel Mixture-of-Experts based Graph Transformer
with Multi-Level Masking and Dual Attention Computation. The overall framework is illustrated

5



d)

Select

Sparse Dense

4

3

2

1

5

3

2

1

1

3

2

5

84

7

6 1

3
2

5

84

7

6

1 32 5 84 76

10
9 11 12 13

c)

Feature
Projection

RMS
Norm BiMoE ReLu

Residual Transformation

X L

Linear
Classifier

a) b)
Local Expert

Cluster Expert

Global Expert

Gated
Output

Bi-directed 

Directed from virtual to real

Figure 2: Overview of the M3Dphormer with Pre-RMSNorm [48] and ReLU[1]: a) The overall
network architecture. b) The bi-level expert routing mechanism. c) The theorem-guided hierarchical
mask design strategy. Self-connections are added for nodes in local and cluster masks. Nodes 2, 4, 5
and 8 are included in the training set. d) The dual attention computation scheme.

in Figure 2. Guided by theoretical analysis, we first design three hierarchical attention masks to
comprehensively model multi-level interactions (part c). To adaptively integrate information across
these interaction levels, we introduce a bi-level attention expert routing mechanism, where each
expert is a MHA module associated with a specific mask (part b). Additionally, a dual attention
computation scheme is incorporated to ensure computational efficiency (part d).

4.1 Overall architecture of M3Dphormer

We first present the overall architecture of M3Dphormer. The initial representation is given by
H0 = XWin, where Win ∈ Rdin×d is a learnable linear projection. The model then applies L
stacked M3Dphormer layers, with the computation in the l-th layer defined as:

Hl = ACT
(

BiMoEl
(
Norml(Hl−1),M

))
+Hl−1Wl

res, (4)

where Hl−1 is the input from the previous layer, Wl
res is the residual projection matrix following

[26], Norml(·) is the normalization function, and ACT(·) is the activation function. The bi-level
attention expert routing mechanism BiMoEl(·) integrates information from multiple interaction levels
based on the hierarchical mask set M. After L layers, a linear classifier is applied to obtain the final
prediction: Ŷ = HLWcls, where Wcls is the classifier weight matrix. The model is optimized using
cross-entropy loss computed over both the training nodes Vtrain and the label-specific global virtual
nodes Vg , which are introduced in the following subsection.

4.2 Theorem-guided hierarchical mask design strategy

To enable comprehensive modeling of multi-level node interactions, we propose a theoretically
grounded design strategy for the hierarchical mask set M = {Ml2,Mc4,Mg3}.

Local mask design: We adopt Ml2 = A as the local mask due to its several advantages over
Ml1 = AK : 1) As observed in CoBFormer[44], the homophily ratio ρc tends to decline rapidly with
increasing hop size K. A lower ρc may lead to reduced classification probability, as indicated by
Theorem 3.1. 2) Ml1 ignores distance information between the target node and its K-hop neighbors,
thus requiring explicit distance-aware position encoding[24]. In contrast, Ml2 can capture such
distance implicitly through recursive aggregation across layers. 3) Ml2 is sparser than Ml1, enabling
more efficient computation under the dual attention scheme introduced later.

Cluster mask design: We first partition the graph into P disjoint clusters using METIS[22], and
introduce a set of cluster-level virtual nodes Vp = {N + i : 0 ≤ i < P}. We then define a new
cluster mask Mc4, where Mc4

u,v = 1 if either (i) u ∈ V and v ∈ {u,N + P(u)}, or (ii) u ∈ Vp and
v ∈ P−1(u−N). The functions P(·) and P−1(·) denote the partition and reverse-partition function
defined in Section 3.1. This formulation restricts attention to node–cluster pairs within the same
partition. The feature of each virtual node in Vp is computed by averaging the features of the real
nodes in its corresponding cluster. Compared to Mc3, the proposed Mc4 significantly reduces the
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non-zero ratio from 1
P to 3N

(N+P )2 since P ≪ N , making it more efficient. Moreover, as demonstrated
in Proposition 4.1, the interactions captured by Mc3 can be effectively approximated using Mc4.
Proposition 4.1. Cluster interactions modeled by a single Graph Transformer layer using Mc3 can
be equivalently modeled by two consecutive layers using Mc4.

The proof is given in Appendix A.4. Although this requires an additional layer, the reduction in
sparsity still leads to substantial computational savings by our dual attention computation scheme.

Global mask design: We introduce a new global mask Mg3, which extends Mg2 by explicitly
incorporating label semantics. Specifically, we add |Y| global virtual nodes, indexed as Vg =
{N + P + i : 0 ≤ i < |Y|}, each associated with a distinct class label. The mask Mg3

u,v is set to 1 if
either: (i) u ∈ V and v ∈ Vg, or (ii) u ∈ Vg and v ∈ {t ∈ Vtrain : yt = yu}. This structure enables
each real node to attend to all global nodes, while each global node aggregates information only
from training nodes with a specific label. Similar to Vp, the features of nodes in Vg are obtained
by averaging the features of training nodes with the corresponding label. Let gc denote the global
virtual node for class c, and nc be the number of training nodes with label c. By Equation 2, the
updated representation satisfies: ẑgc ∼ N (µc,

σ2

nc
I), since ρc = 1, ρc′ = 0 for c′ ̸= c, and αi =

1
nc

.

The reduced variance σ2

nc
indicates that it is more concentrated around the class mean. According to

Theorem 3.1, this leads to improved bounds for the probability of correct classification.

4.3 Bi-level attention expert routing mechanism

To adaptively integrate information from different interaction levels, we propose the bi-level attention
expert routing mechanism—the core component of M3Dphormer. Each expert corresponds to an
MHA module equipped with a specific attention mask. Motivated by the observation in Table 1 that
the local mask yields the best performance in most cases, we prioritize the local expert at the first
routing level. The second level then refines the selection among the cluster and global experts. The
bi-level routing mechanism is formally defined as:

BiMoE(H,M) = g1 · MHAD(H,Ml2) + g2 · MHAD(H,Mc4) + g3 · MHAD(H,Mg3)

g1 = β1, g2 = (1− β1) · β2, g3 = (1− β1) · (1− β2)

β1 = Sigmoid(HW1
G), β2 = Sigmoid(HW2

G)

(5)

Here, M denotes the hierarchical mask set. MHAD(·, ·) denotes our proposed dual attention
computation scheme. W1

G,W
2
G ∈ Rd×1 are learnable gating parameters for the first- and second-

level expert selection. The sigmoid function constrains the gating values β1 and β2 within [0, 1].
To emphasize the empirical importance of local interactions, both W1

G and W2
G are initialized as

zero vectors, yielding initial routing weights of [0.5, 0.25, 0.25] for each node, which prioritizes local
attention in the early training stage. Inspired by the observation in Table 1 that all interaction levels
contribute significantly to the classification, we aggregate outputs from all experts using the learned
routing weights g1, g2, and g3, without applying top-k selection.

