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ABSTRACT

This work investigates a novel approach to boost adversarial robustness and gener-
alization by incorporating structural prior into the design of deep learning models.
Specifically, our study surprisingly reveals that existing dictionary learning-inspired
convolutional neural networks (CNNs) provide a false sense of security against ad-
versarial attacks. To address this, we propose Elastic Dictionary Learning Networks
(EDLNets), a novel ResNet architecture that significantly enhances adversarial
robustness and generalization. Extensive and reliable experiments demonstrate
consistent and significant performance improvement on open robustness leader-
boards such as RobustBench, surpassing state-of-the-art baselines. To the best of
our knowledge, this is the first work to discover and validate that dictionary struc-
ture can reliably enhance deep learning robustness under strong adaptive attacks,
unveiling a promising direction for future research.

1 INTRODUCTION

Adversarial robustness has become a central challenge in modern machine learning, particularly
for deep neural networks deployed in high-stakes visual applications. Recent advances show that
state-of-the-art defenses are predominantly built upon adversarial training (Madry, 2017; Zhang
et al., 2019; Gowal et al., 2021) and various regularization strategies (Cisse et al., 2017; Zheng et al.,
2016). In the visual domain, adversarial training combined with generative modeling (Wang et al.,
2023; Gowal et al., 2021) has driven substantial progress and currently dominates the robustness
leaderboard (Croce et al., 2020). However, these approaches increasingly rely on large amounts of
synthetic data and ever-growing model capacity, suggesting a potential saturation of gains within this
paradigm.

Despite their success, adversarially trained networks often improve robustness by memorizing
adversarial perturbations (Madry, 2017), which makes them susceptible to the well-known problem
of robust overfitting (Rice et al., 2020). Existing works attempt to alleviate robust overfitting through
regularization (Andriushchenko & Flammarion, 2020; Qin et al., 2019; Sriramanan et al., 2020), data
augmentation (DeVries, 2017; Zhang, 2017; Carmon et al., 2019; Zhai et al., 2019), or generative
modeling techniques (Wang et al., 2023; Gowal et al., 2021). However, these methods operate
within the same optimization and training framework, making further breakthroughs difficult without
fundamentally new architectural principles.

Motivated by this observation, we explore an orthogonal direction grounded in the dictionary
structural prior that has been widely studied in sparse coding and convolutional dictionary learning.
Prior works (Papyan et al., 2017; Cazenavette et al., 2021; Mahdizadehaghdam et al., 2019; Li et al.,
2022) suggest that natural signals can be represented as sparse linear combinations of learned atoms,
enabling effective denoising of random corruptions and universal perturbations. Yet, this line of
research has not been fully explored under strong, adaptive adversarial attacks, and its limitations in
such settings remain under-investigated.

To address this gap, we revisit convolutional dictionary learning in the context of adversarial ro-
bustness and provide both empirical and theoretical analysis showing why existing dictionary-based
architectures struggle under adaptive attacks. Building on these insights, we propose Elastic Dictio-
nary Learning (Elastic DL), a flexible framework that complements adversarial training and achieves
improved robustness–generalization trade-offs. Our main contributions are summarized as follows:
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• We revisit convolutional dictionary learning in deep learning, highlighting its failures under adaptive
attacks, and we provide theoretical insights into these limitations.

• We first propose a robust dictionary learning approach via ℓ1-reconstruction and highlight its lower
natural performance and the challenges in handling adaptive attacks. Furthermore, we introduce
a novel Elastic Dictionary Learning (Elastic DL) framework to enable a better trade-off between
natural and robust performance.

• We develop an efficient reweighted iterative shrinkage thresholding algorithm (RISTA) to ap-
proximate the non-smooth Elastic DL objective with theoretical convergence guarantees. The
algorithm can be seamlessly integrated into deep learning models as a replacement for conventional
convolutional layers to enhance all convolutional architectures.

• Extensive experiments demonstrate that our proposed Elastic DL framework can significantly
improves adversarial robustness and generalization. Notably, our Elastic DL can achieve state-of-
the-art performance, significantly outperforming the previous best defense on RobustBench (Croce
et al., 2020) leaderboard across various budgets under ℓ∞-norm and ℓ2-norm attacks.

2 RELATED WORKS

Robust overfitting. Overfitting in adversarially trained deep networks has been shown to significantly
harm test robustness (Rice et al., 2020). To address the issue of severe robust overfitting, several
efforts have been made from various perspectives. For instance, Dropout (Srivastava et al., 2014) is a
widely used regularization method that randomly disables units and connections during training to
mitigate overfitting. Regularization techniques (Andriushchenko & Flammarion, 2020; Qin et al.,
2019; Sriramanan et al., 2020) have also proven effective in preventing overfitting by penalizing
the complexity of model parameters. Data augmentation is another common approach for reducing
overfitting in deep network training (Schmidt et al., 2018), with methods including Cutout (DeVries,
2017), Mixup (Zhang, 2017), semi-supervised learning techniques (Carmon et al., 2019; Zhai et al.,
2019), and generative modeling (Wang et al., 2023; Gowal et al., 2021) being particularly notable.
Additionally, early stopping (Rice et al., 2020) has demonstrated great effectiveness in achieving
optimal robust performance during adversarial training. However, existing methods have yet to fully
realize the potential of structural priors for improving adversarial robustness and generalization.

Dictionary learning prior in deep learning. Dictionary learning has been well-studied and widely
applied in signal and image processing (Olshausen & Field, 1996; Wright et al., 2008; Wright &
Ma, 2010; Zhao et al., 2011; Yang et al., 2011; Lu et al., 2013; Chen & Wu, 2013; Jiang et al.,
2015; Yang et al., 2011), based on the assumption that an input signal can be represented by a few
atoms from a dictionary. Building on this foundation, Papyan et al. (2017); Cazenavette et al. (2021);
Mahdizadehaghdam et al. (2019); Li et al. (2022) successfully incorporated dictionary learning into
deep learning to interpret or replace the ”black-box” nature of neural networks. While these methods
have demonstrated promising generalization and robustness against random noise and universal
attacks (Li et al., 2022; Mahdizadehaghdam et al., 2019), their practical benefits for improving
robustness under adaptive attacks are yet to be thoroughly investigated. We leave the related works
about general adversarial attacks and defenses in the Appendix C due to the space limit.

3 REVISITING CONVOLUTIONAL DICTIONARY LEARNING IN DEEP LEARNING

Notations. Let the input signal be denoted as ξ ∈ RH×W and the convolution kernel as α ∈ Rk×k,
where k = 2k0 + 1. The convolution and the transposed convolution of ξ and α are defined as:

(α⋆ξ)[i, j] =

k0∑
p=−k0

k0∑
q=−k0

ξ[i+p, j+q]·α[p, q], (α∗ξ)[i, j] =
k0∑

p=−k0

k0∑
q=−k0

ξ[i−p, j−q]·α[p, q].

Let the C-channel input signal be denoted as x = {ξ1, ..., ξC} ∈ RH×W×C , and D-channel the
output signal as z = {η1, ...,ηD} ∈ RH×W×D. The convolution operator A(·) and its adjoint
transposed convolution operator A∗ are associated with kernel A as:

A(x) =
C∑

c=1

(α1c ⋆ ξc, ...,αDc ⋆ ξc) , A∗(z) =

D∑
d=1

(αd1 ∗ ηd, ...,αdC ∗ ηd) ,
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where the associated kernel A = {αdc}d∈[D],c∈[C] ∈ RD×C×k×k. Here, H , W , C, D, and k

represent the height, width, input dimension, output dimension, and kernel size, respectively.

