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Abstract

Distances between probability distributions are a key component of many statistical
machine learning tasks, from two-sample testing to generative modeling, among
others. We introduce a novel distance between measures that compares them
through a Schatten norm of their kernel covariance operators. We show that
this new distance is an integral probability metric that can be framed between a
Maximum Mean Discrepancy (MMD) and a Wasserstein distance. In particular, we
show that it avoids some pitfalls of MMD, by being more discriminative and robust
to the choice of hyperparameters. Moreover, it benefits from some compelling
properties of kernel methods, that can avoid the curse of dimensionality for their
sample complexity. We provide an algorithm to compute the distance in practice by
introducing an extension of kernel matrix for difference of distributions that could
be of independent interest. Those advantages are illustrated by robust approximate
Bayesian computation under contamination as well as particle flow simulations.

1 INTRODUCTION

Statistical distances are ubiquitous in the fundamental theory of machine learning and serve as the
backbone of many of its applications, such as: discriminating between the generative model and real
data in Generative Adversarial Networks (GAN) [Goodfellow et al.,|2014} |Arjovsky et al., 2017, L1
et al.; 2017, |Genevay et al.| 2018, Birrell et al.| 2022], testing whether a dataset is close to another
(two-sample test) [Eric et al.| [2007| |Gretton et al.| 2012, [Hagrass et al., 2024] or to a particular
distribution (goodness-of-fit test), as well as acting as an objective loss function in particle gradient
flows [Arbel et al., 2019} [Feydy et al., 2019, |[Korba et al., 2021} |Hertrich et al., 2023}, Neumayer et al.,
2024/ |Chen et al., 2024], or in minimum distance estimators [Wolfowitz, 1957, |Basu et al., 2011]].

A class of distances between probability distributions, called Integral Probability Metrics
(IPM) [Miiller, (1997], is defined by measuring the supremum of difference of integrals over a
function space. It comprises many popular metrics such as the Total Variation distance, Wasserstein-1
distance and the Maximum Mean Discrepancy (MMD) [Gretton et al.,2012] also known as quadratic
distance [Lindsay et al., 2008]. IPMs’ theoretical properties were largely investigated in the literature,
such as their statistical convergence rate [Sriperumbudur et al.,[2010], concentration for inference
using ABC [Legramanti et al., [2022], PAC-Bayes bounds [Amit et al.,[2022], as well as adversarial
interpretations [Husain and Knoblauch, 2022]. For instance, the MMD enjoys a fast statistical

convergence rate of O(n~ %) while the Wasserstein distance suffers from the curse of dimensionality

with a rate no better than @(n’é) [Kloeckner, 2012]|. One could wonder: how large such a function
space could be before the curse of dimensionality kicks in? In this work, we theoretically investigate
how to get closer to such frontier by defining an extended family of kernel distances, that write as
novel IPM whose dual function space is larger than the one of MMD.
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Kernel methods allow to represent a distribution by a vector by associating to a datapoint = a feature
map image () in a Hilbert space, and by doing so, embed in a linear way a distribution  to what
is called a (kernel) mean embedding Ex .., [p(X)] = [ ¢(x)dpu(z). However mean embeddings for
different distributions may have different “energies”, i.e., squared Hilbert norms, which may lead
to several pitfalls of MMD. In quantum information theory [Watrous, |2018], a similar idea to mean
embedding is called superposition. The quantum equivalent of a datapoint or deterministic Dirac
distribution is called a pure state and is a projector of rank and trace one, that could be denoted vv*
(or |v)(v]) for a unit vector v. Its analog for a general probability distribution is called a mixed state
and is the superposition ), p(v)|v)(v| where p(v) are probabilities. A non-trivial mixed state can
hardly be confused with a pure state as a linear combination of different projectors is of higher rank
than 1: using projecting operators instead of the vectors themselves makes the linearity less “trivial”.
As those positive definite operators can be diagonalised, by using always the same orthogonal basis
and studying the eigenvalues, we recover classical probabilities, and as such we can see quantum
probabilities as their extension. Recently, the work of Bach|[[2022] introduced a novel divergence
between probability distributions, by plugging a kernel operator embedding of the distributions
(which are also positive definite operators) in the Von Neumann relative entropy from quantum
information theory (i.e., a Kullback-Leibler divergence between positive Hermitian operators), and
whose statistical and geometrical properties were investigated more in depth in |Chazal et al. [2024]).
Instead of considering a divergence on such operators, here we propose to draw inspiration from
quantum statistical metrics, which enjoy nice geometrical properties such as the triangle inequality.
Two of them are well-known and mutually bounding: the Bures metric, and the trace distance, on
which we focus here, and which is derived from a (Schatten) norm.

