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Figure 1: Visual results of Scale-Adapter. We propose the Scale-Adapter, a plug-and-play adapter
that enables efficient training and flexible extension to diverse conditions, including both single
conditions (e.g., canny, pose, depth) and multiple condition compositions (e.g., camera trajectory,
image background, human motion) with minimal GPU consumption.

ABSTRACT

We propose Scale-Adapter, a plug-and-play adapter designed to efficiently integrate
conditional knowledge from smaller adapted models into large video diffusion
transformers. Existing controllable video DiT methods face critical challenges: full
fine-tuning of billion-parameter models is extremely expensive, while cascaded
ControlNets introduce substantial parameter overhead and exhibit limited flexibility
for novel multi-condition compositions. To overcome these issues, Scale-Adapter
introduces a novel reversed distillation method, enabling large video diffusion
models to inherit precise control capabilities from smaller, efficiently-tuned video
diffusion models, completely eliminating full fine-tuning. Moreover, recognizing
the intrinsic relationships between different conditions, we replace the cascaded
ControlNet design with a Mixture of Condition Experts (MCE) layer. This structure
dynamically routes diverse conditional inputs within a unified architecture, sup-
porting both single-condition control and multiple condition combinations without
additional training cost. To achieve cross-scale knowledge transfer, we further
develop a Feature Propagation Module to ensure efficient and temporally con-
sistent feature propagation across video frames. Experiments demonstrate that
Scale-Adapter enables high-fidelity multiple condition video synthesis, making
advanced controllable video generation feasible on low-resource hardware and
establishing a new efficiency standard for the field.
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1 INTRODUCTION

Recent advances in Diffusion Transformers (DiTs) have revolutionized high-fidelity video syn-
thesis driven by text prompts, enabling unprecedented visual quality (Peebles & Xie, 2023).
However, generating spatiotemporally coherent content solely through text remains challenging
due to the lack of guidance for fine-grained structural details (e.g., object layouts, motion tra-
jectories). To address this, control conditions, such as bounding boxes, segmentation maps,
and depth maps, have been integrated into diffusion frameworks. Notably, ControlNet (Zhang
et al., 2023) and T2I-Adapter (Mou et al., 2023) have emerged as dominant solutions, extend-
ing Stable Diffusion (Rombach et al., 2021; Podell et al., 2024; He et al., 2022) with lightweight
adapters to support diverse input conditions, fostering broad adoption in controllable image gen-
eration. These methods enhance the conditional control capability of models by freezing the pa-
rameters of the main image generation network and introducing additional trainable parameters.

Large Video  
Diffusion Model

Latent Space Distrubution

ScaleAdapter

Figure 2: The illustration of latent feature dis-
tribution transformation.

When handling multiple conditional inputs, a
common approach is to introduce additional
ControlNets, each specialized for a specific con-
dition (Sun et al., 2025). However, this strategy
leads to a linear increase in model parameters
and requires repeated training processes for each
new condition, resulting in significant computa-
tional overhead. Recent efforts Lin et al. (2024)
attempt to mitigate this by incorporating adapter
modules and routers to combine multiple pre-
trained ControlNets for image diffusion models.
Despite these improvements, such methods still
rely heavily on existing pre-trained ControlNets,
require substantial training resources, and ex-
hibit limited extensibility to novel conditions.

Despite advancements in adaptive condition generation for video synthesis, current frameworks still
face three critical challenges: (1) Training Efficiency: Fine-tuning ControlNets for DiT-based video
diffusion models necessitates an enormous number of parameters. Incorporating a new conditional
control typically requires about 0.5 billion parameters and significant computational resources
(exceeding 48 GPU hours) for high-quality datasets. This imposes a substantial resource burden,
compounded by the fact that state-of-the-art video models now have over 14 billion parameters.
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Figure 3: Motivation of our method. Compared
to previous methods, our framework only requires
training adapters in low-resource environments to
support diverse conditions, eliminating redundant
training efforts.

(2) Inflexible Multi-Condition Fusion: Prior
works have extended conditional control from
image generation to video generation tasks.
While image-generation ControlNet architec-
tures have been adapted for video tasks, they
fail to address specific video control require-
ments, such as camera motion, background, or
character features. Crucially, combining multi-
ple conditions often relies on cascading special-
ized ControlNets. For a typical multiple con-
ditions setup, it needs to train each separate
ControlNet to learn each and equip it with a
large base model (e.g., the Wan2.1 14B model),
and the conditions cannot be dynamically inte-
grated. (3) Limited Condition Consistency:
Image-conditioned adapters often fail to main-
tain temporal and conditional coherence when
applied to video generation, resulting in visible artifacts, including frame flickering and unstable
content such as fluctuating characters or backgrounds. Although some extended approaches introduce
temporal convolutions and linear projection layers into ControlNets, they still do not explicitly model
the spatial correspondence and time-step alignment between conditioning features. This fundamental
limitation necessitates large volumes of training data and extended training time, while still failing
to ensure stable and controllable generation outcomes. At the same time, as shown in Figure 2,
we noticed that small and large models within the same architecture family exhibit strong feature
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similarity (detail in Sec . A in the appendix ), allowing knowledge, particularly in latent space,
to be efficiently transferred from a fine-tuned small model to a large pretrained foundation model.
Moreover, we note that low-resource fine-tuning can equip small models with richer and more diverse
conditional control abilities than those achieved by single-condition ControlNet adaptations.

