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Discovering User Types: Characterization of User Traits by Task-Specific
Behaviors in Reinforcement Learning
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Abstract
We often want to infer user traits when person-
alizing interventions. Approaches like Inverse
RL can learn traits formalized as parameters of a
Markov Decision Process but are data intensive.
Instead of inferring traits for individuals, we study
the relationship between RL worlds and the set of
user traits. We argue that understanding the break-
down of “user types” within a world – broad sets
of traits that result in the same behavior – helps
rapidly personalize interventions. We show that
seemingly different RL worlds admit the same
set of user types and formalize this observation
as an equivalence relation defined on worlds. We
show that these equivalence classes capture many
different worlds. We argue that the richness of
these classes allows us to transfer insights on in-
tervention design between toy and real worlds.

1. Introduction
Mobile Health (mHealth) applications are becoming popular
as cost-effective methods for improving health. The rapid
personalization of treatment on which these apps depend
is often achieved through Reinforcement Learning (RL).
For example, on a physical therapy (PT) app, RL may be
used to recommend daily exercises to a user who wants to
regain ankle mobility. Effective personalization in RL often
requires inferring information about users that is impossi-
ble to obtain directly. For example, a user’s confidence in
their physical capabilities and ability to perform long-term
planning (their degree of myopia) significantly impact their
success in prescribed fitness regimens. In our PT example,
a confident user can adhere to challenging exercises. In
contrast, a less-confident user may require simpler exercises
to build a sense of mastery (Picha et al., 2021b). However,
user traits such as confidence are difficult to infer, unlike
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age, which is easy to query.

Formalizing the user as a Markov Decision Process (MDP),
unknown user traits can be inferred using Inverse Reinforce-
ment Learning (IRL), a process for learning MDP parame-
ters (e.g. user’s discount factor) by observing user behavior.
However, standard IRL approaches are data-intensive (Yu
et al., 2019), which poses a special challenge in mHealth
settings because data collection from human experiments is
costly. In our settings, we want to make informed design
decisions about an intervention without extensive interac-
tions with the user. We do so by reasoning a priori about the
properties of the task and the set of possible user behaviors.

In this work, we formalize mHealth users as RL agents, and
their traits, specifically their level of myopia and confidence,
as parameters of a corresponding MDP (Section 2).

We argue that studying the breakdown of “user types” within
a task – regions of the parameter space that define the same
user behavior (i.e. optimal policy) – can inform the design
and personalization of interventions, even before observing
data. We visualize these user types in two-dimensional
behavior maps (Section 3.1).

We demonstrate that seemingly different tasks admit the
same behavior maps. We formalize this observation as an
equivalence relation defined on tasks (Section 3.2). We
demonstrate that each equivalence class, under our defini-
tion, is rich: we map several tasks commonly used in the
RL literature to a few classes (Section 5.1).

Finally, we argue for the value of our equivalence definition
applied to intervention design by providing an initial set
of guidelines to generate insights for intervention design
in real-life scenarios by lifting them from an equivalent,
simpler toy world (Section 5.3).

Related work. We define an equivalence relation under
which the set of user behaviors are similar amongst equiva-
lent worlds, given a set of user traits. This mapping allows
us to transfer interventions across many mHealth scenarios.

Many existing notions of equivalence in RL literature al-
low for knowledge transfer (Soni & Singh, 2006; Sorg &
Singh, 2009). For example, equivalence definitions based
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on bisimulation are used in MDP minimization, where one
reduces large state spaces to speed up planning (Givan et al.,
2003). Relaxed versions of bisimulations, for example,
MDP homomorphism (Biza & Platt, 2018), stochastic ho-
momorphism (van der Pol et al., 2020), and approximate
homomorphisms (Ravindran & Barto, 2004) allow optimal
policies in simple MDPs to be lifted to desirable policies
in more complex, comparable MDPs. More general defi-
nitions of MDP equivalence can be defined through other
methods of state aggregation (e.g. value-equivalence) (Li
et al., 2006). Overall, these notions of equivalence are de-
fined over the set of MDPs. In contrast, we decompose an
MDP into task-specific and user-specific components, and
we consider equivalences between the task-specific compo-
nents of MDPs while allowing the user-specific components
to vary (capturing different combinations of user traits).

