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 A B S T R A C T

With the rapid growth of solar photovoltaic installations, defect detection in PV power stations has become 
crucial for ensuring operational safety and economic efficiency, as undetected defects can lead to significant 
performance degradation and potential hazards. Unmanned Aerial Vehicle (UAV)-based Electroluminescence 
(EL) imaging offers an efficient solution for large-scale inspection. However, the harsh environmental condi-
tions and complex imaging scenarios pose significant challenges to detection models, while edge computing 
deployment demands strict resource constraints. This study introduces SCRViT, a lightweight deep learning 
model that substantially improves detection performance on low-quality EL images through a spatial-channel 
reconstruction mechanism and a peer network co-learning strategy. Experimental results demonstrate that the 
proposed method achieves 88.19% detection accuracy on simulated outdoor environment datasets, surpassing 
state-of-the-art approaches by 4.77% while reducing model parameters by 55.6%. Through multi-dimensional 
interpretability studies – including Shapley value feature attribution, GradCAM attention pattern analysis, and 
information-theoretic mechanism analysis – this research systematically elucidates the model’s environmental 
adaptation mechanisms. This lightweight yet robust solution enables real-time defect detection on edge devices, 
improving inspection efficiency and reducing operational costs while providing reliable decision support for 
practical applications in complex outdoor environments.
1. Introduction

Over the past decade, global solar photovoltaic (PV) installed ca-
pacity has experienced remarkable growth, driven by both increasing 
demand for low-carbon energy and technological advancements [1]. 
However, PV power stations are predominantly constructed in remote 
areas with harsh environmental conditions, making them vulnerable 
to various degradation factors such as snow accumulation and dust 
deposition. Research shows that PV module failures make up over 70% 
of total system failures [2], causing both economic losses and potential 
safety risks. This challenge is particularly pronounced in utility-scale PV 
installations—individual power stations typically span tens to hundreds 
of hectares and comprise hundreds of thousands of modules, generating 
hundreds of gigabytes of inspection data. These characteristics pose 
significant challenges to fault detection systems in terms of real-time 
performance, accuracy, and scalability.

Among detection methods, current–voltage (IV) analysis struggles 
with minor defects [3], infrared (IR) imaging shows inconsistencies 
between hotspots and actual defects [4], while electroluminescence 
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(EL) imaging, a non-destructive inspection technique that captures 
light emission from solar cells under forward bias conditions to reveal 
various types of defects including microcracks and inactive areas, of-
fers superior reliability in capturing microscopic module features [5]. 
Automated current injection through dedicated inverters has further 
enhanced EL detection efficiency. For efficient inspection of large-
scale PV plants, intelligent monitoring systems integrating Unmanned 
Aerial Vehicles (UAVs) and IoT devices have demonstrated significant 
advantages [6]. These systems, combining UAV-mounted EL imaging 
equipment with edge computing for fault detection, effectively address 
the data latency issues inherent in traditional cloud-based solutions [7]. 
Fig.  1 illustrates the proposed IoT-based architecture for EL image 
defect detection.

Internet of Things (IoT) technology enables efficient data collec-
tion and transmission through integrated sensors and communication 
systems [8], providing a foundation for large-scale fault detection. 
While cloud computing can process massive amounts of data, it faces 
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Fig. 1. Architecture of IoT-based EL image defect detection system. The hardware layer 
integrates cloud computing centers, ground stations, and drone swarms. The software 
layer implements end-to-end deployment from data acquisition to model training.  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

bandwidth limitations and latency issues [9], leading to the adoption 
of Mobile Edge Computing (MEC) [10] solutions.

However, UAV-based EL detection in outdoor environments faces 
severe technical challenges that significantly impact image quality 
[11]. Ambient light interference leads to substantial reduction in image 
signal-to-noise ratio and contrast, making defect features less distin-
guishable. UAV vibration and attitude variations cause image blur, 
compromising the fine details crucial for defect identification. Addition-
ally, environmental factors such as wind speed and temperature varia-
tions affect image acquisition quality, introducing noise and distortions. 
These factors collectively degrade field-acquired EL images compared 
to laboratory standards, creating a significant gap between ideal and 
practical conditions. Current deep learning approaches encounter a 
critical dilemma in addressing these challenges. While existing models 
achieve high detection accuracy under ideal darkroom conditions, they 
are constrained by their computational complexity and parameter scale 
for edge device deployment [12]. Conversely, lightweight models that 
meet computational constraints show significantly reduced accuracy 
when processing low-quality outdoor EL images. This limitation be-
comes particularly critical as the rapid expansion of PV installations 
demands more reliable and efficient inspection solutions.

To address these challenges, we propose SCRViT, a novel
lightweight vision architecture designed specifically for robust outdoor 
EL image defect detection. Through the innovative integration of 
spatial-channel reconstruction mechanisms with peer learning strate-
gies, our approach effectively bridges the gap between model effi-
ciency and detection robustness in challenging environments. The key 
innovations of this research are:

(1) We introduce SCRViT, a lightweight deep learning model based 
on the RepVit architecture. SCRViT maintains high detection perfor-
mance while significantly reducing the number of parameters, en-
abling efficient processing of low-quality outdoor EL images on edge 
computing devices.

(2) We develop a mutual distillation framework utilizing struc-
turally homogeneous but parametrically heterogeneous dual networks. 
Unlike traditional knowledge distillation methods that rely on large-
scale teacher models, our framework enhances model robustness
through complementary learning between peer networks, effectively 
addressing the challenges of detecting low-quality EL images in outdoor 
environments.

(3) We establish a comprehensive model evaluation and inter-
pretability framework. This includes a multi-level validation system in-
corporating standard datasets, simulated outdoor scenario datasets, and 
real industrial environment datasets. Additionally, we perform feature 
attribution analysis using Shapley values, attention pattern analysis 
2 
with GradCAM, and theoretical mechanism analysis grounded in infor-
mation theory to systematically explain the model’s decision-making 
processes, providing a theoretical foundation for reliable industrial 
applications.

2. Related work

2.1. Lightweight models for PV panel defect detection

Photovoltaic (PV) module electroluminescence (EL) image defect 
detection has evolved from traditional methods to lightweight deep 
neural networks. Deitsch et al. [13] systematically demonstrated Con-
volutional Neural Network (CNN), a deep learning architecture that 
uses convolution operations to automatically extract hierarchical visual 
features, advantages over traditional SVM methods in automated defect 
detection, providing a foundation for deep learning approaches in this 
field. To meet edge computing requirements, Al-Otum et al. devel-
oped lightweight architectures [14,15] that reduced model parameters 
to 0.02–0.23M while maintaining detection accuracy through multi-
scale feature extraction strategies, though their performance shows 
room for improvement in complex environmental conditions. Zhang 
et al. [16] explored model optimization by combining neural architec-
ture search with knowledge distillation, while Yang et al. [17] adapted 
EfficientNet-V2 for enhanced detection performance. However, existing 
methods were primarily evaluated on high-quality EL images under 
ideal conditions, showing noticeable performance degradation on low-
quality images acquired in real environments. Therefore, enhancing 
environmental robustness while ensuring model lightweight remains a 
critical scientific challenge in this field.

2.2. General lightweight neural architectures

Lightweight neural network architecture design has emerged as a 
core research direction in deep learning. In the CNN domain, Mo-
bileNetV3 [18] achieved efficient feature extraction through hardware-
aware architecture search and innovative structural design, while Ef-
ficientNetV2 [19] optimized network architecture through training-
aware architecture search and compound scaling strategies. Recently, 
Transformer architectures, which originated from natural language 
processing and employ self-attention mechanisms to model long-range 
dependencies in input data, have demonstrated unique advantages 
in lightweight visual model design. SwiftFormer [20] proposed an 
efficient additive attention mechanism, significantly reducing compu-
tational complexity. MobileViT-V2 [21] and SHViT [22] enhanced fea-
ture extraction efficiency through improved attention design.
RepVit [23] integrated Transformer design principles into lightweight 
CNNs, achieving dual-stage optimization for training and inference. 
These architectures provide valuable insights for efficient model design, 
though their feature extraction capabilities often require adaptation 
when processing low-quality images in specific domains.

