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ABSTRACT

Recent years have witnessed the great success of graph pre-training for graph
representation learning. With hundreds of graph pre-training tasks proposed,
integrating knowledge acquired from multiple pre-training tasks has become a
popular research topic. In this paper, we identify two important collaborative
processes for this topic: (1) select: how to select an optimal task combination from
a given task pool based on their compatibility, and (2) weigh: how to weigh the
selected tasks based on their importance. While there currently has been a lot of
work focused on weighing, comparatively little effort has been devoted to selecting.
This paper proposes a novel instance-level framework for integrating multiple graph
pre-training tasks, Weigh And Select (WAS), where the two collaborative processes,
weighing and selecting, are combined by decoupled siamese networks. Specifically,
it first adaptively learns an optimal combination of tasks for each instance from a
given task pool, based on which a customized instance-level task weighing strategy
is learned. Extensive experiments on 16 graph datasets across node-level and
graph-level downstream tasks have demonstrated that by combining a few simple
but classical tasks, WAS can achieve comparable performance to other leading
counterparts. The code is available at https://github.com/TianyuFan0504/WAS.

1 INTRODUCTION

Relationships between entities in various real-world applications, such as social media, molecules,
and transportation, can be naturally modeled as graphs. Graph Neural Networks (GNNs) (Hamilton
et al., 2017; Veličković et al., 2017; Wu et al., 2023a;e; 2022c) have demonstrated their powerful
capabilities to handle relation-dependent tasks. However, most of the existing work in GNNs is
focused on supervised or semi-supervised settings, which require labeled data and hence are expensive
and limited. Recent advances in graph pre-training (Wu et al., 2021; Xie et al., 2021; Liu et al.,
2021c) are aimed to reduce the need for annotated labels and enable training on massive unlabeled
data. The primary purpose of graph pre-training is to extract informative knowledge from massive
unlabeled data and the learned knowledge can then be transferred to some specific downstream tasks.
While hundreds of graph pre-training tasks have been proposed in this regard (Sun et al., 2019; Hu
et al., 2020b; Zhu et al., 2020b; You et al., 2020a; Zhang et al., 2020; Wu et al., 2023d), as shown in
Fig. 1(a), there is no single pre-training task that performs best for all datasets.

Therefore, integrating or more specifically linearly weighing multiple tasks, has emerged as a more
effective approach than designing more complex tasks. For example, AutoSSL (Jin et al., 2021)
combines the weights of task losses based on a pseudo-homophily measure, and ParetoGNN (Ju
et al., 2022) reconciles pre-training tasks by dynamically assigning weights that promote the Pareto
optimality. Another related work is AUX-TS (Han et al., 2021), which also adaptively combines
different tasks, but this combination appears in the fine-tuning stage. However, all three works
perform task weighing in a global manner, ignoring the fact that different instances (e.g., nodes in
a social network or graphs in a molecular dataset) may have their own specificities. To solve this,
AGSSL (Wu et al., 2022a) has been proposed to learn instance-level task weighing strategies during
the fine-tuning stage. Nonetheless, these works to weigh all tasks focus only on the importance issue,
but ignore the compatibility issue, i.e., the possible conflicts between different tasks, which cannot be
resolved by simply weighing all tasks. More seriously, as the task pool expands, compatibility issue
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(c) Task Compatibility

Figure 1: (a) Performance ranking (1: best, 7: poorest) of seven pre-training tasks (rows) on eight
datasets (columns). (b) Performance fluctuation on Bace (molecule dataset) when combining two
tasks, AM and CP, with different task weight λ. (c) Performance gains or drops over that without
pre-training when combining two tasks (diagonal represents only a single task) on Bace.

Table 1: A comprehensive comparison between previous methods and ours. Stage indicates at what
stage the method is applied. Task Type represents the levels of tasks that the method can handle.

