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Abstract

A visual system has to learn both which features to extract from images and how1

to group locations into (proto-)objects. Those two aspects are usually dealt with2

separately, although predictability is discussed as a cue for both. To incorporate3

features and boundaries into the same model, we model a layer of feature maps4

with a pairwise Markov random field model in which each factor is paired with an5

additional binary variable, which switches the factor on or off. Using one of two6

contrastive learning objectives, we can learn both the features and the parameters of7

the Markov random field factors from images without further supervision signals.8

The features learned by shallow neural networks based on this loss are local aver-9

ages, opponent colors, and Gabor-like stripe patterns. Furthermore, we can infer10

connectivity between locations by inferring the switch variables. Contours inferred11

from this connectivity perform quite well on the Berkeley segmentation database12

(BSDS500) without any training on contours. Thus, computing predictions across13

space aids both segmentation and feature learning, and models trained to optimize14

these predictions show similarities to the human visual system. We speculate that15

retinotopic visual cortex might implement such predictions over space through16

lateral connections.17

1 Introduction18

A long-standing question about human vision is how representations initially be based on parallel19

processing of retinotopic feature maps can represent objects in a useful way. Most research on20

this topic has focused on computing later object-centered representations from the feature map21

representations. Psychology and neuroscience identified features that lead to objects being grouped22

together [37, 38], established feature integration into coherent objects as a sequential process [73], and23

developed solutions to the binding problem, i.e. ways how neurons could signal whether they represent24

parts of the same object [17, 57, 67, 72]. In computer vision, researchers also focused on how feature25

map representations could be turned into segmentations and object masks. Classically, segmentation26

algorithm were clustering algorithms operating on extracted feature spaces [2, 12, 13, 16, 66], and27

this approach is still explored with more complex mixture models today [74]. Since the advent of28

deep neural network models, the focus has shifted towards models that directly map to contour maps29

or semantic segmentation maps [21, 27, 39, 50, 65, 83], as reviewed in [54].30

Diverse findings suggest that processing within the feature maps take object boundaries into account.31

For example, neurons appear to encode border ownership [34, 57, 63] and to fill in information across32

surfaces [40] and along illusory contours [23, 76]. Also, attention spreading through the feature33

maps seems to respect object boundaries [4, 59]. And selecting neurons that correspond to an object34

takes time, which scales with the distance between the points to be compared [35, 41]. Finally, a35

long history of psychophysical studies showed that changes in spatial frequency and orientation36
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content can define (texture) boundaries [e.g. 5, 45, 81]. In both human vision and computer vision,37

relatively little attention has been given to these effects of grouping or segmentation on the feature38

maps themselves.39

Additionally, most theories for grouping and segmentation take the features in the original feature40

maps as given. In human vision, these features are traditionally chosen by the experimenter [37,41

73, 72] or are inferred based on other research [57, 63]. Similarly, computer vision algorithms used42

off-the-shelf feature banks originally [2, 12, 13, 16, 66], and have recently moved towards deep neural43

network representations trained for other tasks as a source for feature maps [21, 27, 39, 50, 65, 83].44

Interestingly, predictability of visual inputs over space and time has been discussed as a solution for45

both these limitations of earlier theories. Predictability has been used as a cue for segmentation since46

the law of common fate of Gestalt psychology [37], and both lateral interactions in visual cortices and47

contour integration respect the statistics of natural scenes [19, 20]. Among other signals like sparsity48

[55] or reconstruction [36], predictability is also a well known signal for self-supervised learning49

of features [80], which has been exploited by many recent contrastive learning [e.g. 15, 24, 29, 75]50

and predictive coding schemes [e.g. 51, 52, 75] for self-supervised learning. However, these uses of51

predictability for feature learning and for segmentation are usually studied separately.52

Here, we propose a model that learns both features and segmentation without supervision. Predictions53

between locations provide a self-supervised loss to learn the features, how to perform the prediction54

and how to infer which locations should be grouped. Also, this view combines contrastive learning55