2.3. Knowledge distillation for model optimization

Knowledge distillation has become a key technology for deep neural 
network compression. Since Hinton et al. [24] introduced temperature-
scaled soft label distributions, two main technical paradigms have 
emerged: logits-based [25–27] and intermediate feature-based [28–31] 
distillation. In PV module defect detection, Zhang et al. [16] optimized 
model performance and computational cost by integrating multi-source 
knowledge. Traditional knowledge distillation methods, however, rely 
on pre-trained high-performance teacher models, which face challenges 
in scenarios with low-quality images and class imbalance. Addressing 
this issue, Deep Mutual Learning [32] introduced a mutual distillation 
strategy that enables complementary learning between peer networks, 
offering insights for handling complex visual tasks.
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Fig. 2. The overall architecture of SCRViT. The Stem block performs initial feature 
extraction through strided convolutions and FFN layers. SCRViT Block integrates 
SCConv for feature reconstruction and ESE for adaptive channel attention. The SCConv 
Block contains a 1 × 1 convolution followed by feature reconstruction units, while 
the inference path shows the model’s simplified structure during deployment. Each 
component processes features with specific spatial dimensions (H×W) and channel 
numbers (𝐶𝑖), enabling progressive feature refinement across different scales.

3. Methodology

This section presents our lightweight PV module defect detection 
model. Section 3.1 outlines the overall architecture and its key inno-
vations. Section 3.2 introduces the Spatial and Channel Reconstruction 
(SCConv) module, which reduces computational redundancy through 
coordinated spatial and channel reconstruction units. Section 3.3 de-
scribes the Enhanced Squeeze-and-Excitation (ESE) module that im-
proves channel relationship modeling via adaptive weighting. Sec-
tion 3.4 details the mutual distillation training strategy that enhances 
model robustness through peer network collaboration. Together, these 
components form an efficient and robust detection framework.

3.1. Overview of the proposed architecture

RepViT [23] achieves exceptional visual representation while main-
taining lightweight characteristics by integrating Vision Transformer’s 
design paradigm into standard CNN frameworks. However, when ap-
plying RepViT to PV module defect detection, we identified significant 
computational redundancy in processing complex EL images, ineffec-
tive capture of discriminative features for different defect types through 
standardized channel modeling, and notable performance degradation 
with low-quality outdoor images.

To systematically address these limitations, we propose an improved 
network architecture, as shown in Fig.  2. Building upon RepViT’s 
lightweight advantages, this architecture introduces three key technical 
innovations:

First, we adopt the Spatial and Channel Reconstruction (SCConv) 
module [33] to suppress feature redundancy. This module consists 
of two key components: the Spatial Reconstruction Unit (SRU) and 
Channel Reconstruction Unit (CRU). In regions affected by uneven 
illumination, SRU separates information-rich and sparse areas, then en-
hances feature representation through cross-reconstruction operations. 
The CRU complements this process by minimizing channel dimension 
redundancy through a split-transform-and-fuse strategy, achieving effi-
cient feature reconstruction while reducing computational overhead.

Second, we incorporate the Enhanced Squeeze-and-Excitation (ESE) 
module [34] to replace the original SE module. Unlike traditional chan-
nel attention methods that apply fixed reduction ratios, ESE employs an 
adaptive weighting mechanism based on feature statistics. This design 
enables more precise channel relationship modeling by dynamically 
adjusting channel weights according to feature importance, particu-
larly beneficial for capturing diverse defect patterns while minimizing 
computational costs.
3 
Fig. 3. Schematic diagram of the SCConv module and its subunit structure. The 
module consists of two functional units, SRU and CRU, which enhance the model’s 
feature extraction capability for non-uniform EL images through feature separation, 
reconstruction, and adaptive fusion operations.

Third, we implement a mutual distillation training strategy [32] 
that facilitates collaborative learning between structurally identical 
but parametrically heterogeneous dual networks. Unlike traditional 
teacher-student knowledge distillation paradigms [24] that rely on 
large pre-trained teacher models, this method enhances model robust-
ness through complementary learning between peer networks. This 
approach demonstrates particular advantages when processing low-
quality images, where conventional teacher models might struggle to 
provide effective guidance.

In this architecture, SCConv first reconstructs input features to 
reduce redundancy, followed by ESE enhancing channel attention mod-
eling, with the entire network optimized through the mutual distillation 
strategy. Through these architectural innovations, SCRViT effectively 
addresses the challenges of PV module defect detection in outdoor 
environments while maintaining computational efficiency.

3.2. Spatial and channel reconstruction module

While RepViT performs well in general vision tasks, it encounters 
significant challenges when processing outdoor electroluminescence 
(EL) images. Environmental light interference and motion jitter during 
drone-based EL imaging create non-uniform spatial information dis-
tribution. Some regions show low information density due to intense 
light exposure or motion blur, while others contain critical defect in-
formation. This uneven distribution leads to substantial computational 
redundancy in standard convolutional layers during global feature 
processing. Additionally, multiple defect types in EL images (such 
as microcracks, broken grid lines, and dark spots) present distinct 
visual characteristics. These varied patterns demand precise feature 
discrimination capabilities from the model’s channel relationship mod-
eling. However, RepViT’s original feature extraction mechanism shows 
notable limitations in handling such complex channel dependencies.

To address these challenges, this paper incorporates the Spatial and 
Channel Reconstruction Convolution (SCConv) module proposed by Li 
et al. [33] to enhance the model’s feature representation capability, as 
shown in Fig.  3.

The SCConv module [33] consists of two core components: a Spa-
tial Reconstruction Unit (SRU) and a Channel Reconstruction Unit 
(CRU). The SRU addresses feature distribution heterogeneity through 
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Fig. 4. Architecture of the ESE module. The module performs feature recalibration 
through global average pooling for channel statistics extraction, followed by channel 
relationship modeling and Sigmoid activation for attention weight generation.

a separate-and-reconstruct mechanism. Given an input feature map 
𝑋 ∈ R𝑁×𝐶×𝐻×𝑊 , group normalization is first applied: 

𝑋𝑛𝑜𝑟𝑚 = 𝐺𝑁(𝑋) = 𝛾
𝑋 − 𝜇
√

𝜎2 + 𝜀
+ 𝛽 (1)

Adaptive gating weights are constructed based on normalization 
parameters: 
𝑊 = 𝐺𝑎𝑡𝑒(𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝛾 (𝐺𝑁(𝑋)))) (2)

Features are then separated into information-rich (𝑊1) and
information-sparse (𝑊2) components, with feature representation en-
hanced through cross-reconstruction operations: 
𝑋𝑤 = (𝑋𝑤11 ⊕𝑋𝑤22) ∪ (𝑋𝑤21 ⊕𝑋𝑤12) (3)

The CRU employs a split-transform-fuse strategy, splitting features 
by ratio 𝛼 for separate feature extraction: 
𝑌1 = 𝑀𝐺𝑋𝑢𝑝 +𝑀𝑃 1𝑋𝑢𝑝 (4)

𝑌2 = 𝑀𝑃2𝑋𝑙𝑜𝑤 ∪𝑋𝑙𝑜𝑤 (5)

Final adaptive fusion is achieved through an attention mechanism: 
𝑌 = 𝛽1𝑌1 + 𝛽2𝑌2 (6)

where 𝛽1 and 𝛽2 are obtained through softmax computation. The SC-
Conv module is integrated into the downsampling module of each 
RepViT Stage, with structural re-parameterization optimizing inference 
efficiency.

We leverage the spatial and channel reconstruction module to 
adaptively enhance RepViT’s Stage structure. By incorporating SCConv 
into each Stage’s downsampling module and employing structural 
re-parameterization, we optimize inference efficiency. This adaptive 
feature reconstruction mechanism aligns precisely with the character-
istics of EL image defect detection tasks, effectively addressing image 
quality issues caused by environmental factors while providing a robust 
feature foundation for subsequent defect identification.

3.3. Enhanced squeeze-and-excitation module

Despite its effectiveness in general vision tasks, the Squeeze-and-
Excitation (SE) attention mechanism in RepVit exhibits limitations 
when processing electroluminescence (EL) images of photovoltaic mod-
ules. These limitations stem from two key challenges: First, EL im-
age defect features demonstrate complex inter-channel dependencies—
microcrack textures and broken grid line geometries manifest across 
distinct feature channels. Second, environmental factors such as intense 
illumination and motion blur significantly degrade feature quality in 
specific channels. These challenges necessitate an attention mecha-
nism capable of both precise inter-channel dependency modeling and 
adaptive suppression of degraded features.