To overcome these limitations, we propose a unified framework centered on three innovations:
First, we introduce Scale-Adapter, a novel and efficient method developed with minimal training
overhead for conditional video synthesis. Instead of training a full video model, it enables synergistic
collaboration between large foundation models and small video diffusion models, as shown in
Figure 3. Unlike previous methods, we have found that small models and large models with the same
architecture can achieve cross-scale knowledge bridging. Second, we design a Mixture of Condition
Experts (MCE) that concurrently processes heterogeneous input conditions for video generation tasks
in a single forward pass, and we find the intrinsic relationships between different visual conditions,
thereby eliminating repeated training cycles. Unlike previous adapter-based methods, MCE employs
dynamic routing to activate relevant experts for conditions, leveraging inter-condition synergies
learned during joint training. As shown in Figure 6, this results in fewer parameters compared to
Multi-ControlNet (Sun et al., 2025). Third, we develop a Feature Propagation Module to ensure
feature reversed propagation. Conditional features from the adapter are scaled and projected into
each video DiT block, aligning the injected controls with the base model’s priors. Our approach
reduces condition-specific video training costs, supports dynamic composition of novel conditions,
and cuts parameter overhead versus ControlNet and adapters, setting a new efficiency framework for
controllable video generation. Our contributions are summarized as follows:

• We present Scale-Adapter, a plug-and-play adapter to transfer the controllable knowledge
from small-parameter video models to large-parameter models efficiently.

• Technically, we first design a Mixture of Condition Experts (MCE) layer that covers various
control signals with dynamic expert routing. It shows the ability to adapt to unseen conditions
by learning the intrinsic relationships between different visual conditions.

• To achieve reversed condition distillation, we develop a Feature Propagation Module that
efficiently ensures condition coherence during feature transfer in the denoising stage.

2 RELATED WORK

Video Diffusion Model Generative modeling has propelled remarkable advancements in large-scale
video models, with diffusion-based frameworks emerging as a prominent area of development (Ope-
nAI, 2024; Gafni et al., 2022; Chen et al., 2023; 2024a; Dai et al., 2023b; Guo et al., 2024; Long
et al., 2024; Goodfellow et al., 2020; Khachatryan et al., 2023). A large number of diffusion-based
video generation approaches are built upon the Stable Diffusion (Rombach et al., 2021; Blattmann
et al., 2023; He et al., 2022; Xing et al., 2023), encompassing three fundamental components: an
autoencoder that transforms raw videos into a compact latent space (van den Oord et al., 2018);
a text encoder tasked with extracting text embeddings (Raffel et al., 2023); and a neural network,
optimized through diffusion processes, (Ho et al., 2020;?; Qiu et al., 2023) that learns the distribution
characteristics of these video latents. In terms of architectural design, the U-Net, originally devised
for image generation tasks, has been adapted to video generation by integrating temporal dimensions.
Notably, Diffusion Transformers (DiTs)(Peebles & Xie, 2023; Guo et al., 2023; Chen et al., 2023;
Wang et al., 2024b; Peebles & Xie, 2023), which employ exclusively transformer blocks, have
exhibited superior performance over U-Net architectures in the domain of visual generation.

Controllable Generation in Diffusion Models The remarkable success of diffusion models (Wan
et al., 2025; Li et al., 2023b; Hong et al., 2022; Li et al., 2017; Ho et al., 2022; Zhou et al.,
2022; Wang et al., 2024b; Singer et al., 2023; Chen et al., 2023) has spurred substantial interest
in controllable video generation. To address the need for fine-grained control over diffusion-based
synthesis, researchers have explored a wide range of conditional inputs, including depth maps,
Canny edges, reference images, and multimodal combinations. However, the computational cost of
full-parameter fine-tuning for each new condition has driven the development of parameter-efficient
adaptation methods. Notable approaches in this domain include ControlNet (Zhang et al., 2023) and
T2I-Adapter (Mou et al., 2023), which enable pretrained diffusion models to incorporate additional
conditional signals through lightweight trainable branches. These methods effectively balance