Notions of equivalence from IRL are more directly related to
our motivation of modeling user behavior, but they operate
on a fundamentally different paradigm. IRL equivalence
finds different rewards (Ziebart, 2010) or transitions (Reddy
et al., 2018; Golub et al., 2013) that are equally likely under
the demonstration data provided by one user. In contrast,
our work assumes the existence of multiple users, and we
want our equivalence to define which MDPs (worlds) will
result in the same partition over these users.

Instead of learning the user’s reward or transitions separately,
Herman et al. (2016); Evans et al. (2016); Shah et al. (2019);
Zhi-Xuan et al. (2020) learn them simultaneously. Like us, a
subset of these works (Evans et al., 2016; Shah et al., 2019;
Zhi-Xuan et al., 2020) model humans as RL agents with
maladaptive MDPs. However, inferring an agent’s (maladap-
tive) MDP parameters from demonstration is known to be
a difficult and non-identifiable problem (Shah et al., 2019).
We address this problem by defining an equivalence that
allows us to anticipate which users will be indistinguishable
in a given world.

2. Formalizing Users as RL Agents
We use Markov Decision Processes (MDP) to model human
behavior in sequential decision-making tasks, such as an
agent deciding to perform or not perform prescribed PT
exercises. We refer to such tasks as worlds. User behavior
within a world varies according to two traits, (1) the user’s
level of myopia and (2) the user’s confidence level, which
we capture as parameters of the MDP. For simplicity, in this
paper, we only consider discrete state spaces.

Worlds. We define a world as a tuple W = ⟨S,A,R⟩ of
states S , actions A, and rewards R. This tuple captures the
environment and the task in an application of interest (see
Figure 2 for examples of grid worlds).

The User MDP. We define the user MDP as a tuple

M = ⟨S,A, Tp,R, γ⟩ of states S , actions A, transitions Tp
parameterized by a user “confidence level” p, rewards R,
and discount factor γ. Here, γ models the user’s level of
myopia, and Tp models the user’s perceived world dynamics
as a function of their confidence level p.

We split the user MDP into two components: user-specific
parameters γ and p (the user traits), and application-specific
world W: M = W︸︷︷︸

application specific

+ ⟨γ, Tp⟩︸ ︷︷ ︸
user specific

.

An RL agent acts in the world, W = ⟨S,A,R⟩, accord-
ing to policy π : S → A, yielding a cumulative reward

(expected returns): Jπ = E
[

T∑
t=0

γtrt

]
. The optimal pol-

icy for the user MDP maximizes the expected returns:
π∗ = max

π
Jπ . We assume that users are RL agents that fol-

low the optimal policy for their corresponding user MDPs.

User Behaviors. Using our formalism, we can now model
how and why users with different traits behave differently
in the same world. For example, two people with different
levels of myopia would judge different PT behaviors to be
optimal in their respective MDPs. Our model attributes
systematic differences in users’ behavior (i.e. differences
in their optimal policy) to differences in user traits (i.e. the
user-specific parameters of their MDPs). In the following,
we connect our formalization of user traits (their level of
myopia, γ, and their confidence level, p) to well-studied
constructs in psychology and behavioral science.

Myopia corresponds to the concept of temporal discounting
in psychology. In user MDPs, we represent temporal dis-
counting with γ ∈ [0, 1). This captures people’s tendency
to undervalue future rewards, often leading to unhealthy
behavior (Story et al., 2014). However, we note that in RL,
discounting is exponential by default, which does not cap-
ture hyperbolic discounting (preference switching) observed
in humans (Ainslie & Haslam, 1992; Shah et al., 2019).

In behavioral science, confidence, also known as self-
efficacy, measures an agent’s belief in their capability to
perform a task (Picha et al., 2021a). Intuitively, this is the
user’s perceived probability that their intended outcome oc-
curs due to their action. In user MDPs, we represent the
user’s confidence level with p ∈ [0, 1], which is part of the
transitions Tp. Suppose s′ is the user’s intended outcome
for action a from state s. Then, T (s, a, s′) = p. We dis-
tribute the remaining 1− p probability equally among the
ŝ′ ∈ Ŝ possible outcomes: T (s, a, ŝ′) = 1−p

|Ŝ| . This formal-
ization of confidence captures the phenomenon observed
in psychology, where people with a higher belief in their
own abilities persist for longer in the face of obstacles and
adverse experiences (Bandura, 1977).
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Figure 1: Example behavior map (Big-Small world). Anno-
tations describe the procedure for deriving the equivalence
class. The x-axis varies over discounting, γ; the y-axis
varies over the confidence level, p. “Extreme” users, i.e.
corners of the map, are labeled as circles. The number of
“behavior switches” when tracing each edge between ex-
treme users (from A to B, to C, to D, and back to A) are
labeled as squares.

