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Abstract

Distances between probability distributions are a key component of many statistical1

machine learning tasks, from two-sample testing to generative modeling, among2

others. We introduce a novel distance between measures that compares them3

through a Schatten norm of their kernel covariance operators. We show that4

this new distance is an integral probability metric that can be framed between a5

Maximum Mean Discrepancy (MMD) and a Wasserstein distance. In particular, we6

show that it avoids some pitfalls of MMD, by being more discriminative and robust7

to the choice of hyperparameters. Moreover, it benefits from some compelling8

properties of kernel methods, that can avoid the curse of dimensionality for their9

sample complexity. We provide an algorithm to compute the distance in practice by10

introducing an extension of kernel matrix for difference of distributions that could11

be of independent interest. Those advantages are illustrated by robust approximate12

Bayesian computation under contamination as well as particle flow simulations.13

1 INTRODUCTION14

Statistical distances are ubiquitous in the fundamental theory of machine learning and serve as the15

backbone of many of its applications, such as: discriminating between the generative model and real16

data in Generative Adversarial Networks (GAN) [Goodfellow et al., 2014, Arjovsky et al., 2017, Li17

et al., 2017, Genevay et al., 2018, Birrell et al., 2022], testing whether a dataset is close to another18

(two-sample test) [Eric et al., 2007, Gretton et al., 2012, Hagrass et al., 2024] or to a particular19

distribution (goodness-of-fit test), as well as acting as an objective loss function in particle gradient20

flows [Arbel et al., 2019, Feydy et al., 2019, Korba et al., 2021, Hertrich et al., 2023, Neumayer et al.,21

2024, Chen et al., 2024], or in minimum distance estimators [Wolfowitz, 1957, Basu et al., 2011].22

A class of distances between probability distributions, called Integral Probability Metrics23

(IPM) [Müller, 1997], is defined by measuring the supremum of difference of integrals over a24

function space. It comprises many popular metrics such as the Total Variation distance, Wasserstein-125

distance and the Maximum Mean Discrepancy (MMD) [Gretton et al., 2012] also known as quadratic26

distance [Lindsay et al., 2008]. IPMs’ theoretical properties were largely investigated in the literature,27

such as their statistical convergence rate [Sriperumbudur et al., 2010], concentration for inference28

using ABC [Legramanti et al., 2022], PAC-Bayes bounds [Amit et al., 2022], as well as adversarial29

interpretations [Husain and Knoblauch, 2022]. For instance, the MMD enjoys a fast statistical30

convergence rate of O(n→
1
2 ) while the Wasserstein distance suffers from the curse of dimensionality31

with a rate no better than !(n→
1
d ) [Kloeckner, 2012]. One could wonder: how large such a function32

space could be before the curse of dimensionality kicks in? In this work, we theoretically investigate33

how to get closer to such frontier by defining an extended family of kernel distances, that write as34

novel IPM whose dual function space is larger than the one of MMD.35
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Kernel methods allow to represent a distribution by a vector by associating to a datapoint x a feature36

map image ω(x) in a Hilbert space, and by doing so, embed in a linear way a distribution µ to what37

is called a (kernel) mean embedding EX↑µ[ω(X)] =
∫
ω(x)dµ(x). However mean embeddings for38

different distributions may have different “energies”, i.e., squared Hilbert norms, which may lead39

to several pitfalls of MMD. In quantum information theory [Watrous, 2018], a similar idea to mean40

embedding is called superposition. The quantum equivalent of a datapoint or deterministic Dirac41

distribution is called a pure state and is a projector of rank and trace one, that could be denoted vv
↓42

(or |v→↑v|) for a unit vector v. Its analog for a general probability distribution is called a mixed state43

and is the superposition
∑

v p(v)|v→↑v| where p(v) are probabilities. A non-trivial mixed state can44

hardly be confused with a pure state as a linear combination of different projectors is of higher rank45

than 1: using projecting operators instead of the vectors themselves makes the linearity less “trivial”.46

As those positive definite operators can be diagonalised, by using always the same orthogonal basis47

and studying the eigenvalues, we recover classical probabilities, and as such we can see quantum48

probabilities as their extension. Recently, the work of Bach [2022] introduced a novel divergence49

between probability distributions, by plugging a kernel operator embedding of the distributions50

(which are also positive definite operators) in the Von Neumann relative entropy from quantum51

information theory (i.e., a Kullback-Leibler divergence between positive Hermitian operators), and52

whose statistical and geometrical properties were investigated more in depth in Chazal et al. [2024].53

Instead of considering a divergence on such operators, here we propose to draw inspiration from54

quantum statistical metrics, which enjoy nice geometrical properties such as the triangle inequality.55

Two of them are well-known and mutually bounding: the Bures metric, and the trace distance, on56

which we focus here, and which is derived from a (Schatten) norm.57

Related works The kernelised version of Bures metric, i.e., a Bures metric between kernel covari-58

ance operators, has been studied for instance in Oh et al. [2020], Zhang et al. [2019]. The closest59

work to ours is the one by Mroueh et al. [2017]. They consider a similar metric to ours, i.e. the60

trace distance, that they refer to as Covariance Matching IPM. It shares the same dual writing as61

the metric we consider, yet, in that work, the dual problem is solved through a numerical program62

involving neural networks that approach kernel features. Hence, they compute an approximate63

version of their target metric. In contrast, we use kernel features directly in the dual formulation,64

and derive a closed-form for the metric leveraging a kernel trick. Moreover, we provide theoretical65

guarantees regarding this metric and investigate different numerical applications than the one of the66

GAN considered in Mroueh et al. [2017].67

Contributions Our main contributions can be summarized as follows:68

(i) Inspired by quantum statistics, we introduce a novel distance between probability distribu-69

tions called kernel trace distance (dKT ).70

(ii) We show that dKT is an IPM and illustrate several of its theoretical properties, mainly: a71

direct comparison to MMD, robustness to contamination, and statistical convergence rates72

that do not depend on the dimension.73

(iii) We showcase how to compute dKT and illustrate its practical performance on particle74

gradient flows and Approximate Bayesian Computation (ABC).75

Organisation of the paper In section 2, we provide some background on quantum statistical76

distances and introduce dKT . In section 3, we explain further the motivation to introduce dKT ,77

notably by comparing it with the other distances, MMD in particular. We show in section 4, under78

some eigenvalue decay rate assumptions, convergence rates that do not depend on the dimension, as79

well as robustness. In section 2.3, we explain how to compute dKT . Finally, we illustrate our findings80

by experiments in section 5.81

2 Kernel Trace Distance82

For a positive semi-definite kernel k : X ↓ X ↔ R, its RKHS H is a Hilbert space of real-valued83

functions with inner product ↑·, ·→H and norm ↗ · ↗H. It is associated with a feature map ω : X ↔ H84

such that k(x, y) = ↑ω(x),ω(y)→H. We denote L(H) the space of bounded linear operators from85