[24, 75], a Markov random field model for the feature maps [46] and segmentation into a coherent56

framework. We implement our model using some shallow architectures. The learned features57

resemble early cortical responses and the object boundaries we infer from predictability align well58

with human object contour reports from the Berkeley segmentation database (BSDS500 [2]). Thus,59

retinotopic visual cortex might implement similar computational principles as we propose here.60

2 Model61

To explain our combined model of feature maps and their local segmentation information, we start62

with a Gaussian Markov random field model [46] with pairwise factors. We then add a variable63

w 2 {0, 1} to each factor that governs whether the factor enters the product or not. This yields a joint64

distribution for the whole feature map and all w’s. Marginalizing out the w’s yields a Markov random65

field with "robust" factors for the feature map, which we can use to predict feature vectors from the66

vectors at neighboring positions. We find two contrastive losses based on these predictions that can67

be used to optimize the feature extraction and the factors in the Markov random field model.68

We model the distribution of k-dimensional feature maps f 2 Rk,m0,n0
that are computed from input69

images I 2 Rc,m,n with c = 3 color channels (see Fig. 1 A & B). We use a Markov random field70

model with pairwise factors, i.e. we define the probability of encountering a feature map f with71

entries fi at locations i 2 [1 . . .m0]⇥ [1 . . . n0] as follows:72

p(f) /
Y

i

 i(fi)
Y

(i,j)2N

 ij(fi, fj), (1)

where  i is the local factor, N is the set of all neighboring pairs, and  ij is the pairwise factor73

between positions i and j1. We will additionally assume shift invariance, i.e. each point has the same74

set of nearby relative positions in the map as neighbors,  i is the same factor for each position, and75

each factor  ij depends only on the relative position of i and j.76

We now add a binary variable w 2 {0, 1} to each pairwise factor that encodes whether the factor77

is ’active’ (w = 1) for that particular image (Fig. 1 C). To scale the probability of w = 1 and78

w = 0 relative to each other, we add a factor that scales them with constants pij 2 [0, 1] and 1� pij79

respectively:80

p(f ,w) /
Y

i

 i(fi)
Y

(i,j)2N

p
wij

ij (1� pij)
1�wij ij(fi, fj)

wij (2)

1i and j thus have two entries each
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Figure 1: Illustration of our Markov random field model for the feature maps. A: An example input
image. B: Feature map with 4 neighborhood connectivity and pixel color as the extracted feature.
In the actual models, these feature maps are higher dimensional maps extracted by a convolutional
neural network model. C: Illustration of the factor that links the feature vectors at two neighboring
locations for a 1D feature. Top row: projection of the factor  ij onto the difference between the
features value fi � fj , showing the combination of a Gaussian around 0 and a constant function for
the connection variable wij being 1 or 0 respectively. Middle row: 2D representation of the factor
and its parts plotted against both feature values. Bottom row: Multiplication of the middle row with
the standard normal factor for each position yielding the joint distribution of two isolated positions.
D: Neighborhoods of different sizes used in the models, scaling from 4 to 20 neighbors for each
location.

Finally, we assume that the factors are Gaussian and the feature vectors are originally normalized to81

have mean 0 and variance 1:82

p(f ,w) =
1

Z0
N (f , 0, I)

Y

(i,j)2N

p
wij

ij (1� pij)1�wij

Z(wij , Cij)
exp

⇣
�wij

2
(fi � fj)

TCij(fi � fj)
⌘
, (3)

where Z0 is the overall normalization constant, N(f , 0, I) is the density of a standard normal83

distribution with k ⇥m0 ⇥ n0 dimensions, Cij governs the strength of the coupling in the form of a84

precision matrix, which we will assume to be diagonal, and Z(wij , Cij) scales the distributions with85

wij = 0 and wij = 1 relative to each other.86

We set Z(wij , Cij) to the normalization constant of the Gaussian with standard Gaussian factors87

for fi and fj respectively. For w = 0 this is just (2⇡)�k, the normalization constant of a standard88