3.1 VANILLA DICTIONARY LEARNING

To enhance the interpretability of black-box deep neural networks (DNNs), Papyan et al. (2017);
Cazenavette et al. (2021); Mahdizadehaghdam et al. (2019); Li et al. (2022) introduce the structural
prior of dictionary learning into the design of neural networks, assuming that the signal x can be
represented by a linear superposition of several atoms {αdc} from a convolutional dictionary A:
x = A∗(z) ∈ RH×W×C . Then a sparse code z is sought to extract few descriptors out of the
collected dictionary for any given input x:

min
z
∥x−A∗(z)∥22 + λ∥z∥1, (1)

where λ is the hyperparameter to balance the fidelity and sparsity terms. The underlying intuition
is that the dictionary captures the intrinsic structure of clean data, enabling the model to filter out
perturbations that are not consistent with this structure. Consequently, when inputs are corrupted
by adversarial noise or outliers, the reconstruction process using the learned dictionary can act
as a denoising mechanism, preserving essential features while suppressing irrelevant or malicious
variations. Although several works (Cazenavette et al., 2021; Mahdizadehaghdam et al., 2019; Li
et al., 2022) demonstrated promising robustness of this vanilla dictionary learning (Vanilla DL)
defined in Eq. (1) against random corruptions and universal adversarial attacks, it remains unclear
whether Vanilla DL can withstand stronger adaptive attacks.

3.2 PRELIMINARY STUDY: VANILLA DL-BASED SDNETS IS NOT TRULY ROBUST

To validate the robustness of Vanilla DL, we conduct a preliminary experiment on SDNet18 (Li et al.,
2022), a variant of ResNet18 in which all convolutional layers are replaced with convolutional sparse
coding (CSC) layers based on Vanilla DL in Eq. (1). We evaluate the SDNet18 (with fixed λ and
tuned λ) under both random impulse noise and adaptive PGD adversarial attack (Madry, 2017) with
budget 8

255 .

Table 1: Preliminary study on SDNet18 (Li et al.,
2022) under varying levels of random noise and
PGD attack (ϵ = 8

255 ).

MODEL \ NOISE LEVEL L-1 L-2 L-3 L-4 L-5 PGD
RESNET18 81.44 57.23 48.32 32.49 16.98 0.00

SDNET18 (λ = 0.1) 82.39 68.90 59.28 40.8 23.83 0.01
SDNET18 (TUNE λ) 82.39 68.90 59.28 43.71 33.43 0.13

As shown in Table 1, SDNet18 improves upon
ResNet18 in terms of robustness against ran-
dom noise, with more significant improvement
achieved by tuning the sparsity weight λ. How-
ever, SDNet18 still experiences a sharp drop in
performance under adaptive PGD attack, with
accuracy approaching zero. The detailed results
of the performance under various noise levels and λ values are presented in Figure 13 in Appendix D.1.

In fact, the ℓ2-reconstruction term of Vanilla DL in Eq. (1) imposes a quadratic penalty ∥ · ∥22 on the
residual x−A∗(z), making it highly sensitive to outliers introduced by high-level noise and adaptive
attacks. The experimental results reveal that existing Vanilla DL gives a false sense of security under
random noise and can easily compromised by adaptive attack. Thus, there still remains a huge gap to
achieve truly robust dictionary learning in deep learning.

4 ELASTIC DICTIONARY LEARNING

To overcome the aforementioned limitation brought by the Vanilla DL models, we first propose a
robust dictionary learning (Robust DL) via ℓ1-reconstruction to mitigate the impact of outlying values
in Section 4.1. Moreover, we conduct a comprehensive experiment to demonstrate the advantages of
Robust DL and highlight its pitfalls in Section 4.2. Furthermore, to achieve a better inherent trade-off
between natural and robust performance, we propose a novel elastic dictionary learning (Elastic DL)
approach that enhances both natural performance and robustness in Section 4.3. The overview of our
Elastic DL networks (EDLNets) can be found in Figure 1.
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Layer

𝒓𝒕
𝒍 = 𝒛(𝒍) −𝓐 𝒍 ∗ 𝒛𝒕

𝒍&𝟏 ,	𝒘𝒕
(𝒍) = 𝟏

𝟐 𝒓𝒕
𝒍

𝒂𝒕
(𝒍) = 𝜷(𝒍)𝟏 + 𝟏 − 𝜷(𝒍) 𝒘𝒕

(𝒍)

𝒛𝒕&𝟏
(𝒍&𝟏) = 𝓣𝝀𝒕 𝒛𝒕

(𝒍&𝟏) + 𝒕 ⋅ 𝓐(𝒍) 𝒂𝒕
(𝒍)⊙𝒓𝒕

(𝒍)

≈ ∗
𝒛(𝒍) 𝐀(𝒍) 𝒛(𝒍$𝟏)

𝒙 𝒛(𝒍) 𝒛(𝒍$𝟏) 𝒛(𝑳)

⋯ ⋯

Figure 1: Overview of Elastic DL Networks (EDLNets). EDLNets are constructed by replacing the
convolutional layers in backbones (e.g., ResNets) with EDL layers that are unrolled with the proposed
efficient RISTA algorithm. Each EDL layer introduces a dictionary structural prior, assuming the
input signal z(l) is encoded as a sparse code z(l+1) using a few atoms from diction A(l).

4.1 ROBUST DICTIONARY LEARNING VIA ℓ1-RECONSTRUCTION

As observed in the previous section, ℓ2-fidelity assumes light-tailed noise and performs poorly as the
noise becomes increasingly heavy-tailed. To address the sensitivity of ℓ2-fidelity in Vanilla DL, we
first propose a robust dictionary learning approach (Robust DL) with ℓ1-reconstruction to effectively
mitigate the impact of outliers:

min
z
∥x−A∗(z)∥1 + λ∥z∥1. (2)

Despite the sophisticated design of the model architecture, the ℓ1-norm terms in Eq.(2) introduce
non-smoothness to the objective function, making it challenging to design an effective and efficient
algorithm for approximating the solution. To address this, we first propose a localized upper bound as
an alternative objective for the ℓ1-fidelity term ∥x−A∗(z)∥1. Subsequently, we employ the iterative
shrinkage-thresholding algorithm (ISTA) to solve the ℓ1-sparsity.

Localized upper bound. To address ∥x−A∗(z)∥1 term, we first propose a convex upper bound
U(z, z∗) as an alternative in the following Lemma 4.1.
Lemma 4.1. LetR(z) := ∥x−A∗(z)∥1, and for any fixed point z∗, U(z, z∗) is defined as

U(z, z∗) = ∥w1/2 ⊙ (x−A∗(z))∥22 +R(z∗), (3)
where w = 1

2|x−A∗(z∗)| . Then, for any z, the following holds:

(1) U(z, z∗) ≥ R(z), (2) U(z∗, z∗) = R(z∗).

Proof. Please refer to Appendix B.1.

The statement (1) indicates that U(z, z∗) serves as an upper bound for R(z), while statement (2)
demonstrates that U(z, z∗) equalsR(z) at point z∗. With fixed z∗, the alternative objective U(z, z∗)
in Eq. (3) is quadratic and can be efficiently optimized. Therefore, instead of minimizing the non-
smoothR(z) directly, we can alternatively optimize the quadratic upper bound U(z, zt) with gradient
descent algorithm at iteration t.