H to itself. For a vector v ↘ H, v↓ denotes its dual linear form defined by v
↓(w) = ↑v, w→ for any86
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w ↘ H. For an operator T ↘ L(H), T ↓ is its adjoint. || · ||p denotes the p-Schatten norm explicited87

below.88

Assumption 0. In the whole paper, we restrict ourselves to the setting of a completely separable set89

X , endowed with a Borel ε-algebra, and a separable RKHS H of real-valued functions on X , with a90

bounded continuous strictly positive kernel.91

2.1 Background92

RKHS density operators [Bach, 2022]. Let µ a measure on X . Define ” the kernel covariance93

operator embedding as:94

” : µ ≃↔ #µ =

∫

X

ω(x)ω(x)↓dµ(x). (1)

We will call #µ the RKHS density operator of µ, in reference to the wording of density operator95

in quantum information theory: this is to insist that #µ is an embedding in itself (with feature map96

ω(·)ω(·)↓), rather than just the covariance of a mean embedding with feature map ω. The operator #µ97

is self-adjoint, and positive semidefinite when µ is a probability measure. To keep the analogy with98

quantum density operators, similarly to Bach [2022], we consider kernels respecting the property:99

Assumption 1. ⇐x ↘ X , k(x, x) = 1.100

to ensure Tr#µ = 1 (as in the sum of all probabilities equals one). If ⇐x ↘ X , k(x, x) = M for a101

non-zero constant M ⇒= 1, it is will be easy to generalize many of our results later by dividing by102

M , so this assumption is not too restrictive. If the kernel does not verify Assumption 1 but is strictly103

positive, it is could also be normalised using k̃(x, y) = k(x,y)
⇑

k(x,x)k(y,y)
instead.104

Schatten norms. We now provide some background on Schatten norms [Simon, 2005]. For an105

operator T ↘ L(H) and p ↘ [1,⇓), the p-Schatten norm is defined as ||T ||p = (Tr(|T |p))1/p where106

|T | =
⇑
T ↓T . If T is compact, this can be rewritten as the p-vectorial norm of the singular values of107

T . It also admits a dual definition, denoting q such that 1/p+ 1/q = 1:108

||T ||p = sup
U↔L(H),||U ||q=1

↑U, T → (2)

where the inner product is ↑U, T → = Tr(U↓
T ).109

The Schatten 2-norm is the Hilbert-Schmidt norm with respect to this inner product: ||T ||2 =110 √
Tr(T ↓T ). Then, the Schatten ⇓-norm is the operator norm : ||T ||↗ = supx↔H\0

||Tx||H
||x||H

i.e., the111

maximum of the singular values of the operator in absolute value. We have the following inequalities:112

• For 1 ⇔ p ⇔ q ⇔ ⇓: ⇐T ↘ L(H), ||T ||1 ↖ ||T ||p ↖ ||T ||q ↖ ||T ||↗.113

• ⇐T, S ↘ L(H), ||TS||1 ⇔ ||T ||2||S||2 . (3)114

• From this, it can be deduced taking T as the identity operator, for H of finite dimension:115

⇐S ↘ L(H), ||S||1 ⇔

√
dim(H)||S||2. (4)

2.2 Definition116

In quantum information theory, the trace distance is a mathematical tool that can be used to compare117

density operators by measuring the Schatten 1-norm of their difference. Inspired by this, we define:118

Definition 2.1. The kernel trace distance between two probability measures µ, ϑ on X is defined as:119

dKT (µ, ϑ) = ||#µ ↙ #ω ||1.

We will also relate it to other distances such as:120

• Wasserstein distances [Villani, 2009]:121

Wd(µ, ϑ) = inf
ε↔!(µ,ω)

∫∫
d(x, y)dϖ(x, y)

where d : X ↓ X ↔ R+ is a cost and $(µ, ϑ) denotes all the possible couplings between µ122

and ϑ. The Wasserstein-p distance is obtained by replacing d by its power dp in the integral123

and taking the p-root of the whole expression.124
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• The Bures distance [Bhatia et al., 2019] on positive definite matrices A:125

dBW (A,B) =
√
TrA+TrB ↙ 2F (A,B)

where F (A,B) = Tr(A1/2
BA

1/2)1/2 is called the fidelity. It coincides with the126

Wasserstein-2 distance between two normal distributions (also called Bures-Wassertein127

distance) with identical mean, and different covariances A and B. The formula can be128

extended to operators with finite traces.129

• The Kernel Bures distance [Zhang et al., 2019] is defined as:130

dKBW (µ, ϑ) = dBW (#µ,#ω).

• The Total Variation is a special case of the Wasserstein distance where the cost is d :131

(x, y) ≃↔ 1x=y and can be expressed as:132

||µ↙ ϑ||TV =
1

2

∫

X

|µ(x)↙ ϑ(x)|dx

• The Maximum Mean Discrepancy [Gretton et al., 2012]:133

MMD(µ, ω) =

∣∣∣∣

∣∣∣∣
∫

X

k(x, ·)µ(x)dx→

∫

X

k(x, ·)ω(x)dx

∣∣∣∣

∣∣∣∣
H

• Integral Probability Metrics (IPM) [Müller, 1997] defined as:134

d(µ, ϑ) = sup
f↔F

{|EX↑µ[f(X)]↙ EX↑ω [f(X)]|}

where the function space F is rich enough to make this expression a metric. The Wasserstein-135

1 distance, the TV and MMD are IPMs (with F being 1-Lipschitz functions w.r.t. ↗ · ↗,136

functions with values in [-1,1], and a RKHS unit ball respectively).137

Proposition 2.2. If k2 is characteristic i.e ” is injective, dKT and dKBW are metrics.138

PROOF. Symmetry, non-negativity, triangle inequality and dKT (µ, µ) = 0 (resp. dKBW (µ, µ) = 0)139

are naturally inherited from the Schatten norm on operators for dKT and from the standard Bures-140

Wasserstein distance for dKBW . Then, as dKT (µ, ϑ) = 0 (resp. dKBW (µ, ϑ) = 0) implies #µ = #ω ,141

injectivity of ” enforces µ = ϑ.142

Examples of characteristic kernels are the family of Gaussian kernels, whose squared kernel also143

belong to, modulo a change of parameter. On compact set, a sufficient condition for characteristicity144

is universality [Steinwart, 2001], see for instance Bach [2022].145

2.3 Computation for discrete measures146

As interesting, i.e. expressive RKHS are often of infinite dimension, computations with kernel147

methods relies on the so-called “kernel trick”, reducing computation on the empirical kernel matrix148