Related works The kernelised version of Bures metric, i.e., a Bures metric between kernel covari-
ance operators, has been studied for instance in |Oh et al.|[2020], Zhang et al.|[2019]. The closest
work to ours is the one by Mroueh et al.|[2017]. They consider a similar metric to ours, i.e. the
trace distance, that they refer to as Covariance Matching IPM. It shares the same dual writing as
the metric we consider, yet, in that work, the dual problem is solved through a numerical program
involving neural networks that approach kernel features. Hence, they compute an approximate
version of their target metric. In contrast, we use kernel features directly in the dual formulation,
and derive a closed-form for the metric leveraging a kernel trick. Moreover, we provide theoretical
guarantees regarding this metric and investigate different numerical applications than the one of the
GAN considered in Mroueh et al.|[2017].

Contributions Our main contributions can be summarized as follows:

(i) Inspired by quantum statistics, we introduce a novel distance between probability distribu-
tions called kernel trace distance (diT).

(i) We show that dxr is an IPM and illustrate several of its theoretical properties, mainly: a
direct comparison to MMD, robustness to contamination, and statistical convergence rates
that do not depend on the dimension.

(iii)) We showcase how to compute dx 7 and illustrate its practical performance on particle
gradient flows and Approximate Bayesian Computation (ABC).

Organisation of the paper In section 2, we provide some background on quantum statistical
distances and introduce dx . In section |3, we explain further the motivation to introduce dgxr,
notably by comparing it with the other distances, MMD in particular. We show in section 4, under
some eigenvalue decay rate assumptions, convergence rates that do not depend on the dimension, as
well as robustness. In section 2.3, we explain how to compute d k7. Finally, we illustrate our findings
by experiments in section

2 Kernel Trace Distance

For a positive semi-definite kernel k£ : X x X — R, its RKHS 7 is a Hilbert space of real-valued
functions with inner product (-, -} and norm || - ||%. It is associated with a feature map ¢ : X — H
such that k(z,y) = (¢(z), ¢(y))n. We denote L(H) the space of bounded linear operators from
H to itself. For a vector v € H, v* denotes its dual linear form defined by v*(w) = (v, w) for any
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w € H. For an operator T' € L(H), T* is its adjoint. || - ||, denotes the p-Schatten norm explicited
below.

Assumption 0. In the whole paper, we restrict ourselves to the setting of a completely separable set
X, endowed with a Borel o-algebra, and a separable RKHS 7 of real-valued functions on X, with a
bounded continuous strictly positive kernel.

2.1 Background

RKHS density operators [Bach, 2022]. Let ;x a measure on X'. Define ® the kernel covariance
operator embedding as:

B = [ @pla) duto) M)

We will call 3, the RKHS density operator of p, in reference to the wording of density operator
in quantum information theory: this is to insist that X, is an embedding in itself (with feature map
©(-)¢(+)*), rather than just the covariance of a mean embedding with feature map . The operator £,
is self-adjoint, and positive semidefinite when p is a probability measure. To keep the analogy with
quantum density operators, similarly toBach/[2022]], we consider kernels respecting the property:

Assumption 1. Vz € X, k(z,z) = 1.

to ensure Tr 3, = 1 (as in the sum of all probabilities equals one). If Vo € X, k(x,z) = M fora
non-zero constant M # 1, it is will be easy to generalize many of our results later by dividing by
M, so this assumption is not too restrictive. If the kernel does not verify Assumption [I]but is strictly

positive, it is could also be normalised using k(z, y) = k(k(m’)i?( ) instead.
z,2)k(y,y

Schatten norms. We now provide some background on Schatten norms [[Simon, |2005]. For an
operator T € £(H) and p € [1,00), the p-Schatten norm is defined as ||T||, = (Tr(|T|?))!/? where

|T| = VT*T. If T is compact, this can be rewritten as the p-vectorial norm of the singular values of
T. It also admits a dual definition, denoting ¢ such that 1/p + 1/q = 1:

1T, = sup (U, T) 2)
UeL(m),||U]l,=1
where the inner product is (U, T) = Tr(U*T).
The Schatten 2-norm is the Hilbert-Schmidt norm with respect to this inner product: ||T||s =
Tr(7*T). Then, the Schatten co-norm is the operator norm : ||T|sc = Sup, a0 ||||wHHH i.e., the

maximum of the singular values of the operator in absolute value. We have the following inequalities:

+ For 1 <p < q < o0 VT € LK) 1Tl > |71y = 1T]]y > 1T]]oe-
« VT, € L), |7 < |[T]lo]IS]ls 3)

* From this, it can be deduced taking 7" as the identity operator, for  of finite dimension:

VS € L), [|S|h < v/dim(H)[|S]|o- )
2.2 Definition

In quantum information theory, the trace distance is a mathematical tool that can be used to compare
density operators by measuring the Schatten 1-norm of their difference. Inspired by this, we define:

Definition 2.1. The kernel trace distance between two probability measures y, v on &’ is defined as:
dir(p,v) =[5, = Sull1.

We will also relate it to other distances such as:

* Wasserstein distances [Villani, 2009]:

Wa(u,v) =  inf // z,y)dn(z
a(p, v et y)dm(z,y)

where d : X x X — RT is a cost and II(u, v) denotes all the possible couplings between
and v. The Wasserstein-p distance is obtained by replacing d by its power d” in the integral
and taking the p-root of the whole expression.
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* The Bures distance [Bhatia et al.l[2019] on positive definite matrices A:
dpw(A,B) = \/Tr A+ Tr B — 2F(A, B)

where F(A,B) = Tr(AY2BA'Y?)1/2 is called the fidelity. It coincides with the
Wasserstein-2 distance between two normal distributions (also called Bures-Wassertein
distance) with identical mean, and different covariances A and B. The formula can be
extended to operators with finite traces.

* The Kernel Bures distance [Zhang et al.,|2019] is defined as:
drpw (1, v) = dpw (X, X0).

* The Total Variation is a special case of the Wasserstein distance where the cost is d :
(x,y) — 1,—, and can be expressed as:

llw—vllrv = %/x lu(z) — v(z)|de

* The Maximum Mean Discrepancy [Gretton et al.,[2012]]:

‘/ x)dx — /Xk:(m, Jv(x)dx

¢ Integral Probability Metrics (IPM) [Miiller, 1997|] defined as:
d(p,v) = ;gg{\Ex~u[f(X)] = Exw[f(X0)]}

where the function space JF is rich enough to make this expression a metric. The Wasserstein-
1 distance, the TV and MMD are IPMs (with F being 1-Lipschitz functions w.r.t. || - ||,
functions with values in [-1,1], and a RKHS unit ball respectively).

MMD(y, )

H

Proposition 2.2. Ifk? is characteristic i.e ® is injective, A1 and di pw are metrics.

PROOF. Symmetry, non-negativity, triangle inequality and d g7 (u, 1) = 0 (resp. dx pw (i, 1) = 0)
are naturally inherited from the Schatten norm on operators for d 7 and from the standard Bures-
Wasserstein distance for dx gw . Then, as dgr (i, v) = 0 (resp. dx pw (1, v) = 0) implies £, = %,,
injectivity of ® enforces 1 = v.

Examples of characteristic kernels are the family of Gaussian kernels, whose squared kernel also
belong to, modulo a change of parameter. On compact set, a sufficient condition for characteristicity
is universality [Steinwart, [2001], see for instance |Bach|[2022].

2.3 Computation for discrete measures

As interesting, i.e. expressive RKHS are often of infinite dimension, computations with kernel
methods relies on the so-called “kernel trick”, reducing computation on the empirical kernel matrix
(Gram matrix of two sets of samples using the kernel inner product) which is of finite dimension. It is
well-known that the spectrum of the covariance operator 3, are the ones of the kernel Gram matrix
(k(wi,25))7 ;= divided by the number of samples [Bach, 2022, Proposition 6]. Here, we generalise
the concept for differences of distributions.

First, notice that ¥, — X, = X, _,, ., which incites us to consider the samples from each
distribution altogether. We denote without duplicates (zj)r=1, .., the samples in the union of
the sample sets X, Y (corresponding respectively to distributions un, Vm), Where r is the number
of distinct elements in X,Y. We note Z = [p(2x)]g=1...r the column of vectors in H where

<Pl(2k) =/ (n = vm) {26 1)e(20) if (s — vim) ({28}) = 0, @(21) = iv/[ (1 — vm) {26 }) |0 (21)
else.