4.4 Dual attention computation scheme

Finally, we introduce the dual attention computation scheme to enhance computational efficiency.
While the irregularity of graph masks hinders the application of efficient attention variants[8, 9, 39],
their inherent sparsity enables a new optimization route—sparse attention computation[34]. Unlike
standard dense attention (Equation 1), which constructs the full attention matrix Â before applying
the binary mask M, sparse attention computes attention scores only for valid node pairs (u, v) where
Mu,v = 1. A detailed analysis of the sparse attention implementation in Algorithm 2 reveals a space
complexity of O(6mHdh), where m is the number of non-zero entries in M, H is the number of
attention heads, and dh is hidden dimension of each head. Although this method significantly reduces
the complexity from O(N2) to O(m), the constant factor 6Hdh remains non-negligible in practice.

To further improve efficiency, we propose a dual attention computation scheme that dynamically
switches between dense and sparse computation based on the local sparsity of the attention mask.
Specifically, we partition the attention mask M into K disjoint regions R = {Ri}Ki=1, each Ri is
defined by a query set Qi and the corresponding key set Ki = ∪u∈Qi

{v : Mu,v = 1}. For each
region, the optimal computation mode is selected according to Proposition 4.2.
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Table 2: Node classification results (%±σ). ROC-AUC for Minesweeper; accuracy for the rest.

Models
Datasets

Cora Citeseer Pubmed Computer Photo Squirrel Chameleon Minesweeper Arxiv

GCN 86.53±1.61 75.97±1.93 88.51±0.28 89.83±0.64 93.07±0.48 42.19±2.10 42.87±2.78 93.47±0.47 72.55±0.21

GAT 86.53±1.27 74.31±1.25 87.42±0.43 90.45±0.87 93.79±0.28 36.59±1.88 41.52±4.78 93.25±0.42 72.10±0.33

SAGE 87.62±1.73 74.79±1.59 89.20±0.53 90.14±0.73 94.27±0.64 36.16±1.46 42.06±3.01 93.64±0.39 72.32±0.13

GCN* 87.74±1.66 76.83±1.94 89.48±0.56 91.70±0.53 95.10±0.60 42.59±2.14 43.77±2.47 97.39±0.30 73.18±0.21

GAT* 87.59±1.33 76.42±1.81 89.12±0.47 91.70±0.73 95.73±0.63 38.38±1.25 42.69±5.11 97.35±1.12 72.67±0.14

SAGE* 87.71±1.91 75.99±1.21 89.49±0.29 91.52±0.60 95.37±0.89 39.28±2.90 43.23±2.78 97.39±0.80 72.75±0.14

GPRGNN 88.21±1.29 77.02±1.81 88.49±0.44 90.70±0.53 94.80±0.37 36.80±1.71 41.26±4.22 89.05±0.43 68.44±0.21

FAGCN 88.36±1.50 76.78±1.29 89.31±0.58 90.07±0.72 95.23±0.38 40.90±2.04 42.78±3.51 89.95±0.62 66.83±0.20

NAGphormer 87.68±1.80 76.21±2.72 89.35±0.20 91.22±0.65 95.12±0.36 38.67±1.47 41.61±2.64 90.08±0.46 71.38±0.20

Exphormer 87.03±1.70 76.18±1.50 88.55±0.47 90.76±0.80 95.19±0.49 37.20±2.56 40.27±1.63 95.32±0.93 72.24±0.21

SGFormer 87.86±1.12 75.85±2.04 88.75±0.41 91.52±0.68 95.10±0.32 38.60±0.95 43.77±3.02 91.59±0.28 72.44±0.28

CoBFormer 88.15±1.47 77.05±1.69 88.50±0.59 91.64±0.41 95.58±0.55 39.03±1.35 43.50±1.35 95.63±0.52 73.17±0.18

PolyNormer 87.83±1.94 76.93±2.16 89.48±0.43 91.85±0.57 95.44±0.71 39.32±1.45 44.30±2.04 96.98±0.46 73.27±0.38

Mowst 87.92±1.17 76.52±1.41 88.71±0.25 91.32±0.50 93.70±0.32 41.72±2.33 44.30±2.57 93.00±0.68 73.03±0.29

GCN-MoE 86.17±1.11 75.20±1.70 88.80±0.24 88.75±0.58 93.19±0.32 43.02±2.14 44.57±2.00 92.63±0.40 73.16±0.21

M3Dphormer 88.48±1.94 77.53±1.56 89.96±0.49 92.09±0.46 95.91±0.68 44.34±1.94 47.09±4.05 98.27±0.20 73.54±0.30

Proposition 4.2. Let κRi denote the non-zero rate within region Ri. The sparse attention scheme is
more efficient than the dense scheme when κRi <

1
3dh

.

The proof is provided in Appendix A.5. This result guides the selection of sparse computation when
local sparsity is high and dense computation when the region becomes sufficiently dense. Based on
this guidance, we formulate the dual attention computation scheme as:

MHAD(H,M) = CombKi (SelectMode (Ri) (H,Ri)) (6)

Here, SelectMode(Ri) denotes the selection between sparse and dense computation modes for region
Ri, and CombK

i (·) aggregates the attention outputs from all K partitioned regions.

5 Experiments

Experiment setups. We evaluate M3Dphormer on nine datasets, including six homophilic graphs
(Cora, CiteSeer, Pubmed [45], Computer, Photo [33], and Ogbn-Arxiv [19]) and three heterophilic
graphs (Squirrel, Chameleon, and Minesweeper [31]). Dataset statistics and splitting protocols are
detailed in Appendix D. We select 15 baselines spanning five categories: 1) Classic GNNs: GCN [23],
GAT [38], and GraphSAGE [16]. 2) Enhanced Classic GNNs: GCN*, GAT*, and SAGE*. 3)
Advanced GNNs: GPRGNN[7] and FAGCN [3]. 4) SOTA Graph Transformers: NAGphormer [5],
Exphormer [34], SGFormer [43], CoBFormer [44], and PolyNormer [11]; 5) MoE-based GNNs:
Mowst [47] and GCN-MoE [40]. Descriptions of the baselines are provided in Appendix E, and
implementation details can be found in Appendix F.

Node classification results. Table 2 presents the node classification results. Key observations
include: 1) M3Dphormer consistently outperforms all baselines across 9 datasets, highlighting
its superior interaction modeling capacity. 2) Compared to traditional and MoE-based GNNs,
M3Dphormer demonstrates clear advantages by comprehensively capturing hierarchical interactions.
3) Compared to GT baselines, M3Dphormer shows notable improvements, verifying both the benefit
of comprehensive interaction modeling and the effectiveness of the bi-level attention expert routing
mechanism in adaptively integrating multi-level information.