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

expressiveness and efficiency. UniControl (Qin et al., 2023) introduces a MoE-style Adapter and a
Task-aware HyperNet to support diverse tasks within a single model. However, its task adaptation
mechanism is designed for text instructions and does not explicitly model relationships between tasks
and conditions. Multi-ControlNet (Sun et al., 2025), which enables composite control, suffers from
isolated branches that limit composability. Uni-ControlNet (Zhao et al., 2023) addresses this by
grouping conditions into local and global controls, supporting composable control within a single
model. Nevertheless, its inability to maintain consistency across frames hinders its applicability to
video generation. Inspired by ControlNet, DiT-ControlNet (Denis, 2025) incorporates zero modules
into the DiT architecture to learn new conditions without training the backbone model. While
effective, this approach incurs significant training overhead. Ctrl-Adapter (Lin et al., 2024) injects
latent feature maps into video generation models using image ControlNets and adapters inserted into
each DiT block. However, it struggles to maintain temporal consistency across video frames. By
contrast, Scale-Adapter takes only a single condition while still being capable of both multi-condition
and zero-shot learning.

3 PRELIMINARIES

Latent Diffusion Models Many recent video generation works utilize latent diffusion models
(LDMs) (Rombach et al., 2022) to learn the compact representations of videos. First, given a F -frame
RGB video x ∈ RF×3×H×W , a video encoder (of a pretrained autoencoder) provides C dimensional
latent representation (latents):

z = E(x) ∈ RF×C×H′×W ′
, (1)

where height and width are spatially downsampled (H ′ < H and W ′ < W ). Next, in the forward
process, a noise scheduler (e.g., DDPM (Ho et al., 2020)) adds noise to the latents z. Then, in the
backward pass, a diffusion model Fθ(zt, t, ctext/img) learns to gradually denoise the latents, given a
diffusion timestep t, and a text prompt ctext (T2V) and/or an initial frame cimg (I2V) if provided. The
diffusion model is trained with the objective: LLDM = Ez,ϵ∼N(0,I),t∥ϵ− ϵθ(zt, t, ctext/img)∥22, where
ϵ and ϵθ represent the added noise to latents and the predicted noise by Fθ respectively. We apply
the same objective for the adapter methods training.

ControlNets ControlNet (Zhang et al., 2023) is designed to add spatial controls (e.g., depth, sketch,
segmentation maps) to image diffusion models. Specifically, given a pretrained backbone image
diffusion model Fθ that consists of input/middle/output blocks, ControlNet has a similar architecture
Fθ′ , where the input/middle blocks parameters of θ′ are initialized from θ, and the output blocks
consist of 1× 1 convolution layers initialized with zeros. ControlNet takes the diffusion timestep
t, text prompt ctext, control image cf, and the noisy latents zt as inputs, and the output features are
merged into the backbone model Fθ for final image generation. Unlike the U-Net architecture,
DiT-based ControlNet requires training and copying the entire DiT block, including extra spatial
compression with time embedding and a zero-init module, which increases the number of parameters.

4 METHOD

4.1 TASK DEFINITION

Given a text description T , diverse visual conditions C, large text-to-video diffusion model Fl,
conditional small video diffusion model Fs, the goal of Scale-Adapter S is to transfer various
control signal guided generation ability in Fs to Fl without additional ControlNet training. A core
requirement of S is that Vgen aligns with both text description T and diverse visual conditions C.
Formally, this conditional video generation task is formulated as:

Vgen = Fl (T, S(Fs(C))) . (2)

Our designs are detailed in subsequent sections: Section 4.2 presents the overall architecture of F ,
outlining the interaction mechanism between the Small Video Diffusion Model, Scale-Adapter, and
Large Video Diffusion Model. Section 4.3 describes the details of adapter design, which enables
efficient transfer of control conditions across different model scales.

4
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Figure 4: Overview of Scale-Adapter. Left: To drive a large text-to-video diffusion model with new
conditions, we first feed the condition latents to a frozen small pretrained conditional diffusion model,
whose features are first injected into Scale-Adapter and then mapped to the frozen large diffusion
model. Right: For each adapter, we design an Mixture of Condition Experts (MCE) layer to learn
multiple control signals and a Feature Propagation module to transfer knowledge efficiently.

4.2 SCALE-ADAPTER TRAINING STRATEGY

The framework in Figure 4 illustrates our methodology for enabling efficient transfer of scalable
multi-condition control knowledge. Scale-Adapter propagates the knowledge from a small video
diffusion model to a large one, keeping all parameters of both pretrained models frozen. Notably, the
small video diffusion model, initialized from a pre-trained text-to-video diffusion model, requires
prior fine-tuning or LoRA training (Hu et al., 2022) to adapt to multiple conditions. Since the large
video diffusion model has a different number of DiT blocks than the small model, we select the first,
last, and several middle DiT blocks to transfer conditional latent features to the large model. This
design allows us to train only the Scale-Adapter, resulting in significantly higher efficiency compared
to fine-tuning the large model itself.