3. Equivalence Relation on the Set of Worlds
In this section, we define an equivalence relation on the set
of worlds, identifying worlds that admit the same partition
of the user parameter space (2-D space of γ, p) induced by
user behaviors. This definition allows us to reason about one
(usually more complex) world by transferring knowledge
about user behaviors from an equivalent (simpler) world.

3.1. Behavior Maps

Given a world W , we define a “behavior map” as the parti-
tioning of the user parameter space, γ ∈ [0, 1)× p ∈ [0, 1],
by user behavior (see Figure 1). We argue that behavior
maps, denoted as BW , can inform the design and deploy-
ment of interventions on user traits (for example, interven-
tions to increase γ). Specifically, they can help us (1) de-
termine to what extent user traits are identifiable through
behavioral observations; (2) warm-start an intervention strat-
egy for interacting with new users; and (3) estimate the
required effect sizes for these interventions.

Identifiability of User Traits. Behavior maps allow us to
anticipate the limits of what we can infer about a user using
IRL or related methods, i.e. by observing their behavior in
a given world. In fig. 1, we can distinguish between users
with low and high discount factors by their corresponding
behaviors but generally cannot distinguish between users

with different confidence levels. Thus, we would need infor-
mation outside of what is typically collected for RL to infer
confidence level in this setting.

Warm-start Intervention Strategy. Given a world and a
new user, behavior maps can help select an intervention
that, a priori, is likely to have more impact. In particular,
the more variation in user behavior along a given axis, the
more likely an intervention on the corresponding trait will
change the user’s behavior. For example, in fig. 1, we know
that an intervention on γ is more likely to change the user’s
behavior than an intervention on p.

Intervention Effect Size. If the behavior map has coarse
partitions, effect sizes must be large, and variance in the
effect must be tolerable. If the behavior map is finely parti-
tioned, a small effect size may still accomplish behavior a
desirable change. Still, a high variance in the effect could
lead to unexpected and potentially undesirable changes.

Although useful, directly computing the behavior map for a
complex application such as PT requires solving user MDPs
for a range of user parameters – this is generally compu-
tationally impractical. Instead, to get the same insights,
we reduce the PT world W to a simpler toy world W ′, for
which we can easily compute BW′ . Below, we define an
equivalence relation that allows us to make this reduction.

3.2. Equivalence Relation

We consider two worlds similar if their corresponding behav-
ior maps are equivalent. Suppose two different applications,
such as PT and dieting, have the behavior map from fig. 1: in
both applications, confidence does not impact user behavior,
and users with low gamma have one behavior, while users
with high gamma have another. In this way, PT and dieting
are similar worlds because insights that inform intervention
design can be transferred from one to the other. The initial
intervention strategy should focus on γ instead of p in both
cases.

We consider two behavior maps to be equivalent if the shapes
of the decision boundaries between behaviors on the behav-
ior map are the same. We want our equivalence definition
to be invariant to stretching or translating these boundaries.
In our example, we want to say that PT and dieting have
equivalent behavior maps if users with low γ act differently
from users with high γ. However, what is considered to be
“low” or “high” γ value need not match exactly between the
two applications; hypothetically, in PT, the range for “low”
γ could be [0, 0.3] and in dieting, the range could be [0, 0.2].

In the following, we provide the formalism for equating
two behavior maps. Intuitively, we consider each map as
a diagram wherein ni number of vertices is placed on the
i-th edge (indexing counter-clockwise from the lower left
corner) and where each pair of vertices is connected by a
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curve defined by a decision boundary separating two user
behaviors. We say two maps are equivalent if, as diagrams,
they are topologically equivalent under some transformation
that preserves the ordering of the vertices on each edge. We
now present this formally.

Definition 3.1 (World Equivalence Induced by Behavior
Map). We define an equivalence relation, ≡map, on the set
of discrete worlds W by

W ≡map W ′, W,W ′ ∈ W

if and only if there is an ambient isotopy h : BW × [0, 1] →
BW′ between the decision boundaries in BW and the de-
cision boundaries in BW′ . Furthermore, each ht is order-
preserving when restricted to segments of the behavior map
boundaries. That is, each

ht|{γ=0}×{p}, ht|{γ=1}×{p},

ht|{γ}×{p=0}, ht|{γ}×{p=1} : [0, 1] → [0, 1],

is an order-preserving map.