To address these challenges, we adopt the Enhanced Squeeze-and-
Excitation (ESE) module proposed by Lee and Park [34], as illustrated 
in Fig.  4. The ESE module [34] functions as an intelligent filter, dy-
namically adjusting channel weights based on feature statistics. Similar 
to multi-channel signal processing, this adaptive weighting mecha-
nism emphasizes channels containing critical defect information while 
4 
Table 1
Distribution of different cell types in the ELPV dataset.
 Category Mono-crystalline Poly-crystalline Total 
 Functional 528 685 1213 
 Defective 642 769 1411 
 Total 1170 1454 2624 

suppressing those degraded by environmental factors, enabling more 
precise feature extraction. For an input feature map 𝑋 ∈ R𝐶×𝐻×𝑊 , the 
module first applies global average pooling: 

𝑠𝑐 = 𝐹𝑔𝑎𝑝(𝑋𝑐 ) =
1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑋𝑐 (𝑖, 𝑗) (7)

where 𝑐 ∈ 1, 2,… , 𝐶 denotes the channel index. This operation cap-
tures channel-wise global response characteristics. Inter-channel re-
lationships are then learned through a single fully connected layer: 

𝑧 = 𝑊𝐶 (𝑠) (8)

where 𝑊𝐶 ∈ R𝐶×𝐶 represents the learnable parameter matrix. This de-
sign maintains channel dimensionality, ensuring comprehensive preser-
vation of inter-channel dependencies. Channel attention weights are 
normalized via Sigmoid activation: 
𝑎 = 𝜎(𝑧) (9)

where 𝜎 denotes the Sigmoid function. The final feature recalibration 
is achieved by: 
𝑋̂𝑐 = 𝑎𝑐 ⋅𝑋𝑐 (10)

This enhanced mechanism adaptively emphasizes salient channel 
features while suppressing environmentally degraded channels, signifi-
cantly improving defect recognition capabilities. Compared to the stan-
dard SE module, our ESE implementation offers targeted enhancements 
in feature statistics computation, relationship modeling, and feature 
recalibration, specifically optimized for EL image defect detection in 
challenging environmental conditions.

3.4. Deep mutual learning

Knowledge distillation, first proposed by Hinton et al. [24], facil-
itates knowledge transfer from large-scale models to lightweight net-
works through the guidance of soft labels from teacher networks. This 
approach not only conveys class label information but also captures 
rich inter-class relationships. However, traditional knowledge distil-
lation methods face two major limitations in processing low-quality 
EL images: First, environmental light interference, motion blur, and 
temperature variations significantly degrade image quality, making it 
challenging to construct high-performance teacher models. Second, ex-
isting knowledge transfer methods such as feature representation trans-
fer [28] and inter-layer information flow [29] may suppress the model’s 
adaptive feature extraction capability for images of varying quality 
levels by enforcing alignment of internal network representations.

To address these challenges, we adopt the Deep Mutual Learning 
(DML) strategy, as illustrated in Fig.  5, which constructs structurally 
identical but parametrically heterogeneous peer network groups to 
achieve multi-directional knowledge transfer during training. This de-
sign offers two key advantages: (1) Through differentiated initializa-
tion, networks develop complementary feature representations, en-
hancing the model’s capability to process low-quality images; (2) By 
utilizing probability distribution differences between peer networks as 
additional supervisory signals, the model converges to flatter optima, 
improving generalization performance.

Given 𝑁 samples 𝑋 = {𝑥𝑖}𝑁𝑖=1 from 𝑀 classes with corresponding 
label set 𝑌 = {𝑦 }𝑁 , where 𝑦 ∈ {1, 2,… ,𝑀}, the probability of sample 
𝑖 𝑖=1 𝑖
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Fig. 5. Example of Deep Mutual Learning (DML) strategy with dual networks. The 
figure illustrates the mutual learning process between networks 𝛩1 and 𝛩2, where each 
network is trained using supervised learning loss and Kullback–Leibler divergence-based 
mimicry loss. This framework naturally extends to collaborative training scenarios with 
multiple networks, enabling multi-directional knowledge transfer.

𝑥𝑖 belonging to class 𝑚 processed by neural network 𝛩1 is calculated as 
[32]: 

𝑝𝑚1 (𝑥𝑖) =
exp(𝑧𝑚1 )

∑𝑀
𝑚=1 exp(𝑧

𝑚
1 )

(11)

where 𝑧𝑚 represents the logits output from network 𝛩1’s softmax layer. 
For multi-classification tasks, the objective function for training net-
work 𝛩1 is defined as the cross-entropy error between predictions and 
ground truth labels: 

𝐿𝐶1 = −
𝑁
∑

𝑖=1

𝑀
∑

𝑚=1
𝐼(𝑦𝑖, 𝑚) log(𝑝𝑚1 (𝑥𝑖)) (12)

where the indicator function 𝐼 is defined as: 

𝐼(𝑦𝑖, 𝑚) =

{

1 𝑦𝑖 = 𝑚
0 𝑦𝑖 ≠ 𝑚

(13)

To enhance model generalization on test samples, we introduce peer 
network 𝛩2 to provide its posterior probability 𝑝2 as additional training 
signal. The KL divergence measures the matching degree between 
predictions 𝑝1 and 𝑝2: 

𝐷𝐾𝐿(𝑝2 ∥ 𝑝1) =
𝑁
∑

𝑖=1

𝑀
∑

𝑚=1
𝑝𝑚2 (𝑥𝑖) log

𝑝𝑚2 (𝑥𝑖)
𝑝𝑚1 (𝑥𝑖)

(14)

Therefore, the overall loss functions for networks 𝛩1 and 𝛩2 are: 

𝐿𝛩1 = 𝐿𝐶1 +𝐷𝐾𝐿(𝑝2 ∥ 𝑝1) (15)

𝐿𝛩2 = 𝐿𝐶2 +𝐷𝐾𝐿(𝑝1 ∥ 𝑝2) (16)

The specific training process is outlined in Algorithm 1 .
Algorithm 1: Deep Mutual Learning

Input: Training set  , label set  , learning rate 𝛾𝑡
Output: Trained networks 𝛩1 and 𝛩2

1 Initialize 𝛩1 and 𝛩2 to different conditions;
2 𝑡 ← 0;
3 while not converged do
4 𝑡 ← 𝑡 + 1;
5 Randomly sample data 𝑥 from  ;
6 Compute predictions 𝑝1 and 𝑝2 by (1);
7 Compute the stochastic gradient and update 𝛩1:;

8 𝛩1 ← 𝛩1 + 𝛾𝑡
𝜕𝐿𝛩1
𝜕𝛩1

;
9 Update the predictions 𝑝1 of 𝑥 by (1);
10 Compute the stochastic gradient and update 𝛩2:;

11 𝛩2 ← 𝛩2 + 𝛾𝑡
𝜕𝐿𝛩2
𝜕𝛩2

;
12 Update the predictions 𝑝2 of 𝑥 by (1);
13 end 
5 
The framework naturally extends to scenarios with multiple net-
works. For 𝐾 networks 𝛩1, 𝛩2,… , 𝛩𝐾 (𝐾 ≥ 2), the objective function 
for optimizing network 𝛩𝑘(1 ≤ 𝑘 ≤ 𝐾) becomes: 

𝐿𝛩𝑘 = 𝐿𝐶𝑘 +
1

𝐾 − 1

𝐾
∑

𝑙=1,𝑙≠𝑘
𝐷𝐾𝐿(𝑝𝑙 ∥ 𝑝𝑘) (17)

where the coefficient 1
𝐾−1  ensures that training is primarily driven 

by supervised learning from true labels. Through this mutual learning 
strategy, each network learns not only to correctly predict training sam-
ple labels but also to match probability estimates of peer networks. This 
enables networks to learn diverse feature representations, enhancing 
model generalization while maintaining accuracy. In photovoltaic mod-
ule defect detection tasks, this method effectively overcomes challenges 
posed by sample quality variation and class imbalance.

4. Experimental results

This section presents comprehensive experimental validation of our 
proposed method based on three complementary datasets: the ELPV 
public benchmark dataset, a simulated UAV-captured dataset, and an 
industrial practice dataset. The experiments consist of four key compo-
nents: dataset construction and environmental setup (Sections 4.1–4.2), 
performance comparison (Section 4.3), ablation studies (Section 4.4), 
and model interpretability analysis (Section 4.5).

4.1. Dataset and data augmentation

To comprehensively evaluate the performance and practicality of 
our proposed method, we establish a multi-level validation frame-
work comprising three complementary datasets: a standard benchmark 
dataset (ELPV), a simulated UAV-captured dataset, and an industrial 
practice dataset. This section elaborates on the dataset construction 
methodology, preprocessing pipeline, and targeted data augmentation 
strategies.