Gaussian in 2k dimensions. For w = 1 we get:89

Z(wij = 1, Cij) =

Z Z
exp

✓
�1

2
fT
i fi �

1

2
fT
j fj �

1

2
(fi � fj)

TCij(fi � fj)

◆
dfidfj (4)

= (2⇡)�k det

����
I + Cij Cij

Cij I + Cij

����

1
2

(5)

= (2⇡)�k
Y

l

p
1 + 2cll (6)

which we get by computing the normalization constant of a Gaussian with the given precision and90

then using the assumption that Cij is a diagonal matrix with diagonal entries cll.91
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This normalization depends only on w and the coupling matrix C of the factor  ij and thus induces a92

valid probability distribution on the feature maps. Two points are notable about this normalization93

though: First, once other factors also constrain fi and/or fj , this normalization will not guarantee94

p(wij = 1) = pij . 2 Second, the wij are not independent in the resulting distribution. For example, if95

pairwise factors connect a to b, b to c and a to c the corresponding w are dependent, because wab = 196

and wbc = 1 already imply a smaller difference between fa and fc than if these factor were inactive,97

which increases the probability for wac = 1.98

2.1 Learning99

To learn our model from data, we use a contrastive learning objective on the marginal likelihood p(f).100

To do so, we first need to marginalize out the w’s, which is fortunately simple, because each w affects101

only a single factor:102

p(f) =
X

w

p(f ,w) =
1

Z0
N (f , 0, I)

Y

(i,j)2N

[pij ij(fi, fj) + (1� pij)] (7)

Using this marginal likelihood directly for fitting is infeasible though, because computing Z0, i.e.103

normalizing this distribution is not computationally tractable.104

We resort to contrastive learning to fit the unnormalized probability distribution [24], i.e. we optimize105

discrimination from a noise distribution with the same support as the target distribution. Following106

[75] we do not optimize the Markov random field directly, but optimize predictions based on the107

model using features from other locations as the noise distribution. For this noise distribution, the108

factors that depend only on a single location (the first product in (1)) will cancel. We thus ignore the109

N(f , 0, I) in our optimization and instead normalize the feature maps to mean 0 and unit variance110

across each image. We define two alternative losses that make predictions for positions based on all111

their neighbors or for a single factor respectively.112

2.1.1 Position loss113

The position loss optimizes the probability of the feature vector at each location relative to the114

probability of randomly chosen other feature vectors from different locations and images:115

lpos(f) =
X

i

log
p(fi|fj8j 2 N(i))P
i0 p(fi0 |fj8j 2 N(i))

(8)

=
X

i

X

j2N(i)

log ij(fi, fj)�
X

i

log

0

@
X

i0

exp

2

4
X

j2N(i)

log ij(fi0 , fj)

3

5

1

A , (9)

where N(i) is the set of neighbors of i.116

This loss is consistent with the prediction made by the whole Markov random field, but is relatively117

inefficient, because the predicted distribution p(fi|fj8j 2 N(i)) and the normalization constants for118

these conditional distributions are different for every location i. Thus, the second term in equation119

(9) cannot be reused across the locations i. Instead, we need to compute the second term for each120

location separately, which requires a similar amount of memory as the whole feature representation121

for each negative sample i0 and each neighbor.122

To enable a sufficiently large set of negative points i0 with the available memory, we compute this loss123

multiple times with few negative samples and sum the gradients. This trick saves memory, because124

we can free the memory for the loss computation after each repetition. As the initial computation125

of the feature maps is the same for all negative samples, we can save some computation for this126

procedure by computing the feature maps only once. To propagate the gradients through this single127

computation, we add up the gradients of the loss repetitions with regard to the feature maps and then128

propagate this summed gradient through the feature map computation. This procedure does not save129

computation time compared to the loss with many negative samples, as we still need to calculate the130

evaluation for each position and each sample in the normalization set.131

2Instead, p(wij = 1) will be higher, because other factors increase the precision for the feature vectors,
which makes the normalization constants more similar.