(Gram matrix of two sets of samples using the kernel inner product) which is of finite dimension. It is149

well-known that the spectrum of the covariance operator #µn are the ones of the kernel Gram matrix150

(k(xi, xj))ni,j=1divided by the number of samples [Bach, 2022, Proposition 6]. Here, we generalise151

the concept for differences of distributions.152

First, notice that #µn ↙ #ωm = #µn→ωm , which incites us to consider the samples from each153

distribution altogether. We denote without duplicates (zk)k=1,...,r the samples in the union of154

the sample sets X,Y (corresponding respectively to distributions µn, ϑm), where r is the number155

of distinct elements in X,Y . We note Z = [ω̃(zk)]k=1...r the column of vectors in H where156

ω̃(zk) =
√
(µn ↙ ϑm)({zk})ω(zk) if (µn ↙ ϑm)({zk}) ↖ 0, ω̃(zk) = i

√
|(µn ↙ ϑm)({zk})|ω(zk)157

else.158

We can see Z by a slight abuse of notation as the linear map Z : H ↔ Cr
, v ≃↔159

[↑ω̃(z1), v→, ..., ↑ω̃(zr), v→] and by duality Z
↓ (real not Hermitian adjoint) would be the linear map160

Z
↓ : Cr

↔ H, u ≃↔
∑

i=1,...,r uiω̃(zi).161

Then we define the difference kernel matrix as K = Z
↓
Z. Typically, in case where all samples are162

distinct, X ∝ Y = ′ and (µn ↙ ϑm)({zk}) = µn({zk}) = 1/n for samples zk ↘ X from µn and163

(µn ↙ ϑm)({zk}) = ↙ϑm({zk}) = 1/m for samples zk ↘ Y from ϑm, then164

K =

[
1
nKXX

i
↘
mn

KXY
i

↘
mn

KY X ↙
1
mKY Y

]
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where KXX ,KY Y ,KY X ,KXY are the usual kernel Gram matrices. Other cases are similar, adjust-165

ing the probability weights on rows and columns.166

Proposition 2.3. Assume the kernel is such that for any family (x) of distinct elements of X , (ω(x))167

is linearly independent. The difference kernel matrix K as defined just above and #µn→ωm have the168

same eigenvalues, whose Schatten 1-norm is dKT (µn, ϑm).169

The proof of Proposition 2.3 is deferred to Appendix A.4. The condition is verified by the Gaussian170

kernel and more generally it is equivalent to the kernel being strictly positive. It is sufficient to get the171

eigenvalues by either Autonne-Takagi factorisation [Autonne, 1915, Takagi, 1924], Schur or Singular172

Value decomposition, and compute their 1-norm. This SVD is of complexity O(r3) in general.173

3 Discriminative properties174

In this section, we study the discriminative properties of the dKT distance and how it relates to175

alternative distances between distributions introduced previously.176

3.1 Comparison with other distances177

We first show that our novel distance dKT belongs to the family of Integral Probability Metrics (IPM).178

Proposition 3.1.179

(i) dKT is an IPM with respect to the function space F1 = {f : x ↑↓ ε(x)→Uε(x)|U ↔180

L(H), ||U ||↑ = 1}.181

Moreover if Assumption 1 is verified:182

(ii) functions in F1 have values in [↙1, 1], and183

(iii) verify the following “Lipschitz” property: ⇐x, y ↘ X , |f(x)↙ f(y)| ⇔ 2||ω(x)↙ω(y)||H.184

185

The proof of Proposition 3.1 is deferred to Appendix A.2. Since the TV distance is an IPM with186

respect to functions bounded by 1, we have the following corollary:187

Corollary 3.2. dKT (µ, ϑ) ⇔ ||µ↙ ϑ||TV .188

We also have a direct comparison between dKT and a MMD.189

Lemma 3.3. The Schatten 2-norm of the difference of the RKHS density operators of two probability190

distributions µ, ϑ on X can be identified to their Maximum Mean Discrepancy using the kernel k2:191

||#µ ↙ #ω ||2 = MMDk2(µ, ϑ)

Consequently, since dKT is a Schatten 1-norm of this difference, MMDk2(µ, ϑ) ⇔ dKT (µ, ϑ).192

This follows mainly from the fact that ↑#µ,#ω→ =
∫
X

∫
Y
k(x, y)k(x, y)µ(x)ϑ(y)dxdy (see Ap-193

pendix A.1.1). Finally, we can relate dKT to some Wasserstein distance. Denoting ck(x, y) =194

||ω(x)↙ ω(y)||H =
√
2(1↙ k(x, y)) a cost defined from the kernel k, and applying the Lipschitz195

property of Theorem 3.1, we get the following:196

Corollary 3.4. If Assumption 1 is verified, dKT (µ, ϑ) ⇔ 2Wck(µ, ϑ). Furthermore, using the197

Gaussian kernel with parameter ε,198

dKT (µ, ϑ) ⇔ 2Wck(µ, ϑ) ⇔
2

ε
W||.||(µ, ϑ).

The last remark is due to the fact that the Wasserstein-1 distance is an IPM defined by the functions199

which are 1-Lipschitz w.r.t. ↗ · ↗, and for the Gaussian kernel k(x, y) = e
→

||x→y||
2

2ω2 , we have200

ck(x, y) ⇔
||x→y||

ϑ . See Appendix A.1.1 for full proof.201

Finally our novel distance can be related to other kernelized quantum divergences. Some well-known202

inequality in quantum information theory relating the trace distance and the fidelity is the following203

Fuchs and Van De Graaf [1999] inequality :204

2(1↙ F (A,B)) ⇔ ||A↙B||1 ⇔ 2
√
1↙ F (A,B)2 (5)
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which translates as upper and lower bounds on dKT with respect to dKBW (see proof in Ap-205

pendix A.1.1 using Assumption 1):206

dKBW (µ, ϑ)2 ⇔ dKT (µ, ϑ) ⇔ 2dKBW (µ, ϑ) (6)
Let DKL(A|B) = Tr(A(logA↙ logB)) the quantum relative entropy. The Kernel-Kullback-Leibler207

(KKL) divergence introduced in Bach [2022] is defined as the latter applied to the density operators208

of two distributions µ, ϑ on X (in particular, it is infinite if µ is not absolutely continuous w.r.t.209

ϑ). Thanks to the (quantum) Pinsker’s inequality, we have then: 1
2dKT (µ, ϑ)2 ⇔ DKL(#µ|#ω) :=210

KKL(µ|ϑ). Hence, our distance can be framed within several well-known alternative discrepancies.211

3.2 Normalized energy212
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Figure 1: Kernel distances between µ =
N (0, 1) and ϑ = N (5, 1), as a function
of the Gaussian kernel bandwidth ε.