Reweighted ISTA (RISTA) algorithm. According to Lemma 4.1, we can find an alternative objective
for Eq. (2) at each step t:

zt+1 = argmin
z

∥w1/2
t ⊙ (x−A∗(z)) ∥22 + λ∥z∥1, (4)

where wt = 1
2|x−A∗(zt)| ∈ RH×W×C . Specifically, when wt = 1, the problem reduces to the

formulation in Eq. (1). Then, we can optimize the ℓ1-regularized problem in Eq. (4) instead of
original Eq. (2) by our reweighted iterative shrinkage thresholding algorithm (RISTA):

zt+1 = Tλt (zt + t · A (wt ⊙ (x−A∗(zt)))) , (5)
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where Tλt(z) = sign(z) (|z − λt|)+ represents the soft thresholding operator. The detailed deriva-
tion of Eq. (5) is provided in Appendix B.2. As a consequence of Lemma 4.1, we can conclude the
iteration {zt}Tt=0 obtained by Eq. (5) fulfill the loss descent ofR(z) + ∥z∥1:

R(zt+1) + ∥zt+1∥1 ≤ U(zt+1, zt) + ∥zt+1∥1 ≤ U(zt, zt) + ∥zt∥1 = R(zt) + ∥zt∥1.

This implies convergence of Eq. (2) can be achieved by optimizing the localized upper bound Eq. (4).

4.2 PITFALLS IN ℓ1-BASED ROBUST DL

Table 2: Vanilla DL vs. Robust DL under random cor-
ruption (Impulse noise), PGD-ℓ∞ and PGD-ℓ2 with
various noise levels. Robust DL demonstrates signifi-
cant improvement over Vanilla DL in robustness but
sacrifices natural performance as a trade-off.

RANDOM NATURAL L-1 L-2 L-3 L-4 L-5
VANILLA DL 93.38 84.95 75.83 67.22 44.01 24.91
ROBUST DL 83.25 77.71 71.69 64.9 51.02 37.78

PGD-ℓ∞ NATURAL 1/255 2/255 3/255 4/255 8/255
VANILLA DL 93.38 59.33 12.64 1.65 0.33 0.01
ROBUST DL 83.25 64.16 37.76 18.64 8.10 0.20

PGD-ℓ2 NATURAL 0.1 0.2 0.3 0.4 0.6
VANILLA DL 93.38 63.61 27.86 9.78 3.31 0.10
ROBUST DL 83.25 69.56 50.17 32.58 20.25 2.79

To demonstrate the advantages of Robust DL
over Vanilla DL, we evaluate the models un-
der random noise and adaptive PGD attacks
with attack budgets measured in ℓ∞ and ℓ2
norms. From Table 2, we observe that ℓ1-
based Robust DL has the following pitfalls:
• Pitfall 1: Limited robustness. In terms of

robustness, Robust DL demonstrates a sig-
nificant advantage over Vanilla DL under
high-level random noise and adaptive ad-
versarial attacks (PGD-ℓ∞ and PGD-ℓ2)
across various budget levels. However,
both methods remain vulnerable to adver-
sarially crafted perturbations, achieving nearly zero accuracy under adaptive attacks with impercep-
tible budgets (8/255 for PGD-ℓ∞ and 0.6 for PGD-ℓ2).

• Pitfall 2: Natural performance sacrifice. Despite of certain improvement in robustness, Robust
DL sacrifices natural performance by 10.13%. We conjecture that although ℓ1-based Robust DL
effectively mitigates the impact of outlying values, it also misses important information due to the
tradeoff between accuracy and robustness.

4.3 ELASTIC DICTIONARY LEARNING

Algorithm 1 RISTA for Elastic DL Layer

Input: input signal x, kernel A,
Initialize z0 ← A(x)
for t = 1 to T − 1 do

wt ← 1
2|x−A∗(zt)|

rt← (β1+ (1− β)wt)⊙ (x−A∗(zt))
zt+1 ← Tλt (zt + t · A (rt))

end for
Output: sparse code zT

From previous section, we can see that it is not trivial
to design an optimal dictionary learning framework
with either ℓ2 or ℓ1 reconstruction alone. To this end,
we propose an elastic dictionary learning (Elastic DL)
to achieve well-balanced trade-off between natural
and robust performance:

min
z

β

2
∥x−A∗(z)∥22+

1− β

2
∥x−A∗(z)∥1+λ∥z∥1,

(6)
where β is a layer-wise learnable parameter to adap-
tively balance the two fidelity terms. Similarly, we can generalize the RISTA algorithm from Robust
DL to Elastic DL as in Appendix B.2. The RISTA algorithm for the Elastic DL layer is presented in
Algorithm 1, and an overview of the entire EDLNet architecture is shown in Figure 1.

5 EXPERIMENT

In this section, we comprehensively evaluate the effectiveness of our proposed EDLNets under
various experimental settings. Additionally, we provide several ablation studies to demonstrate the
working mechanism of our approach.

5.1 EXPERIMENTAL SETTING

Datasets. We conduct the experiments on several datasets including CIFAR10 (Krizhevsky et al.,
2009), CIFAR100 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang, 2015).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Backbone architectures. We select ResNets as the backbones, including ResNet10, ResNet18,
ResNet34, and ResNet50 (He et al., 2016). Each of the convolutional layers in ResNets are replaced
with our Elastic DL layer, resulting in the corresponding EDLNets. We use ResNet18 as the default
backbone if not being specified.

Evaluation methods. We evaluate the performance of the models against various attacks, including
FGSM (Goodfellow et al., 2014), PGD (Madry, 2017), C&W (Carlini & Wagner, 2017), AutoAt-
tack (Croce & Hein, 2020), and SparseFool (Modas et al., 2019), covering budget measurements
across ℓ∞-norm, ℓ2-norm, and ℓ1-norm. For the PGD attack, we consider both ℓ∞-norm and ℓ2-norm,
denoted as PGD-ℓ∞ and PGD-ℓ2, respectively. SparseFool uses the ℓ1-norm. Unless otherwise
specified, ℓ∞ is used as the default measurement. To prevent a false sense of security caused by
gradient obfuscation, we perform multiple robustness reliability tests, including certifiable robustness
(Figure 6), transferability analysis (Figure 7), and zero-order gradient analysis (Appendix D.3.4).

Baselines. For robust overfitting mitigation, we include the baselines including regularization (ℓ1,
ℓ2 regularizations and their combination), Cutout (DeVries, 2017), Mixup (Zhang, 2017), and early
stopping (Rice et al., 2020). For adversarial training methods, we compare the baselines including
PGD-AT (Madry, 2017), TRADES (Zhang et al., 2019), MART (Wang et al., 2019), SAT (Huang
et al., 2020), AWP (Wu et al., 2020), Consistency (Tack et al., 2022), DYNAT (Liu et al., 2024),
PORT (Sehwag et al., 2021), and HAT (Rade & Moosavi-Dezfooli, 2022).

Hyperparameter setting. We train the baselines for 200 epochs with batch size 128, weight decay
2e-5, momentum 0.9, and an initial learning rate of 0.1 that is divided by 10 at the 100-th and 150-th
epoch. For our Elastic DL, we pretrain the Vanilla DL model for 150 epochs and then fine-tune the
Elastic DL model for 50 epochs.

5.2 ADVERSARIAL ROBUSTNESS & GENERALIZATION

First, we validate the effectiveness of our approach in mitigating overfitting. Next, we conduct a
comprehensive evaluation of the adversarial training methods. Finally, we demonstrate our approach
surpasses the state-of-the-art methods on the leaderboard by incorporating structural priors.
Table 3: Natural and robust performance of PGD-based adversarial training with different methods to
mitigate the overfitting. BEST represents the highest test accuracy achieved during training, while
FINAL is the average accuracy over the last five epochs. DIFF, the difference between BEST and
FINAL, measures the ability to mitigate overfitting. The best performance is highlighted in bold,
while the second-best is underlined.