4.3 ADAPTER ARCHITECTURE

Cross-Scale Knowledge Bridging Inspired by ControlNet, conditional information is effectively
injected into the target backbone using trainable copies of the diffusion model block and zero-
initialized linear layers. As illustrated in Figure 4, our Scale-Adapter for the DiT-based video
diffusion model employs a novel architecture consisting of three key components: attention modules,
Mixture of Condition Experts(MCE), and a Feature Propagation Module. Leveraging the MCE
layer to dynamically route condition tokens and adapt the timestep embedding t derived from the
small video diffusion model within the Feature Propagation Module, our design ensures consistent
conditional and temporal representation throughout the bridging stage of the diffusion process. At
the same time, consider increasing the minimum number of additional parameters.

Mixture of Condition Experts Observing that intrinsic connections exist among different condi-
tioning signals, such as between canny edges and depth maps shown in Figure 3, we are inspired to
develop a unified architecture that leverages these relationships for multi-condition generation. To
avoid the inefficiency of retraining for each new condition while ensuring high scalability and zero-
shot adaptation capability to unseen conditions, we introduce a Mixture of Condition Experts (MCE)
layer. This module comprises a specialized set of experts within Scale-Adapter that work together to
capture and integrate latent features from diverse conditional inputs, such as depth maps, canny edges,
and human poses. Within the MCE layer, different experts are designed to simultaneously learn from
various conditional signals. Only a sparse subset of experts is activated during processing, enabling
effective and efficient fusion under both single and multi-condition settings. This structure further
allows the model to exhibit zero-shot generalization to new, unseen conditions during inference.
Moreover, the MCE layer offers high extensibility. When introducing a new condition or task, new
experts can be seamlessly added. These experts can be initialized using weights shared from existing
experts, facilitating rapid convergence with minimal training data.
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Our MCE layer consists of two types of parameterized experts: shared experts Es and condition-
specific experts Ec. This design enables zero-shot generalization to unseen conditions by lever-
aging knowledge from related expert modules. Mathematically, given a set of K feature tokens
{c1, c2, . . . , cK}, the MCE layer computes the conditional output hmce

t in timestep t as:

hmce
t =

K∑
k=1

gk(ck, t) · Eck(xa
t , t), (3)

where gk(ck, t) = Softmax(MLPg([ck; t])) denotes the gating function that assigns weights to each
expert Eck based on the input condition ck and xa

t is adapter attention module output. The shared
expert Es is integrated via:

Eck(xa
t , t) = Es(xa

t , t) + ∆Eck(xa
t , t), (4)

where ∆Eck represents the condition-specific adaptation parameters. During inference, only the
relevant experts are activated via dynamic routing, reducing computational overhead. Empirically, this
design achieves state-of-the-art multi-condition synthesis with fewer parameters compared to naive
Multi-ControlNet baselines while maintaining condition and temporal consistency across frames.

Feature Propagation To efficiently transfer condition information from the large model to the
small model, we introduce a Feature Propagation Module that includes a learnable modulation factor,
a time projection layer, and an Up-Projection layer. The Up-Projection layer leverages a linear layer
to transfer condition information from the small video diffusion model to the large video diffusion
model. Then, the learnable scaling modulation with a time projection layer dynamically adapts
condition features into the large video diffusion model. Those design enables Scale-Adapter to
modulate latent feature contributions based on the denoising stage adaptively. Specifically, given the
adapter’s latent feature xa

t at timestep t, we compute the cross-attention output y between xa
t and the

text embedding ctxt. The feature propagation process is formalized as follows:
αscale = Modulation + Time_Projection(t),

xa
t = Up_Projection(xa

t ) · αscale + Up_Projection(hmce
t ),

(5)

Where αs denotes a learnable scale modulation factor that the latent feature transfers to the target
video backbone. The overall feature propagation function is defined as

xa′

t = u(xa
t , ctxt, t; θ), (6)

where xa′

t represents the adapter output and θ encompasses the adapter’s trainable parameters. The
scale features are then integrated into the large model’s latent space via:

xt = xt + xa′

t , (7)
Where xt is the latent large video diffusion model during the denoise stage. This additive integration
ensures that the large model’s prior knowledge is augmented with condition-specific information
while preserving its structural integrity. Through this module, Scale-Adapter effectively bridges the
gap between small, specialized models and large foundation models, enabling efficient knowledge
transfer across scales. Empirically, it reduces trainable parameters by 70% (without MCE layer)
compared to DiT-ControlNet while maintaining comparable performance.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Scale-Adapter integrates Diffusion Transformer Blocks with Multiple Condition Experts (MCE)
Layer (Shazeer et al., 2017). We conduct experiments using two open-source text-to-video diffusion
models as backbones: Wan2.1-1.3B and Wan2.1-14B (Wan et al., 2025), as well as CogVideoX-2B
and CogVideoX-5B (Hong et al., 2022). Training required approximately 2 days on 1×NVIDIA
H100 80GB GPU. We sampled 15K videos from the Koala-36M dataset (Wang et al., 2024a) and
generated degraded versions by converting samples to grayscale and downscaling to low resolution.
Before training, we extracted auxiliary conditioning signals (human pose, depth maps, and Canny
edges) from all videos. For evaluation, we manually curated 100 high-quality videos spanning
diverse content categories. For conditional generation tasks involving reference videos, we report
LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004), CLIP Score(semantic correspondence between
generated and reference content), and FVD metrics (Unterthiner et al., 2018).
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Figure 5: Qualitative comparisons with baselines. “Ctrl” is “ControlNet” and “Apt” is “Adapter.”
We perform the visual comparison with five baselines using the same conditions, while the image-
based method shows poor performance in cross-frame consistency, and our method obtains better
performance in the adapter-based methods.

5.2 QUALITATIVE RESULTS

We visually compare the performance of our method against baseline models across three key
conditions (Canny edges, Depth maps, and Openpose skeletons) in Fig. 5. Our approach consistently
outperforms alternatives in both visual quality and alignment with input conditions and text prompts,
as validated by the qualitative examples. Under pose control, our method achieves significantly tighter
spatial alignment with input skeletons compared to baselines. For the prompt “a woman walking
along the shoreline” on Fig. 5, our results accurately adhere to pose constraints while maintaining
natural motion. In contrast, UniControl and Uni-ControlNet misinterpret skeletal configurations.
For instance, the blue-dressed woman in their outputs exhibits inconsistencies in appearance and
motion coherence, with subtle frame-to-frame discrepancies undermining temporal consistency. Our
model, by contrast, preserves precise pose adherence while ensuring smooth, natural movements.
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Figure 6: Comparison of trainable model param-
eters in the diffusion model. Our methodology
requires the fewest trainable parameters.

For depth control generation, our framework
demonstrates a superior understanding of 3D ge-
ometry, producing outputs with geometrically
plausible structures from depth maps and sur-
face normals. Ctrl-Adapter, by comparison,
exhibits noticeable geometric inconsistencies,
such as distorted character proportions and im-
plausible spatial relationships between objects.
The X-Adapter captures basic human semantics
but suffers from significant inter-frame varia-
tions in character appearance, lacking the tem-
poral consistency necessary for video genera-
tion. Our method, however, maintains both ge-
ometric fidelity and cross-frame coherence. For
edge-guided generation, our model outperforms
ControlNet-based methods in edge preservation
and structural consistency. As shown in Fig. 5,
this advantage is particularly pronounced in motion details, for example, the leg movements of
the yellow cheetah in the examples, where competing methods exhibit noticeable blurring or edge
misalignment. Our results retain sharp, faithful alignment with input edges while preserving the
fluidity of dynamic motions. These qualitative findings reinforce that the integrated design of our
method, combining the condition fusion of the MCE layer and efficient feature propagation, better
balances condition adherence, visual quality, and temporal consistency between various control
signals.
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Table 1: Comparison of State-of-the-Art Baselines. The best result in each column is bolded, and the
second best is underscored.

Model Canny Edge Depth Map Pose Temproal
FVD↓ CLIP↑ LPIPS↓ SSIM↑ FVD↓ CLIP↑ LPIPS↓ SSIM↑ FVD↓ CLIP↑ LPIPS↓ SSIM↑ Consistency ↑

X-Adapter (Ran et al., 2024) - 0.545 0.736 0.209 - 0.517 0.759 0.127 - - - - 0.754
Uni-ControlNet (Zhao et al., 2024) - 0.642 0.575 0.322 - 0.531 0.778 0.214 - 0.509 0.823 0.188 0.763
UniControl (Qin et al., 2023) - 0.584 0.773 0.268 - 0.572 0.791 0.178 - 0.541 0.741 0.207 0.876
Ctrl-Adapter (Lin et al., 2024) 2135.302 0.757 0.358 0.619 2241.457 0.785 0.352 0.616 2437.149 0.712 0.672 0.304 0.981
DiT-ControlNet (Denis, 2025) 2126.246 0.781 0.551 0.369 2702.865 0.729 0.686 0.304 2685.619 0.645 0.777 0.295 0.978
Wan2.1-14B(fine-tuned) 1145.931 0.919 0.187 0.675 1271.194 0.912 0.193 0.664 1004.556 0.926 0.161 0.691 0.979
Ours 1447.829 0.918 0.255 0.585 1461.706 0.913 0.251 0.591 1502.910 0.903 0.273 0.573 0.984