We can see Z by a slight abuse of notation as the linear map 7 : H — Cljv +—
[(&(z1),0), ..., (¢(2),v)] and by duality Z* (real not Hermitian adjoint) would be the linear map
Z*:C" = H,u— Zi:L___ » Ui P(2;).

Then we define the difference kernel matrix as K = Z*Z. Typically, in case where all samples are
distinct, X NY = 0 and (un, — vm)({21}) = un({zr}) = 1/n for samples z;, € X from u,, and
(ttn — vm)({zk}) = —vm ({2 }) = 1/m for samples z;, € Y from v,,,, then
1
=K
K= n XX
v Kvx |

,LKYY

m
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where Kx x, Kyy, Ky x, Kxy are the usual kernel Gram matrices. Other cases are similar, adjust-
ing the probability weights on rows and columns.

Proposition 2.3. Assume the kernel is such that for any family (x) of distinct elements of X, (p(x))
is linearly independent. The difference kernel matrix K as defined just above and ¥, _,, . have the
same eigenvalues, whose Schatten 1-norm is d g (fin, Vim )-

The proof of Proposition [2.3]is deferred to Appendix The condition is verified by the Gaussian
kernel and more generally it is equivalent to the kernel being strictly positive. It is sufficient to get the
eigenvalues by either Autonne-Takagi factorisation [Autonne, 1915| Takagi, 1924], Schur or Singular
Value decomposition, and compute their 1-norm. This SVD is of complexity O(r3) in general.

3 Discriminative properties

In this section, we study the discriminative properties of the dxr distance and how it relates to
alternative distances between distributions introduced previously.

3.1 Comparison with other distances

We first show that our novel distance d 7 belongs to the family of Integral Probability Metrics (IPM).
Proposition 3.1.
(i) dir is an IPM with respect to the function space F1 = {f : z — o(x)"Up(z)|U €
L), ||U]loo = 1}
Moreover if Assumption|l|is verified:

(ii) functions in Fy have values in [—1, 1], and

(iii) verify the following “Lipschitz” property: Vx,y € X, | f(x) — f(y)| < 2||o(x) — o(y)||%-

The proof of Proposition [3.1]is deferred to Appendix Since the TV distance is an IPM with
respect to functions bounded by 1, we have the following corollary:

Corollary 3.2. dir(u,v) < ||lu— v||rv.

We also have a direct comparison between d g and a MMD.

Lemma 3.3. The Schatten 2-norm of the difference of the RKHS density operators of two probability
distributions |, v on X can be identified to their Maximum Mean Discrepancy using the kernel k>:

[1X, — 2u||2 = MMDy2 (u, v)
Consequently, since dir is a Schatten 1-norm of this difference, MMDyz2 (u, v) < dgr (i, V).

This follows mainly from the fact that (¥,,,%,) = [ [}, k(z, y)k(z,y)u(z)v(y)dzdy (see Ap-
pendix [A.1.1). Finally, we can relate dxr to some Wasserstein distance. Denoting ci(z,y) =

[lo(x) — oY)l = v/2(1 — k(z,y)) a cost defined from the kernel %, and applying the Lipschitz
property of Theorem [3.1] we get the following:

Corollary 3.4. If Assumption E is verified, dgr(p,v) < 2We, (u,v). Furthermore, using the
Gaussian kernel with parameter o,

2
drr(u,v) < 2We, (1, v) < —Wj i (k. v)-

The last remark is due to the fact that the Wasserstein-1 distance is an IPM defined by the functions

_lz—yl?

which are 1-Lipschitz w.r.t. || - ||, and for the Gaussian kernel k(z,y) = e~ 202 , we have
cr(z,y) < ”‘”UJH See Appendix [A.1.1 for full proof.

Finally our novel distance can be related to other kernelized quantum divergences. Some well-known
inequality in quantum information theory relating the trace distance and the fidelity is the following
Fuchs and Van De Graaf]|[[1999] inequality :

21—-F(A,B)) <||[A—BJ||1 £2y/1-F(A,B)? (5)
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which translates as upper and lower bounds on dxr with respect to dxpw (see proof in Ap-
pendix [A.T.T using Assumption|[I):

dKBW(,ua V)2 S dKT(/-L7V) S 2dKBW(,u7V) (6)
Let D1, (A|B) = Tr(A(log A —log B)) the quantum relative entropy. The Kernel-Kullback-Leibler
(KKL) divergence introduced in[Bach [2022] is defined as the latter applied to the density operators
of two distributions p, v on &’ (in particular, it is infinite if p is not absolutely continuous w.r.t.
v). Thanks to the (quantum) Pinsker’s inequality, we have then: 1dx7 (1, v)? < D (3,]5,) =
KKL(p|v). Hence, our distance can be framed within several well-known alternative discrepancies.