Ablation studies. We perform ablation studies to evaluate M3Dphormer in terms of effectiveness and
efficiency. Firstly, we construct five ablated variants by: 1) Removing individual experts; 2) Disabling
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Table 3: Node classification results of various M3Dphormer variants

Cora Citeseer Pubmed Computer Photo Squirrel Chameleon Minesweeper Ogbn-Arxiv

Full Model 88.48±1.94 77.53±1.56 89.96±0.49 92.09±0.46 95.91±0.68 44.34±1.94 47.09±4.05 98.27±0.20 73.54±0.30

W/O Local 82.84±2.15 74.09±1.46 88.75±0.48 88.99±0.94 93.83±0.44 39.61±1.51 42.60±4.41 57.55±0.78 67.24±0.23

W/O Cluster 87.83±1.83 76.73±2.00 89.69±0.46 91.59±0.70 95.22±0.53 42.48±2.13 44.93±3.21 98.03±0.41 73.40±0.23

W/O Global 87.95±2.03 76.33±1.84 89.76±0.34 91.89±0.50 95.62±0.59 41.58±1.60 45.47±5.04 98.02±0.24 73.41±0.11

W/O Route 87.65±2.39 76.25±0.91 89.48±0.46 91.76±0.71 95.59±0.87 42.05±1.21 43.95±1.98 97.72±0.17 73.31±0.19

W/O Bi-Level 87.74±2.21 77.12±1.59 89.79±0.25 91.68±0.37 95.70±0.50 42.41±1.96 44.39±4.44 97.84±0.34 73.50±0.17

Cora Citeseer Pubmed Computer Photo Squirrel Chameleon Minesweeper Arxiv
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Figure 3: Memory usage of different schemes.

the attention expert routing mechanism; 3) Replacing the bi-level attention routing mechanism
with a single-level gating scheme. Results in Table 3 show that: 1) Removing any individual
expert consistently degrades performance, underscoring the necessity of comprehensively modeling
hierarchical interactions. 2) Disabling the routing mechanism leads to substantial degradation,
suggesting that simple aggregation is insufficient for effectively integrating multi-level interactions.
3) The performance gap between the single-level routing variant and M3Dphormer demonstrates
the advantage of the proposed bi-level attention expert routing mechanism. Then, we report the
GPU memory usage of M3Dphormer and its two variants employing sparse and dense computation
schemes in Figure 3. As shown, the dense scheme incurs the highest memory consumption and leads
to out-of-memory (OOM) errors on four datasets. While the sparse scheme substantially reduces
memory usage, it still fails to run on Ogbn-Arxiv. In contrast, our dual attention scheme achieves
superior memory efficiency and successfully scales to all evaluated graphs.
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Parameter analysis. The only key hyperparameter in M3Dphormer is the number of clusters P ,
which affects the quality of the cluster mask Mc4. For each dataset, we select an appropriate range of
P values according to its size. Figure 4 presents the model’s performance under varying P . Overall,
M3Dphormer demonstrates strong robustness to the choice of P on most datasets. An exception is
Chameleon—a small graph with only 890 nodes—where variations in P substantially impact the
quality of partitioning, resulting in more significant performance fluctuations.
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Visualization. We plot the accuracy and loss curves of M3Dphormer and GCN*[23, 26] in Figure 5.
Across the training, validation, and test sets, M3Dphormer consistently achieves faster convergence
and higher accuracy than GCN* during the training process, demonstrating the effectiveness of our
method. A similar trend is also observed in the comparison with PolyNormer [11] in Appendix G.4.
A visualization of the learned gate weights is provided in Appendix G.5.
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Figure 5: Comparison of accuracy and loss curves between M3DFormer and GCN* on Ogbn-Arxiv.

6 Related Work

Graph neural networks. Classic GNNs, such as GCN [23], SAGE [16], and GAT [38], rely on
message-passing mechanisms that recursively aggregate information from local neighbors at each
layer. To move beyond the widely adopted homophily assumption—that nodes of the same class
are more likely to be connected [28]—advanced GNNs such as GPRGNN [7] and FAGCN [3]
have been proposed to improve performance on heterophilic graphs. More recently, a benchmark
study demonstrated that carefully tuning the hyperparameters of classic GNNs and enhancing
them with advanced training techniques—such as residual connections [17] and normalization
methods [48, 2, 21]—can lead to substantial improvements in node classification performance. While
GNNs have proven effective in many scenarios, they still suffer from a fundamental limitation:
message passing primarily captures local interactions, often neglecting informative signals from
broader, long-range dependencies.

Graph transformers. Recently, Graph Transformers have emerged as a promising paradigm for
graph representation learning. By leveraging the multi-head self-attention mechanism originally
introduced in Transformer [37], they aim to adaptively model diverse and complex interactions
from a broader perspective. A primary line of research treats the entire graph as fully connected
and computes attention scores between all node pairs [46, 32, 43, 11]. However, a recent study has
revealed the over-globalizing problem in such methods, which may lead to a significant decrease in
performance [44]. Another line of work constructs a token sequence for each node based on the graph
structure and feeds these sequences into a Transformer to learn node representations [49, 5, 15, 6, 41].
These methods often rely on expert-designed tokenization strategies, which tend to capture local
information while overlooking larger-scale interactions. In addition, several recent approaches focus
on modeling cluster-level interactions, which have shown promising results in capturing mid-level
structural patterns for graph representation learning [18, 20, 44].

7 Conclusion

In this paper, we propose a unified hierarchical mask framework for Graph Transformers. A fun-
damental design principle and two core challenges are identified under this framework. We then
introduce M3Dphormer, a novel Mixture-of-Experts based Graph Transformer with Multi-Level
Masking and Dual Attention Computation, designed to efficiently, comprehensively and adaptively
capture hierarchical interactions. Extensive experiments demonstrate its effectiveness.

Limitations and broader impacts. In this paper, we focus our theoretical and empirical analyses
on the node classification task under the proposed unified hierarchical mask framework, as it is
a fundamental and extensively studied problem in the graph learning community. Extending our
theoretical insights to graph-level and edge-level tasks represents a promising direction for future
work. Apart from this, we do not expect any direct negative societal impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we highlight that existing Graph Transformers
can be unified under a hierarchical masking framework, which simplifies model design to the
construction of appropriate masks and offers a principled foundation grounded in theoretical
analysis. Building on this framework, we further propose a novel Graph Transformer that
achieves state-of-the-art performance on node classification tasks.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide full assumptions in Section 3.2 and proofs in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 5 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The access details of the datasets are provided in Appendix D, and the GitHub
repositories of baselines are listed in Appendix F. Partial implementation of our method is
included in the supplemental materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 5, Appendix D and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The mean and standard deviation across five independent runs with different
seeds are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix F. All experiments are conducted on a single NVIDIA GPU with
24 GB memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I have reviewed the NeurIPS Code of Ethics and believe that the research
presented in this paper fully complies with it in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: We have cited the original papers in Section 5, Appendix E and provided URLs
of the baselines in Appendix F. However, we were unable to locate the license information
for the assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theorem Proofs

We begin by decomposing Theorem 3.1 into two theorems and one proposition, and then prove them
individually.