The definition considers behavior maps in their entirety.
However, we are specifically interested in worlds whose
behavior maps are equivalent on the edges – that is, worlds
for which the set of behaviors at extreme values of user
parameters are identical.

In practice, computing the entire behavior map for arbitrarily
complex applications can be impractical. Instead of relying
on the entire behavior map, we simplify our equivalence
definition to rely only on behavior at the extremes (edges of
the map). Behavioral science can justify this simplification,
as behaviors at the extremes are more extensively studied
in psychology than average behaviors (e.g., the relation-
ship between extreme discounting and health (Story et al.,
2014)). In particular, this means that we may be able to use
domain knowledge to quickly map a complex world to an
equivalence class rather than directly solving a set of user
MDPs.

Definition 3.2 (World Equivalence Induced by Behav-
ior Map Boundaries). We define an equivalence relation,
≡∂map, on the set of discrete worlds W by

W ≡∂map W ′, W,W ′ ∈ W

if and only if there is a ambient isotopy h : ∂BW × [0, 1] →
∂BW′ between the decision boundaries in ∂BW and be-
tween the decision boundaries in ∂BW′ . Furthermore, each

ht|{γ=0}×{p}, ht|{γ=1}×{p},

ht|{γ}×{p=0}, ht|{γ}×{p=1} : [0, 1] → [0, 1],

is an order-preserving map.

We note that applying Definition 3.2 reduces to counting
the number of decision boundary components (i.e. behav-
ior changes) along each edge of a behavior map (as de-
scribed in Figure 1). That is, maps M and M ′ are equiva-
lent under Definition 3.2 if the number of behavior changes
on each map edge M is equal to the number of behavior
changes on the corresponding edge of map M ′. Thus, in-
dexing the edges, starting from the lower left corner, in a
counter-clockwise fashion, each equivalence class can be
represented simply as a vector [n1, n2, n3, n4], where ni is
the number of behavior changes along the i-th edge.

4. Atomic Worlds: Simple Representatives of
Equivalence Classes

Under Definition 3.2, we seek the simplest representative
worlds, called atomic worlds, for each equivalence class.
User behaviors can be easily characterized in these toy
worlds and the insights transfer to more complex worlds
in the same equivalence classes. In our experiments, we
identified three atomic worlds that other worlds commonly
reduced to: Big-Small world, Cliff world, and Wall world.
The worlds are visualized in Figure 2, and the corresponding
behavior maps are given in Figure 3. The same real-world
application can be mapped to different atomic worlds, de-
pending on which aspects of the application we focus on.
Using our PT application, we show how different aspects
of user decision-making – choosing consistency of exercise,
level of intensity, and type of therapy – map to different
equivalent classes, represented by their atomic worlds – Big-
Small, Cliff, and Wall, respectively.

The Big-Small world is characterized by a trade-off between
choosing a smaller, more convenient reward and a bigger
reward that is more difficult to reach. In mHealth, this world
reflects scenarios in which smaller rewards, such as the
time benefit of skipping PT for the day, preclude larger but
delayed rewards, such as a fully rehabilitated ankle.

The Cliff world is characterized by a harmful absorbing
state that may happen due to an action going awry. For
example, deciding the intensity of the PT regimen can be
modeled as a Cliff world. A high-intensity regimen could
accelerate recovery but also risk re-injuring the patient.

The Wall world is characterized by choosing between a
costly, short path to the goal and a longer, free path to the
same goal. This can model the trade-off in choosing the type
of physical therapy: virtual therapy may be more affordable,
while in-person therapy is more costly and targeted.
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Start -10 -10 -10 Goal
(100)

0 -10 -10 -10 0

0 -10 -10 -10 0

0 -10 -10 -10 0

0 -10 -10 -10 0

0 0 0 0 0

Wall World

Through Wall
Around Wall

(a) A 6 × 5 Wall World where agents can
pass directly through a costly wall (orange)
or take the longer, safer path around it (blue).

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Start - - - - - - Goal

Cliff World
Safe
Dangerous

(b) A 4 × 8 Cliff World where agents can
walk close to the cliff and risk ruin (blue) or
keep space but walk farther (orange).

Start 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Small R 0 0 0 Big R

Big-Small World
Close small R
Far large R

(c) A 5× 5 Big-Small World where agents
can walk straight down to a small reward
(orange) or farther to a bigger reward (blue).

Figure 2: Each atomic world has two qualitatively distinct behaviors (shown with blue and orange arrows). Each diagram
displays what the world looks like. It also shows the possible behaviors within each world.