Instance-level Weighing Selecting Task Type Stage

AutoSSL (Jin et al., 2021) % ! % Node pre-training
ParetoGNN (Ju et al., 2022) % ! % Node pre-training
AUX-TS (Han et al., 2021) % ! % Node fine-tuning
AGSSL (Wu et al., 2022a) ! ! % Node&Graph fine-tuning
WAS (ours) ! ! ! Node&Graph fine-tuning

becomes more severe, which deprives existing methods of the ability to keep gaining performance
growth. Therefore, it is necessary to select some tasks to solve it. In addition, previous works
have only evaluated their effectiveness on node-level tasks but neglected graph-level tasks. We have
summarized the properties of these methods in Table. 1 and compared them with WAS.

We would like to raise several issues through investigation on several classical graph pre-training
tasks, including AttrMask (AM), ContextPred (CP) (Hu et al., 2020b), EdgePred (EP) (Hamilton
et al., 2017), GPT-GNN (Hu et al., 2020c), GraphCL (You et al., 2020a), GraphLoG (Xu et al., 2021),
and InfoGraph (IG) (Sun et al., 2019), as shown in Fig. 1. Let us first draw an interesting conclusion:
both importance weighing and task selecting of tasks are quite important, where the former addresses
the issue of task importance, while the latter addresses the issue of task compatibility.

Fig. 1(b) compares the performance under varying importance weights λ when combining AM and
CP. We can see that the best performance is achieved at λ=0.4. While task weighing focuses on
the importance of each task, it neglects compatibility between different tasks, which limits existing
methods from achieving higher performance. The results in Fig.1(c) illustrate the huge impact of the
compatibility issue when integrating multiple tasks. It can be seen that not all combinations can bring
performance improvements, and some of them even degrade performance (combination of AM and
GraphCL brings a -7.08 drop), which highlights the necessity of selecting suitable task combinations.
Note that Fig.1(c) shows only the combination between two tasks. As the task pool expands, such
combinations become more complex, and conflicts between different tasks may become more severe.

Based on the above investigations, here we would like to ask: How to address the importance and
compatibility issues between different tasks when integrating them during the fine-tuning stage? We
identified two key issues in the combining process: (1) task selecting – how to select an optimal
combination from a given task pool based on the task compatibility, (2) importance weighing – how
to weigh the importance of the selected tasks. These two are obviously related or collaborative.
More important tasks should be selected more, but selecting tasks based solely on importance can
lead to severe task conflicts. While previous works, AutoSSL, ParetoGNN, AUX-TS, and AGSSL,
have focused on importance weighing, they have all overlooked task selecting, which has deprived
them of the ability to keep gaining performance growth as the task pool grows larger.

In this paper, we propose a novel framework, Weigh And Select (WAS) for task selecting and impor-
tance weighing. The two collaborative processes are combined in decoupled siamese networks, where
(1) an optimal combination of tasks is selected for each instance based on a sampling distribution
calculated based on the task compatibility, and (2) task weights are then calculated for the selected
tasks according to their importance. To the best of our knowledge, this work is the first attempt to
use the weighing & selecting strategy for integrating multiple graph pre-training tasks. Extensive
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experiments on 16 datasets show that WAS can achieve comparable performance to other leading
counterparts for both node-level and graph-level tasks. Our contributions are summarized as follows:
(1) We show the limitations of current weighing-only schemes and demonstrate the importance of
task selecting process. (2) To the best of our knowledge, we are the first to identify two important
collaborative processes: select and weigh; we provide extensive experiments to explain in detail why
the collaboration of the two is important, how it differs from the weighing-only based methods and
why do the two processes need to be decoupled. (3) We propose a novel framework to adaptively,
dynamically, and compatibly select and weigh multiple pre-training tasks for each instance separately.