NATURAL ACC. ROBUST ACC.
METHOD FINAL BEST DIFF FINAL BEST DIFF
VANILLA 78.98 79.90 0.92 44.90 48.01 3.11
ℓ1 REG. 64.84 65.71 0.87 40.94 41.97 1.03
ℓ2 REG. 78.88 79.39 0.51 42.73 48.26 5.53

ℓ2 + ℓ1 REG. 66.86 67.62 0.76 42.53 43.33 0.80
CUTOUT 75.11 75.58 0.47 47.12 48.23 1.11
MIXUP 69.64 72.05 2.41 46.10 48.53 2.43

EARLY STOPPING 75.51 75.51 0.00 47.69 47.95 0.26
VANILLA DL 82.59 83.27 0.68 44.03 50.53 6.50

ELASTIC DL (OURS) 83.01 83.27 0.26 54.94 55.66 0.72

Robust overfitting mitigation. To validate the effectiveness of incorporating structural priors, we
compare our method with existing popular baselines in mitigating the robust overfitting problem
in Table 3 and Figure 2. We leave the training curves of all the methods in Appendix D.2.1 and
Appendix D.2.2 due to the space limit. From the results, we can make the following observations:
• From Table 3, we observe that our Elastic DL method not only achieves a significant advantage

in both absolute FINAL and BEST performance but also maintains a relatively small gap (DIFF)
between them, indicating that incorporating the structural prior effectively guides adversarial
training to achieve better robustness and generalization.

• From Figure 2, we observe that during the 100th to 200th epochs, the Vanilla DL model exhibits a
severe robust overfitting phenomenon. By incorporating our Elastic DL structural prior at the 150th
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epoch, the test robustness improves substantially, highlighting the promising potential of the Elastic
DL structural prior in overcoming the bottleneck of adversarial robustness and generalization.

Figure 2: Test robust accuracy during the ad-
versarial training. we pretrain the Vanilla DL
model for 150 epochs and fine-tune the Elastic
DL model starting from 150-th epoch. Our
Elastic DL method can achieve the best adver-
sarial robustness.

Table 4: Adversarial robsustness on CIFAR10 with
ResNet18 as backbone. The best performance is
highlighted in bold.

METHOD CLEAN PGD FGSM C&W AA
MART 83.07 53.20 59.86 52.45 43.88
SAT 63.28 43.57 50.13 47.47 39.72
AWP 81.20 51.60 55.30 48.00 46.90
CONSISTENCY 84.37 45.19 53.84 43.75 40.88
DYNAT 82.34 52.25 65.96 52.19 45.10
PGD-AT 80.90 44.35 58.41 46.72 42.14
+ VANILLA DL 83.28 45.64 53.88 41.22 43.70
+ ELASTIC (OURS) 83.57 53.22 69.35 60.80 52.90
TRADES-2.0 82.80 48.32 51.67 40.65 36.40
+ VANILLA DL 79.05 40.64 47.12 41.49 34.90
+ ELASTIC (OURS) 79.85 49.32 58.68 49.47 47.20
TRADES-0.2 85.74 32.63 44.26 26.70 19.00
+ VANILLA DL 82.55 25.37 44.48 30.3 15.30
+ ELASTIC (OURS) 84.75 33.61 57.86 40.68 28.10
PORT 84.59 58.62 62.64 58.12 55.14
+ VANILLA DL 82.35 56.40 60.68 56.77 54.00
+ ELASTIC (OURS) 82.76 59.00 68.54 60.92 56.30
HAT 85.95 56.29 61.17 49.52 53.16
+ VANILLA DL 86.42 57.79 62.67 51.61 54.30
+ ELASTIC (OURS) 86.84 62.48 71.46 59.90 59.07

Adversarial training robustness. To validate the effectiveness of our Elastic DL, we select several
existing popular adversarial defenses and report the experimental results of backbone ResNet18 under
various attacks in Table 4. From the results we can make the following observations:
• Our HAT + Elastic DL significantly outperforms other methods across various attacks, achieving

state-of-the-art performance among all baselines.

• Our Elastic DL is a robust architecture that is orthogonal to existing adversarial training methods
and can be combined with them to further improve robustness.

SOTA performance on leaderboard. Furthermore, we validate whether incorporating our structural
prior improves over state-of-the-art methods. To achieve this, we select the top-ranking methods,
HAT (Rade & Moosavi-Dezfooli, 2022) and PORT (Sehwag et al., 2021)), listed on the Robust-
Bench (Croce et al., 2020) leaderboard under ℓ∞-norm and ℓ2-norm attacks, using ResNet-18 on
the CIFAR-10 dataset. As shown in Table 5 (ℓ∞-norm attack) and Table 6 (ℓ2-norm attack), Our
methods, HAT+Elastic DL and PORT+Elastic DL, consistently achieve superior performance in most
cases for both natural and robust performances.

Table 5: State-of-the-art performance of
ResNet18 on CIFAR10 under ℓ∞-norm attack.

LEADERBOARD UNDER ℓ∞-NORM ATTACK
CLEAN PGD-ℓ∞ AUTOATTACK-ℓ∞

BUDGET 0 8
255

16
255

32
255

8
255

16
255

32
255

PORT 84.59 58.62 27.49 5.79 55.14 17.8 0.3
+ VANILLA DL 82.35 56.4 27.3 6.38 54.0 20.4 0.6
+ ELASTIC (OURS) 82.76 59.0 36.53 22.17 56.3 24.6 1.7
HAT 85.95 56.29 25.82 6.09 53.16 17.20 0.60
+ VANILLA DL 86.42 57.79 26.08 6.07 54.30 17.56 0.63
+ ELASTIC (OURS) 86.84 62.48 44.66 33.69 59.10 29.93 2.10

Table 6: State-of-the-art performance of
ResNet18 on CIFAR10 under ℓ2-norm attack.

LEADERBOARD UNDER ℓ2-NORM ATTACK
CLEAN PGD-ℓ2 AUTOATTACK-ℓ2

BUDGET 0 0.5 1.0 2.0 0.5 1.0 2.0
PORT 88.82 74.89 54.47 27.69 73.80 48.1 5.90
+ VANILLA DL 87.34 73.52 53.75 27.5 71.8 49.1 6.7
+ ELASTIC (OURS) 87.81 75.56 60.76 41.44 72.2 52.4 11.1
HAT 89.92 74.68 47.67 21.38 72.9 40.8 2.2
+ VANILLA DL 88.84 67.99 40.87 17.97 66.8 27.8 0.6
+ ELASTIC (OURS) 89.95 74.62 51.41 27.05 73.2 44.5 3.2

5.3 ABLATION STUDY

Universality across datasets and backbones. To validate the consistent effectiveness of our proposed
methods, we conduct comprehensive abation studies on the different backbones (ResNet10, ResNet18,
ResNet34, ResNet50), datasets (CIFAR10, CIFAR100, Tiny-ImageNet). As demonstrated in the
Figure 3, Table 8, 9 and 10 in Appendix D.3.1, our proposed Elastic DL exhibit excellent clean
performance and robustness under various attacks.

Hidden embedding visualization. We also conduct visualization analyses on the hidden embedding
to obtain better insight into the effectiveness of our proposed Elastic DL. We begin by quantifying the
relative difference between clean embeddings (x or zi) and attacked embeddings (x′ or z′

i) across all
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(a) CIFAR10 (b) CIFAR100 (c) Tiny-ImageNet

Figure 3: Adversarial robustness under various settings. Our Elastic DL outperforms Vanilla DL
across various datasets (CIFAR10 / CIFAR100 / Tiny-ImageNet), backbones (ResNet10 / ResNet18 /
ResNet34 / ResNet50) and attacks (PGD / FGSM / CW / AA).

layers, as shown in Figure 5. Additionally, we visualize one instance in Figure 4, with more examples
provided in Appendix D.3.5. The results in Figure 5 show that Elastic DL has smaller embedding
difference across layers, indicating that our proposed Elastic DL architecture indeed mitigates the
impact of the adversarial perturbation.