Theorem A.1. The updated representation of node u follows a Gaussian distribution:

ẑu ∼ N

 |C|∑
i=1

kρiαiµi,

|C|∑
i=1

kρiα
2
iσ

2
i I

 (7)

Accordingly, the probability that node u is correctly classified by a similarity-based classifier is:

P (ẑ⊤
uµc ≥ δc) = 1− Φ

 δc − kρcαc√∑|C|
i=1 kρiα

2
iσ

2
i

 (8)

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal distribution.

Theorem A.2. Assuming the classifier is well trained, i.e., δc− kρcαc ≤ 0, and the attention weights
satisfy 0 ≤ αc′ ≤ 1

k ≤ αc ≤ 1
kρc

, then the classification probability is bounded as:

1− Φ

 δc − kρcαc√
kρcα2

cσ
2
c +

1−ρc

k · σ2
m

 ≤ P (ẑ⊤
uµc ≥ δc) ≤ 1− Φ

(
δc − kρcαc√
kρcα2

cσ
2
c

)
, (9)

where σ2
m = maxc′ ̸=c σ

2
c′ is the largest representation variance among non-target classes.

Proposition A.3. In Equation 9, both the lower and upper bounds are monotonically increasing with
respect to k, ρc, and αc, and decreasing with respect to the set of variances {σi : 1 ≤ i ≤ |Y|}.

A.1 Proof of Theorem A.1

Proof. Let node u have ground-truth label c, and denote its receptive field by the mask vector Mu,:,
which includes k nodes in total. Let ρi be the proportion of class-i nodes in the receptive field, and
let αi denote the average attention weight assigned to these nodes.

The updated representation of node u is given by:

ẑu =

k∑
i=1

αizi (10)

Each node representation zi with class label c′ is generated using the reparameterization trick:

z
(c′)
i = µc′ + σc′ · ξi, where ξi ∼ N (0, I) (11)

Regrouping the neighbors by class, we rewrite the update as:

ẑu =

|Y|∑
i=1

kρi∑
j=1

αiz
(i)
j =

|Y|∑
i=1

kρiαiµi +

|Y|∑
i=1

σiαi

kρi∑
j=1

ξj (12)

Since the sum of i.i.d. standard Gaussian vectors satisfies:
kρi∑
j=1

ξj ∼ N (0, kρiI), (13)

we have:

σiαi

kρi∑
j=1

ξj ∼ N (0, σ2
i α

2
i kρiI) (14)
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Hence, the updated representation ẑu follows a multivariate Gaussian distribution:

ẑu ∼ N

 |Y|∑
i=1

kρiαiµi,

|Y|∑
i=1

σ2
i α

2
i kρiI

 (15)

Define the total variance scalar:

ζu :=

√√√√ |Y|∑
i=1

σ2
i α

2
i kρi (16)

Using the reparameterization trick again, we can rewrite ẑu as:

ẑu =

|Y|∑
i=1

kρiαiµi + ζu · ξ̂, where ξ̂ ∼ N (0, I) (17)

Now consider the inner product with the class prototype µc:

ẑ⊤
uµc =

 |Y|∑
i=1

kρiαiµi

⊤

µc +
(
ζu · ξ̂

)⊤
µc (18)

By orthogonality of class means (µ⊤
i µc = 1 if i = c, and 0 otherwise), the first term simplifies

to kρcαc. Since ξ̂ ∼ N (0, I), the second term becomes a linear combination of i.i.d. standard
Gaussians:

ẑ⊤
uµc = kρcαc + ζu

d∑
i=1

µc,iξ̂i, ξ̂i ∼ N (0, 1) (19)

Because ∥µc∥22 = 1, the sum
∑d

i=1 µc,iξ̂i is distributed as N (0, 1). Thus:

ẑ⊤
uµc ∼ N (kρcαc, ζ

2
u) (20)

To compute the classification probability, we consider a similarity-based classifier that predicts
correctly if:

ẑ⊤
uµc ≥ δc (21)

Since ẑ⊤
uµc is Gaussian distributed, we apply the cumulative distribution function of the normal

distribution. For X ∼ N (µ, σ2), we have:

P (X ≥ a) = 1− Φ

(
a− µ

σ

)
(22)

Applying this to our case:

P
(
ẑ⊤
uµc ≥ δc

)
= 1− Φ

(
δc − kρcαc

ζu

)
= 1− Φ

 δc − kρcαc√∑|Y|
i=1 σ

2
i α

2
i kρi

 (23)

which concludes the proof.

A.2 Proof of Theorem A.2

Proof. From Theorem A.1, we know:

ẑ⊤
uµc ∼ N

kρcαc,

|Y|∑
i=1

kρiα
2
iσ

2
i

 (24)
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and the classification probability is:

P
(
ẑ⊤
uµc ≥ δc

)
= 1− Φ

 δc − kρcαc√∑|Y|
i=1 kρiα

2
iσ

2
i

 (25)

Let us denote the variance as:

Var :=
|Y|∑
i=1

kρiα
2
iσ

2
i = kρcα

2
cσ

2
c +

∑
i ̸=c

kρiα
2
iσ

2
i (26)

Let σ2
m := maxi̸=c σ

2
i . Since αi ≤ 1

k for i ̸= c, we have α2
i ≤ 1

k2 , and hence:∑
i ̸=c

kρiα
2
iσ

2
i ≤

∑
i̸=c

kρi ·
1

k2
· σ2

m =
σ2
m

k

∑
i ̸=c

ρi =
1− ρc

k
· σ2

m (27)

Therefore:
Var ≤ kρcα

2
cσ

2
c +

1− ρc
k

· σ2
m (28)

We now use the fact that the Gaussian CDF Φ(z) is strictly increasing. Under the assumption
that δc − kρcαc < 0, the numerator is negative. In this case, increasing the denominator (i.e., the
variance) reduces the absolute value of z, making z less negative. As a result, Φ(z) increases, and the
classification probability 1− Φ(z) decreases.

This gives the lower bound:

P
(
ẑ⊤
uµc ≥ δc

)
≥ 1− Φ

 δc − kρcαc√
kρcα2

cσ
2
c +

1−ρc

k · σ2
m

 (29)

To obtain the upper bound, we lower bound the total variance by dropping the non-negative cross-
class terms: ∑

i ̸=c

kρiα
2
iσ

2
i ≥ 0 (30)

which leads to:
Var ≥ kρcα

2
cσ

2
c (31)

Since the CDF Φ(z) is increasing and the numerator is negative, a smaller denominator results in a
more negative standardized score, and hence a larger classification probability 1− Φ(z). Therefore,
this yields the following upper bound:

P (ẑ⊤
uµc ≥ δc) ≤ 1− Φ

(
δc − kρcαc√
kρcα2

cσ
2
c

)
(32)

Combining both bounds gives the result.