2 RELATED WORKS

Graph Pre-Training. Graph neural networks (GNNs) are powerful tools to capture useful information
from graph data (Zügner & Günnemann, 2019; Wu et al., 2022d;b; Hu et al., 2020a). Recently,
there have been lots of efforts in pre-training GNNs to alleviate the need for expensive labeled
data and improve the generalization ability. These methods usually use various well-designed pre-
training tasks to pre-train GNNs on large unlabeled datasets. Generally, mainstream pre-training
tasks can be divided into three categories: generative, contrastive, and predictive. The generative
methods, such as EdgePred (Hamilton et al., 2017), AttrMask (Hu et al., 2020b), and GPT-GNN (Hu
et al., 2020c), focus on reconstructing important information for each graph at the intra-data level.
Besides, the contrastive methods, such as ContextPred (Hu et al., 2020b), GraphLoG (Xu et al., 2021),
GraphCL (You et al., 2020a), and JOAO (You et al., 2021), apply data transformations to construct
different views for each graph, aiming to learn representations to distinguish the positive views from
the negative views. The predictive methods, such as G-Motif (Rong et al., 2020), CLU (You et al.,
2020b), and PAIRDIS (Jin et al., 2020), generally self-generate labels by some simple statistical
analysis and then perform prediction-style tasks. More details can be found in Appendix A.

Multi-Tasking Learning. There are many works on multi-tasking learning (Doersch & Zisserman,
2017; Ren & Lee, 2017; Zamir et al., 2018; Wu et al., 2020; Yu et al., 2020; Wang et al., 2022) on CV
or NLP domains. Due to the immense success of Transformer (Vaswani et al., 2017), many methods
from non-graph domains are applicable only to the transformer architecture (He et al., 2022; Zhu et al.,
2023; Wang et al., 2022). In addition, lots of tasks focus on designing methods to combine losses (Yu
et al., 2020; Liu et al., 2021a), ignoring the powerful potential of instance-level design. The existing
methods on graphs can be broadly classified into two categories, global-level and instance-level. For
global-level, AUX-TS (Han et al., 2021) combines different tasks to promote a target pre-training
task’s performance. AutoSSL (Jin et al., 2021) combines the weights of losses on tasks by measuring
pseudo-homophily, and ParetoGNN (Ju et al., 2022) reconcile tasks by dynamically assigning weights
that promote the Pareto optimality. They trained the model by combining losses, ignoring the different
needs of different instances. For instance-level, AGSSL (Wu et al., 2022a), which is closest to us,
designs its weighing function to approach an ideal Bayesian teacher for each instance. Despite their
great success, all the above methods focus only on importance weighing but ignore task selecting.

3 PRELIMINARY

Notations. Let G = (V, E) denote a graph, where V = {v1, v2, · · · , vN} and E ⊆ V × V denote
the node set of |V| = N nodes and the edge set. Given a set of graphs G = {G1,G2, · · · ,GM},
graph classification aims to learn a GNN encoder hθ(·) : G → RF and an additional projection head
gω(·) : RF → RC to adapt to downstream tasks, where C is the number of category.
Pre-training and fine-tuning on Graphs. Graph pre-training aims to extract informative knowledge
from massive unlabeled data Dpre through a pre-training task Lpre(θ) and then transfer the learned
knowledge to a downstream task Ldown(θ, ω) on the labeled data Ddown, which includes two steps:
(1) Pre-training a GNN encoder hθ(·) on an unlabeled dataset Dpre, with the objective formlulated as

θpre = argmin
θ

Lpre(hθ;Dpre). (1)

(2) Fine-tuning the pre-trained GNN encoder hθpre(·) with a prediction head gω(·) on the labeled
dataset Ddown, defined as

min
(θ,ω)

Ldown(hθpre , gω;Ddown). (2)

Multi-teacher Knowledge Distillation. Given K teacher models fT
1 (·), fT

2 (·), · · · , fT
K (·) and a

student model fS(·), the multi-teacher knowledge distillation extracts knowledge from multiple