4.1.1. ELPV dataset
We adopt the ELPV (Electroluminescence Photovoltaic) dataset [35] 

as our benchmark evaluation dataset. This dataset contains 2624 EL 
images of solar cells collected from 44 distinct photovoltaic modules. 
All images are 8-bit grayscale and have undergone size standardization 
and distortion correction preprocessing.

As shown in Table  1, the ELPV dataset comprises both mono-
crystalline and poly-crystalline photovoltaic cell samples. Each image 
is annotated with a defect probability value. We employ a threshold of 
0.5 to categorize samples: those with defect probabilities above 0.5 are 
labeled as defective, while those below or equal to 0.5 are classified 
as functional. To ensure experimental standardization, all images are 
resampled to a resolution of 224 × 224 pixels. The dataset is split 
into training and validation sets with a ratio of 7:3, and five-fold 
cross-validation is employed for model evaluation.

4.1.2. Simulated UAV dataset
To systematically evaluate model performance in real-world UAV 

inspection scenarios [36], we construct a dataset with simulated en-
vironmental interference. Built upon the ELPV dataset, this dataset 
incorporates three typical environmental disturbance factors (illumi-
nation variation, motion blur, and image quality degradation) to sim-
ulate actual imaging conditions during UAV inspection. The specific 
degradation parameters were determined through iterative calibration 
experiments based on reference images obtained from professional PV 
inspection institutions.

Fig.  6 illustrates the effects of different environmental factors on EL 
image quality. Our main image degradation operations include:
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Fig. 6. Visualization of environmental factors’ progressive impact on EL image quality. 
First row shows the original image and single effects of brightness/contrast (B) and 
motion blur (M); Second row shows posterize effect (P) and two-factor combinations 
(B+M, B+P); Third row shows the remaining two-factor combination (M+P) and 
the final combined effect (B+M+P). This progression demonstrates how multiple 
environmental factors jointly degrade image quality in UAV-based inspection scenarios.

Table 2
Quality degradation parameters for UAV dataset simulation.
 Degradation type Parameter Value range Purpose  
 Brightness limit [−0.5, 0] Simulate varying illumination 
 Contrast limit [−0.2, 0.2] Simulate outdoor lighting  
 Motion blur kernel size 7 Simulate UAV motion  
 Bit depth bits 7 Simulate sensor noise  

1. Brightness and contrast variation (brightness_limit = [−0.5,0], 
contrast_limit = [−0.2,0.2]) to simulate varying illumination 
conditions

2. Motion blur (blur_limit = 7) to simulate UAV flight vibrations
3. Bit depth reduction (num_bits = 7) to simulate decreased signal-
to-noise ratio in outdoor environments (see Table  2).

The simulated dataset constructed using this degradation strategy 
maintains the same sample size and category distribution as the ELPV 
dataset while more realistically reflecting image quality issues in ac-
tual UAV inspection scenarios. This provides a reliable benchmark for 
evaluating model robustness under complex environmental conditions.

4.1.3. Industrial practice dataset
We construct an industrial environment dataset based on elec-

troluminescence (EL) imaging technology. The dataset comprises EL 
images of photovoltaic modules captured using high-precision CCD 
cameras, followed by standardized processing including image seg-
mentation, sample compilation, and professional annotation. It encom-
passes five typical categories in industrial production: Normal, Black 
Core, Dark Spot, Blemish, and Crack. To ensure evaluation consistency, 
all acquired images are uniformly resized to 224 × 224 resolution.

4.2. Experimental parameters

All experiments are conducted on a computing node equipped with 
an AMD EPYC 9754 CPU (18 cores), an NVIDIA RTX 4090D GPU (24 GB 
VRAM), and 60 GB RAM, with GPU driver version 550.67 supporting 
CUDA 12.4. The implementation is based on the PyTorch framework.

For training, we use Adam optimizer with a learning rate of 0.0025 
and batch size of 128. Input images are resized to 224 × 224 pixels, and 
model performance is evaluated using five-fold cross-validation. The 
mutual distillation temperature 𝜏 is set to 2.0, and the SCConv module 
uses 16 channel groups.

To enhance model robustness, we apply data augmentation includ-
ing random horizontal flip (p = 0.5) for simulating module orientations 
and random rotation (±10◦) for adapting to UAV camera angles. Test-
ing is performed using center-cropped views without augmentation.
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Table 3
Performance of different models on the ideal condition dataset (ELPV).
 Model Acc (%) Prec (%) Rec (%) F1 (%) Params (M) 
 SwiftFormer [20] 80.63 80.12 72.74 76.26 3.03  
 CNN-ILD [14] 79.80 77.22 73.96 75.55 0.02  
 MobileViT-V2 [21] 86.16 85.60 81.11 83.28 4.39  
 LwNet [15] 81.71 80.82 74.85 77.71 0.23  
 NAS Model [16] 82.70 82.54 75.81 79.03 9.41  
 RepViT [23] 82.89 81.58 77.11 79.27 2.17  
 EfficientNet [19] 83.27 82.43 77.42 79.84 4.01  
 RMT [37] 76.75 73.92 68.83 71.27 13.31  
 SHViT [22] 79.99 78.45 73.14 75.70 6.01  
 MobileNetV3 [18] 88.03 87.29 84.29 85.75 4.20  
 SCRViT(Ours) 89.52 88.99 85.86 87.39 1.78  

Table 4
Performance of different models on the simulated UAV-collected dataset.
 Model Acc (%) Prec (%) Rec (%) F1 (%) Params (M) 
 SwiftFormer [20] 79.80 77.96 73.82 75.83 3.03  
 CNN-ILD [14] 75.08 72.09 66.30 69.07 0.02  
 MobileViT-V2 [21] 80.53 78.83 74.67 76.69 4.39  
 LwNet [15] 76.26 77.91 64.18 70.33 0.23  
 NAS Model [16] 78.10 76.93 68.70 72.56 9.41  
 RepViT [23] 81.67 79.87 76.01 77.89 2.17  
 EfficientNet [19] 83.42 82.10 78.11 80.05 4.01  
 RMT [37] 69.93 65.53 56.14 60.47 13.31  
 SHViT [22] 81.86 79.91 76.47 78.15 6.01  
 MobileNetV3 [18] 79.65 79.61 72.84 76.07 4.20  
 SCRViT(Ours) 88.19 88.67 83.00 85.74 1.78  

4.3. Model performance

To comprehensively evaluate the performance of our proposed 
method, we design systematic experiments in four dimensions: First, 
we conduct comparative evaluations with state-of-the-art detection 
methods on the ELPV benchmark dataset to assess core performance 
metrics. Second, we analyze the model’s environmental adaptability 
by evaluating its detection performance on both mono-crystalline and 
poly-crystalline materials in complex simulated scenarios. Third, we 
validate the model’s generalization capability using a private dataset 
collected from actual industrial environments. Finally, we assess the 
model’s practical deployment performance on edge computing plat-
forms, analyzing metrics including computational latency, memory 
overhead, and processing throughput.

4.3.1. Performance comparison
To ensure objectivity in experimental evaluation, we conduct sys-

tematic comparative experiments on both the ELPV benchmark dataset 
and simulated UAV-collected conditions. As shown in Table  3, our 
baseline models encompass three representative categories: mainstream 
lightweight CNN networks (e.g., MobileNetV3, EfficientNet), vision 
architectures based on Transformers (e.g., SwiftFormer, MobileViT-
V2), and specialized models for photovoltaic module defect detection 
(e.g., CNN-ILD, LwNet).

On the standard ELPV dataset, our SCRViT model achieves superior 
performance (89.52% accuracy, 88.99% precision, 85.86% recall) with 
only 1.78M parameters, surpassing MobileNetV3 by 1.49%, 1.70%, and 
1.57 percentage points respectively. While Transformer-based models 
like MobileViT-V2 show strong feature modeling capabilities, they 
demonstrate lower efficiency in parameter utilization for this specific 
task.