A.3 Proof of Proposition A.3

Proof. We analyze the monotonicity of both the upper and lower bounds in Equation 9 by taking
partial derivatives of the normalized score with respect to each variable. Let the standardized score
be denoted as f(·).

Upper bound:

fupper(x) =
δc − kρcαc√
kρcα2

cσ
2
c

(1) With respect to k: Let C1 = δc, C2 = ρcαc, C3 = ρcα
2
cσ

2
c . Then:

fupper(k) =
C1 − kC2√

kC3

, f ′
upper(k) =

−kC2C3 − C1C3

2(kC3)3/2
< 0 (33)
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(2) With respect to ρc: Let C2 = kαc, C3 = kα2
cσ

2
c . Then:

fupper(ρc) =
C1 − ρcC2√

ρcC3
, f ′

upper(ρc) =
−ρcC2C3 − C1C3

2(ρcC3)3/2
< 0 (34)

(3) With respect to αc: Let C2 = kρc, C3 = kρcσ
2
c . Then:

fupper(αc) =
C1 − C2αc

αc

√
C3

, f ′
upper(αc) =

−C1

α2
c

√
C3

< 0 (35)

Lower bound:
flower(x) =

δc − kρcαc√
kρcα2

cσ
2
c +

1−ρc

k σ2
m

(1) With respect to k:

Let C1 = δc, C2 = ρcαc, C3 = ρcα
2
cσ

2
c , and C4 = (1− ρc)σ

2
m. Then the lower bound becomes:

flower(k) =
C1 − kC2√
kC3 +

C4

k

(36)

Let D(k) =
√

kC3 +
C4

k . Then, using the quotient and chain rule, we obtain:

f ′
lower(k) =

−2C2D
2(k)−

(
C3 − C4

k2

)
(C1 − kC2)

2D3(k)
(37)

Now we simplify the numerator:

− 2C2D
2(k)−

(
C3 −

C4

k2

)
(C1 − kC2)

=− 2C2

(
kC3 +

C4

k

)
−
(
C3 −

C4

k2

)
(C1 − kC2)

=− kC2C3 −
3C2C4

k
− C1C3 +

C1C4

k

=− kC2C3 − C1C3 +
C4(C1 − 3kC2)

k
(38)

Under the assumption that the classifier is well-trained, we have:

C1 − 3kC2 = δc − 3kρcαc < δc − kρcαc < 0

Hence, each term in Equation (38) is negative, and the overall numerator is negative. Since the
denominator 2D3(k) > 0, we conclude:

f ′
lower(k) < 0 (39)

which means the normalized score decreases with k, and thus the classification probability increases.

(2) With respect to ρc:

Let C1 = δc, C2 = kαc, C3 = kα2
cσ

2
c , and C4 = σ2

m. Then the lower bound becomes:

flower(ρc) =
C1 − C2ρc√

C3ρc +
C4(1−ρc)

k

(40)

Let D(ρc) :=
√
C3ρc +

C4(1−ρc)
k . Then using the chain rule, the derivative is:

f ′
lower(ρc) =

−2C2D
2(ρc)−

(
C3 − C4

k

)
(C1 − C2ρc)

2D3(ρc)
(41)
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We now simplify the numerator:

− 2C2D
2(ρc)−

(
C3 −

C4

k

)
(C1 − C2ρc)

=− 2C2

(
C3ρc +

C4(1− ρc)

k

)
−
(
C3 −

C4

k

)
(C1 − C2ρc)

=− 2C2C3ρc −
2C2C4(1− ρc)

k
− C3C1 +

C4C1

k
+ C2ρcC3 −

C2ρcC4

k

=− C2C3ρc − C1C3 −
2C2C4

k
+

C2ρcC4

k
+

C1C4

k
(42)

Hence the full numerator is:

−C2C3ρc − C1C3 +
C4(C2ρc + C1 − 2C2)

k
(43)

We now verify its sign. Under the assumption that the classifier is well-trained, i.e.,

C1 − C2ρc = δc − kρcαc < 0 ⇒ C1 < C2ρc

which implies:

C1 + C2ρc < 2C2ρc < 2C2 ⇒ C1 + C2ρc − 2C2 < 0

Thus the entire numerator is negative, and since D(ρc) > 0, we conclude:

f ′
lower(ρc) < 0 (44)

That is, the normalized score decreases as ρc increases, and hence the classification probability
increases.

(3) With respect to αc:

Let C1 = δc, C2 = kρc, C3 = kρcσ
2
c , and C4 = 1−ρc

k σ2
m. Then the lower bound becomes:

flower(αc) =
C1 − C2αc√
C3α2

c + C4

(45)

Let D(αc) :=
√

C3α2
c + C4. Applying the quotient and chain rule, we obtain:

f ′
lower(αc) =

−C2D
2(αc)− C3αc(C1 − C2αc)

D3(αc)
(46)

We now expand the numerator:

− 2C2(C3α
2
c + C4)− C3αc(C1 − C2αc)

=− 2C2C3α
2
c − 2C2C4 − C1C3αc + C2C3α

2
c

=− C2C3α
2
c − 2C2C4 − C1C3αc (47)

All three terms in the numerator are negative, and the denominator is strictly positive. Therefore:

f ′
lower(αc) < 0 (48)

This implies that the normalized score decreases as αc increases, and hence the classification
probability increases.

(4) With respect to variances σc and σm:

In both bounds, σc and σm appear only in the denominator. Increasing either of them increases the
total variance, which increases the normalized score f(x) (i.e., makes it less negative), and hence
decreases the classification probability 1− Φ(f(x)).

Conclusion: In both upper and lower bounds, the classification probability is monotonically increas-
ing with respect to k, ρc, and αc, and monotonically decreasing with respect to {σi}|Y|

i=1.
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A.4 Proof of Proposition 4.1

Proof. Let u, v ∈ V belong to the same cluster, i.e., P(u) = P(v) = p. In the dense attention setting
defined by mask Mc3, the attention weight from u to v is given by:

α(c3)
uv =

exp(⟨qu,kv⟩)∑
v′∈P−1(p) exp(⟨qu,kv′⟩)

Now consider the two-layer attention structure using mask Mc4. In the second layer, node u attends
to:

• Itself, with attention score α
(2)
uu

• Its virtual cluster node p, with attention score α
(2)
up

The virtual node p in the first layer aggregates from all nodes in cluster p, including v, with attention
score α

(1)
pv .