3



Published as a conference paper at ICLR 2024

Figure 2: Overall workflow of WAS. Firstly, we train multiple teachers with different pre-training
tasks. Secondly, we pass the teacher’s representations to two modules (Selecting and Weighing) to
get the selecting results κ(·, i) and initial weights ω(·, i) for each instance Gi. Finally, we weigh only
those selected teachers to get weights λ(·, i) and distill the integrated distributions into the student.

teachers and then distills the extracted knowledge into a student, which can be formulated as follows

LMKD = LKL

(
K∑

k=1

λkf
T
k (G), fS(G)

)
, (3)

where λk is the weight of k-th teacher that satisfies
∑K

i=1 λk = 1, and LKL(·) denotes the Kull-
back–Leibler divergence that measures the distribution differences.

4 METHODOLOGY

The graph pre-training tasks are designed to provide more information to the model during pre-
training, and in this sense, using more tasks can provide richer information. However, there are
two issues to be addressed when combining tasks, namely, the importance of each task and the
compatibility between tasks. Since different tasks exhibit different importance and compatibility
on different data, in this paper, we propose a novel instance-level framework, Weigh And Select
(WAS), as shown in Fig. 2, which can be divided into two steps: knowledge extraction and knowledge
transfer. In the knowledge extraction step, we train multiple teachers with different tasks to extract
different levels of knowledge. In the knowledge transfer step, we integrate those knowledge for each
instance by weighing and selecting, and then distill the integrated knowledge into the student model.
To deal with the importance and compatibility issues, we design decoupled siamese networks with
stop-gradient and momentum updating, which assigns different weights to each teacher and determine
whether they should be selected, and then only weigh those selected teachers, i.e., weigh and select.
In this section, we delve into the details of our framework WAS by answering the following questions:

Q1. (Instance): How to design a framework that enables customized schemes for each instance?

Q2. (Importance): How to design the weighing module to address the importance issue?

Q3. (Decouple): How to decouple selecting from weighing to prevent their results from overlapping?

Q4. (Compatibility): How to design the selecting module to address the compatibility issue?

4.1 INSTANCE-LEVEL MULTI-TEACHER KNOWLEDGE DISTILLATION

To answer Q1 (Instance), we adopt multi-teacher knowledge distillation (MKD) to achieve knowledge
transfer in our framework. MKD was first proposed to obtain a model with fewer parameters, i.e.,
model compression (Wu et al., 2023b;c), but here we use it for distilling the knowledge of different
teachers into one student model. As opposed to the method of combining different losses, used in
AutoSSL (Jin et al., 2021) and ParetoGNN (Ju et al., 2022), MKD can get the distribution of each
teacher on each individual instance. This means that the teacher’s impact on students is independent
at the instance-level, so we are able to learn customized teacher combinations for each instance to
enable the student model to learn a better representation. Furthermore, since we directly weigh the
output distributions of teachers rather than the task losses, the learned weights can truly reflect the
importance of different teachers, because their output distributions are at almost the same level for a
given instance. However, different losses may be on different orders of magnitude, so the weights of
different losses cannot directly reflect the importance of different graph pre-training tasks.
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To combine different teachers at the instance-level, we learn customized weighing and selecting
strategies for each instance separately. Specifically, given K teacher models fT

1 (·), fT
2 (·), · · · , fT

K (·)
trained by different pre-training tasks, our goal is to obtain an ideal combination of them for each
instance Gi. The whole framework can be divided into three key steps: (1) Get the label distribution
Pk
i = fT

k (Gi) of the k-th teacher fT
k (·) on i-th instance Gi. (2) Pass the obtained distributions

through two mutually independent modules W and S, i.e., weighing (introduced in 4.2.1) and selecting
(introduced in 4.2.3), to obtain initial weight ω(k, i) ∈ (0, 1] and selecting results κ(k, i) ∈ {0, 1},
and then weigh only those selected teachers by softmax to output teacher weight λ(k, i) ∈ (0, 1]. (3)
Integrate the outputs of different teachers to obtain an integrated teacher distribution PT

i as follows,

PT
i =

K∑
k=1

κ(k, i)λ(k, i)Pk
i , (4)

where
∑

k κ(k, i)λ(k, i)=1, and then distill the integrated distribution PT
i into the student fS(·) via

multi-teacher knowledge distillation, with the learning objective formulated as

min
θ,ω,λ,κ

Ldown

(
θ, ω

)
+ α

M∑
i=1

LKL

(
PT
i ,PS

i

)
. (5)