4



2.1.2 Factor loss132

The factor loss instead maximizes each individual factor for the correct feature vectors relative to133

random pairs of feature vectors sampled from different locations and images:134

lfact =
X

i,j

log
 ij(fi, fj)P

i0,j0  ij(fi0 , fj0)
(10)

=
X

i,j

log ij(fi, fj)�
X

i,j

log
X

i0,j0

 ij(fi0 , fj0), (11)

where i, j index the correct locations and i0, j0 index randomly drawn locations, in our implementation135

generated by shuffling the feature maps and taking all pairs that occur in these shuffled maps.136

This loss does not lead to a consistent estimation of the MRF model, because the prediction p(fi|fj)137

should not be based only on the factor  ij , but should include indirect effects as fj also constrains138

the other neighbors of i. Optimizing each factor separately will thus overaccount for information139

that could be implemented in two factors. However, this loss has the distinct advantage that the same140

noise evaluations can be used for all positions and images in a minibatch, which enables a much141

larger number of noise samples and thus much faster convergence.142

2.1.3 Optimization143

We optimize all weights of the neural network used for feature extraction and the parameters of the144

random field, i.e. the connectivity matrices C and the pij for the different relative spatial locations145

simultaneously. As an optimization algorithm we use stochastic gradient descent with momentum.146

Further details of the optimization can be found in the supplementary materials.147

2.2 Segmentation inference148

Computing the probability for any individual pair of locations (i, j) to be connected, i.e. computing149

p(wij = 1|f), depends only on the two connected feature vectors fi and fj :150

p(wij = 1|f)
p(wij = 0|f) =

pij
(1� pij)

Z(wij = 0, Cij)

Z(wij = 1, Cij)
exp

�
�(fi � fj)

TCij(fi � fj)
�

(12)

This inference effectively yields a connectivity measure for each pair of neighboring locations, i.e. a151

sparse connectivity matrix. Given that we did not apply any prior information enforcing continuous152

objects or contours, the inferred wij do not necessarily correspond to a valid segmentation or set of153

contours. Finding the best fitting contours or segmentation for given probabilities for the ws is an154

additional process, which in humans appears to be an attention-dependent serial process [35, 63].155

To evaluate the detected boundaries in computer vision benchmarks, we nonetheless need to convert156

the connectivity matrix we extracted into a contour image. To do so, we use the spectral-clustering-157

based globalization method developed by [2]. This method requires that all connection weights158

between nodes are positive. To achieve this, we transform the log-probability ratios for the wij as159

follows: For each image, we find the 30% quantile of the values, subtract it from all log-probability160

ratios, and set all values below 0.01 to 0.01. We then compute the smallest eigenvectors of the graph161

Laplacian as in graph spectral clustering. These eigenvectors are then transformed back into image162

space and are filtered with simple edge detectors to find the final contours.163

3 Evaluation164

We implement 3 model types implementing feature extractions of increasing complexity in PyTorch165

[56]:166

Pixel value model. For illustrative purposes, we first apply our ideas to the rgb pixel values of an167

image as features. This provides us with an example, where we can easily show the feature values168

and connections. Additionally, this model provides an easy benchmark for all evaluations.169
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A B CLinear, Position loss Linear, Factor loss Linear, best segmentation

D E FPredseg 1 layer 0 Predseg 1, Position Loss Predseg 1, Factor LossR G B

Figure 2: Example linear filter weights learned by our models. Each individual filter is normalized
to minimum 0 and maximum 1. As weights can be negative even a zero weight can lead to a pixel
having some brightness. For example, a number of channels load similarly on red and green across
positions. Where these weights are positive the filter appears yellow and where the weights are
negative filter appears blue, even if the blue channel has a zero weight. A-C: Feature weights learned
by the linear model. A: Using the position loss. B: Using the factor loss. C: The weights of the
model that leads to the best segmentation performance, i.e. the one shown in Figure 3. D: Weights of
the first convolution in predseg1. Next to the filter shapes, which are nearly constant, we plot the
average weight of each channel onto the three color channels of the image. E Predseg1 filters in
the second convolution for a network trained with the position based loss. F: Predseg1 filters in the
second convolution for a network trained with the factor based loss.