From our Assumption 1 on the kernel, we have ensured213

that for any measure µ, ||#µ||1 = 1 which means that214

all measures representations considered are somehow215

“normalised”. On the contrary, for MMD with k
2 (or216

the Schatten 2-norm), ||#µ||2 the “internal energy” de-217

pends on the measure (and on the kernel parameters such218

as bandwidth) and it can be smaller for distributions219

which are very flat, with high variance, as in general220

k(x, y) ⇔ k(x, x) for x ⇒= y. This has consequences221

as intrinsically ||#µ ↙ #ω ||2 ⇔

√
||#µ||

2
2 + ||#ω ||

2
2 , the222

maximum value can be already small independently of223

the differences between µ and ϑ. When minimizing an224

objective such as µ ≃↔ ||#µ ↙ #ω ||2 (e.g., with gradient225

descent on the atoms in the support of µ if it is a discrete226

measure, as in Arbel et al. [2019]), this has an impact on227

the shape of the slope. Moreover, the energy depends on228

the hyperparameters of the kernel, which are hard to tune for both the distributions’ variances and the229

distance between their means at the same time.230

Figure 1 illustrates this by displaying the two distances between sets of n = 1000 samples from231

N (0, 1) and N (5, 1). We would expect sample sets to look closer as the Gaussian kernel bandwidth232

ε grows, but for MMD that is not always the case. Other such phenomena are displayed by varying233

the variance or the mean of the distributions in the Appendix B.1.234

Now let us consider two measures µ, ϑ on X such that EX↑µ,Y↑ω [k(X,Y )] ⇔ ϱ for some small235

parameter ϱ > 0. Then, ↑#µ,#ω→ ⇔ ϱ by Cauchy-Schwartz. Consider the density operator of the236

mixture # 1
2µ+

1
2 ω

= 1
2#µ + 1

2#ω , we have:237

||# 1
2µ+

1
2 ω
||1 = 1 =

1

2
||#µ||1 +

1

2
||#ω ||1, ||# 1

2µ+
1
2 ω
||
2
2 ⇔

1

2

(
1

2
||#µ||

2
2 +

1

2
||#ω ||

2
2 + ϱ

)
.

We see that in contrast to the 1-Schatten norm, the 2-Schatten norm energy bound is roughly divided238

by 2 (as ϱ ↔ 0, e.g. for almost orthogonals #µ,#ω). Then, we reason with distance rather than norm:239

Proposition 3.5. Let us consider distances between two mixtures P = 1
2µ1+

1
2µ2 and Q = 1

2ϑ1+
1
2ϑ2240

such that #µ1 ,#ω1 are orthogonal to #µ2 ,#ω2 . Then:241

dKT (P,Q) =
1

2
dKT (µ1, ϑ1) +

1

2
dKT (µ2, ϑ2)

MMD2
k2(P,Q) =

1

4
MMD2

k2(µ1, ϑ1) +
1

4
MMD2

k2(µ2, ϑ2).

See proof in the Appendix A.2.1. If the distance between µ2 and ϑ2 are the same as between µ1 and ϑ1242

(for instance, if the former are respective translation of the latter and the kernel is translation-invariant),243

we can see that the squared MMD distance loses a factor 2 while dKT behaves similarly to the Total244

Variation of the mixtures when µ1, ϑ1 have different supports than µ2, ϑ2. This is the case when taking245

for instance in X = R2
µ1 = N ([0, 0], I2) and ϑ1 = N ([0.3, 0.3], I2) while µ2 = N (%, I2) and246

ϑ2 = N (%+[0.3, 0.3], I2) for % = [10, 10]. In practice, the RKHS density operators are not perfectly247

orthogonal unless ||%|| ↔ +⇓ (in that case ↑#µ,#ω→ ↔ 0 for a fixed bandwidth), but typically they248

can look so up to numerical precision, when using exponentially decreasing kernels (e.g., Gaussian).249

Taking n = 100 samples each from each µ1 and ϑ1, and translating them by %, the results above from250
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Proposition 3.5 are confirmed numerically: we find empirically d̂KT (P,Q) = d̂KT (µ1, ϑ1) = 0.5992251

while ⊋MMD2
k2(µ1, ϑ1) = 0.0253 but ⊋MMD2

k2(P,Q) = 0.0127, half of it (for a Gaussian kernel with252

bandwidth ε = 0.5).253

3.3 Robustness254

We now turn to investigating the robustness of the kernel trace distance. In particular, we consider the255

ϱ-contamination model, where the training dataset is supposedly contaminated by a fraction ϱ ↘ (0, 1)256

of outliers [Huber, 1964]. The following proposition quantifies the robustness of this distance.257

Proposition 3.6. Denote Pϖ = (1↙ ς)P + ςC where C is some contamination distribution. We have258

when Assumption 1 is verified: |dKT (Pϖ, Q)↙ dKT (P,Q)| ⇔ 2ς.259

The proof relies on the triangular inequality (see Appendix A.3.2). Hence, we see that dKT is robust260

while for the Wasserstein distance, a contamination C arbitrarily “far away from the distribution Q”261

will incur an arbitrarily high distance. The proof of robustness also works for MMD.262

4 Statistical Properties263

4.1 Convergence rate264

In this section, we consider a measure µ and its empirical counterpart µn for n independent samples265

and study the rate of convergence of dKT (µ, µn). We note A ↭µ↑n b where A is r.v., when for any266

φ > 0, there exists cϱ < ⇓ such that µ≃n(A ⇔ cϱb) ↖ φ. With the Schatten 1-norm, it is not enough267

to study only the concentration of one (the maximal) eigenvalue as for the operator norm (p = ⇓),268

we need to handle an infinity of eigenvalues (when the RKHS is of infinite dimension), neither can we269

use the Cauchy-Schwarz trick as for the Hilbert norm (p = 2). However, since the trace of our kernel270

density operators are bounded by 1, only a few of the eigenvalues will have a significant contribution.271

Therefore, assuming some decay rate on those eigenvalues, we can focus on the convergence of272

operators on a subspace of the top eigenvectors, using results from the Kernel PCA literature. We273

introduce the population and empirical square loss associated with some projector P :274