𝒙 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒚$

𝒙% 𝒛𝟏% 𝒛𝟐% 𝒛𝟑% 𝒛𝟒% 𝒚$%

𝐂𝐥𝐞𝐚𝐧

𝐀𝐭𝐭𝐚𝐜𝐤𝐞𝐝

𝒙 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒚$

𝒙% 𝒛𝟏% 𝒛𝟐% 𝒛𝟑% 𝒛𝟒% 𝒚$%

𝐕𝐚𝐧𝐢𝐥𝐥𝐚	𝐃𝐢𝐜𝐭𝐢𝐨𝐧𝐚𝐫𝐲	𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐄𝐥𝐚𝐬𝐭𝐢𝐜	𝐃𝐢𝐜𝐭𝐢𝐨𝐧𝐚𝐫𝐲	𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠

Figure 4: Hidden embedding visualization . The difference between clean
and attacked embeddings in Elastic DL is smaller compared to Vanilla DL,
with this effect becoming more significant in deeper layers. Consequently,
while an adversarial attack alters the Vanilla DL output from ”SHIP” to
”FROG”, Elastic DL successfully preserves the correct prediction.

Figure 5: Embedding
difference. Our Elas-
tic DL shows smaller
embedding difference
than Vanilla DL.

Certifiable robustness. We also provide the results of certifiable robustness via randomized smooth-
ing, which is a certified defense that can theoretically guarantee certified accuracy regardless of the
evaluated attacks. The results in Figure 6 demonstrate that our Elastic DL delivers better certified
robustness than the vanilla DL.

Figure 6: Certifiable robustness.
Elastic DL delivers better certi-
fied robustness than vanilla DL.

Figure 7: Transferability analysis. We evaluate the transfer attacks
from multiple baselines, using the adaptive attack as a comparison,
where the adaptive attack demonstrates the strongest performance.

Transferability analysis. To validate the effectiveness of our method and strength of evaluated
adaptive attack, we evaluate transfer attacks from multiple baselines, along with the adaptive attack
for comparison. It can be observed from Figure 7 that the adaptive attack yields the strongest attack,
thereby validating the effectiveness of our experimental evaluation.
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Different attack measurements. In addition to ℓ∞-norm attack (PGD-ℓ∞), we also validate the
consistent effectiveness of our Elastic DL with ℓ2-norm (PGD-ℓ2) and ℓ1-norm (SparseFool) attacks
in the Figure 18 and Table 11 in Appendix D.3.3.

Convergence. To validate the effectiveness of our RISTA iterations, we plot the loss descent curves
of overall objective Eq.(6) along with the individual terms (∥x−A∗(z)∥22, ∥x−A∗(z)∥1 and ∥z∥1)
in Figure 8, which shows that RISTA converges rapidly within first three steps.

Attack behavior. To investigate the attack behaviors, we apply the PGD attack to both models and
visualize the perturbations in Figure 9. It can be observed that, in the Vanilla DL, the adversarial
attack introduces substantial outlying noise, which can be largely mitigated by our Elastic DL.

Out-of-distribution robustness. Beyond in-distribution robustness, we further validate the advantage
of our proposed Elastic DL structure by evaluating the out-of-distribution performance of Vanilla
DL and Elastic DL. The results in Figure 10 demonstrate the superiority of our Elastic DL over the
Vanilla DL under various types of out-of-distribution noise.

Figure 8: Algorithm con-
vergence. RISTA algorithm
achieves fast convergence within
just three steps.

Figure 9: Attack behaviors. The
attacker tends to attack Vanilla
DL model by introducing outly-
ing values.

Figure 10: Out-of-distribution
robustness. Our Elastic DL also
demonstrates excellent out-of-
distribution robustness.

Table 7: Running time (ms) analysis.

LAYERS 0 (RESNET) 2 4 6 8 10 12 14
VANILLA DL 7.82 8.40 9.28 10.51 12.13 13.11 14.16 15.40
ELASTIC DL 7.82 8.90 11.39 13.18 15.99 16.86 19.57 21.94

Running time analysis. We also perform an anal-
ysis to evaluate the inference time of different ar-
chitectures using ResNet18 as the backbone. We
replace multiple convolutional layers in ResNet18
with either Vanilla DL or Elastic DL layers, rang-
ing from 0 to 14 layers. As shown in Table 7, our Elastic DL introduces only a slight computational
overhead compared to Vanilla DL and requires 1-3 times more computation than ResNets, which
is considered acceptable. However, our Elastic DL demonstrates significantly improved robustness
compared to ResNets and Vanilla DL.

6 CONCLUSION & LIMITATION

This paper proposes an orthogonal direction to break through the current plateau of adversarial
robustness. We begin by revealing the vulnerability of dictionary learning in deep learning, and
propose a novel elastic dictionary learning approach along with an efficient RISTA algorithm. Our
comprehensive experiments demonstrate that our method achieves remarkable robustness, surpassing
state-of-the-art baselines available on the robustness leaderboard. To the best of our knowledge,
this is the first work to discover and validate that structural prior can reliably enhance adversarial
robustness and generalization, unveiling a promising direction for future research.

Regarding the limitations, the efficiency can be further improved by either enhancing the algorithm or
actively selecting the layers to be replaced. Additionally, we highlight a promising direction: while
this work focuses solely on the dictionary learning prior, more diverse structural priors could be
explored within the same paradigm in the future.
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7 ETHICS STATEMENT

This paper investigates a dictionary learning-based robust architecture to enhance model robustness.
We have not identified any ethical concerns related to human subjects, data release practices, conflicts
of interest or sponsorship, discrimination, bias or fairness, or issues of research integrity.

8 REPRODUCIBILITY STATEMENT

We provide comprehensive details to facilitate the reproduction of our experiments. Specifically, the
datasets, models, and attack methods are described in Section 5.1, along with the hyperparameters
used in our proposed method. The code will be released upon paper acceptance.
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A OVERVIEW OF ELASTIC DICTIONARY LEARNING

Overview of Elastic DL neural networks. Here we plot a figure to show the overall pipeline of
incorporating Elastic DL structural prior into adversarial training as in Figure 11.
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Figure 11: Overview of Elastic DL neural networks in adversarial training. Elastic DL neural
networks consist of multiple stacked Elastic DL (EDL) layers. During the forward pass, the input x
is fed into the model, generating a series of hidden codes {z(l)}Ll=1 through EDL layers. During the
backward pass, the model parameters are updated, including kernel weights {A(l)}L−1

l=0 , layer-wise
balance weights {β(l)}L−1

l=0 , and classifier parameters W.

Consider a model with {A(l)}L−1
l=0 and {β(l)}L−1

l=0 in the L EDL layers and W in the classifier. Then,
the adversarial training framework with EDL can be formulated as:

min
{A(l),β(l)}L−1

l=0

E(x,y)∼D

[
max

x′∈B(x)
ℓ(z∗(L), y)

]
s.t. z∗(l+1) = argmin

z
ℓNADL(z,A

(l), z∗(l)),

ℓ
(l)
NADL(z,A,x) is defined in Eq. (6),

z∗(0) = x′,

for l = 0, · · · , L− 1.