5.3 QUANTITATIVE RESULTS

We conducted comprehensive comparisons against state-of-the-art ControlNet-based and Adapter-
based methods. As shown in Table 1, Scale-Adapter, deployed on the 14B-T2V base model, out-
performs existing strong video control methods across both depth map and Canny edge conditions,
achieving competitive performance in visual quality and similarity to the reference video. For
Adapter-based methods, our model outperforms X-Adapter and Ctrl-Adapter across most metrics,
despite notable differences in training resources: while these baselines utilize datasets of over 100K
videos or images and fewer GPUs, our method is trained on a more compact 10K video dataset.
Notably, our base model lacks prior conditioning capabilities, highlighting the efficiency of our
adapter design in injecting control capabilities into pre-trained text-to-video models. For ControlNet-
based methods, we further compared against UniControl and Uni-ControlNet. We keep their method
setting using the image diffusion model to generate frames. For DiT-ControlNet, we trained separate
ControlNets for each condition as a baseline. Scale-Adapter achieves the competitive FVD, LPIPS,
and CLIP scores. In contrast, existing ControlNet-based approaches require distinct ControlNets for
different conditions, allowing specialized training for each task, yet our method still achieves overall
competitive performance. Additionally, we provided a comparative experiment of the same model
architecture for small models, large models, and our method in different tasks in the supplementary
materials. These results validate that Scale-Adapter’s architecture delivers great reversed distillation
ability for conditional video generation, balancing efficiency and performance across diverse metrics.
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Figure 7: Ablation results. We present results by removing the MCE layer and changing the number
of adapters. Without the MCE layer and a half number of adapters, it exhibits different levels of
degradation in motion coherence and quality.

5.4 ABLATION STUDY

We systematically evaluate the core components of Scale-Adapter through controlled ablation ex-
periments, utilizing five metrics: FVD, LPIPS, SSIM, and CLIP Score. Quantitative comparisons in
Table 2 reveal two key insights: MCE Layer Efficacy. The full model with the Mixture of Condi-
tion Experts (MCE) layer achieves an FVD improvement across metrics compared to MCE-ablated
variants, underscoring the critical role of dynamic condition feature fusion. This improvement stems
from mixed training on multiple conditions, which enables the model to learn intrinsic relationships
between different conditions. While the MCE-ablated variant retains basic conditioning control, it
exhibits measurable degradation in motion coherence. As shown in Figure 7, the MCE-equipped
model produces clearer and smoother details in video characters (e.g., hands and legs). Moreover, in
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scenarios with multiple characters (left panel of Figure 7), the MCE layer better controls individual
character motions and their interactions with objects.

Configuration FVD ↓ LPIPS ↓ SSIM ↑ CLIP ↑
Full Model 1461.706 0.251 0.591 0.913
w/o MCE 1516.011 0.268 0.573 0.904
w/o Half of adapters 1990.068 0.355 0.567 0.875

Table 2: Ablation Study of Key Components

Adapter Scaling Efficiency. As depicted in Fig-
ure 6, reducing the number of adapters from 12
to 7 maintains robust conditioning fidelity; most
metrics show no significant degradation, while
reducing adapter parameters by nearly half. This
indicates that the combined design of the Feature
Propagation Module and MCE layer effectively
mitigates performance drops even with fewer
adapters, making the model less sensitive to adapter count. However, further reducing the number of
adapters leads to noticeable declines in video quality, particularly in condition consistency. These
results demonstrate that the synergistic integration of the MCE layer and adaptive adapter scaling
achieves state-of-the-art efficiency performance tradeoffs. This design enables precise conditional
control with only single-pass inference, balancing model lightness and control capability. The
additional zero-shot quantitative experiment is on Tab. 4 and Tab. 3 in the supplementary materials.

Human MotionReference Instance Generated Results

Zero-shot inference with other conditions 

Trajectory 

Background

Generation with multiple control conditions

Scribble Normal Map

Figure 8: Gallery of our proposed methods. Given multiple conditions, including background,
reference instance, and human motion, our method has the capability of transferring control conditions
and unseen conditions to generate a high-quality and controllable video clip.

6 APPLICATIONS AND DISCUSSION

Zero-Shot generalization. Scale-Adapter serves as a knowledge bridge that maps diverse control
conditions into the unified representation space of the backbone generative model. To evaluate its
generalization capability, we directly apply Scale-Adapter to large video diffusion models using
condition types not seen during training. The Quantitative experiments are provided in Sec. Din the
appendix. As illustrated in Fig. 8, the model successfully handles scribble, normal map, and trajectory
conditions despite their absence in the training set, demonstrating that the adapter facilitates zero-shot
conditional extension through knowledge transfer between foundation models. Unified multiple
condition synthesis. Our method supports the simultaneous integration of heterogeneous conditional
signals, as shown in Fig. 1 and Fig. 8. Scale-Adapter dynamically routes these multimodal inputs
through condition-specific pathways while maintaining coherence across all control modalities.