4.2 SIAMESE NETWORKS FOR TASK WEIGHING AND SELECTING

An instance-level framework has been presented in Sec. 4.1 to transfer knowledge from multiple
teachers to a student, but it doesn’t tell us how to weigh and select. In this subsection, we propose
siamese networks that consist of two modules dealing with importance and compatibility.

4.2.1 TASK WEIGHING BY IMPORTANCE MODELING

Here, to answer Q2 (Importance), we design a weighing module W to adaptively learn suitable task
weights for each instance. The first question is, how to model the importance issue. In some current
multi-task learning methods (Jin et al., 2021; Ju et al., 2022), they directly optimize the weights λ
of different tasks (usually in the form of the coefficient of losses). However, this is only useful at
the global-level as different tasks have different forms of loss. For example, GraphCL performs
contrastive learning between graphs (graphs as instances), while AM masks node attributes on a single
graph (nodes as instances). To solve this, we use a latent space described by the variable {µk}Kk=1

and associate each teacher with a latent factor µk ∈ RC that captures the local importance of different
teachers. The importance weight of the k-th teacher to graph Gi can be calculated as follows:

ω(k, i) =
exp (ζk,i)∑K
k=1 exp (ζk,i)

, where ζk,i = νT
(
µk ⊙ fS(Gi)

)
(6)

where ν ∈ RC is a vector of global parameters to be learned, which determines whether the value of
each dimension in

(
µk ⊙ fS(Gi)

)
has a positive impact on the importance.

After modeling the importance issue, the second question is, how to optimize the learning of
ω(·, ·). Inspired by AGSSL (Wu et al., 2022a), an optimal weighing scheme should make the
integrated teacher distribution PT (G) close to the Bayesian teacher P∗(G), which provides true class
probabilities but is often unknown. Luckily, Menon et al. (2021) demonstrate that P∗(G) can be
estimated using the ground-truth label ey . Therefore, we approximately treat P∗(G) ≈ ey , optimize
ω(·, ·) by minimizing the binary cross entropy loss LW = 1

|Ddown|
∑

i∈Ddown
ℓ(PT (Gi),P∗(Gi)) on

the downstream labeled set, and estimate weights {ω(k, j)}Kk=1 for any unlabeled instance Gj .

4.2.2 DECOUPLE MODULES BY SIAMESE NETWORKS
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Figure 3: A detailed comparison of three
task selecting schemes on four datasets.

Before going deep into the selecting module, we must
first clarify one question: what kind of selecting results
do we want? As mentioned earlier, the weight ω(k, i) can
characterize the importance of each task, so it is natural to
select those tasks that are important and remove those that
are not, i.e., using the weight as the selecting probability.
However, this scheme is equivalent to explaining compat-
ibility in terms of importance and completely confuses
the two, which defies our expectations. Fig. 3 shows the
results of three selecting methods on four datasets. It can
be seen that the completely importance-based selection
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method neglects compatibility and is sometimes even worse than random selection. However, it
would be a pity to discard the task importance altogether, as it undoubtedly provides rich information
that can be used to guide task selection, so we wanted to design a selecting module to utilize this
information but not rely on it. That is, we want the selecting results and weights to be related but
not coupled with each other. Then, the two modules should be architected in such a way that the
selecting results can make use of the weights but are not directly derived from them. We call this
process decouple. As shown in Fig. 3, the decoupled selection achieves the best performance.