Its overall pipeline can be divided into three main steps as in Figure 11:

• Step 1 (Attack): leverage adversarial attack algorithm (e.g., PGD) to generate worst-case perturba-
tion x′.

• Step 2 (Forward): input x′ as z∗(0) into model to obtain a series of hidden codes for each layer
{z(l)}Ll=1 by optimizing dictionary learning loss in Eq. (6).

• Step 3 (Backward): update the model parameters including kernel weights {A(l)}L−1
l=0 , layer-wise

balance weight {β(l)}L−1
l=0 , and other parameters W.
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Exploded view of Elastic DL layer. We also provide an exploded view of each Elastic DL layer
as in Figure 12. The input signal z(k) can be represented by a linear superposition of several atoms
{αdc} from a convolutional dictionary A(l). Each EDL layer is unrolled using the proposed RISTA
algorithm, which approximates the solution for elastic dictionary learning objective.

Figure 12: Exploded view of Elastic DL (EDL) layer.
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B THEORETICAL PROOF

B.1 PROOF OF LEMMA 4.1

Proof. Since
√
a ≤ a

2
√
b
+

√
b

2 and the equlity holds when a = b, by replacemnet as a = (x[i, j, c]−
A∗(z)[i, j, c])2 and b = (x[i, j, c]−A∗(z∗)[i, j, c])

2, then

|x[i, j, c]−A∗(z)[i, j, c]| ≤ 1

2
· 1

|x[i, j, c]−A∗(z∗)[i, j, c]|
· (x[i, j, c]−A∗(z)[i, j, c])2 +

1

2
|x[i, j, c]−A∗(z∗)[i, j, c]|

= w[i, j, c] · (x[i, j, c]−A∗(z)[i, j, c])2 +
1

2
|x[i, j, c]−A∗(z∗)[i, j, c]|

Sum up the items on both sides, we obtain

R(z) = ∥x−A∗(z)∥1 =
∑
i,j,c

|x[i, j, c]−A∗(z)[i, j, c]|

≤
∑
i,j,c

w[i, j, c] · (x[i, j, c]−A∗(z)[i, j, c])2 +
1

2

∑
i,j,c

|x[i, j, c]−A∗(z∗)[i, j, c]|

= ∥w1/2 ⊙ (x−A∗(z))∥22 +
1

2
R(z∗)

= U(z, z∗)

and the equality holds at a = b (z = z∗):

U(z∗, z∗) = R(z∗). (7)

B.2 PROOF OF ALGORITHM ITERATION IN EQ. (5)

Here, we derive the algorithm for general elastic dictionary learning (Elastic DL), the ℓ1-based robust
dictionary learning (Robust DL) can be consider as the special case with β = 0.

Proof. For convex objective:

f(z) =
β

2
∥x−A∗(z)∥22 +

1− β

2
∥(w(t))1/2 ⊙ (x−A∗(z)) ∥22,

we can achieve the optima via the first-order gradient descent:

zt+1 = zt − t∇f(zt),

or equivalently,

zt+1 = argmin
z
{f(zt) + ⟨z − zt,∇f(zt)⟩+

1

2t
∥z − zt∥2}.

Then, for the corresponding ℓ1-regularized problem:

min
z

f(z) + λ∥z∥1,

we have:

zt+1 = argmin
z
{f(zt) + ⟨z − zt,∇f(zt)⟩+

1

2t
∥z − zt∥2 + λ∥z∥1}

= argmin
z
{ 1
2t
∥z − (zt − t∇f(zt))∥2 + λ∥z∥1}

= argmin
z
{g(z) := 1

2t
∥z − y∥2 + λ∥z∥1} (y = zt − t∇f(zt))
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Then, the optimality condition is:

0 ∈ ∂zg(z
∗) =

1

t
(z∗ − y) + λsign(z∗)

⇔ y ∈ z∗ + λtsign(z∗)

⇔ y ∈ (Id + λtsign(·)) (z∗)

⇔ z∗ = Tλt(y) := (Id + λtsign(·))−1
(y) = sign(y) (|y − λt|)+ .

Since

∇f(z) = −βA(x−A∗(z))− (1− β)A(w(t) ⊙ (x−A∗(z))

= −A
((

β1+ (1− β)w(t)
)
⊙ (x−A∗(zt))

)
,

Then

zt+1 = z∗ = Tλt (y) = Tλt (zt − t · ∇f(z)) = Tλt
(
zt + t · A

((
β1+ (1− β)w(t)

)
⊙ (x−A∗(zt))

))
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C RELATED WORKS

C.1 ADVERSARIAL ATTACKS

Adversarial attacks are typically classified into two main categories: white-box and black-box attacks.
In white-box attacks, the attacker has full knowledge of the target neural network, including its
architecture, parameters, and gradients. Common examples of white-box attacks include gradient-
based methods such as FGSM (Goodfellow et al., 2014), DeepFool (Moosavi-Dezfooli et al., 2016),
PGD (Madry, 2017), and the C&W attack (Carlini & Wagner, 2017). In contrast, black-box attacks
operate under limited information, where the attacker can only interact with the model through its
input-output behavior without direct access to internal details. Examples of black-box methods include
surrogate model-based approaches (Papernot et al., 2017), zeroth-order optimization techniques (Chen
et al., 2017), and query-based methods (Andriushchenko et al., 2020; Alzantot et al., 2019).

Here we list the detailed information of attacks we use in the main paper:

• Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014): FGSM is one of the earliest and most
widely used adversarial attack methods. It generates adversarial examples by using the gradient of
the loss function with respect to the input data to craft small but purposeful perturbations that lead
the model to make incorrect predictions.

• Projected Gradient Descent (PGD) (Madry, 2017): PGD is an iterative and more robust extension
of FGSM. It repeatedly applies small perturbations within a defined range (or epsilon ball) to
maximize the model’s loss. PGD is often considered a strong adversary in the evaluation of model
robustness.

• Carlini & Wagner Attack (C&W) (Carlini & Wagner, 2017): This attack focuses on crafting
adversarial examples by optimizing a custom loss function designed to minimize perturbations
while ensuring the generated adversarial samples are misclassified.

• AutoAttack Croce & Hein (2020): AutoAttack is an ensemble of adversarial attack methods that
automatically evaluates the robustness of models. It combines various attacks to provide a strong,
reliable benchmark for adversarial robustness without manual tuning.

• SparseFool Modas et al. (2019): SparseFool is a sparse adversarial attack designed to generate
adversarial examples by perturbing only a few pixels in the input image. It highlights how minimal
changes can significantly alter model predictions.

C.2 ADVERSARIAL DEFENSES

Significant efforts have been devoted to enhancing model robustness through a variety of strategies,
including detection techniques (Metzen et al., 2017; Feinman et al., 2017; Grosse et al., 2017;
Sehwag et al., 2021; Rade & Moosavi-Dezfooli, 2022; Addepalli et al., 2022), purification-based
approaches (Ho & Vasconcelos, 2022; Nie et al., 2022; Shi et al., 2021; Yoon et al., 2021), robust
training methods (Madry, 2017; Zhang et al., 2019; Gowal et al., 2021; Li & Liu, 2023), and
regularization-based techniques (Cisse et al., 2017; Zheng et al., 2016). Among these, adversarial
training-based methods (Sehwag et al., 2021; Rade & Moosavi-Dezfooli, 2022; Addepalli et al.,
2022) have proven highly effective against adaptive adversarial attacks, consistently leading the
robustness leaderboard (RobustBench) (Croce et al., 2020). Despite their success, most existing
methods rely heavily on extensive synthetic training data generated by advanced models, larger
network architectures, and empirically driven training strategies. These dependencies pose substantial
challenges to advancing beyond the current plateau in adversarial robustness. In this work, we
introduce an elastic dictionary framework that incorporates structural priors into model design. This
approach is fully orthogonal to existing methods and offers a complementary pathway to further
enhance robustness when integrated with current techniques.