3.2 Normalized energy

From our Assumption |I on the kernel, we have ensured

that for any measure 4, ||X,|l1 = 1 which means that

all measures representations considered are somehow
“normalised”. On the contrary, for MMD with k% (or 17
the Schatten 2-norm), ||X,||> the “internal energy” de-  **
pends on the measure (and on the kernel parameters such
as bandwidth) and it can be smaller for distributions .

which are very flat, with high variance, as in general  os

k(z,y) < k(z,z) for x # y. This has consequences  ° L
as intrinsically |2, — S, |2 < I[IZ4]15 + |25 , the B e e A aaar -
maximum value can be already small independently of
the differences between v and v. When minimizing an  Fjgure 1: Kernel distances between 1, =
objective such as y1 +— [|3, — X, |2 (e.g., with gradient  A7(0, 1) and v = N/(5, 1), as a function
descent on the atoms in the support of p if it is a discrete  f the Gaussian kernel bandwidth o-.
measure, as in |Arbel et al. [[2019]), this has an impact on

the shape of the slope. Moreover, the energy depends on

the hyperparameters of the kernel, which are hard to tune for both the distributions’ variances and the
distance between their means at the same time.

— MMDy
dr

Figure [T illustrates this by displaying the two distances between sets of n = 1000 samples from
N(0,1) and N'(5,1). We would expect sample sets to look closer as the Gaussian kernel bandwidth
o grows, but for MMD that is not always the case. Other such phenomena are displayed by varying
the variance or the mean of the distributions in the Appendix [B.T.

Now let us consider two measures p, v on X such that Ex ., v~ [k(X,Y)] < € for some small
parameter € > 0. Then, (£,,,3,) < e by Cauchy-Schwartz. Consider the density operator of the
mixture E%M_%y = %Z,L + %Ey, we have:
1 1 1/1 1
230l = 1= G+ 30 gl < 5 (FIBAE + FI2 0B+ ).
We see that in contrast to the 1-Schatten norm, the 2-Schatten norm energy bound is roughly divided
by 2 (as ¢ — 0, e.g. for almost orthogonals ¥, ,)). Then, we reason with distance rather than norm:

Proposition 3.5. Let us consider distances between two mixtures P = % w1+ % o and Q = %1/1 + %ug
such that %, , %, are orthogonal to %, 3,,,. Then:

1 1
drr(P,Q) = §dKT(,U1a Vi) + §dKT(M27V2)
1 1
MMD?: (P, Q) = 1 MMD?Z, (g1, v1) + 1 MMD? (g, v2).

See proof in the Appendix[A.2.T] If the distance between 115 and v are the same as between 117 and v;
(for instance, if the former are respective translation of the latter and the kernel is translation-invariant),
we can see that the squared MMD distance loses a factor 2 while d i1 behaves similarly to the Total
Variation of the mixtures when 111, /1 have different supports than pio, 5. This is the case when taking
for instance in X = R? p; = N([0,0], I5) and v, = N([0.3,0.3], ) while py = N(A, I5) and
ve = N(A+]0.3,0.3], I1) for A = [10, 10]. In practice, the RKHS density operators are not perfectly
orthogonal unless ||A|| — +oo (in that case (X,,, X,,) — 0 for a fixed bandwidth), but typically they
can look so up to numerical precision, when using exponentially decreasing kernels (e.g., Gaussian).
Taking n = 100 samples each from each p; and v4, and translating them by A, the results above from
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Propositionlgare confirmed numerically: we find empirically drer (P,Q) = d/K\T( u1,v1) = 0.5992

while MMD?: (111, v1) = 0.0253 but MMD?: (P, Q) = 0.0127, half of it (for a Gaussian kernel with
bandwidth o = 0.5).

3.3 Robustness

We now turn to investigating the robustness of the kernel trace distance. In particular, we consider the
e-contamination model, where the training dataset is supposedly contaminated by a fraction € € (0, 1)
of outliers [Huber} [1964]. The following proposition quantifies the robustness of this distance.