R(P ) = EX↑µ||↼(X)↙ P↼(X)||2
H
, Rn(P ) =

n∑

i=1

1

n
||↼(xi)↙ P↼(xi)||

2
H

where the (xi)i=1...n are each drawn independently from µ. We first make the following assumption,275

as in Sterge et al. [2020].276

Assumption 2. The eigenvalues (↽i)i↔I of #µ (resp. (↽̂j)j↔J of #µn) are positive, simple and277

w.l.o.g. arranged in decreasing order (↽1 ↖ ↽2 ↖ ...).278

This allows us to denote P
l(#µ) the projector on the subspace of the l eigenvectors associated with279

the l highest eigenvalues ↽1, ...,↽l. Note that ||P l(#µ)#µ ↙ #µ||1 =
∑

i>l ↽l = R(P l(#µ)) (see280

for instance Blanchard et al. [2007], Rudi et al. [2013]). Similarly we consider P l(#µn) for #µn .281

We now consider different kinds of assumptions on the decay rate of eigenvalues of #µ to get different282

corresponding convergence rates, as in Sterge et al. [2020], Sterge and Sriperumbudur [2022].283

Assumption P (Polynomial). For some ⇀ > 1 and 0 < A < Ā < ⇓,284

Ai
→ς

⇔ ↽i ⇔ Āi
→ς

. (P)
Assumption E (Exponential). For ⇁ > 0 and B, B̄ ↘ (0,⇓),285

Be
→φi

⇔ ↽i ⇔ B̄e
→φi

. (E)
Lemma 4.1. Suppose Assumption 1 and 2 are verified. With a polynomial decay rate of order ⇀ > 1286

(Assumption P), for l = n
ε
ϑ , 0 < θ ⇔ ⇀:287

||P
l(#µ)#µ↙#µ||1 = R(P l(#µ)) = !

(
n
→↼(1→ 1

ϑ )
)
, ||P

l(#µ)#µ↙#µ||2 = !
(
n
→↼(1→ 1

2ϑ )
)
,

(7)
and there exists N ↘ N such that for n > N :288

||P
l(#µn)#µ ↙ #µ||2 ↭µ↑n max(n→

1
2+

1
4ϑ , n

→↼+ 1
4ϑ ). (8)
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With an exponential decay rate (Assumption E), for l = 1
φ log n↼

, θ > 0:289

||P
l(#µ)#µ ↙ #µ||1 = R(P l(#µ)) = !(n→↼), ||P

l(#µ)#µ ↙ #µ||2 = !
(
n
→↼

)
(9)

and there exists N ↘ N such that for n > N :290

||P
l(#µn)#µ ↙ #µ||2 ↭µ↑n







logn
nε if θ < 1

(logn)
↘
n

if θ ↖ 1.
(10)

The previous lemma (see proof in Appendix A.3.1) is crucial to prove our main theorem below, that291

provides dimension-independent statistical rates.292

Theorem 4.2. Suppose Assumption 1 and 2 are verified.293

• If the eigenvalues of #µ follow a polynomial decay rate of order ⇀ > 1 (Assumption P),294

then:295

dKT (µ, µn) ↭µ↑n n
→

1
2+

1
2ϑ .

• If the eigenvalues of #µ follow an exponential decay rate (Assumption E), then:296

dKT (µ, µn) ↭µ↑n

(log n)
3
2

⇑
n

.

SKETCH OF PROOF. For clarity of notation, we abbreviate #µ and #µn as # and #n. By the297

triangular inequality:298

||#↙ #n||1 ⇔ ||#↙ P
l(#)#||1 + ||(P l(#)↙ P

l(#n))#||1 + ||P
l(#n)(#↙ #n)||1

+||P
l(#n)#n ↙ #n||1 := (A) + (B) + (C) + (D) (11)

We bound each term of eq. 11. Term (A) is bounded using Lemma 4.1. Similarly, (D) relates to (A)299

by a result due to Blanchard et al. [2007] (eq. (30)), see Lemma A.3 in Appendix A.3.1. For (B) and300

(C), the projections allow to work in a subspace of dimension at most 2l and by eq. (3) (Hölder’s301

inequality) to relate to the Schatten 2-norm which has rates like MMD. Finally, we pick θ = 1
2 for302

polynomial decay and θ = 1 for the exponential decay (see Lemma 4.1) to minimise the maximum303

of the four terms. See Appendix A.3.1 for the full proof.304

By the Fuchs-van de Graaf inequality (Eq. (5) and (6)), it directly implies (also dimensionally-305

independent) convergence rates for the Kernel Bures Wasserstein distance, that are novel to the best306

of our knowledge.307

Corollary 4.3. Suppose Assumption 1 and 2 verified. If Assumption P is verified:308

dKBW (µ, µn) ↭µ↑n n
→

1
4+

1
4ϑ . If Assumption E is verified: dKBW (µ, µn) ↭µ↑n (log n)

3
4n

→
1
4 .309

5 Experiments310

In this section, we illustrate the interest of our novel kernel trace distance on different experiments.311

Approximate Bayesian Computation (ABC) The purpose of Approximate Bayesian Compu-312

tation [Tavaré et al., 1997] is to compute an approximation of the posterior when doing Bayesian313

inference in a likelihood-free fashion. The idea of using a distance d between distributions to build a314

synthetic likelihood has recently flourished [Frazier, 2020, Bernton et al., 2019, Jiang, 2018]. ABC315

methods based on IPM enjoy theoretical guarantees [Legramanti et al., 2022]. The ABC posterior316

distribution is defined by ϖ(θ|Xn) ∞
∫
ϖ(θ)1{d(Xn,Y m)<↽}p↼(Y

m)dY m, where ϖ(θ) is a prior over317

the parameter space !, ϱ > 0 is a tolerance threshold, and Y
m are synthetic data generated according318

to p↼(Y m) =
m

j=1 p↼(Yj). It is approximately computed by drawing θi ∈ ϖ for i = 1, ..., T and319

simulating synthetic data Y
m

∈ p↼i and keeping or rejecting θi according to whether the synthetic320

data is close to the real data. The result is a list L↼ of all accepted θi (see Algo. 1 in the Appendix B.2).321

Here, as we are interested in robustness, we will consider a contamination case using Normal322

distributions but where nonetheless the usual likelihood fails to recover the correct mean as the data is323

corrupted. We will take as prior ϖ = N (0,ε2
0) and the real data consist of n = 100 samples coming324

following µ
↓ = N (θ↓ = 1, 1) where 10% of the samples are replaced by contaminations from325

N (20, 1). We fit the model p↼ = N (θ, 1) by picking the best θ possible. We carry out T = 10000326

iterations, generating each times m = n synthetic data.327

8



We consider ABC with the threshold value ϱ = 0.05, 0.25, 0.5, 1. For the proposed distance dKT ,328