Under simulated UAV-collected conditions (Table  4), SCRViT main-
tains robust performance (88.19% accuracy, 85.74% F1-score), signifi-
cantly outperforming other approaches. EfficientNet shows resilience 
with 83.42% accuracy and 80.05% F1-score, while parameter-heavy 
models like RMT (13.31M) struggle with performance degradation 
(60.47% F1-score). These results validate the effectiveness of our spa-
tial reconstruction mechanism in handling environmental interference 
and degraded image quality.
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Table 5
Performance of different models on mono-crystalline original dataset.
 Model Acc (%) Prec (%) Rec (%) F1 (%) Params (M) 
 SwiftFormer [20] 83.80 84.15 79.54 81.77 3.03  
 CNN-ILD [14] 82.03 83.44 76.29 79.71 0.02  
 MobileViT-V2 [21] 87.15 87.75 83.37 85.50 4.39  
 LwNet [15] 84.17 83.10 80.87 81.97 0.23  
 NAS Model [16] 83.98 83.94 79.94 81.89 9.41  
 RepViT [23] 84.26 83.01 81.27 82.13 2.17  
 EfficientNet [19] 86.50 86.26 83.13 84.66 4.01  
 RMT [37] 80.07 80.60 74.30 77.31 13.31  
 SHViT [22] 85.47 85.09 81.81 83.41 6.01  
 MobileNetV3 [18] 89.29 88.75 87.72 88.23 4.20  
 SCRViT(Ours) 93.49 93.64 91.74 92.68 1.78  

Table 6
Performance of different models on mono-crystalline simulated dataset.
 Model Acc (%) Prec (%) Rec (%) F1 (%) Params (M) 
 SwiftFormer [20] 86.87 87.65 83.10 85.32 3.03  
 CNN-ILD [14] 80.63 80.07 76.99 78.50 0.02  
 MobileViT-V2 [21] 87.43 88.18 83.59 85.83 4.39  
 LwNet [15] 80.54 81.66 74.80 78.06 0.23  
 NAS Model [16] 80.81 80.58 74.91 77.64 9.41  
 RepViT [23] 84.36 83.47 81.19 82.31 2.17  
 EfficientNet [19] 85.66 85.12 82.58 83.83 4.01  
 RMT [37] 70.86 69.11 62.13 65.44 13.31  
 SHViT [22] 85.47 86.60 81.11 83.76 6.01  
 MobileNetV3 [18] 88.17 88.13 85.00 86.53 4.20  
 SCRViT(Ours) 91.16 90.77 89.32 90.04 1.78  

4.3.2. Performance analysis on different crystal types
We evaluate the model’s detection performance on both mono-

crystalline and poly-crystalline photovoltaic modules. Here, we present 
the detection results on mono-crystalline modules under original and 
simulated conditions.

On the original dataset (Table  5) and simulated conditions (Table 
6), SCRViT demonstrates exceptional performance and environmen-
tal robustness. The model achieves 93.49% accuracy on the origi-
nal dataset, surpassing MobileNetV3 by 4.20 percentage points, while 
maintaining 91.16% accuracy under simulated conditions with only 
a 2.33 percentage point decrease. This robust performance can be 
attributed to the synergistic effect of our spatial-channel reconstruc-
tion mechanism and enhanced squeeze-and-excitation module. The 
reconstruction mechanism efficiently captures fine-grained defect pat-
terns while reducing computational redundancy, while the enhanced 
attention module dynamically adjusts channel weights to accommo-
date image quality variations. In contrast, conventional models exhibit 
significant vulnerability to environmental perturbations, evidenced by 
RMT’s substantial accuracy drop from 80.07% to 70.86% and CNN-
ILD’s decline from 82.03% to 80.63%. Notably, even Transformer-based 
architectures like MobileViT-V2, despite their sophisticated attention 
mechanisms, achieve lower performance (87.43%) due to their generic 
feature extraction strategies that lack specific adaptation to defect 
detection tasks.

For poly-crystalline modules (Tables  7 and 8), SCRViT maintains 
impressive detection capabilities despite the increased material com-
plexity. The model achieves 88.71% accuracy on the original dataset 
with balanced precision and recall (both 87.60%), demonstrating the 
effectiveness of our mutual distillation strategy in learning material-
independent features. Under simulated conditions, SCRViT’s
lightweight architecture (1.78M parameters) achieves 87.74% accu-
racy, significantly outperforming both sophisticated Transformer-based 
models like MobileViT-V2 (82.65%) and larger networks like RMT 
(73.81%, 13.31M parameters). This superior performance stems from 
our model’s targeted design for complex environmental conditions, 
where the spatial-channel reconstruction mechanism effectively han-
dles irregular grain boundaries while the enhanced attention module 
maintains feature discrimination under perturbations. Traditional CNN 
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Table 7
Performance of different models on poly-crystalline original dataset.
 Model Acc (%) Prec (%) Rec (%) F1 (%) Params (M) 
 SwiftFormer [20] 79.61 79.41 69.03 73.86 3.03  
 CNN-ILD [14] 78.77 76.30 68.96 72.44 0.02  
 MobileViT-V2 [21] 83.74 81.74 77.17 79.37 4.39  
 LwNet [15] 79.74 76.71 72.45 74.51 0.23  
 NAS Model [16] 80.90 78.46 73.64 75.96 9.41  
 RepViT [23] 80.97 77.62 74.11 75.81 2.17  
 EfficientNet [19] 81.81 78.97 75.23 77.05 4.01  
 RMT [37] 77.48 74.01 68.09 70.91 13.31  
 SHViT [22] 80.32 78.08 72.01 74.90 6.01  
 MobileNetV3 [18] 86.97 86.76 80.67 83.59 4.20  
 SCRViT(Ours) 88.71 87.60 87.60 87.60 1.78  

Table 8
Performance of different models on poly-crystalline simulated dataset.
 Model Acc (%) Prec (%) Rec (%) F1 (%) Params (M) 
 SwiftFormer [20] 80.97 79.65 71.43 75.33 3.03  
 CNN-ILD [14] 77.42 74.12 68.02 70.92 0.02  
 MobileViT-V2 [21] 82.65 80.35 75.62 77.90 4.39  
 LwNet [15] 78.13 76.14 67.62 71.61 0.23  
 NAS Model [16] 81.61 82.68 71.08 76.44 9.41  
 RepViT [23] 81.03 79.65 72.47 75.89 2.17  
 EfficientNet [19] 82.26 80.00 74.95 77.38 4.01  
 RMT [37] 73.81 67.75 61.07 64.23 13.31  
 SHViT [22] 80.97 78.60 73.57 76.00 6.01  
 MobileNetV3 [18] 86.32 84.79 81.07 82.89 4.20  
 SCRViT(Ours) 87.74 87.26 83.37 85.26 1.78  

Table 9
Impact of different environmental factors on model performance.
 Environmental factors Parameters Acc (%) Prec (%) Rec (%) F1 (%) 
 Baseline B(0.0), M(0), P(8) 88.67 87.78 83.03 85.33  
 Brightness (B) B(0.5), M(0), P(8) 88.05 87.36 83.35 85.31  
 B(−0.5), M(0), P(8) 85.00 83.90 79.07 81.41  
 Motion blur (M) B(0.0), M(7), P(8) 88.24 91.59 80.89 85.89  
 Bit depth (P) B(0.0), M(0), P(7) 88.05 87.90 82.83 85.28  
 B+M B(−0.5), M(7), P(8) 87.68 86.53 82.76 84.60  
 B+P B(−0.5), M(0), P(7) 87.88 87.41 81.89 84.56  
 M+P B(0.0), M(7), P(7) 87.82 86.50 82.38 84.38  
 B+M+P B(−0.5), M(7), P(7) 87.50 85.16 83.53 84.34  

architectures struggle with these challenging conditions, as evidenced 
by CNN-ILD and LwNet’s sub-80% accuracy, primarily due to their fixed 
convolutional patterns failing to adapt to poly-crystalline materials’ 
complex texture characteristics.

To further understand the specific impact of different environmental 
factors, we conducted detailed experiments with various environmental 
parameter configurations. The results are presented in Table  9. 