Linear model. As the simplest kind of model that allows learning features, we use a single convolu-170

tional deep neural network layer as our feature model. Here, we use 50 11⇥ 11 linear features.171

Predseg1: To show that our methods work for more complex architecture with non-linearities, we172

use a relatively small deep neural network with 4 layers (2 convolutional layers and 2 residual blocks173

with subsampling layers between them, see supplement for details).174

For each of these architectures, we train 24 different networks with all combinations of the following175

settings: 4 different sizes of neighborhoods (4, 8, 12, or 20 neighbors, see Fig. 1D); 3 different noise176

levels (0, 0.1, 0.2) and the two learning objectives. As a training set, we used the unlabeled image177

set from MS COCO [48], which contains 123,404 color images with varying resolution. To enable178

batch processing, we randomly crop these images to 256 ⇥ 256 pixel resolution, but use no other179

data augmentation (See supplementary information for further training details).180

We want to evaluate whether our models learn meaningful features and segmentations. To do so, we181

first analyze the features in the first layers of our networks where we can judge whether features182

are representative of biological visual systems. In particular, we extract segmentations from our183

activations and evaluate those on the Berkeley Segmentation Dataset [2, BSDS500]184

3.1 Learned features185

Linear Model We first analyze the weights in our linear models (Fig 2 A-C). All instances learn186

local averages and Gabor-like striped features, i.e. spatial frequency and orientation tuned features187
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Figure 3: Contour detection results. A: Example segmentations from our models. B: Precision-
recall curves for our models on the Berkeley segmentation dataset, with some other models for
comparison as evaluated by [2]: gPb-uwt-ucm, the final algorithm combining all improvements [2],
Canny’s classical edge detector [7], the mean shift algorithm [12], Felzenschwalbs algorithm [16]
and segmentation based on normalized cuts [13]. For all comparison algorithms evaluations on BSDS
were extracted from the figure by [2]

with limited spatial extend. These features clearly resemble receptive fields of neurons in primary188

visual cortex. Additionally, there appears to be some preference for features that weight the red and189

green color channels much stronger than the blue channel, similar to the human luminance channel,190

which leads to the yellow-blue contrasts in the plots. There is some difference between the two191

learning objectives though. The position based loss generally leads to lower frequency and somewhat192

noisier features. This could either be due to the higher learning efficiency of the factor based loss, i.e.193

the factor based loss is closer to convergence, or due to a genuinely different optimization goal.194

Predseg1 In Predseg1, we first analyze the layer 0 convolution (Fig. 2D), which has only 3 channels195

with 3⇥ 3 receptive fields, which we originally introduced as a learnable downsampling. This layer196

consistently converges to applying near constant weights over space. Additionally, exactly one of197

the channels has a non-zero mean (the 3rd, 1st and 3rd in Fig. 2D) and the other two take balanced198

differences between two of the channels (red vs green and green vs. blue in the examples). This199

parallels the luminance and opponent color channels of human visual perception.200

In the second convolution, we observe a similar pattern of oriented filters and local averages as in201

the linear model albeit in false color as the input channels are rotated by the weighting of the layer 0202

convolution (Fig. 2 E & F).203

3.2 Contour detection204

To evaluate whether the connectivity information extracted by our model corresponds to human205

perceived segmentation, we extract contours from our models and compare them to contours reported206

by humans for the Berkeley Segmentation database [2, 53]. This database contains human drawn207

object boundaries for 500 natural images and is accompanied by methods for evaluating segmentation208

models. Using the methods provided with the database, we compute precision-recall curves for each209

model and use the best F-value (geometric mean of precision and recall) as the final evaluation metric.210

As we had multiple models to choose from, we choose the models from each class that perform211

best on the training data for our reports. For all models this was one of the models with the largest212

neighborhood, i.e. using 20 neighbors, and the factor loss. It seems the factor loss performed213

better simply due to its technical efficiency advantage as discussed above. Performance increases214

monotonically with neighborhood size and Markov random field based approaches to semantic215

segmentation also increased their performance with larger neighborhoods up to fully connected216