Proposition 3.6. Denote P. = (1 — )P + £C where C is some contamination distribution. We have
when Assumption[l|is verified: |dxr(P., Q) — dxr(P, Q)| < 2e.

The proof relies on the triangular inequality (see Appendix|A.3.2). Hence, we see that d 7 is robust
while for the Wasserstein distance, a contamination C' arbitrarily “far away from the distribution Q”
will incur an arbitrarily high distance. The proof of robustness also works for MMD.

4 Statistical Properties

4.1 Convergence rate

In this section, we consider a measure x4 and its empirical counterpart ., for n independent samples
and study the rate of convergence of d g (f1, jtr,). We note A S, b where A is r.v., when for any
8§ > 0, there exists c¢s < oo such that u®"(A < csb) > §. With the Schatten 1-norm, it is not enough
to study only the concentration of one (the maximal) eigenvalue as for the operator norm (p = o),
we need to handle an infinity of eigenvalues (when the RKHS is of infinite dimension), neither can we
use the Cauchy-Schwarz trick as for the Hilbert norm (p = 2). However, since the trace of our kernel
density operators are bounded by 1, only a few of the eigenvalues will have a significant contribution.
Therefore, assuming some decay rate on those eigenvalues, we can focus on the convergence of
operators on a subspace of the top eigenvectors, using results from the Kernel PCA literature. We
introduce the population and empirical square loss associated with some projector P:
n
1
R(P) = Exull0(X) = PO(X)|[} RBa(P) = —[lé(x:) — Po(x:)l[3
i=1

where the (x;);=1.., are each drawn independently from ;. We first make the following assumption,
as in|Sterge et al. [2020].

Assumption 2. The eigenvalues (\;);c; of X, (resp. (5\3) jes of ¥, ) are positive, simple and
w.l.o.g. arranged in decreasing order (A1 > Ay > ...).

This allows us to denote P'(2 ,.) the projector on the subspace of the [ eigenvectors associated with
the [ highest eigenvalues Ay, ..., A;. Note that [|P/(3,)2, — S,[l1 = X,0, A = R(PY(Z,)) (see
for instance Blanchard et al.| [2007], Rudi et al. [2013]). Similarly we consider P'(%,,, ) for =, .
We now consider different kinds of assumptions on the decay rate of eigenvalues of ¥, to get different
corresponding convergence rates, as in|Sterge et al. [2020], [Sterge and Sriperumbudur| [2022]].

Assumption P (Polynomial). Forsome o > 1and0 < A < A < oo,

Aimr <N <A P
Assumption E (Exponential). For 7 > 0 and B, B € (0, 00),
Be ™ <\ < BeT (E)

Lemma 4.1. Suppose Assumption[I|and2|are verified. With a polynomial decay rate of order o > 1
(Assumption E), forl = ng,O <f<a
1P (2050 =Sl = RIPA(Z4)) = © (n7207)) 1P, S =Byl = © (770730,

(7
and there exists N € N such that forn > N:

I1PY(Z,0) S0 — Bplle Spen maz(n™ 3t as 0% s ), )
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With an exponential decay rate (Assumption E), forl = % logn?,6 > 0:

1P ()8 = Zulh = R(PI(Z,) =0(n~?),  [IP(S)8, —Zullo =0 (n7%) ()
and there exists N € N such that forn > N:
logn —yrp <1
P! (20)85 — Bulls Zpon 3 Ym0 (10)
SRS if0=1

The previous lemma (see proof in Appendix|A.3.1) is crucial to prove our main theorem below, that
provides dimension-independent statistical rates.

Theorem 4.2. Suppose Assumption[l|and[2are verified.

o If the eigenvalues of ¥, follow a polynomial decay rate of order o > 1 (Assumption E),
then:

drcr (i, fin) Su@’" n_%—‘rﬁ'
* Ifthe eigenvalues of ¥, follow an exponential decay rate (Assumption @), then:

(log )}
vnoo
SKETCH OF PROOF. For clarity of notation, we abbreviate >, and ¥, as X and X,,. By the
triangular inequality:
12 = Salls <11 = PUS)ZI1 + [I(PHE) = P(E0))Sl1 + [1PH(S0)(E — )k

HIP(20)E0 = Zally = (4) + (B) + (C) + (D) (1D
We bound each term of eq.[TT} Term (A) is bounded using Lemmaf.1] Similarly, (D) relates to (A)
by a result due to Blanchard et al.|[2007] (eq. (30)), see Lemma[A.3]in Appendix[A.3.T} For (B) and
(C), the projections allow to work in a subspace of dimension at most 2/ and by eq. (3) (Holder’s
inequality) to relate to the Schatten 2-norm which has rates like MMD. Finally, we pick 6 = % for

polynomial decay and 6 = 1 for the exponential decay (see Lemma4.1) to minimise the maximum
of the four terms. See Appendix|A.3.1 for the full proof.