The experimental results reveal several important insights about 
model robustness. First, brightness reduction (B = −0.5) shows the most 
significant impact with a 3.67% accuracy decrease (from 88.67% to 
85.00%), while motion blur (M = 7) demonstrates a relatively minor ef-
fect on accuracy (−0.43%) but notably improves precision by 3.81 per-
centage points (from 87.78% to 91.59%). Second, bit depth reduction 
(P = 7) causes minimal performance degradation (−0.62% in accuracy) 
while maintaining similar precision and recall levels. Most importantly, 
the model exhibits strong resilience to combined environmental factors, 
with the three-factor combination (B+M+P) reducing accuracy by only 
1.17 percentage points (from 88.67% to 87.50%) while maintaining 
high recall (83.53%) and F1-score (84.34%). Notably, the dual-factor 
combinations (B+M, B+P, M+P) all achieve accuracy above 87.50%, 
with performance degradation consistently less than 1% compared 
to single-factor scenarios. These findings quantitatively validate our 
model’s environmental adaptation capabilities, particularly its ability 
to maintain stable performance under complex environmental perturba-
tions, providing valuable guidance for practical deployments in outdoor 
conditions. 
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Table 10
Performance comparison on private industrial dataset.
 Model Acc (%) Prec (%) Rec (%) Params (M) 
 SwiftFormer [20] 61.68 61.94 60.58 3.03  
 CNN-ILD [14] 79.20 74.69 88.32 0.02  
 MobileViT-V2 [21] 96.32 95.00 97.79 4.39  
 LwNet [15] 81.75 76.36 91.97 0.23  
 NAS Model [16] 66.06 65.07 69.34 9.41  
 RepViT [23] 95.59 96.27 94.85 2.17  
 EfficientNet [19] 97.45 97.79 97.08 4.01  
 RMT [37] 59.85 60.63 56.20 13.31  
 SHViT [22] 63.14 64.52 58.39 6.01  
 MobileNetV3 [18] 97.06 95.07 99.26 4.20  
 SCRViT(Ours) 98.18 99.25 97.08 1.78  

4.4. Performance on private dataset

To validate the effectiveness of our proposed method in real-world 
applications, we conducted systematic evaluations on an industrial 
dataset comprising actual EL images collected from operational photo-
voltaic power stations. This dataset provides a more realistic assessment 
of model detection capabilities in industrial settings.

As shown in Table  10, the proposed SCRViT model achieved com-
petitive performance on the industrial dataset with 98.18% accuracy 
and 99.25% precision, while requiring only 1.78M parameters. Com-
pared to established models such as MobileViT-V2 (4.39M parameters) 
and RepViT (2.17M parameters), SCRViT demonstrates improved effi-
ciency by maintaining comparable or superior detection performance 
with a reduced parameter count. These results indicate the effective-
ness of our architectural design in balancing model complexity and 
detection capabilities for industrial applications.

4.4.1. Deployment performance analysis on edge devices
To comprehensively evaluate the deployment performance of var-

ious models in real-world edge computing scenarios, we selected the 
NVIDIA Jetson TX2 as our testing platform. This platform features a 
256-core NVIDIA Pascal GPU and 8 GB LPDDR4 memory, supporting 
multiple power modes. All experiments were conducted in maximum 
performance mode (MAX-N, 15 W power consumption) to ensure the 
comparability of test results.

Our experimental results demonstrate that the proposed SCRViT 
model achieves significant advantages across multiple key performance 
metrics, as illustrated in Table  11. In terms of accuracy, SCRViT 
achieves 88.19% accuracy and 88.67% recall, surpassing the second-
best model EfficientNet (83.42% accuracy, 78.11% recall) by 5.77 
and 10.56 percentage points, respectively. Regarding model efficiency, 
SCRViT requires only 1.79M parameters, representing a 55%–60% 
reduction compared to mainstream lightweight models such as Effi-
cientNet (3.97M) and MobileViT-V2 (4.37M). While CNN-ILD has the 
smallest parameter count (0.02M), its accuracy performance (75.08% 
accuracy, 66.30% recall) falls short of practical application require-
ments.

In terms of deployment efficiency, SCRViT achieves an inference 
latency of 62.44 ms and a processing speed of 16.01 FPS, with a 
memory footprint of 21.53 MB. Compared to models with similar 
accuracy levels, such as SHViT (44.55 ms, 22.44 FPS, 24.30 MB) and 
EfficientNet (44.35 ms, 22.55 FPS, 21.17 MB), SCRViT shows slightly 
lower inference speed. However, considering its significant accuracy 
advantages, this performance trade-off is justifiable. Moreover, SCRViT 
demonstrates notable deployment advantages over larger models like 
RMT (86.67 ms, 11.54 FPS, 57.83 MB).

4.5. Ablation studies

To systematically validate the effectiveness of our proposed method, 
we conducted comprehensive ablation studies on the simulated UAV 
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data collection dataset. Our experiments analyze four key aspects: 
architectural components, spatial-channel reconstruction design, at-
tention mechanisms, and knowledge distillation strategies, providing 
thorough insights into the contribution of each proposed component.

As illustrated in Table  12, we progressively integrated our pro-
posed components starting from the RepViT baseline. Notably, the 
SCR module demonstrates remarkable efficiency by improving accuracy 
by 2.33% while simultaneously reducing parameters by 27.6%, which 
validates its effectiveness in feature reconstruction. Subsequently, the 
integration of the ESE module further enhances the model’s perfor-
mance with a substantial 2.48% accuracy improvement through opti-
mized channel relationship modeling. Most significantly, the incorpo-
ration of the MD strategy contributes an additional 1.71% performance 
gain without introducing any additional model complexity, thereby 
confirming the effectiveness of our knowledge transfer approach.

Our investigation into the SCConv module components, as shown 
in Table  13, reveals an intriguing phenomenon: the independent im-
plementation of either SRU or CRU components leads to performance 
degradation, with accuracy declining by 0.57% and 3.23%, respec-
tively. However, their combined implementation demonstrates remark-
able synergistic effects, substantially enhancing model performance 
with a 2.29% increase in accuracy and a 2.91 percentage point im-
provement in F1-score. It is particularly noteworthy that the improve-
ment in precision (+2.95%) surpasses that in recall (+2.86%), which 
empirically validates the module’s superiority in suppressing false pos-
itives. These results strongly support our hypothesis regarding the 
crucial role of synergistic interaction between spatial and channel 
reconstruction in achieving optimal feature representation.

In our systematic hyperparameter investigation, as presented in Ta-
ble  14, we observed a significant correlation between the group number 
𝑔 and model performance. The detection accuracy exhibits a generally 
positive trend as 𝑔 increases from 2 to 16, with overall accuracy 
rising substantially from 85.14% to 88.19% (+3.05 percentage points). 
Particularly noteworthy is that these considerable improvements are 
achieved without incurring additional computational overhead, as both 
parameter count (1.78M) and FLOPs (2.29G) remain constant across 
different group configurations. Our empirical analysis indicates that 
performance gains plateau beyond 𝑔 = 16, thereby establishing this as 
the optimal configuration for our final model architecture.

To rigorously evaluate the proposed ESE module, we conducted 
a comparative analysis examining the impact of different attention 
mechanisms. As shown in Table  15, our investigation encompasses 
four distinct configurations: a baseline without attention, the standard 
SE module, the CBAM module, and our proposed ESE module. The 
experimental results demonstrate that the absence of an attention 
mechanism leads to a significant performance degradation (accuracy 
decrease from 88.19% to 85.71%), definitively validating its necessity 
in feature extraction. Despite their status as classical attention mecha-
nisms, both standard SE (84.57%) and CBAM (80.57%) fail to achieve 
optimal performance in our specific task context. Notably, our pro-
posed ESE module achieves superior performance (88.19% accuracy, 
88.67% precision) while requiring only 0.21M additional parameters, 
thereby empirically validating the effectiveness of our adaptive channel 
relationship modeling strategy.

To comprehensively evaluate different knowledge transfer
approaches, we conducted a systematic investigation focusing on three 
critical aspects: network count, architecture combinations, and knowl-
edge transfer methodologies. The results of these experiments are 
presented in Tables  16, 17, and 18, respectively.

Our experimental analysis reveals several significant findings. First, 
regarding network count configuration (Table  16), the dual-network 
structure demonstrates superior performance with an accuracy of
87.24%, representing a 0.76% improvement over the single-network 
baseline (86.48%). Notably, both three-network (86.86%) and four-
network (83.81%) configurations exhibit performance degradation, 
empirically establishing that the dual-network architecture achieves an 
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Table 11
Performance comparison of different models on NVIDIA Jetson TX2.
 Model Acc (%) Rec (%) Params (M) FLOPs (G) Latency (ms) Memory (MB) FPS  
 SwiftFormer [20] 79.80 73.82 3.03 0.29 36.02 14.90 17.76  
 CNN-ILD [14] 75.08 66.30 0.02 0.07 4.00 2.23 250.20 
 MobileViT-V2 [21] 80.53 78.83 4.37 0.69 48.64 24.87 20.56  
 LwNet [15] 76.26 64.18 0.23 0.41 16.33 14.49 61.26  
 NAS Model [16] 78.10 68.70 9.41 5.16 41.26 63.60 24.23  
 RepViT [23] 81.67 76.01 2.17 0.20 35.30 10.24 28.33  
 EfficientNet [19] 83.42 78.11 3.97 0.19 44.35 21.17 22.55  
 RMT [37] 69.93 56.14 13.31 1.16 86.67 57.83 11.54  
 SHViT [22] 81.86 76.47 6.01 0.13 44.55 24.30 22.44  
 MobileNetV3 [18] 79.65 72.84 4.20 0.12 26.90 19.66 37.18  
 SCRViT(Ours) 88.19 88.67 1.79 2.31 62.44 21.53 16.01  
Table 12
Ablation analysis of different components in SCRViT.
 Components Performance metrics
 SCR ESE MD Acc. (%) Prec. (%) Rec. (%) F1 (%) Params (M) 
 81.67 79.87 76.01 77.89 2.17  
 ✓ 84.00 83.06 77.90 80.38 1.57  
 ✓ ✓ 86.48 85.68 81.59 83.57 1.78  
 ✓ ✓ ✓ 88.19 88.67 83.00 85.73 1.78  
Note: The baseline model is RepViT [23]. SCR: Spatial-Channel Reconstruction,
ESE: Enhanced Squeeze-and-Excitation, MD: Mutual Distillation.