5. Empirical Analysis
5.1. Our equivalence classes are rich

We illustrate that our equivalence classes are rich by reduc-
ing multiple distinct worlds to one of our atomic worlds. As
a result, we expect many worlds that model real-life appli-
cations can be reduced to these atomic worlds (or straight-
forward combinations of atomic worlds), allowing us to
transfer our understanding of these simpler settings onto
unexplored and seemingly complex ones.

We study several worlds commonly used in RL literature:
Chain, RiverSwim, and Gambler’s Fallacy (details in Ap-
pendix A). Under our definition, Chain (fig. 3d), RiverSwim
(fig. 3e), and Gambler’s Fallacy V1 (Figure 3f) are equiv-
alent to Big-Small (Figure 3c); these are worlds in which
the user chooses between a readily available but small re-
ward (i.e., disengaging in Chain, swimming downstream
in RiverSwim and Finishing in Gambler’s) and a greater
but more time-consuming reward. Gambler’s Fallacy V2
(Figure 3g) is equivalent to Cliff World – both worlds have
a “catastrophic absorbing state”, that is, a nonzero risk of
ending up in an absorbing state with a negative reward.

5.2. Our equivalence definition is robust to parameter
perturbations in world definitions

We want a world to remain within its equivalent class despite
minor parameter adjustments (e.g. the world for a month-
long PT program should be in the same class as that for a
2-month program). This is evidence that our equivalence
definition captures essential rather than incidental qualities
of applications.

Concretely, we expect Big-Small to remain within its equiv-
alence class despite parameter changes, such as the world’s

width or the ratio of the big to a small reward. We verify
this in Figure 4. In Appendix B, we provide additional
evidence of how our equivalence classes withstand perturba-
tions across more parameters for all 7 worlds investigated.

5.3. Our equivalence definition can inform real-world
intervention design

In this section, we provide general guidelines for how one
would use our equivalence definition to generate interven-
tion insights for real-world applications:

1. Mapping real world to atomic world: Many real-
world applications can be quickly mapped to an atomic
world with domain knowledge. For example, behavior
scientists can often describe expected user behavior at
the extremes – e.g. “how many different behaviors are
there for users with very low confidence?”

2. Lifting insights from atomic world to real world:
Given a fixed intervention, if the intervention depends
on inferring γ or p more precisely than the atomic
world indicates, an external source of information is
needed (e.g. users take an additional questionnaire to
estimate their discount factor).

Given a choice of interventions, we can select an inter-
vention based on the mean and variance of the effect
size needed for the task, according to the behavior map
of the atomic world. For example, if the application
reduces to a Wall world (see fig. 3a), and it’s desirable
for users to go through the Wall, then the effect on γ
must not exceed ≈ 0.99− 0.71 = 0.28.

We can also decide on an initial intervention strategy.
If the atomic world indicates user behaviors vary more
along one axis (e.g. user behaviors differ by γ but not
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(a) Wall world example behavior map be-
longing to equivalence class [2, 0, 2, 0].
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(b) Cliff world example behavior map be-
longing to equivalence class [1, 1, 0, 0].
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(c) Big-Small world example behavior
map belonging to equivalence class [1,
0, 1, 0].
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(d) Chain world example behav-
ior map belonging to equivalence
class [1, 0, 1, 0].
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(e) RiverSwim world example be-
havior map belonging to equiva-
lence class [1, 0, 1, 0].
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(f) Gambler’s Ruin world (with
varying pC) example behavior
map belonging to equivalence
class [1, 0, 1, 0].
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(g) Big-Small world example be-
havior map belonging to equiva-
lence class [1, 0, 1, 0].

Figure 3: This figure shows that seemingly different worlds (bottom row) produce behavior maps that can be classified into
the same class as one of our atomic worlds (top row).

p), then the initial strategy is to intervene on γ.

6. Discussion & Future Work
We expect there exist more atomic worlds than the three ex-
plored in this paper, especially when worlds have more than
two qualitatively distinct strategies. Further work involves
finding new classes and categorizing novel scenarios.

Furthermore, our RL-focused analysis of grid worlds would
benefit from experiments on human behavior. For exam-
ple, the equivalence classifications can be supported by
studies of ways to map between real-life mHealth settings
and atomic world MDPs, leveraging existing methods and
knowledge from behavioral science and psychology.