By the Fuchs-van de Graaf inequality (Eq. (5) and (6)), it directly implies (also dimensionally-
independent) convergence rates for the Kernel Bures Wasserstein distance, that are novel to the best
of our knowledge.

Corollary 4.3. Suppose Assumption [[ and 2 verified. — If Assumption [P is verified:
dreBw (1 fin) Spen n~itas, IfAssumptionlEis verified: dgpw (th, fin) Spen (log n)in=i.

dKT(:uv /~Ln) Su@”"

S Experiments

In this section, we illustrate the interest of our novel kernel trace distance on different experiments.

Approximate Bayesian Computation (ABC) The purpose of Approximate Bayesian Compu-
tation [Tavaré et al.||[1997] is to compute an approximation of the posterior when doing Bayesian
inference in a likelihood-free fashion. The idea of using a distance d between distributions to build a
synthetic likelihood has recently flourished [Frazier, 2020, |Bernton et al.,2019} Jiang, 2018]]. ABC
methods based on IPM enjoy theoretical guarantees [Legramanti et al.,|2022]. The ABC posterior
distribution is defined by 7 (6| X™) o< [ w(0)Liq(xn ym)<eypo(Y™)dY ™, where m(6) is a prior over
the parameter space ©, € > 0 is a tolerance threshold, and Y are synthetic data generated according
to pg(Y™) = Hjnzl po(Y;). It is approximately computed by drawing 6; ~ 7 for ¢ = 1,...,T and
simulating synthetic data Y ~ py. and keeping or rejecting 6, according to whether the synthetic
data is close to the real data. The result is a list Ly of all accepted 6; (see Algo.|1]in the Appendix|B.2).

Here, as we are interested in robustness, we will consider a contamination case using Normal
distributions but where nonetheless the usual likelihood fails to recover the correct mean as the data is
corrupted. We will take as prior 7 = A(0, 03) and the real data consist of n = 100 samples coming
following pu* = N(0* = 1,1) where 10% of the samples are replaced by contaminations from
N (20,1). We fit the model py = N (6, 1) by picking the best § possible. We carry out T' = 10000
iterations, generating each times m = n synthetic data.
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We consider ABC with the threshold value € = 0.05,0.25,0.5, 1. For the proposed distance dx,
Bayes’ rule gives posterior p(6|z) = N ( Zizy 1 ). Since E[X;] =0.9 x 1+ 0.1 x 20 = 2.9

T T
nt—5 ' nt—y
n 70 70
2 :rl} _ n

T = 1
n+—5 n+—5
t3 t3

the location is therefore in expectation E[ 2.9 ~ 2.9, the contamination significantly

impacted the posterior. Similarly, for any model Pg, the Wasserstein distance with the contaminated
mixture 0.9N (1, 1) + 0.1A/(20, 1) will be high, and empirically all of the T iterations are rejected
for all the values of € considered. Thus, we disregard the Wasserstein distance from the experiment
and compare the performance of MMD to that of d 7. We also consider concurrent methods out of
our scope such as MMD with the unbounded energy kernel: k(z,y) = (|[z|| + ||y[| — ||z — y||)
Sejdinovic et al.| [2013]], and others displayed in Appendix [B.2,

We measure the average Mean Square Error between the target parameter 6* = 1 and the accepted
0, € Lp: MSE = ﬁ > 6.cr, |10i — 0%|> which also corresponds to the average of squared

Wasserstein 2-distance as W3 (u*, pg,) = ||0; — 0*||* since we consider only Gaussians with same
variance. We picked oy = 5 for the prior. We repeat 10 times the experiment with fresh samples,
the averaged results are shown in Table[I. As expected — and discussed in subsection [3.2]- MMD
(gaussian) is too lenient to accept. For ¢ = 0.05 inferior to the contamination level (10%), it still
accept 11% of the times, while d i reject all the times, which can be understood as d 1 detecting
the contamination, that prevents to match with the Gaussian model. The energy kernel can not help
enough to beat d 7. The densities of the obtained posteriors are shown alongside the target in Fig. (4)
and () in the Appendix [B.2.