Table 13
Analysis of SCConv module components.
 Components Performance metrics
 SRU CRU Accuracy Precision Recall F1-score 
 0.8590 0.8572 0.8014 0.8282  
 ✓ 0.8533 0.8417 0.8024 0.8215  
 ✓ 0.8267 0.8215 0.7538 0.7860  
 ✓ ✓ 0.8819 0.8867 0.8300 0.8573  
Note: SRU: Spatial Reconstruction Unit, CRU: Channel Reconstruction Unit.

Table 14
Impact of channel grouping numbers on model performance.
 Groups Performance metrics Complexity

 Accuracy Precision Recall F1-score Params (M) FLOPs (G) 
 2 0.8514 0.8345 0.8063 0.8201 1.78 2.29  
 4 0.8457 0.8266 0.8004 0.8132 1.78 2.29  
 8 0.8743 0.8769 0.8372 0.8565 1.78 2.29  
 16 0.8819 0.8867 0.8300 0.8573 1.78 2.29  

Table 15
Comparison of different attention mechanisms.
 Attention type Performance metrics Complexity

 Accuracy Precision Recall F1-score Params (M) FLOPs (G) 
 None 0.8571 0.8536 0.8000 0.8259 1.57 2.29  
 SE [38] 0.8457 0.8633 0.7675 0.8124 1.68 2.29  
 CBAM [39] 0.8057 0.8130 0.7109 0.7583 1.60 2.29  
 ESE [34] (Ours) 0.8819 0.8867 0.8300 0.8573 1.78 2.29  

Table 16
Impact of network count on model performance.
 Model configuration Acc. (%) Prec. (%) Rec. (%) F1 (%) 
 SCRViT (baseline) 86.48 85.68 81.59 83.57  
 SCRViT×2 87.24 86.20 82.52 84.31  
 SCRViT×3 86.86 87.86 80.65 84.09  
 SCRViT×4 83.81 84.57 76.20 80.14  

optimal balance between computational efficiency and model perfor-
mance. Second, in our comprehensive comparison of different architec-
ture combinations (Table  17), the SCRViT-ResNet50 pairing achieves 
exceptional results (88.19% accuracy, 85.73% F1-score), significantly 
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Table 17
Analysis of different network combinations.
 Network pair Acc. (%) Prec. (%) Rec. (%) F1 (%) 
 SCRViT + MobileViT-V2 86.29 85.35 81.45 83.34  
 SCRViT + MobileNetV3 86.48 86.03 81.24 83.56  
 SCRViT + EfficientNetV2 87.05 85.76 83.04 84.37  
 SCRViT + ResNet50 88.19 88.67 83.00 85.73  
 SCRViT + DenseNet121 86.67 87.97 80.17 83.88  

Table 18
Comparison of different knowledge transfer strategies.
 Strategy Acc. (%) Prec. (%) Rec. (%) F1 (%) 
 No distillation 86.48 85.68 81.59 83.57  
 Logits transfer 84.57 85.23 77.44 81.13  
 Feature transfer 84.19 84.06 65.54 73.63  
 Logits + Feature 84.76 78.32 69.57 73.66  
 Mutual distillation 88.19 88.67 83.00 85.73  
Note: All transfers use ResNet50 as the teacher network.

outperforming other mainstream lightweight networks including
MobileViT-V2 (86.29%) and EfficientNetV2 (87.05%). Finally, in our 
evaluation of knowledge transfer strategies (Table  18), our proposed 
mutual distillation method demonstrates remarkable superiority com-
pared to traditional approaches such as logits distillation (84.57%) and 
feature distillation (84.19%). This superiority is particularly evident in 
recall performance (83.00% vs. 77.44% and 65.54%), providing strong 
empirical validation of its effectiveness in handling complex EL images.

4.6. Model interpretability analysis

To gain deeper insights into how environmental factors influence 
SCRViT’s decision-making mechanism, we conducted feature attribu-
tion analysis based on Shapley values [40]. Shapley values, rooted in 
cooperative game theory, quantify feature importance by evaluating 
the marginal contribution of each feature across all possible feature 
subset combinations. This approach provides a theoretically grounded 
framework for understanding model decisions by considering both 
individual feature effects and their interactions. For an input image 𝑥
and predicted class 𝑐, the Shapley value of feature 𝑖 is defined as: 

𝜙𝑖(𝑓, 𝑥) =
∑

𝑆⊆𝑁∖{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (18)

where 𝑁 is the feature set and 𝑣(𝑆) represents the contribution of 
feature subset 𝑆 to model prediction. The term 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)
measures the marginal contribution of feature 𝑖 when added to subset 
𝑆, while the combinatorial coefficient ensures fair attribution across all 
possible feature orderings. Considering computational complexity [41], 
we adopt a Monte Carlo sampling-based approximation: 

𝜙̂𝑖 =
1

𝑀
∑

[𝑣(𝑃 𝑖
𝑚 ∪ {𝑖}) − 𝑣(𝑃 𝑖

𝑚)] (19)

𝑀 𝑚=1
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Fig. 7. Feature attribution analysis based on Shapley values. (a) Four-stage computa-
tion pipeline: original image grid partitioning (8 × 8), feature unit selection, Monte 
Carlo sampling (𝑀 = 1000), and Shapley value heatmap generation, where red regions 
indicate areas with high contribution to model predictions; (b) Comparative impact of 
different perturbation types on mono- and poly-crystalline modules, with bar heights 
showing mean impact and error bars indicating standard deviation (±1𝜎); (c) Response 
ranges of mono-crystalline (left) and poly-crystalline (right) modules under various 
environmental perturbations, with 𝑦-axis showing response percentage (0%–100%) 
and vertical lines indicating min–max response range; (d) Performance degradation 
percentage analysis under environmental factors; (e) Normalized model stability score 
trends, computed through inverse standardization of response standard deviations. 
Here, B (Brightness), M (Motion Blur), and P (Posterize) represent illumination 
variation (±0.5), motion blur (kernel size = 7), and temperature-induced image quality 
degradation (bit depth = 7), respectively.

where 𝑀 denotes the number of sampling iterations (set to 1000 in our 
study), and 𝑃 𝑖

𝑚 represents the set of features preceding feature 𝑖 in the 
𝑚th sampling permutation.

As shown in Fig.  7(a), we analyze environmental impacts through 
a four-stage pipeline: 8 × 8 grid partitioning of input images, feature 
unit selection, Monte Carlo sampling (1000 iterations), and Shap-
ley value heatmap visualization. The bar plots in Fig.  7(b) reveal 
that mono-crystalline modules maintain stable responses to individ-
ual factors (B/M/P: 84.12%–84.74%), while poly-crystalline modules 
exhibit heightened sensitivity under combined perturbations (B+M: 
87.79%, triple-factor: 89.08%). The response ranges visualized in Fig. 
7(c) demonstrate that despite similar peak values ( 100%), poly-
crystalline modules show significantly larger fluctuations, with their 
performance degradation quantified in Fig.  7(d). The stability score 
trends in
Fig.  7(e) further indicate that environmental perturbations primar-
ily affect local features (98.82% reduction) while preserving global 
structural features, providing crucial insights for model robustness 
enhancement.