Therefore, the total contribution of node v to node u through the two-layer structure can be approxi-
mated as:

α(c3)
uv ≈

{
α
(2)
uu + α

(2)
up · α(1)

pv , if u = v

α
(2)
up · α(1)

pv , if u ̸= v

This formulation shows that the dense cluster-wise attention score can be decomposed into a mixture
of self-attention and two-hop attention via the cluster-level virtual node. This completes the proof.

A.5 Proof of Propostion 4.2

Proof. As detailed in Appendix B, the space complexity of the dense attention computation is
O(2hN2), while that of the sparse computation is O(6hmdh). By comparing the two, we conclude
that the sparse scheme is more memory-efficient when:

m

N2
<

1

3dh
⇔ κRi

<
1

3dh

where κRi
:= m

N2 denotes the relative sparsity of the receptive field. This completes the proof.

B Efficiency Comparison of Attention Computation Schemes

We provide the pseudocode for masked multi-head attention with dense computation scheme in
Algorithm 1. As illustrated, the primary memory overhead stems from storing the raw attention
scores S and the normalized attention weights A, both of which have a space complexity of O(hN2).
In total, the algorithm requires O(2hN2) memory. In terms of time complexity, the main cost comes
from three parts: (1) the linear transformations for generating the QKV matrices, which require
O(3Nd2); (2) the computation of the attention matrix, O(N2d); and (3) the multiplication between
the attention matrix and the value matrix, O(N2d). Summing up, the total time complexity of
standard MHA is O(3Nd2 + 2N2d).
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Algorithm 1 Masked Multi-Head Attention

Require: Input Z ∈ RN×dmodel , number of heads h, projection matrices WQ, WK , WV , binary
attention mask M ∈ {0, 1}N×N

Ensure: Output Y ∈ RN×dmodel

1: Project input to queries, keys, values:

Q,K,V = ZWQ, ZWK , ZWV ∈ RN×dmodel

2: Reshape and split into h heads:

Q,K,V ∈ Rh×N×dh where dh = dmodel/h

3: Compute raw attention scores (per head):

S =
QK⊤
√
dh

∈ Rh×N×N

4: Apply attention mask:

Si,j =

{
Si,j , if Mi,j = 1

−∞ (or a large negative constant), if Mi,j = 0

5: Normalize via Softmax:
A = softmax(S) ∈ Rh×N×N

6: Apply attention weights:
H = AV ∈ Rh×N×dh

7: Concatenate heads as the final output:

Y = Concathead(H) ∈ RN×dmodel

8: return Y

The sparse attention computation for head i can be formulated as:

headi(H,M)u =
∑

v∈Mu

exp
(
(HuW

(i)
Q )(HvW

(i)
K )⊤

)
∑

t∈Mu
exp

(
(HuW

(i)
Q )(HtW

(i)
K )⊤

)HvW
(i)
V (49)

where Mu = {v : Mu,v = 1} denote the key set of node u, Hu,Hv ∈ R1×d denote the repre-
sentations of node u, v, and W

(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rd×dh are the projection matrices for the i-th

head. The outputs of all heads are concatenated to produce the final output: MHAS(H,M) =
Concat(head1, . . . , headH).

Next, we present the pseudocode for Sparse Multi-Head Attention in Algorithm 2. The dominant
memory consumption arises from storing intermediate variables Q′, K′, S′, V′, and H′, each
contributing to a space complexity of O(mhdh), resulting in a total of O(5mhdh). Additionally,
computing the output H involves a Scattersum(·) operation, which requires an auxiliary buffer of size
O(mhdh). Therefore, the overall space complexity of Sparse Multi-Head Attention is O(6mhdh).
Regarding time complexity, sparse MHA consists of three main parts: (1) feature transformations,
O(3Nd2); (2) sparse attention score computation (Step 4), O(2md); and (3) output computation
(Step 6), O(2md). Therefore, the total time complexity is O(3Nd2 + 4md). A direct comparison
indicates that sparse MHA outperforms standard MHA when m

N2 < 1
2 .

According to our "Dual Attention Computation Scheme" in Section 4.4 and Proposition 4.2, we apply
sparse attention computation in most regions, except for attention from global nodes to the origin
node, which involves a dense attention region (where m

N2 = 1, as shown in Figure 2). This hybrid
design allows our method to achieve lower overall time complexity than both standard and sparse
MHA, i.e., min(O(3Nd2 + 2N2d), O(3Nd2 + 4md)).
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Algorithm 2 Sparse Multi-Head Attention

Require: Input representation matrix Z ∈ RN×dmodel , sparse index mask M ∈ Z2×m
+ , where m is

the number of non-zero entries; projection matrices WQ,WK ,WV ∈ Rdmodel×dmodel ; number of
heads h

Ensure: Output Y ∈ RN×dmodel

1: Linear projections:

Q = ZWQ, K = ZWK , V = ZWV ∈ RN×dmodel

2: Reshape for multi-head:

Q,K,V ∈ RN×h×dh , dh = dmodel/h

3: Index via sparse mask:

Q′ = Q[M0], K′ = K[M1] ∈ Rm×h×dh

4: Sparse attention score computation:

S′ = Q′ ·K′ ∈ Rm×h×dh

S = SUM(S′, dim = −1) ∈ Rm×h

5: Apply softmax normalization:
S̃ = exp(S) ∈ Rm×h

S̃sum = Scattersum(S̃, M0, dim = 0) ∈ RN×h

A = S̃/S̃sum[M0] ∈ Rm×h

6: Aggregate weighted values:
V′ = V[M1] ∈ Rm×h×dh

H′ = A ·V′ ∈ Rm×h×dh

H = Scattersum(H
′, M0, dim = 0) ∈ RN×h×dh

7: Concatenate heads as the final output:

Y = Concathead(H) ∈ RN×dmodel

8: return Y

C The Summary Table of GTs and Hierarchical Attention Masks

We summarize many Graph Transformers and their corresponding hierarchical attention masks
mentioned in Section 3 in Table 4.

Table 4: Summary of Graph Transformers and their corresponding hierarchical attention mask.
Mask Type Mask Notation Representative Graph Transformers

Local Masks
Ml1 GOAT[24], NAGphormer[5], VCR-Graphormer[15], GCFormer[6]

Ml2
NodeFormer[42], SGFormer[43], PolyNormer[11], CoBFormer[44],
NAGphormer[5], VCR-Graphormer[15], and GCFormer[6]

Cluster Masks

Mc1 Graph ViT[18], Cluster-GT[20], CoBFormer[44]

Mc2 Cluster-GT[20]

Mc3 CoBFormer[44]

Global Masks
Mg1 NodeFormer[42], SGFormer[43], PolyNormer[11]

Mg2 Exphormer[34]
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D Dataset

Table 5: The detailed dataset statistics.