To answer Q3 (Decouple), we construct the selecting module and the weighing module in the
form of siamese networks inspired by Nair & Hinton (2010) to get weights and selecting results
simultaneously, and then weigh only those selected teachers. Such a construction can strictly
distinguish between the two modules, allowing the selecting module to focus on solving the task
compatibility problem and the weighing module to focus on the task importance problem.

4.2.3 TASK SELECTING BY QUIT MECHANISM

To answer Q4 (Compatibility), we propose a novel selecting module S to adaptively resolve the
compatibility between tasks and select the most suitable task combination for each instance separately.

As mentioned in Sec. 4.2.2, we construct the selecting module and the weighing module in the form
of siamese networks. However, since the two modules have the same architecture, if we update them
in the same way (e.g., both by back-propagation), their outputs are highly likely to be re-coupled
together. Therefore, we cut off the selecting module’s gradient back-propagation and adopt the
momentum updating to optimize the parameters of the selecting module S. Let θweighing denote the
parameters of weighing module W and θselecting denote the parameters of selecting module S, the
process of momentum updating can be written as follows:

θselecting = m ∗ θselecting + (1−m) ∗ θweighing, (7)

where m is the momentum updating rate, which controls the similarity of S and W. This setup
enables the selecting module to acquire enough knowledge from the historical weights of different
teachers to guide the selecting results because θselecting is based on historical θweighing.

However, since θselecting are all superimposed by θweighing at different epochs, the output of the
selecting module is still likely to be close to the weighing module if W converges earlier. Therefore,
we add an additional projection head (implemented as MLP) after S to enhance the discrepancy
between the selecting and weighing results. Such an organization enables S to still utilize the
information of weighing but be thoroughly decoupled from the weighing module, allowing the two
modules to do their work more independently. Given the output κS(k, i) of the selecting module (just
like the output of the weighing module ω(k, i)), we feed κS(k, i) into the MLP and then normalize
the result MLP(κS(k, i)) to ensure that at least one teacher is selected for each instance, defined as

κnorm(k, i) =
MLP(κS(k, i))

maxKj=1 MLP(κS(k, i))
. (8)

Note that κnorm(k, i)∈ [0, 1], so every teacher has a chance to be sampled. In addition, a teacher not
sampled in the previous epoch does not mean that it will not be sampled in the next epoch, which
allows our model to try a sufficient number of task combinations. At the convergence stage, the
probability of some teachers will be close to 0 so that they hardly participate in knowledge distillation,
which we call dynamic quit. It helps us select the most suitable teachers for each instance because
the model can try enough task combinations and finally discard those useless tasks. To differentiably
select k-th teacher for i-th instance according to the normalized sampling probability κnorm(k, i), we
use the reparameterization trick, which is commonly used in previous works (Huang et al., 2016a;
Liu et al., 2021b). Specifically, we adopt Gumbel-Softmax sampling (Maddison et al., 2016), which
samples κ(k, i) from the Bernoulli distribution with probability κnorm(k, i), defined as

κ(k, i) =

⌊
1

1 + exp−
(
log κnorm(k,i)+G

)
/τ

+
1

2

⌋
, (9)

where τ=1.0 is the temperature of gumbel-softmax distribution, and G ∼ Gumbel(0, 1) is a Gumbel
random variable. Finally, we weigh only those selected teachers by re-softmax, as follows

λ(k, i) =
κ(k, i) exp(ζ(k, i))∑K
k=1 κ(k, i) exp(ζ(k, i))

(10)
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So far, our WAS framework, including weigh and select, has been built. Due to space constraints,
pseudo-code and complexity analysis are placed in Appendix B and Appendix C.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate WAS on 16 public graph datasets for both node-level and graph-level
downstream tasks. To be specific, we would like to answer the following five questions: Q1.
(Improvement) Does WAS achieve better performance than its corresponding teachers? Q2. (Effec-
tiveness) How does WAS compare to other leading baselines? Can WAS’s performance continue to
grow as the task pool expands? Q3. (Localization) Can WAS learn customized task combinations for
different instances? Q4. (Decouple) Whether the selecting results are decoupled from the weighing
results? Q5. (Integrity) How does each component contribute to the performance of WAS?