4.7. Attention pattern analysis

To understand the detection mechanism of SCRViT in depth, we 
systematically analyzed the model’s attention patterns using Grad-
CAM [42]. GradCAM generates class activation maps by computing 
gradients of target class scores with respect to feature maps, utilizing 
gradient information to determine each neuron’s importance in final 
decisions [43]. Specifically, for a target class score 𝑦𝑐 , the importance 
10 
Fig. 8. Attention pattern analysis of SCRViT model using GradCAM. (a) Attention 
visualization results for different sample types, including normal and defective samples 
of mono- and poly-crystalline PV modules. Each group displays, from top to bottom, 
the original EL image, attention heatmap, and overlay image. The heatmap colors 
range from blue to red, indicating low to high attention intensity. (b) Quantitative 
analysis of three key metrics: Key Region Ratio reflecting the relative size of attended 
areas, Attention Concentration characterizing the degree of focus, and Spatial Variance 
describing the uniformity of attention distribution. (c) Comparison of basic statistical 
features across sample types, including Mean, Standard Deviation (Std), Maximum 
(Max), and Minimum (Min). (d) Radar chart analysis showing comprehensive perfor-
mance characteristics across three dimensions for different sample types, with blue, 
red, green, and purple representing mono-crystalline normal, mono-crystalline defective, 
poly-crystalline normal, and poly-crystalline defective samples, respectively.

weight 𝛼𝑐𝑘 for the 𝑘th channel of feature map 𝐴 is computed as: 

𝛼𝑐𝑘 = 1
𝑍

∑

𝑖

∑

𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

(20)

where 𝑍 is the normalization factor and 𝐴𝑘
𝑖𝑗 represents the activation 

at position (𝑖, 𝑗) in channel 𝑘. The final class activation map 𝐿𝑐
𝐺𝑟𝑎𝑑𝐶𝐴𝑀

is obtained through weighted summation: 
𝐿𝑐
𝐺𝑟𝑎𝑑𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (

∑

𝑘
𝛼𝑐𝑘𝐴

𝑘) (21)

As shown in Fig.  8(a), mono-crystalline samples demonstrate lin-
ear attention patterns with uniform distribution across busbar regions 
(Mean = 0.078) in normal samples and focused attention on anomalous 
areas (Max = 0.135) in defective samples, while poly-crystalline sam-
ples show more dispersed patterns (normal: 0.082, defective: 0.092) 
due to complex grain boundaries. The quantitative metrics in Fig. 
8(b) illustrate that attention concentration decreases with defect occur-
rence (normal mono: 11.605, defect mono: 8.389, defect poly: 5.556), 
supported by key region ratios (defective: 0.161/0.144 vs. normal: 
0.1411/0.1118 for mono/poly). Fig.  8(c,d) reveals SCRViT’s adap-
tive attention mechanism through spatial variance changes (mono: 
0.008→0.003, poly: stable at 0.005) and comprehensive radar analysis.

These attention pattern insights inform practical model optimization 
strategies. For mono-crystalline modules, the linear attention distribu-
tion suggests enhancing feature extraction along busbar regions, while 
the dispersed patterns in poly-crystalline modules motivate multi-scale 
feature aggregation. The distinct spatial variance characteristics (mono: 
variable, poly: stable) guide the implementation of material-specific 
parameter adjustment mechanisms, potentially improving detection 
robustness by 15%–20% in real-world applications.

4.8. Information theoretical analysis

To elucidate the performance enhancement mechanism of the
SCRViT model from a theoretical perspective, we conduct an in-depth 
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Fig. 9. Information-theoretic analysis of deep mutual learning. (a) Effect of temperature 
parameter 𝜏 on inter-network mutual information 𝐼(𝑇1; 𝑇2); (b) Comparison of feature-
input mutual information 𝐼(𝑋; 𝑇 ) and feature-label mutual information 𝐼(𝑇 ; 𝑌 ) between
SCRViT and ResNet-50; (c) Information flow matrix showing network interaction 
strength; (d) Normalized performance curve with respect to temperature 𝜏.

analysis of the model’s feature learning process within an information 
theory framework. Given an input image 𝑋, intermediate layer repre-
sentation 𝑇 , and output label 𝑌 , their mutual information is defined as: 

𝐼(𝑋; 𝑇 ) = E𝑝(𝑥,𝑡)

[

log
𝑝(𝑥, 𝑡)
𝑝(𝑥)𝑝(𝑡)

]

= ∫ 𝑝(𝑥, 𝑡) log
𝑝(𝑥, 𝑡)
𝑝(𝑥)𝑝(𝑡)

𝑑𝑥𝑑𝑡 (22)

For two networks 𝛩1 and 𝛩2 in the mutual learning framework, 
based on the Information Bottleneck theory [44], their joint optimiza-
tion objective can be expressed as: 

𝑀𝐼 =
2
∑

𝑖=1
[𝐼(𝑇𝑖; 𝑌 ) − 𝛽𝐼(𝑋; 𝑇𝑖)] + 𝜆𝐼(𝑇1; 𝑇2) (23)

where 𝐼(𝑇𝑖; 𝑌 ) represents the mutual information between network 𝑖’s 
representation and labels, 𝐼(𝑋; 𝑇𝑖) measures the degree of input infor-
mation compression, 𝐼(𝑇1; 𝑇2) quantifies information sharing between 
the two networks, and 𝛽 and 𝜆 are trade-off coefficients for information 
compression and network collaboration, respectively. Based on this 
theoretical framework, we systematically analyzed the effects of tem-
perature parameters, feature representations, and network interactions 
on knowledge transfer, as shown in Fig.  8.

Our experimental analysis demonstrates the critical role of temper-
ature parameter 𝜏 in modulating information transfer (Fig.  9a). The 
mutual information 𝐼(𝑇1; 𝑇2) exhibits three distinct phases: insufficient 
transfer (𝜏 < 2.0, 𝐼(𝑇1; 𝑇2) < 0.959), optimal exchange (𝜏 ∈ [2.0, 4.0], 
𝐼(𝑇1; 𝑇2) = 1.782), and over-smoothing (𝜏 > 4.0, 𝐼(𝑇1; 𝑇2) ≈ 1.309). 
Compared to ResNet-50, SCRViT  achieves more efficient information 
encoding (Fig.  9b) by maintaining task relevance (𝐼(𝑇 ; 𝑌 ): 0.070 vs. 
0.055) while reducing input redundancy (𝐼(𝑋; 𝑇 ): 0.254 vs. 0.169). The 
symmetric information flow (1.445, Fig.  9c) and performance optimiza-
tion at 𝜏 = 4.0 (Fig.  9d) further validate our framework’s effectiveness. 
These results demonstrate that temperature-regulated mutual learning 
enables robust feature representations through balanced information 
compression and task-relevant knowledge transfer.

5. Conclusion

This study presents SCRViT, a novel lightweight vision detection 
framework addressing the challenges of photovoltaic module defect 
11 
detection using EL imaging in outdoor environments. Our experi-
mental validation demonstrates that the spatial-channel reconstruc-
tion module effectively reduces computational redundancy while en-
hancing feature representation capabilities, improving detection ac-
curacy by 2.33% with a 27.6% parameter reduction. The enhanced 
squeeze-and-excitation module achieves more precise channel rela-
tionship modeling, contributing an additional 2.48% accuracy im-
provement. The mutual distillation strategy further enhances model 
robustness through peer network collaboration, yielding a 1.71% per-
formance gain without additional complexity. Systematic evaluations 
on both the standard ELPV dataset and simulated outdoor scenarios 
show our 1.78M-parameter model achieves 89.52% and 88.19% ac-
curacy respectively, significantly outperforming existing lightweight 
approaches. Interpretability analyses through Shapley values and Grad-
CAM reveal the model’s adaptation mechanisms to environmental 
interference, providing theoretical foundations for robust industrial 
deployment.

However, this study has several limitations. First, while our simu-
lated outdoor scenarios demonstrate promising results, the model’s per-
formance under extreme weather conditions (e.g., severe sandstorms, 
heavy rain) requires further validation. Second, although our datasets 
cover various scenarios, they may not fully represent all real-world 
deployment conditions, particularly for emerging defect types or novel 
module materials.

Future research will address these limitations through three con-
crete directions: (1) Developing an adaptive environmental calibration 
mechanism using real-time sensor monitoring to dynamically adjust 
model hyperparameters, targeting a 15% accuracy improvement under 
adverse weather conditions; (2) Constructing a multimodal architecture 
that integrates EL and infrared thermal imaging data, with an ex-
pected 20% enhancement in defect detection sensitivity; (3) Optimizing 
distributed deployment through edge computing by implementing a hi-
erarchical resource allocation strategy and lightweight communication 
protocols, aiming to reduce system latency by 30% while maintaining 
detection accuracy. Additionally, we plan to expand our dataset collec-
tion to include more diverse environmental conditions and defect types, 
ensuring better representation of real-world scenarios.
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