Here are we list the detailed information of adversarial training based methods we use in the main
paper:

• PGD-AT (Madry, 2017): Projected Gradient Descent Adversarial Training (PGD-AT) is a fun-
damental adversarial training approach that enhances model robustness by iteratively generating
adversarial examples using PGD and training the model on them.
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• TRADES (Zhang et al., 2019): TRADES (Tradeoff-inspired Adversarial Defense via Surrogate
Loss Minimization) balances robustness and accuracy by introducing a regularization term that
penalizes the discrepancy between natural and adversarial predictions.

• MART (Wang et al., 2019): Misclassification-Aware Adversarial Training (MART) improves
robustness by assigning higher weights to misclassified examples, emphasizing correctly classified
samples’ robustness.

• SAT (Huang et al., 2020): Self-Adaptive Training (SAT) refines adversarial training by adjusting
the training process based on the model’s confidence, mitigating the effects of incorrect labels and
improving generalization.

• AWP (Wu et al., 2020): Adversarial Weight Perturbation (AWP) enhances robustness by perturbing
model parameters within a constrained space to improve the worst-case performance against
adversarial attacks.

• Consistency (Tack et al., 2022): Consistency training leverages perturbation-invariant representa-
tions to enhance robustness by enforcing consistent predictions across different transformations of
inputs.

• DYNAT (Liu et al., 2024): Dynamic Adversarial Training (DYNAT) adapts training strategies
dynamically based on model performance, balancing robustness and generalization efficiency.

• PORT (Sehwag et al., 2021): Proxy Distribution-based Robust Training (PORT) leverages data
from proxy distributions, such as those generated by advanced generative models, to enhance
adversarial robustness. By formally analyzing robustness transfer and optimizing training, PORT
demonstrates significant improvements in robustness under various threat models.

• HAT (Rade & Moosavi-Dezfooli, 2022): Helper-based Adversarial Training (HAT) mitigates the
accuracy-robustness trade-off by incorporating additional incorrectly labeled examples during
training. This approach reduces excessive margin changes along certain adversarial directions,
improving accuracy without compromising robustness and achieving a better trade-off compared to
existing methods.
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D ADDITIONAL EXPERIMENTS

D.1 PRELIMINARY STUDIES

Preliminary in SDNet18. We evaluate Vanilla DL (with both fixed and tuned λ) under random
impulse noise and adaptive PGD adversarial attacks Madry (2017). In our experiments, the noise
level corresponds to the noise density c, i.e., the proportion of pixels in the image that are randomly
replaced with either the minimum or maximum pixel value. Specifically, we set the noise levels as
follows: L-1 (c = 0.03), L-2 (c = 0.06), L-3 (c = 0.09), L-4 (c = 0.12), and L-5 (c = 0.15). As
illustrated in Figure 13, increasing the noise level and intensifying the distribution tail degradation
lead to a decline in Vanilla DL’s accuracy. While tuning the sparsity weight λ enhances resilience to
random noise, models with any λ suffer a sharp performance drop under adaptive PGD attacks, with
accuracy nearing zero.

Figure 13: Performance of SDNet18 (Vanilla DL) under random Impulse noise with different levels.
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D.2 ADVERSARIAL TRAINING CURVES

D.2.1 TRAINING CURVES OF EACH METHOD

Training curve of our Elastic DL. From Figure 14, we can observe that during the 100th - 150th
epochs, the Vanilla DL model exhibits a severe robust overfitting phenomenon: while training
performance improves, the test robust accuracy drops significantly. After incorporating our Elastic
DL structural prior at the 150th epoch, both training and testing robustness improve substantially.
Although there is a slight drop in natural performance during the initial switching period, it recovers
quickly within a few epochs. This phenomenon highlights the promising potential of the Elastic DL
structural prior in breaking through the bottleneck of adversarial robustness and generalization.

Figure 14: Adversarial training curve of our Elastic DL. During the 100th to 150th epochs, the
model experiences a catastrophic robust overfitting problem. By introducing the Elastic DL structural
prior at the 150th epoch and fine-tuning, we effectively mitigate overfitting and achieve significantly
improved robustness and generalization.
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Training curves of baseline methods. We track the training curves of the baselines including
regularization (ℓ1, ℓ2 regularizations and their combination), Cutout DeVries (2017), Mixup Zhang
(2017) in Figure 15.

(a) Vanilla (b) ℓ1-Regularization

(c) ℓ2-Regularization (d) ℓ2 and ℓ1-Regularization

(e) Cutout (f) Mixup

Figure 15: Training curves of baselines.
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D.2.2 COMPARISON OF ALL METHODS

To make a comparison of all the methods, we compare the natural and robust performance in the
training and testing dataset through the training curve in Figure 16. The figures show the consisente
advantage of our Elastic DL over other methods.

(a) Natural (Train) (b) Robust (Train)

(c) Natural (Test) (d) Robust (Test)

Figure 16: Comparison of training curves of all methods.
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D.3 ABLATION STUDIES

D.3.1 UNIVERSALITY

Universality across various backbones, datasets and attacks. We conduct ablation studies on
different backbones, datasets, and attacks in Table 8, Table 9, and Table 10. Our proposed method
shows consistent effectiveness under various settings.

Table 8: Adversarial robsustness on CIFAR10 with different backbones.

METHOD NATURAL PGD FGSM C&W AA
VANILLA DL + RESNWT10 81.55 45.48 52.53 45.85 41.60
ELASTIC DL + RESNET10 82.69 49.54 64.52 57.37 46.30
VANILLA DL + RESNWT18 83.28 45.64 53.88 41.22 43.70
ELASTIC DL + RESNET18 83.57 53.22 69.35 60.8 52.90
VANILLA DL + RESNWT34 82.45 45.37 54.32 42.12 44.40
ELASTIC DL + RESNET34 82.95 55.88 70.19 61.74 53.80
VANILLA DL + RESNWT50 81.22 46.83 53.75 43.64 45.10
ELASTIC DL + RESNET50 81.07 58.33 69.38 64.87 56.70

Table 9: Adversarial robsustness on CIFAR100 with different backbones.

METHOD NATURAL PGD FGSM C&W AA
VANILLA DL + RESNWT10 55.94 22.45 26.57 18.9 21.00
ELASTIC DL + RESNET10 55.20 26.30 35.34 26.45 22.60
VANILLA DL + RESNWT18 57.24 22.17 26.81 17.43 21.60
ELASTIC DL + RESNET18 57.70 27.27 37.62 28.87 26.30
VANILLA DL + RESNWT34 56.18 21.77 26.14 16.38 20.80
ELASTIC DL + RESNET34 56.38 32.67 43.39 39.34 29.20
VANILLA DL + RESNWT50 54.01 22.39 26.4 18.4 20.90
ELASTIC DL + RESNET50 54.64 30.29 41.48 35.24 28.10

Table 10: Adversarial robsustness on Tiny-Imagenet with different backbones.

METHOD NATURAL PGD FGSM C&W AA
VANILLA DL + RESNWT10 49.6 27.17 32.46 37.91 20.20
ELASTIC DL + RESNET10 50.12 32.93 39.64 40.10 24.90
VANILLA DL + RESNWT18 50.22 31.45 36.46 39.02 30.90
ELASTIC DL + RESNET18 50.52 37.6 43.1 46.64 36.30
VANILLA DL + RESNWT34 50.03 33.54 37.24 37.19 29.30
ELASTIC DL + RESNET34 50.40 34.8 41.75 44.72 34.60
VANILLA DL + RESNWT50 50.35 34.42 37.63 38.86 31.20
ELASTIC DL + RESNET50 50.39 37.38 42.06 41.09 35.40

A
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D.3.2 ORTHOGONALITY TO ADVERSARIAL TRAINING.