7 CONCLUSION

This paper has proposed Scale-Adapter, a novel reversed distillation adapter for efficiently transferring
conditional information from small adapted models to large video diffusion transformers. Our method
achieves robust performance in single and multi-condition video generation with significantly reduced
training costs. Despite these advantages, our approach occasionally struggles to render fine-grained
details. Future work will focus on enhancing spatial-temporal representation learning to improve
fidelity in dynamic regions.

9
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APPENDIX

A LATENT DISTRIBUTION STATISTIC ANALYSIS

To evaluate the transferability of feature distributions between the large and small models, we
randomly selected a single data sample as input and conducted a statistical analysis of the latent
spaces in the Diffusion Transformer Blocks of both models. We pair the DiT Blocks of the 1.3B
model and the 14B model according to a specific sequence (Wan2.1 14B-T2V block index: [0, 4, 8,
12, 16, 20, 24, 28, 32, 36]; Wan2.1-1.3B(fine-tuned from 1.3B-T2V) block index: [0, 2, 5, 8, 11, 14,
15, 18, 21, 24]), and then conduct statistical analysis.

The analysis metrics were divided into two components: (1) Post-PCA dimensionality reduction:
Statistical measures including mean correlation, standard deviation correlation, covariance similarity,
Wasserstein distance, etc.; (2) Calculation of direct distribution distance: Metrics calculated without
dimensionality reduction, such as Wasserstein distance and matrix similarity. Results from this

Figure 9: Latent feature similarity between two scale models. Observing the latent features of the
first few and last few DiT Blocks in the two models exhibit high similarity, whereas the latent features
of the middle Blocks show relatively low similarity. The two models exhibit volatility differences
at different network levels, but the ultimately generated latent space representations have global
consistency.

analysis are presented in Figure 9. We first analyzed the metrics from the paired DiT Blocks to
characterize the relationship between the two latent space distributions. While distributional similarity
varied substantially across blocks (e.g., Wasserstein distance ranged from 5.7 to 24.3, and distance
correlation values spanned 0.03 to 0.81), classifier accuracy remained consistently close to 0.5 (range:
0.458–0.472) across all blocks. This observation indicates that although the local statistical properties
of the two latent spaces differ, their overall representations are highly analogous and indistinguishable
by a classifier across all model blocks. From our analysis results, we observe that the latent features
of the first few and last few DiT Blocks in the two models exhibit high similarity, whereas the latent
features of the middle Blocks show relatively low similarity. Inspired by this phenomenon, the
Adapters in Scale-Adapter are primarily concentrated in the first few and last few Blocks, while the
middle Blocks are equipped with fewer Adapters that are evenly spaced. This design is intended to
effectively facilitate the transfer of features from the small model to the large model.

In conclusion, our analysis of the paired DiT Blocks reveals that the latent space distributions of
the two models are generally analogous, though their similarity varies substantially across blocks:
some blocks exhibit strong similarity, while others show notable divergence. For the feature transfer
task, a block-by-block strategy is therefore well-suited—blocks with high similarity metrics are more
amenable to direct transfer or distillation. Building on this insight, our work aims to develop a method
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for adapting features across DiT Blocks between small and large video diffusion models to enhance
the efficacy of reversed distillation.

B ADDITIONAL ARCHITECTURE DETAIL

Scale-Adapter Block

Figure 9: Adapter detail. Two im-
portant principles of design are multi-
condition integration and low-resource
efficient training.

As shown in Figure 9, the core architecture of Scale-
Adapter consists of three main components: an attention
module, a Mixture of Condition Experts (MCE) layer, and
a Feature Propagation Module.

The attention module is a fundamental component within
each transformer block, comprising three key sub-modules:
LayerNorm layers, a self-attention mechanism, and a
cross-attention mechanism. The LayerNorm layer first
normalizes the input features to stabilize training. The
self-attention mechanism then captures contextual depen-
dencies among spatial and temporal tokens. Finally, the
cross-attention module integrates conditional information
(such as text or structural guidance) into the visual repre-
sentation. This design enables effective fusion of spatial,
temporal, and conditional features throughout the diffusion
process.

The MCE layer includes the router, experts, and shared
experts. Each expert is made up of an MLP layer. The
default setting has 1 shared expert and 3 task-specific
experts, and the topk weight is 2.

The Feature Propagation Module consists of a scale embedding layer and an up-projection layer. The
scale embedding layer includes a scale factor αs and a time embedding layer that can efficiently
achieve the transmission of control condition information. The time embeddings of other layers are
all initialized from the small model. These low-dimensional features encapsulate condition-specific
information and enable seamless integration with the pre-trained small model. To support efficient
training and inference, the MCE layer can be optionally removed, reducing the total parameter count
by up to 50% without compromising performance. The Feature Propagation Module comprises an
up-projection layer and a scale embedding mechanism, which together facilitate efficient and robust
transfer of conditional features to the large diffusion model.