Bayes’ rule gives posterior p(θ|x) = N (
∑n

i=1 xi

n+ 1
ω2
0

,
1

n+ 1
ω2
0

). Since E[Xi] = 0.9↓ 1 + 0.1↓ 20 = 2.9329

the location is therefore in expectation E[
∑n

i=1 xi

n+ 1
ω2
0

] = n
n+ 1

ω2
0

2.9 ∋ 2.9, the contamination significantly330

impacted the posterior. Similarly, for any model p↼, the Wasserstein distance with the contaminated331

mixture 0.9N (1, 1) + 0.1N (20, 1) will be high, and empirically all of the T iterations are rejected332

for all the values of ϱ considered. Thus, we disregard the Wasserstein distance from the experiment333

and compare the performance of MMD to that of dKT . We also consider concurrent methods out of334

our scope such as MMD with the unbounded energy kernel: k(x, y) = 1
2 (||x|| + ||y|| ↙ ||x ↙ y||)335

Sejdinovic et al. [2013], and others displayed in Appendix B.2.336

We measure the average Mean Square Error between the target parameter θ↓ = 1 and the accepted337

θi ↘ L↼: ⊋MSE = 1
|Lε|

∑
↼i↔Lε

||θi ↙ θ
↓
||
2 which also corresponds to the average of squared338

Wasserstein 2-distance as W 2
2 (µ

↓
, p↼i) = ||θi ↙ θ

↓
||
2 since we consider only Gaussians with same339

variance. We picked ε0 = 5 for the prior. We repeat 10 times the experiment with fresh samples,340

the averaged results are shown in Table 1. As expected – and discussed in subsection 3.2 – MMD341

(gaussian) is too lenient to accept. For ϱ = 0.05 inferior to the contamination level (10%), it still342

accept 11% of the times, while dKT reject all the times, which can be understood as dKT detecting343

the contamination, that prevents to match with the Gaussian model. The energy kernel can not help344

enough to beat dKT . The densities of the obtained posteriors are shown alongside the target in Fig. (4)345

and (5) in the Appendix B.2.346

Table 1: Average MSE of ABC Results.
The Gaussian kernel is used with ε = 1 (as the variance of p↼ and µ

↓). As expected, MMD is
too lenient to accept most sampled θi leading to a high average MSE unless ς is carefully chosen.
Whereas the proposed dKT discriminates between the correct and the wrong θi for ς larger than the
contamination threshold 0.1. MMD is assumed to use the Gaussian kernel while MMDE denotes the
MMD with the energy kernel.

ς 0.05 0.25 0.5

distance MMD MMDE dKT MMD MMDE dKT MMD MMDE dKT

#accept. 1092 0 0 2964 0 58 6168 846 828
MSE 0.19 N/A N/A 1.29 N/A 0.03 7.47 0.17 0.12

Particle Flow We consider the performance of gradient descent when optimizing µ ≃↔ dKT (µ, ϑ)347

for discrete measures µ, ϑ on R2, given an initial point cloud (in red) and a target cloud of points348

(in blue) both of n = 100 points. We run the scheme with a learning rate of 0.005 for 1000 steps,349

using dKT (Schatten 1-norm) and MMD (Schatten 2-norm), see Appendix B.3 (Figs. 6 and 7). We350

use the Laplacian kernel: k(x, y) = e
→

||x→y||1
ω where here || · ||1 means the l1 norm for vectors.351

We choose a bandwidth ε = 1 (as the image size is a unit square) for dKT and for MMD we use352

k
2 as kernel to match the Schatten 2-norm (i.e. we use ε = 0.5 instead of ε = 1, and it gives a353

better convergence). The inherent internal energy of MMD incites the point cloud to spread out and354

therefore some particles are still left out far away from the target, which does not happen with dKT .355

6 Conclusion356

We introduced a robust distance between probability measures, based on RKHS density (or covariance)357

operators and their Schatten-1 norm. It is the greatest in a family of kernel-based IPM including358

MMD, and so is more discriminative as shown in experiments. We show how to compute it between359

discrete measures via a new kernel trick. Assuming some decay rate of the eigenvalues of the RKHS360

density operator leads to a statistical convergence rate that can be close to O(n→
1
2 ). This implies the361

first (dimension-independent) rates for the Kernel Bures Wasserstein distance. Future work includes362

reducing computational complexity via Nyström method, improving the dependence on the order of363

decay ⇀, as well as minimax lower bounds.364
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NeurIPS Paper Checklist477

(i) Claims478

Question: Do the main claims made in the abstract and introduction accurately reflect the479

paper’s contributions and scope?480

Answer: [Yes]481

Justification: Yet the abstract reflect our claims, supported by theorems and simulations in482

the paper.483

Guidelines:484

• The answer NA means that the abstract and introduction do not include the claims485

made in the paper.486

• The abstract and/or introduction should clearly state the claims made, including the487

contributions made in the paper and important assumptions and limitations. A No or488

NA answer to this question will not be perceived well by the reviewers.489

• The claims made should match theoretical and experimental results, and reflect how490

much the results can be expected to generalize to other settings.491

• It is fine to include aspirational goals as motivation as long as it is clear that these goals492

are not attained by the paper.493

(ii) Limitations494

Question: Does the paper discuss the limitations of the work performed by the authors?495

Answer: [Yes]496

Justification: We mention the cubic complexity of the algorithm computing our novel497

distance, and we stated with Assumptions to which scope of kernels we can apply our498

results.499

Guidelines:500

• The answer NA means that the paper has no limitation while the answer No means that501

the paper has limitations, but those are not discussed in the paper.502

• The authors are encouraged to create a separate ”Limitations” section in their paper.503

• The paper should point out any strong assumptions and how robust the results are to504

violations of these assumptions (e.g., independence assumptions, noiseless settings,505

model well-specification, asymptotic approximations only holding locally). The authors506

should reflect on how these assumptions might be violated in practice and what the507

implications would be.508

• The authors should reflect on the scope of the claims made, e.g., if the approach was509

only tested on a few datasets or with a few runs. In general, empirical results often510

depend on implicit assumptions, which should be articulated.511

• The authors should reflect on the factors that influence the performance of the approach.512