Dataset #Nodes #Edges #Feats Edge hom #Classes

Cora 2,708 5,429 1,433 0.83 7
CiteSeer 3,327 4,732 3,703 0.72 6
PubMed 19,717 44,338 500 0.79 3
Photo 7,650 119,081 745 0.83 8
Computer 13,752 245,861 767 0.78 10
Squirrel 2,223 46,998 2,089 0.21 5
Chameleon 890 8,854 2,325 0.24 5
Minesweeper 10,000 39,402 7 0.68 2
Ogbn-Arxiv 169,343 1,166,343 128 0.63 40

D.1 Dataset Statistics

The detailed dataset statistics are listed in Table 5. The edge homophily is defined as:

h =
|u, v : yu = yv|

E
The Cora, CiteSeer, PubMed [45], Photo, and Computer [33] datasets are available through PyG
[14], while Ogbn-Arxiv can be accessed via the OGB platform [19]. The Chameleon, Squirrel, and
Minesweeper datasets are provided in the official repository of [31].

D.2 Dataset Splitting Protocol

For Computer and Photo, we follow the splitting protocol in [11, 15], randomly dividing nodes
into training, validation, and test sets with a 60%:20%:20% ratio over five runs. For Ogbn-Arxiv,
we adopt the official split provided in [19]. The remaining datasets are split into 50%:25%:25%
train/validation/test sets, repeated five times following [42, 31].

E Baselines

We compare M3Dphormer against 15 baselines spanning multiple model families:

1) Classic GNNs:

• GCN [23] adopts a spectral-based convolution that aggregates and transforms features from
immediate neighbors using a normalized adjacency matrix. It can be interpreted as a form
of Laplacian smoothing.

• GAT [38] introduces a self-attention mechanism to assign learnable weights to different
neighbors, enabling adaptive and context-aware feature aggregation.

• SAGE [16] is an inductive framework that samples a fixed-size neighborhood and aggregates
features through functions such as mean, LSTM, or pooling, allowing generalization to
unseen nodes and efficient training on large graphs.

2) Enhanced Classic GNNs: GCN*, GAT*, and SAGE* are strong baselines proposed in [26], a
benchmark study showing that classic GNNs can achieve significantly better performance on node
classification tasks by careful hyperparameter tuning and the incorporation of advanced training
techniques, such as residual connections [17] and normalization methods [48, 2, 21].

3) Advanced GNNs: To move beyond the widely adopted homophily assumption—that nodes of
the same class are more likely to be connected [28]—advanced GNNs such as GPRGNN [7] and
FAGCN [3] have been proposed to improve performance on heterophilic graphs.

• GPRGNN [7] employs a generalized PageRank (GPR) propagation scheme, which allows
flexible and learnable weighting over multi-hop neighborhood information. This design
enables the model to adapt to both homophilic and heterophilic graph structures.
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• FAGCN [3] introduces a frequency adaptive mechanism that modulates the importance of
low- and high-frequency components in the spectral domain. By learning a task-specific
filter, FAGCN effectively balances local smoothness and discriminative power, making it
suitable for graphs with varying levels of heterophily.

4) SOTA Graph Transformers:

• NAGphormer [5] tokenizes multi-hop neighborhoods into fixed-length sequences using a
Hop2Token module, enabling scalable and efficient node classification on large graphs.

• Exphormer [34] designs a sparse Transformer using expander graphs and virtual global
nodes, achieving linear complexity and strong performance on large-scale graphs.

• SGFormer [43] simplifies the Transformer architecture by adopting a shallow attentive
propagation without positional encodings, ensuring efficient all-pair interactions.

• CoBFormer [44] mitigates over-globalization by combining coarse-grained and fine-grained
paths, improving the model’s balance between global and local information.

• PolyNormer [11] captures complex structures using polynomial-expressive attention with
linear time complexity, and performs well on both homophilic and heterophilic graphs.

5) MoE-based GNNs:

• Mowst [47] introduces a Mixture of Experts (MoE) framework that combines a weak
expert (MLP) and a strong expert (GNN). A confidence-based gating mechanism determines
whether to activate the strong expert for each node, enabling adaptive computation and
improved performance across diverse graph structures.

• GCN-MoE [40] applies the MoE paradigm to GCNs by incorporating multiple experts
with varying neighborhood aggregation ranges. A gating function dynamically selects the
appropriate expert for each node, enhancing the model’s capacity to handle graphs with
diverse structural patterns.

F Experimental Details

This section provides the detailed experimental setup corresponding to the results reported in the
main paper.

F.1 Training Strategy

We follow the training protocol used in the official implementation of NAGphormer and train it using
a mini-batch strategy on all datasets. For all other baselines and our proposed M3Dphormer, we adopt
a full-batch training scheme. The Adam Optimizer is used for optimization.

F.2 M3Dphormer Configuration

We implement M3Dphormer by stacking multiple M3Dphormer layers. All hyperparameters are
selected via grid search over the following search space:

• Learning rate: {5× 10−4, 10−3, 5× 10−3}
• Number of M3Dphormer layers:

– Cora, Citeseer, Pubmed, Chameleon, Photo: {2, 3, 4}
– Squirrel, Computer, Ogbn-Arxiv: {5, 6, 7}
– Minesweeper: {10, 12, 15}

• Number of attention heads: {1, 2, 4, 8}
• Hidden dimension: {64, 128, 256}
• Weight decay: {0, 10−4, 5× 10−4, 10−3, 5× 10−3}
• Dropout rate: {0.3, 0.5, 0.7}
• Attention dropout rate: {0.1, 0.3, 0.5}
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• Number of clusters:

– Cora, Citeseer, Squirrel, Minesweeper: {96, 128, 160, 192}
– Pubmed, Photo, Computer: {160, 192, 224, 256}
– Ogbn-Arxiv: {2048}
– Chameleon: {32, 64, 96, 128}

We apply Pre-RMSNorm [48] before the bi-level expert routing mechanism in each M3Dphormer
layer for most datasets. For Ogbn-Arxiv, however, we adopt Post-BatchNorm due to its superior
convergence behavior. We adopt GAT-style attention for the local expert due to its computational
efficiency, and standard multi-head attention (MHA) for the cluster and global experts. This choice is
motivated by the observation in [4] that GAT-style attention suffers from a static attention problem,
which can significantly degrade the performance of cluster and global experts.