C TRAINING SETTING AND DATA PROCESS

Our model is trained with the following key hyperparameters: a learning rate of 2× 10−5, a training
batch size of 2, a video sampling strategy that selects 24 frames per video with a sampling stride
of 2, a video sample resolution of 512×512 (denoted as video sample size=512), a token sequence
length of 512 (denoted as token sample size=512), 1 gradient accumulation step to stabilize training,
and mixed-precision training using the “bf16“ (bfloat16) format to balance computational efficiency
and numerical precision Chen et al. (2023); Chowdhery et al. (2022); Yang et al. (2024); Chen et al.
(2025); Ramesh et al. (2022); Li et al. (2023a).

For condition data preparation, we leverage three conditions extracted from input frames: depth
maps obtained via Depth-Anything (a state-of-the-art monocular depth estimation model), structural
boundaries extracted using a Canny edge detector, and human pose skeletons retrieved through the
OpenPose framework, ensuring the model captures both global scene geometry and fine-grained
semantic details (Ryu, 2022; Dai et al., 2023a; Li et al., 2017; Ma et al., 2024; Gal et al., 2023;
Goodfellow et al., 2020; Parmar et al., 2022).

D ZERO-SHOT WITH UNSEEN CONDITIONS

Our method demonstrated strong zero-shot generalization ability after a small number of conditional
adaptation training. Our model is trained exclusively on conditional video data, including depth,
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Table 3: Zero-shot Generation Performance on Unseen Conditional Inputs

Conditional FVD (↓) LPIPS (↓) SSIM (↑) CLIP (↑)

Canny(trained) 1447.82 0.25 0.59 0.92

Normal Map 1919.29 0.26 0.51 0.86
Scribble 1752.51 0.25 0.52 0.87
Segmentation Map 1925.24 0.27 0.49 0.86
MLSD 1966.51 0.25 0.51 0.86
Line Art 1655.78 0.23 0.52 0.88

Table 4: Experiment Between Different Scale Models

Model FVD (↓) CLIP (↑) LPIPS (↓) SSIM (↑)

Wan-Control-1.3B(T2V) 2819.091 0.785 0.615 0.337
Wan-Control-14B(T2V) 2505.551 0.801 0.576 0.351
Ours(T2V) 2797.460 0.786 0.629 0.341

Wan-Control-1.3B(I2V) 1563.066 0.896 0.205 0.572
Wan-Control-14B(I2V) 1271.194 0.913 0.193 0.664
Ours(I2V) 1516.011 0.914 0.218 0.584

pose, and Canny conditions. To evaluate its zero-shot generalization capability, we test the model on
several previously unseen conditional inputs, including normal maps, scribbles, segmentation maps,
MLSD edges, and line art.

Quantitative results are summarized in Table 3, where our method is compared against existing
approaches using widely adopted metrics including FVD, LPIPS, SSIM, and CLIP score. The
results demonstrate that our approach effectively adapts to novel conditions without additional fine-
tuning, maintaining high visual quality and semantic alignment across diverse control signals. The
experiment results demonstrate that our MCE layer not only supports multi-condition adaptation but
also zero-shot learning.

E ADDITIONAL EXPERIMENT

Our method is also competitive compared to models that have undergone large-scale pre-training
under the same architecture. It is noted that both our large and small models are initialized from
text-to-video models, with training data of less than 100k and a time of less than 48 GPU hours.
We have conducted additional experiments comparing the performance of our method against 1.3B
and 14B parameter models on both Image-to-Video (I2V) and Text-to-Video (T2V) generation tasks.
For the baseline models, we used the pre-trained Wan2.1-Fun-Control model with 1.3B and 14B
parameters, respectively. Our approach is based on the Wan2.1-14B-T2V model, with depth maps
consistently applied as the control condition. The I2V test set comprises 100 samples selected from
the Koala-36M dataset (Wang et al., 2024a), whereas the T2V evaluation utilizes 1,000 samples from
the Panda-70M dataset (Chen et al., 2024b).

As shown in Table 4, experimental results demonstrate that our method achieves comparable perfor-
mance to the heavily trained 1.3B and 14B models in the I2V task, and even outperforms the 14B
model in the T2V task, demonstrating highly competitive generation quality. These results confirm
that our approach effectively transfers knowledge from the small conditional model to the large base
model, achieving strong performance with greater parameter efficiency.

F THE USAGE OF LARGE LANGUAGE MODELS

In this paper, the usage of the LLM mainly falls into the following aspects: specifically, for grammar
checking and format optimization, we use DeepSeek-R1 to conduct grammar error checking on the
paragraphs of the paper as well as format checking of charts and graphs; additionally, for language
polishing, we apply Doubao to polish and optimize the language expression of the paper’s text
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description part; and it is important to note that all authors are responsible for the content generated
by the LLMs.
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