For example, a facial recognition algorithm may perform poorly when image resolution513

is low or images are taken in low lighting. Or a speech-to-text system might not be514

used reliably to provide closed captions for online lectures because it fails to handle515

technical jargon.516

• The authors should discuss the computational efficiency of the proposed algorithms517

and how they scale with dataset size.518

• If applicable, the authors should discuss possible limitations of their approach to519

address problems of privacy and fairness.520

• While the authors might fear that complete honesty about limitations might be used by521

reviewers as grounds for rejection, a worse outcome might be that reviewers discover522

limitations that aren’t acknowledged in the paper. The authors should use their best523

judgment and recognize that individual actions in favor of transparency play an impor-524

tant role in developing norms that preserve the integrity of the community. Reviewers525

will be specifically instructed to not penalize honesty concerning limitations.526

(iii) Theory assumptions and proofs527

Question: For each theoretical result, does the paper provide the full set of assumptions and528

a complete (and correct) proof?529
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Answer: [Yes]530

Justification: We clearly numbered our assumptions and reference them and we have531

complete proofs in the appendix.532

Guidelines:533

• The answer NA means that the paper does not include theoretical results.534

• All the theorems, formulas, and proofs in the paper should be numbered and cross-535

referenced.536

• All assumptions should be clearly stated or referenced in the statement of any theorems.537

• The proofs can either appear in the main paper or the supplemental material, but if538

they appear in the supplemental material, the authors are encouraged to provide a short539

proof sketch to provide intuition.540

• Inversely, any informal proof provided in the core of the paper should be complemented541

by formal proofs provided in appendix or supplemental material.542

• Theorems and Lemmas that the proof relies upon should be properly referenced.543

(iv) Experimental result reproducibility544

Question: Does the paper fully disclose all the information needed to reproduce the main ex-545

perimental results of the paper to the extent that it affects the main claims and/or conclusions546

of the paper (regardless of whether the code and data are provided or not)?547

Answer: [Yes]548

Justification: We explicitly state our parameters in the Experiments section and we also549

provide supplementary code.550

Guidelines:551

• The answer NA means that the paper does not include experiments.552

• If the paper includes experiments, a No answer to this question will not be perceived553

well by the reviewers: Making the paper reproducible is important, regardless of554

whether the code and data are provided or not.555

• If the contribution is a dataset and/or model, the authors should describe the steps taken556

to make their results reproducible or verifiable.557

• Depending on the contribution, reproducibility can be accomplished in various ways.558

For example, if the contribution is a novel architecture, describing the architecture fully559

might suffice, or if the contribution is a specific model and empirical evaluation, it may560

be necessary to either make it possible for others to replicate the model with the same561

dataset, or provide access to the model. In general. releasing code and data is often562

one good way to accomplish this, but reproducibility can also be provided via detailed563

instructions for how to replicate the results, access to a hosted model (e.g., in the case564

of a large language model), releasing of a model checkpoint, or other means that are565

appropriate to the research performed.566

• While NeurIPS does not require releasing code, the conference does require all submis-567

sions to provide some reasonable avenue for reproducibility, which may depend on the568

nature of the contribution. For example569

(a) If the contribution is primarily a new algorithm, the paper should make it clear how570

to reproduce that algorithm.571

(b) If the contribution is primarily a new model architecture, the paper should describe572

the architecture clearly and fully.573

(c) If the contribution is a new model (e.g., a large language model), then there should574

either be a way to access this model for reproducing the results or a way to reproduce575

the model (e.g., with an open-source dataset or instructions for how to construct576

the dataset).577

(d) We recognize that reproducibility may be tricky in some cases, in which case578

authors are welcome to describe the particular way they provide for reproducibility.579

In the case of closed-source models, it may be that access to the model is limited in580

some way (e.g., to registered users), but it should be possible for other researchers581

to have some path to reproducing or verifying the results.582

(v) Open access to data and code583
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Question: Does the paper provide open access to the data and code, with sufficient instruc-584

tions to faithfully reproduce the main experimental results, as described in supplemental585

material?586

Answer: [Yes]587

Justification: The data are simulated and their simulation process are provided in the code.588

Guidelines:589

• The answer NA means that paper does not include experiments requiring code.590

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/591

public/guides/CodeSubmissionPolicy) for more details.592

• While we encourage the release of code and data, we understand that this might not be593

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not594

including code, unless this is central to the contribution (e.g., for a new open-source595

benchmark).596

• The instructions should contain the exact command and environment needed to run to597

reproduce the results. See the NeurIPS code and data submission guidelines (https:598

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.599

• The authors should provide instructions on data access and preparation, including how600

to access the raw data, preprocessed data, intermediate data, and generated data, etc.601

• The authors should provide scripts to reproduce all experimental results for the new602

proposed method and baselines. If only a subset of experiments are reproducible, they603

should state which ones are omitted from the script and why.604

• At submission time, to preserve anonymity, the authors should release anonymized605

versions (if applicable).606

• Providing as much information as possible in supplemental material (appended to the607

paper) is recommended, but including URLs to data and code is permitted.608

(vi) Experimental setting/details609

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-610

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the611

results?612

Answer: [Yes]613

Justification: We include hyperparameters such as kernel bandwidth in our code.614

Guidelines:615

• The answer NA means that the paper does not include experiments.616

• The experimental setting should be presented in the core of the paper to a level of detail617

that is necessary to appreciate the results and make sense of them.618

• The full details can be provided either with the code, in appendix, or as supplemental619

material.620

(vii) Experiment statistical significance621

Question: Does the paper report error bars suitably and correctly defined or other appropriate622

information about the statistical significance of the experiments?623

Answer: [Yes]624

Justification: The standard deviations over the 10 runs of 10000 iterations are included in625

the appendix.626

Guidelines:627

• The answer NA means that the paper does not include experiments.628

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-629

dence intervals, or statistical significance tests, at least for the experiments that support630

the main claims of the paper.631

• The factors of variability that the error bars are capturing should be clearly stated (for632

example, train/test split, initialization, random drawing of some parameter, or overall633

run with given experimental conditions).634
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• The method for calculating the error bars should be explained (closed form formula,635

call to a library function, bootstrap, etc.)636

• The assumptions made should be given (e.g., Normally distributed errors).637

• It should be clear whether the error bar is the standard deviation or the standard error638

of the mean.639

• It is OK to report 1-sigma error bars, but one should state it. The authors should640

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis641

of Normality of errors is not verified.642

• For asymmetric distributions, the authors should be careful not to show in tables or643

figures symmetric error bars that would yield results that are out of range (e.g. negative644

error rates).645

• If error bars are reported in tables or plots, The authors should explain in the text how646

they were calculated and reference the corresponding figures or tables in the text.647