Markov random fields [43, 8, 9]. We thus expect that larger neighborhoods could work even better.217

Qualitatively, we observe that all our models yield sensible contour maps (see Fig. 3 A). Even the218

contours extracted from the pixel model yield sensible contours. Additionally, we note that the linear219

model and Layer 1 of the predseg model tend to produce double contours, i.e. they tend to produce220
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Table 1: Numerical evaluation for various algorithms on the BSDS500 dataset. Precision and recall
are only given for ODS, i.e. with a the threshold fixed across the whole dataset.

model Recall Precision F(ODS) F(OIS) Area_PR

Deep Contour** [65] – – 0.76 0.78 0.80
HED** [83] – – 0.79 0.81 0.84
RCF** [50] – – 0.81 0.83 –

Deep Boundary** [39] – – 0.813 0.831 0.866
BDCN** [27] – – 0.83 0.84 0.89

Canny* [7] – – 0.60 0.63 0.58
Mean Shift* [12] – – 0.64 0.68 0.56

Felzenszwalb* [16] – – 0.61 0.64 0.56
Normalized Cuts* [13] – – 0.64 0.68 0.45

gPb-owt-ucm [2] 0.73 0.73 0.73 0.76 0.73
Pixel 0.73 0.66 0.69 0.69 0.73
linear 0.78 0.66 0.72 0.73 0.75

Predseg1-Layer 0 0.79 0.69 0.74 0.73 0.80
Predseg1-Layer 1 0.74 0.47 0.57 0.59 0.45

*: Evaluation of these algorithms taken from [2]. **: Supervised DNNs, evaluation taken from [27].

two contours on either side of the contour reported by human subjects with some area between them221

connected to neither side of the contour.222

Quantitatively, our models also perform well except for the deeper layers of Predseg 1 (Fig. 3B and223

Table 1). The other models beat most hand-crafted contour detection algorithms that were tested224

on this benchmark [7, 12, 13, 16] and perform close to the gPb-owt-ucm contour detection and225

segmentation algorithm [2] that was the state of the art at the time. Layer-0 of Predseg 1 performs226

best followed by the linear feature model and finally the pixel value model. Interestingly, the best227

performing models seem to be mostly the local averaging models (cf. Fig. 2 C). In particular, the228

high performance of the first layer of Predseg 1 is surprising, because it uses only 3⇥ 3 pixel local229

color averages as features.230

Since the advent of deep neural network models, networks trained to optimize performance on231

image segmentation have reached much higher performance on the BSDS500 benchmark, essentially232

reaching perfect performance up to human inconsistency [e.g. 27, 39, 49, 50, 65, 71, 83, see Table 1].233

However, these models all require direct training on human reported contours and often use features234

learned for other tasks. There are also a few deep neural network models that attempt unsupervised235

segmentation [e.g. 10, 47, 82], but we were unable to find any that were evaluated on the contour236

task of BSD500. The closest is perhaps the W-net [82], which used an autoencoder structure with237

additional constraints and was evaluated on the segmentation task on BSDS500 performing slighly238

better than gPb-owt-ucm.239

4 Discussion240

We present a model that can learn features and local segmentation information from images without241

further supervision signals. This model integrates the prediction task used for feature learning and the242

segmentation task into the same coherent probabilistic framework. This framework and the dual use243

for the connectivity information make it seem sensible to represent this information. Furthermore,244

the features learned by our models resemble receptive fields in the retina and primary visual cortex245

and the contours we extract from connectivity information match contours drawn by human subject246

fairly well, both without any training towards making them more human-like.247

To improve biological plausibility, all computations in our model are local and all units are connected248

to the same small, local set of other units throughout learning and inference, which matches early249

visual cortex, in which the lateral connections that follow natural image statistics are implemented250

anatomically [6, 31, 59, 70]. This in contrast to other ideas that require flexible pointers to arbitrary251

locations and features [as discussed by 64] or capsules that flexibly encode different parts of the input252