F.3 Baselines

We implement GCN, SAGE, GAT, GPRGNN, and FAGCN using PyG [14]. For all other baselines,
we use the official implementations. The corresponding repositories are listed below:

• GCN*, GAT*, SAGE*: https://github.com/LUOyk1999/tunedGNN

• NAGphormer: https://github.com/JHL-HUST/NAGphormer

• Exphormer: https://github.com/hamed1375/Exphormer

• SGFormer: https://github.com/qitianwu/SGFormer

• CoBFormer: https://github.com/null-xyj/CoBFormer

• PolyNormer: https://github.com/cornell-zhang/Polynormer

• Mowst: https://github.com/facebookresearch/mowst-gnn

• GCN-MOE: https://github.com/VITA-Group/Graph-Mixture-of-Experts

We follow the official training protocols and perform hyperparameter tuning for each model on every
dataset. The search space is defined as follows:

• Learning rate: {5× 10−4, 10−3, 5× 10−3}

• Hidden dimension: {64, 128, 256}

• Dropout rate: {0.3, 0.5, 0.7}

• Weight decay: {0, 10−4, 5× 10−4, 10−3, 5× 10−3}

For models with additional key hyperparameters, we further tune them as follows:

• Attention-based models: number of heads ∈ {1, 2, 4, 8}

• NAGphormer: number of hops ∈ {3, 5, 7, 10, 15}

• SGFormer: α ∈ {0.5, 0.8}

• CoBFormer: α ∈ {0.9, 0.8, 0.7}; τ ∈ {0.9, 0.7, 0.5, 0.3}

• GCN-MOE: number of experts ∈ {3, 4, 5}

• FAGCN: ϵ ∈ {0.3, 0.5, 0.7}

• GPRGNN: α ∈ {0.1, 0.3, 0.5}

All models are trained on a single NVIDIA GPU with 24GB memory. We run each method 5 times
and report the mean and standard deviation of the results.

31

https://github.com/LUOyk1999/tunedGNN
https://github.com/JHL-HUST/NAGphormer
https://github.com/hamed1375/Exphormer
https://github.com/qitianwu/SGFormer
https://github.com/null-xyj/CoBFormer
https://github.com/cornell-zhang/Polynormer
https://github.com/facebookresearch/mowst-gnn
https://github.com/VITA-Group/Graph-Mixture-of-Experts


Table 6: Performance and runtime comparison across datasets.
Cora Citeseer Pubmed Photo Computer Chameleon Squirrel

Dual 5.62s 4.92s 6.41s 5.34s 10.86s 5.58s 12.29s
Dense 6.69s 7.28s OOM 7.25s OOM 6.28s 16.45s
Sparse 6.28s 5.67s 7.16s 6.01s 15.56s 7.60s 14.38s
Polynormer 3.59s 2.76s 3.60s 6.02s 4.16s 3.88s 5.53s

G More Experimental Results

G.1 Runtime Comparison

We report the training time of our method over 200 epochs, and compare it against its sparse and
dense variants as well as PolyNormer [11]. The results are summarized in Table 6. We observe that
the proposed “Dual Attention Computation Scheme” achieves faster training than both sparse and
dense MHA variants. Although it is marginally slower than PolyNormer, the additional cost arises
from employing three MHA experts, which are crucial for attaining higher accuracy. Furthermore,
our model converges within 200 epochs on most datasets, rendering the time overhead acceptable.

G.2 Graph Classification Performance

We extend our method to graph-level tasks by incorporating edge features and Laplacian positional
encodings. To assess the effectiveness of this extension, we conduct experiments on two graph
classification datasets: OGBG-MOLBACE and OGBG-MOLBBBP. We compare our approach
with three widely-used GNN baselines—GCN, GAT, and GINE—which are recognized as strong
performers on graph-level benchmarks [27]. The results are summarized in Table 7.

Table 7: Graph classification performance(%± σ), measured by ROC-AUC.
Method ogbg-bace ogbg-bbbp

M3Dphormer 0.80432±0.01040 0.68232±0.00632
GCN* 0.75680±0.01676 0.65146±0.01184
GAT* 0.78149±0.01900 0.65175±0.01221
GINE* 0.74799±0.01014 0.65095±0.01143

As shown in the Table 7, our extended model outperforms the baselines on both datasets, demonstrat-
ing its strong potential for graph-level tasks.

G.3 Ablation Study on FFN Variants

In our method, the standard Transformer Feed-Forward Network (FFN) module is replaced with a
single linear layer followed by an activation function, such as ReLU [1]. To investigate the impact of
the FFN module on node classification performance, we compare M3Dphormer with its FFN variants.
The results are summarized in Table 8.

Table 8: Node classification results of M3Dphormer and its FFN variant.

Cora Citeseer Pubmed Photo Computer Chameleon Squirrel

M3Dphormer 88.48±1.94 77.53±1.56 89.96±0.49 95.91±0.68 92.09±0.46 47.09±4.05 44.34±1.94

+FFN 86.50±1.87 75.53±2.19 89.28±0.30 95.37±0.54 91.28±0.72 44.22±2.81 41.36±1.82

As observed, incorporating the FFN module often results in a noticeable performance drop, particu-
larly on datasets such as Cora, Citeseer, Chameleon, and Squirrel. We attribute this to the relatively
simple and easily learnable node features in these datasets. In such cases, capturing complex node
interactions becomes more critical, a task that is more effectively handled by the Multi-Head Attention
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(MHA) module. While MHA is commonly regarded as the core of Transformer architectures, it
is important to note that the standard FFN module typically contains twice as many parameters as
MHA (e.g., with a projection of d → 4d → d). Since meaningful structural interactions are primarily
modeled through attention, it is natural to allocate greater capacity to the MHA module.

In addition to the observed performance improvement, reducing or simplifying the FFN module can
significantly enhance computational and memory efficiency, making the model more lightweight and
scalable.

G.4 Loss and Accuracy Curves For PolyNormer

We plot the accuracy and loss curves of M3Dphormer and PolyNormer[11] in Figure 6. Across the
training, validation, and test sets, M3Dphormer consistently achieves faster convergence and higher
accuracy than PolyNormer during the training process, demonstrating the effectiveness of our method.
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Figure 6: Comparison of accuracy and loss curves between M3DFormer and PolyNormer on Arxiv.

G.5 More Visualization Results

We visualize the distribution of learned gate weights across node degree bins on Ogbn-Arxiv in
Figure 7. Several observations can be made: 1) In the first layer, the gate weights remain close to the
initialization [0.5, 0.25, 0.25], suggesting that all types of interactions are considered at the early
stage. 2) In the second layer, the weights for local and cluster experts increase, indicating a shift
in focus toward capturing structural information at local and mid-range levels. 3) In the third and
fourth layers, local experts consistently dominate across all degree bins. Meanwhile, the gate weights
for cluster and global experts exhibit a decreasing trend with increasing node degree, reflecting the
tendency of low-degree nodes—often located near cluster boundaries with low local homophily—to
rely more on broader contextual information. 4) In the final layer, we observe a notable shift: the
weights assigned to local experts decrease as node degree increases, while those for global experts
increase. This trend may be attributed to the fact that high-degree nodes have already aggregated
sufficient local information, and further local aggregation may lead to over-smoothing [25, 29, 30] or
over-squashing [36, 10].
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Figure 7: Gate weight distribution across node degree bins for different layers.
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