Our proposed Elastic DL framework incorporates structural priors into neural networks, comple-
menting existing adversarial training techniques. As shown in Table 4 and Figure 17, Elastic DL
can be integrated with various adversarial training methods (PGD-AT, TRADES-2.0/0.2, HAT) to
consistently enhance performance.

Figure 17: Different adversarial training. Our Elastic DL is orthogonal to existing adversarial training
methods and can be combined with them to further improve the performance.

D.3.3 DIFFERENT BUDGET MEASUREMENT

In addition to ℓ∞-norm attack (PGD-ℓ∞), we also validate the consistent effectiveness of our Elastic
DL with ℓ2-norm (PGD-ℓ2) and ℓ1-norm (SparseFool) attacks in the Figure 18 and Table 11.

Figure 18: Different attack measurements. Our Elastic DL consistently outperforms Vanilla DL
across attacks (PGD-ℓ∞, PGD-ℓ2, SparseFool) evaluated under various metrics (ℓ∞, ℓ2, ℓ0 norms).

Table 11: Adversarial robustness on CIFAR10 with different budget measurements.

PGD ∥ · ∥∞ \ BUDGET 0 2/255 4/255 8/255 12/255 16/255 32/255
VANILLA DL + RESNWT18 83.29 75.86 66.52 45.66 27.5 15.48 2.89

PGD-AT+ EDL - RESNET18 83.57 78.76 71.01 53.29 41.1 34.13 23.84
PGDL2 ∥ · ∥22 \ BUDGET 0 0.1 0.5 1.0 2.0 3.0 5.0

VANILLA DL + RESNWT18 83.29 79.67 59.64 34.86 14.91 12.75 11.05
PGD-AT+ EDL - RESNET18 83.57 81.83 70.55 59.95 57.03 56.65 55.62

SPARSEFOOL ∥ · ∥0 \ LAM 0 3 5 7 9 12 15 20
VANILLA DL + RESNWT18 83.29 65.83 54.11 51.12 44.63 42.14 42.89 41.39

PGD-AT+ EDL - RESNET18 83.57 66.83 55.61 55.11 51.37 50.87 47.38 47.13

D.3.4 ZERO-ORDER GRADIENT ANALYSIS

To further validate that our method does not introduce obfuscated gradients, we use a zero-order
method to estimate the gradient (∂f∂x ≈

f(x+ϵ)−f(x)
ϵ ) and compare it with the gradient computed by

autograd. The results in Table 12 show that the relative difference between the gradients computed
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by autograd and the zero-order method ( |Gradzero−Gradauto|
|Gradauto| ) is negligible. Moreover, the error does

not accumulate or increase with the number of model layers, confirming that our method does not
introduce gradient-related issues.

NUM. OF LAYERS 3 5 8 10 15 20 25 30 40 50
RELATIVE ERROR 0.00066 0.00095 0.00152 0.00092 0.00118 0.00098 0.00112 0.00082 0.00060 0.00093

Table 12: Zero-order gradient analysis.
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D.3.5 HIDDEN EMBEDDING VISUALIZATION

We conduct visualization analyses on the hidden embedding to obtain better insight into the effec-
tiveness of our proposed Elastic DL. We begin by quantifying the relative difference between clean
embeddings (x or zi) and attacked embeddings (x′ or z′

i) across all layers. As shown in Figure 19
and Figure 20, the presence of adversarial perturbations can disrupt the hidden embedding patterns,
leading to incorrect predictions in the case of Vanilla DL. In contrast, our Elastic DL appears to lessen
the effects of such perturbations and maintain predicting groundtruth label.

Here are instances of CAT, SHIP, FROG, AUTOMOBILE, and TRUCK:1155
1156
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1159
1160
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Submission and Formatting Instructions for ICML 2024

B.3.1. HIDDEN EMBEDDING VISUALIZATION

(a) CAT (Vanilla DL) (b) CAT (Our EDL)

(c) SHIP (Vanilla DL) (d) SHIP (Our EDL)

(e) FROG (Vanilla DL) (f) FROG (Our EDL)

(g) AUTOMOBILE (Vanilla DL) (h) AUTOMOBILE (Our EDL)

(i) TRUCK (Vanilla DL) (j) TRUCK (Our EDL)

Figure 12. Hidden embedding visualization (Part 1).
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Figure 19: Hidden embedding visualization. (Part 1)
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Here are instances of BIRD, HORSE, AIRPLANE, DEER and DOG:
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(a) BIRD (Vanilla DL) (b) BIRD (Our EDL)

(c) HORSE (Vanilla DL) (d) HORSE (Our EDL)

(e) AIRPLANE (Vanilla DL) (f) AIRPLANE (Our EDL)

(g) DEER (Vanilla DL) (h) DEER (Our EDL)

(i) DOG (Vanilla DL) (j) DOG (Our EDL)

Figure 13. Hidden embedding visualization (Part 2).
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Figure 20: Hidden embedding visualization. (Part 2)
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D.3.6 RECONSTRUCTION PROCESS

Image & noise reconstruction. In conventional feedforward neural networks, adding a perturbation
ϵ to the input can lead the model to make incorrect predictions. However, as illustrated in Figure 21,
our approach aims to reconstruct both the clean image x and the perturbation ϵ through a dictionary
learning process. To evaluate the effectiveness of our method, we quantify the reconstruction error
between the recovered noise ϵ̂ in our Elastic DL framework and noise generated by various methods
(random noise, transfer noise from ResNet/Vanilla DL, and adaptive noise from Elastic DL). As
shown in Table 13, the recovered noise from our approach exhibits the smallest difference compared
to the adaptive noise in Elastic DL. This result demonstrates that our proposed framework more
effectively reconstructs the noise and mitigates its impact on predictions.

Table 13: Reconstruction Error. We quantify the reconstruction error between the recovered noise
ϵ̂ and various input noises, including random noise (ϵrandom), transfer noise from ResNet (ϵresnet)
and Vanilla DL (ϵvanilla), as well as adaptive noise from our Elastic DL (ϵelastic). Our Elastic DL
demonstrates the smallest reconstruction error, indicating that our approach can adaptively recover
and neutralize the input perturbation, thereby mitigating its impact.

ERROR ∥ · ∥1 ∥ · ∥2 ∥ · ∥∞
ϵRANDOM − ϵ̂ 1294.75 ± 406.78 26.09 ± 7.04 0.901 ± 0.10
ϵRESNET − ϵ̂ 131.51 ± 10.53 2.93 ± 0.22 0.163 ± 0.01
ϵVANILLA − ϵ̂ 129.07 ± 13.22 2.85 ± 0.26 0.157 ± 0.01
ϵELASTIC − ϵ̂ 122.62 ± 9.92 2.69 ± 0.22 0.149 ± 0.01
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Recovered
Image

Recovered
Noise

Image Reconstruction

Noise Reconstruction

Figure 21: Reconstruction process.
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Here are instances of reconstruction process in ImageNet:
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Figure 22: Reconstruction process (ImageNet)
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Here are instances of reconstruction process in CIFAR10 (Part1):
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Figure 23: Reconstruction process (CIFAR10, Part 1)
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Here are instances of reconstruction process in CIFAR10 (Part2):
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Figure 24: Reconstruction process (CIFAR10, Part 2)
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