(viii) Experiments compute resources648

Question: For each experiment, does the paper provide sufficient information on the com-649

puter resources (type of compute workers, memory, time of execution) needed to reproduce650

the experiments?651

Answer: [Yes]652

Justification: We stated the complexity of our algorithm at the end of the section 2.3 and we653

specify our computer setting in Appendix B.654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,657

or cloud provider, including relevant memory and storage.658

• The paper should provide the amount of compute required for each of the individual659

experimental runs as well as estimate the total compute.660

• The paper should disclose whether the full research project required more compute661

than the experiments reported in the paper (e.g., preliminary or failed experiments that662

didn’t make it into the paper).663

(ix) Code of ethics664

Question: Does the research conducted in the paper conform, in every respect, with the665

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?666

Answer: [Yes]667

Justification: This is a theoretical work.668

Guidelines:669

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.670

• If the authors answer No, they should explain the special circumstances that require a671

deviation from the Code of Ethics.672

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-673

eration due to laws or regulations in their jurisdiction).674

(x) Broader impacts675

Question: Does the paper discuss both potential positive societal impacts and negative676

societal impacts of the work performed?677

Answer: [NA]678

Justification: This is a theoretical work.679

Guidelines:680

• The answer NA means that there is no societal impact of the work performed.681

• If the authors answer NA or No, they should explain why their work has no societal682

impact or why the paper does not address societal impact.683
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• Examples of negative societal impacts include potential malicious or unintended uses684

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations685

(e.g., deployment of technologies that could make decisions that unfairly impact specific686

groups), privacy considerations, and security considerations.687

• The conference expects that many papers will be foundational research and not tied688

to particular applications, let alone deployments. However, if there is a direct path to689

any negative applications, the authors should point it out. For example, it is legitimate690

to point out that an improvement in the quality of generative models could be used to691

generate deepfakes for disinformation. On the other hand, it is not needed to point out692

that a generic algorithm for optimizing neural networks could enable people to train693

models that generate Deepfakes faster.694

• The authors should consider possible harms that could arise when the technology is695

being used as intended and functioning correctly, harms that could arise when the696

technology is being used as intended but gives incorrect results, and harms following697

from (intentional or unintentional) misuse of the technology.698

• If there are negative societal impacts, the authors could also discuss possible mitigation699

strategies (e.g., gated release of models, providing defenses in addition to attacks,700

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from701

feedback over time, improving the efficiency and accessibility of ML).702

(xi) Safeguards703

Question: Does the paper describe safeguards that have been put in place for responsible704

release of data or models that have a high risk for misuse (e.g., pretrained language models,705

image generators, or scraped datasets)?706

Answer: [NA]707

Justification: This is a theoretical work with simulated data.708

Guidelines:709

• The answer NA means that the paper poses no such risks.710

• Released models that have a high risk for misuse or dual-use should be released with711

necessary safeguards to allow for controlled use of the model, for example by requiring712

that users adhere to usage guidelines or restrictions to access the model or implementing713

safety filters.714

• Datasets that have been scraped from the Internet could pose safety risks. The authors715

should describe how they avoided releasing unsafe images.716

• We recognize that providing effective safeguards is challenging, and many papers do717

not require this, but we encourage authors to take this into account and make a best718

faith effort.719

(xii) Licenses for existing assets720

Question: Are the creators or original owners of assets (e.g., code, data, models), used in721

the paper, properly credited and are the license and terms of use explicitly mentioned and722

properly respected?723

Answer: [Yes]724

Justification: The code is mostly original, external code is mostly packages used which can725

be seen as import.726

Guidelines:727

• The answer NA means that the paper does not use existing assets.728

• The authors should cite the original paper that produced the code package or dataset.729

• The authors should state which version of the asset is used and, if possible, include a730

URL.731

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.732

• For scraped data from a particular source (e.g., website), the copyright and terms of733

service of that source should be provided.734
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• If assets are released, the license, copyright information, and terms of use in the735

package should be provided. For popular datasets, paperswithcode.com/datasets736

has curated licenses for some datasets. Their licensing guide can help determine the737

license of a dataset.738

• For existing datasets that are re-packaged, both the original license and the license of739

the derived asset (if it has changed) should be provided.740

• If this information is not available online, the authors are encouraged to reach out to741

the asset’s creators.742

(xiii) New assets743

Question: Are new assets introduced in the paper well documented and is the documentation744

provided alongside the assets?745

Answer: [Yes]746

Justification: Code are separated between mathematical distances functions and simulation747

experiments. A README is also provided.748

Guidelines:749

• The answer NA means that the paper does not release new assets.750

• Researchers should communicate the details of the dataset/code/model as part of their751

submissions via structured templates. This includes details about training, license,752

limitations, etc.753

• The paper should discuss whether and how consent was obtained from people whose754

asset is used.755

• At submission time, remember to anonymize your assets (if applicable). You can either756

create an anonymized URL or include an anonymized zip file.757

(xiv) Crowdsourcing and research with human subjects758

Question: For crowdsourcing experiments and research with human subjects, does the paper759

include the full text of instructions given to participants and screenshots, if applicable, as760

well as details about compensation (if any)?761

Answer: [NA]762

Justification: This is a theoretical work.763

Guidelines:764

• The answer NA means that the paper does not involve crowdsourcing nor research with765

human subjects.766

• Including this information in the supplemental material is fine, but if the main contribu-767

tion of the paper involves human subjects, then as much detail as possible should be768

included in the main paper.769

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,770

or other labor should be paid at least the minimum wage in the country of the data771

collector.772

(xv) Institutional review board (IRB) approvals or equivalent for research with human773

subjects774

Question: Does the paper describe potential risks incurred by study participants, whether775

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)776

approvals (or an equivalent approval/review based on the requirements of your country or777

institution) were obtained?778

Answer: [NA]779

Justification: This is a theoretical work.780

Guidelines:781

• The answer NA means that the paper does not involve crowdsourcing nor research with782

human subjects.783

• Depending on the country in which research is conducted, IRB approval (or equivalent)784

may be required for any human subjects research. If you obtained IRB approval, you785

should clearly state this in the paper.786
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• We recognize that the procedures for this may vary significantly between institutions787

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the788

guidelines for their institution.789

• For initial submissions, do not include any information that would break anonymity (if790

applicable), such as the institution conducting the review.791

(xvi) Declaration of LLM usage792

Question: Does the paper describe the usage of LLMs if it is an important, original, or793

non-standard component of the core methods in this research? Note that if the LLM is used794

only for writing, editing, or formatting purposes and does not impact the core methodology,795

scientific rigorousness, or originality of the research, declaration is not required.796

Answer: [No]797

Justification: This work only concerns kernel methods and not NLP.798

Guidelines:799

• The answer NA means that the core method development in this research does not800

involve LLMs as any important, original, or non-standard components.801

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)802

for what should or should not be described.803
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