Table 1: Average MSE of ABC Results.

The Gaussian kernel is used with 0 = 1 (as the variance of py and p*). As expected, MMD is
too lenient to accept most sampled 6; leading to a high average MSE unless ¢ is carefully chosen.
Whereas the proposed d 7 discriminates between the correct and the wrong 6; for € larger than the
contamination threshold 0.1. MMD is assumed to use the Gaussian kernel while MMDy, denotes the
MMD with the energy kernel.

e 0.05 0.25 0.5
distance MMD MMDg dxgr MMD MMDg dgr MMD MMDg dgr
#accept. 1092 0 0 2964 0 58 6168 846 828

MSE 0.19 N/A N/A 129 N/A 0.03 7.47 0.17 0.12

Particle Flow We consider the performance of gradient descent when optimizing p — dgr (1, V)
for discrete measures 1, v on R?, given an initial point cloud (in red) and a target cloud of points
(in blue) both of n = 100 points. We run the scheme with a learning rate of 0.005 for 1000 steps,
using dxr (Schatten 1-norm) and MMD (Schatten 2-norm), see Appendix [B.3 (Figs.|6 and|[7). We

_ ==yl

use the Laplacian kernel: k(z,y) = e~~ =  where here || - ||; means the [; norm for vectors.
We choose a bandwidth ¢ = 1 (as the image size is a unit square) for dxr and for MMD we use
k2 as kernel to match the Schatten 2-norm (i.e. we use ¢ = 0.5 instead of ¢ = 1, and it gives a
better convergence). The inherent internal energy of MMD incites the point cloud to spread out and
therefore some particles are still left out far away from the target, which does not happen with dx .

6 Conclusion

We introduced a robust distance between probability measures, based on RKHS density (or covariance)
operators and their Schatten-1 norm. It is the greatest in a family of kernel-based IPM including
MMD, and so is more discriminative as shown in experiments. We show how to compute it between
discrete measures via a new kernel trick. Assuming some decay rate of the eigenvalues of the RKHS
density operator leads to a statistical convergence rate that can be close to O(n~ 2 ). This implies the
first (dimension-independent) rates for the Kernel Bures Wasserstein distance. Future work includes
reducing computational complexity via Nystrom method, improving the dependence on the order of
decay «, as well as minimax lower bounds.
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NeurlIPS Paper Checklist

@

(ii)

(iii)

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yet the abstract reflect our claims, supported by theorems and simulations in
the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We mention the cubic complexity of the algorithm computing our novel
distance, and we stated with Assumptions to which scope of kernels we can apply our
results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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(iv)

)

Answer: [Yes]

Justification: We clearly numbered our assumptions and reference them and we have
complete proofs in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explicitly state our parameters in the Experiments section and we also
provide supplementary code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

Open access to data and code
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(vii)

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The data are simulated and their simulation process are provided in the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include hyperparameters such as kernel bandwidth in our code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviations over the 10 runs of 10000 iterations are included in
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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9]

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We stated the complexity of our algorithm at the end of the section[2.3 and we
specify our computer setting in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This is a theoretical work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|
Justification: This is a theoretical work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a theoretical work with simulated data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code is mostly original, external code is mostly packages used which can
be seen as import.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code are separated between mathematical distances functions and simulation
experiments. A README is also provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: This is a theoretical work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: This is a theoretical work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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787 * We recognize that the procedures for this may vary significantly between institutions

788 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
789 guidelines for their institution.

790 * For initial submissions, do not include any information that would break anonymity (if
791 applicable), such as the institution conducting the review.

792 (xvi) Declaration of LLM usage

793 Question: Does the paper describe the usage of LLMs if it is an important, original, or
794 non-standard component of the core methods in this research? Note that if the LLM is used
795 only for writing, editing, or formatting purposes and does not impact the core methodology,
796 scientific rigorousness, or originality of the research, declaration is not required.

797 Answer:

798 Justification: This work only concerns kernel methods and not NLP.

799 Guidelines:

800 * The answer NA means that the core method development in this research does not
801 involve LLMs as any important, original, or non-standard components.

802 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
803 for what should or should not be described.
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