Complex real-life scenarios will unlikely map neatly onto
a singular atomic world; however, we conjecture that some
worlds may fall into compositions of atomic worlds. Some
initial experiments with composite worlds indicate that the
Big-Small and Cliff world composition leads to a behavior
map that combines the atomic worlds’ respective maps. This
further supports the generality of our equivalence classes

since complicated scenarios can be broken down into atomic
worlds that each capture a unique dynamic of the MDPs.

7. Conclusion
This work proposes a novel method for informing mHealth
interventions that affect user behavior through changing
user traits. We define an equivalence relation between se-
quential decision-making tasks based on how user behaviors
partition the configuration space of user traits. We demon-
strate that a number of seemingly different RL scenarios
map to one of a few equivalence classes, each represented
by a simple toy world. In particular, we argue that many
real-world applications can be mapped to simple toy worlds
by leveraging domain knowledge in behavioral science and
psychology. We show how insight into simple intervention
design can be lifted to complex settings within the same
equivalence class. We believe that our work highlights an
interesting direction for intervention design that comple-
ments or bypasses data-intensive inference of user traits via
traditional IRL.
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Figure 4: A Big-Small world stays within its equivalence
class for many different parameter combinations. The exam-
ple behavior maps have different values for the world width
and the magnitude of the far-away large reward, while the
rest of the parameters are fixed as height = 7 and Big
far R = 300.
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A. Descriptions of Each World from the Literature
Below, we present the MDPs for the MDPs from the mHealth literature we study in this work, i.e., the Chain World,
RiverSwim World, and Gambler’s Ruin in Figure 5, Figure 6, and Figure 7. Blue arrows indicate the behavior corresponding
to the blue behavior in the corresponding behavior maps, likewise for orange arrows.

Figure 5: In the Chain world, users can choose to “exercise,” or progress step-by-step to reach the desired goal. At each
stage, they also have the option to “disengage,” which results in a smaller reward and the termination of their progression.

Figure 6: In the RiverSwim world, the user can choose the rightward “upstream” action, which has a chance of successfully
advancing the user toward the larger reward but also a failure probability of staying in place or falling behind. They can also
choose the leftward “downstream” action that deterministically moves the user toward the small reward on the far left.
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Figure 7: In the Gambler’s Ruin (Bandit Problem) world, users can choose the “continue” action, which can either move the
user one step left toward the dead-end state or one step right toward the goal state. They can also choose the “finish” action,
moving them directly to the dead-end or goal state.
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B. Parameter Perturbations for Each World
Below, we present more comprehensive investigations into the invariance of the different worlds to changes in the world
parameters under our definition of equivalence. Different worlds have different sets of parameters to perturb and different
ranges for which they remain invariant.
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Big-Small Equivalence Class Invariance
Default: height=7, width=7, big_reward=300, small_reward_frac=0.5

Figure 8: This array of graphs depicts behavior maps within the Big-Small world across variations of multiple parameters,
such as world size and magnitude of rewards. While the graphs are not identical, all these maps are still in the same
equivalence class under our definition, indicating their robustness to parameter perturbations.
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Figure 9: This array of graphs depicts behavior maps within the Chain world across variations of six parameters, including
world size and disengagement probabilities. These maps are placed in the same equivalence class under our definition,
indicating their robustness to parameter perturbations.
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Figure 10: This array of graphs depicts behavior maps within the Cliff world across variations of three parameters: height,
width, and reward size. These maps are placed in the same equivalence class under our definition, indicating their robustness
to parameter perturbations.
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Figure 11: This array of graphs depicts behavior maps within the Gambler’s Ruin world across the width and reward size
variations while holding the failure probability

(
pF

)
constant. These maps are placed in the same equivalence class under

our definition, indicating their robustness to parameter perturbations.
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Figure 12: This array of graphs depicts behavior maps within the Gambler’s Ruin world across the width and reward size
variations while holding the “continue” probability

(
pC

)
constant. These maps are placed in the same equivalence class

under our definition, indicating their robustness to parameter perturbations.
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Default: height=1, width=7, prob=0.8, gamma=0.9, big_r=10, small_r=1

Figure 13: This array of graphs depicts behavior maps within the RiverSwim world across the width and reward sizes
variations. These maps are placed in the same equivalence class under our definition, indicating their robustness to parameter
perturbations.
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Figure 14: This array of graphs depicts behavior maps within the Wall world across variations of world size and reward
magnitude. These maps are placed in the same equivalence class under our definition, indicating their robustness to parameter
perturbations.