[14, 42, 61, 62]. Nonetheless, we employ contrastive learning objectives and backpropagation here,253
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for which we do not provide a biologically plausible implementations. However, there is currently254

active research towards biologically plausible alternatives to these algorithms [e.g. 32, 84].255

Selecting the neurons that react to a specific object appears to rely on some central resource [72, 73]256

and to spread gradually through the feature maps [34, 35, 63]. We used a computer vision algorithm257

for this step, which centrally computes the eigenvectors of the connectivity graph Laplacian [2],258

which does not immediately look biologically plausible. However, a recent theory for hippocampal259

place and grid cells suggests that these cells compute the same eigenvectors of a graph Laplacian260

of a prediction network, albeit of a successor representation, i.e. of predictions of the animals state261

transitions [68, 69]. Thus, this might be an abstract description of an operation brains are capable of.262

In particular, earlier accounts that model the selection as a marker that spreads to related locations263

[e.g. 17, 58, 67] have some similarities with iterative algorithms to compute eigenvectors. Originally,264

phase coherence between the neurons encoding the same object was proposed [17, 57, 67], but a gain265

increase with object based attention [58] or a known random modulation is also sufficient to select a266

task relevant set of neurons [25, 26]. Regardless of the mechanistic implementation of the marker,267

connectivity information of the type our model extracts would be extremely helpful to explain the268

gradual spread of object selection.269

Our implementation of the model is not fully optimized, as it is meant as a proof of concept. In270

particular, we did not optimize the architectures or training parameters of our networks for the271

task, like initialization, optimization algorithm, learning rate, or regularization. Presumably, better272

performance in all benchmarks could be reached by adjusting any or all of these parameters.273

One possible next step for our model would be to train deeper architectures, such that the features274

could be used for complex tasks like object detection and classification. Contrastive losses like the275

one we use here are successfully applied for such pretraining purposes even for large scale tasks such276

as ImageNet [60] or MS Coco [48]. These large scale applications often require modifications for277

better learning though [11, 15, 22, 28, 29, 75]. For example: Image augmentations to explicitly train278

networks to be invariant to some image changes, prediction heads that allow more complex shapes279

for the predictions, and memory banks or other methods to decrease the reliance on many negative280

samples. Similar modifications might be necessary to apply our formulation to deeper architectures281

for pretraining purposes. For understanding human vision, this line of reasoning opens the exciting282

possibility that higher visual cortex could be explained based on similar principles, as representations283

from contrastive learning also yield high predictive power for these cortices [86].284

The model we propose here is a probabilistic model of the feature maps. One implication of this285

is that we could also infer the feature values if they were not fixed based on the input. Thus, our286

model implies a pattern how neurons should combine their bottom-up inputs with predictions from287

nearby other neurons, once we include some uncertainty for the bottom-up inputs. In particular, the288

combination ought to take into account which nearby neurons react to the same object and which289

ones do not. Investigating this pooling could provide insights and predictions for phenomena that290

are related to local averaging like crowding for example [3, 18, 30, 77–79], where summary statistic291

models currently capture perceptual limitations best [3, 18, 78], but deviations from these predictions292

suggest that object boundaries change processing [30, 77, 79].293

Another promising extension of our model would be processing over time, because predictions over294

time were found to be a potent signal for contrastive learning [15] and because coherent object motion295

is among the strongest grouping signals for human observers [38] and computer vision systems [85].296

Beside the substantial increases in processing capacity necessary to move to video processing instead297

of image processing, this step would require some extension of our framework to include object298

motion into the prediction. Nonetheless, including processing over time seems to be an interesting299

avenue for future research, especially because segmentation annotations for video are extremely300

expensive to collect such that unsupervised learning is particularly advantageous and popular in301

recent approaches [1, 33, 44].302

This work aims to move us closer to understanding how human visual perception can take object303

structure into account in retinotopic feature map processing and may help us to build systems with304

similar capabilities in the future. We acknowledge that such technological progress can have unknown305

societal consequences, but we do not foresee specific negative consequences of this work.306
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