Datasets & Implementation Details. For graph-level tasks, following Liu et al. (2022), we use
5-layers GIN (Xu et al., 2018) as our backbone. We randomly select 50k qualified molecules from
GEOM (Axelrod & Gomez-Bombarelli, 2020) for the pre-training and then fine-tune on 8 graph
datasets, including BACE, BBBP, ClinTox, SIDER, Tox21, Toxcast, MUV, and HIV. For node-level
tasks, following Wu et al. (2022a), we use 2-layers GCN (Kipf & Welling, 2016) as our backbone.
We conduct experiments on 8 real-world datasets widely used in the literature (Yang et al., 2016;
Hassani & Khasahmadi, 2020a; Thakoor et al., 2021), i.e., Physics, CS, Photo, Computers, WikiCS,
Citeseer, Cora, and ogbn-arxiv. A statistical overview of these datasets is placed in Appendix D. The
implementation details and hyperparameter settings for each dataset are available in Appendix E.

Task Pool. There are a total of 12 classic graph pre-training tasks that make up our task pool.
For graph-level tasks, we consider 7 pre-training tasks, including AttrMask (Hu et al., 2020b),
ContextPred (Hu et al., 2020b) EdgePred (Hamilton et al., 2017), GPT-GNN (Hu et al., 2020c),
GraphLoG (Xu et al., 2021), GraphCL (You et al., 2020a), and InfoGraph (Sun et al., 2019). For
node-level tasks, we follow AutoSSL (Jin et al., 2021) to consider five tasks: DGI (Velickovic
et al., 2019), CLU (You et al., 2020b), PAR (You et al., 2020b), PAIRSIM (Jin et al., 2020), and
PAIRDIS (Peng et al., 2020). Detailed description of these tasks has been placed in Appendix A.

Table 2: Results of seven baseline teachers and WAS for molecular property prediction. For each
dataset, we report the mean and standard deviation of ROC-AUC(%) with scaffold splitting. The best
and second-best results are marked in bold and underlined, respectively. The arrows indicate whether
the multi-task method has improved relative to the average performance of the seven teacher tasks.

BACE BBBP ClinTox SIDER Tox21 Toxcast MUV HIV Avg. Rank

AttrMask 77.4±0.2 65.3±1.6 70.3±7.5 55.1±0.7 74.4±0.5 62.6±0.1 75.4±2.7 75.9±0.4 5.3
ContextPred 77.3±1.0 69.0±2.0 66.9±7.6 58.7±1.6 72.9±0.8 61.7±0.7 73.6±0.3 76.1±2.4 5.6

EdgePred 66.1±2.6 68.6±6.7 67.3±2.0 58.9±1.3 68.2±9.1 59.0±0.9 73.5±1.9 73.8±2.4 7.5
GPT-GNN 78.6±2.9 65.3±1.5 56.1±8.9 57.9±0.2 74.3±0.7 63.3±0.3 75.6±1.8 74.8±1.4 5.8
GraphCL 77.5±1.6 69.9±1.6 72.1±4.7 59.9±1.5 75.1±0.8 62.8±0.7 75.1±1.5 74.5±0.6 3.4

GraphLoG 78.1±1.0 66.4±2.8 64.1±3.4 59.5±2.4 73.9±1.4 62.3±0.6 73.5±1.0 75.5±0.5 5.5
InfoGraph 71.4±2.4 66.2±1.1 71.5±6.3 58.2±0.4 74.0±0.5 60.7±0.9 73.2±0.8 74.3±0.5 7.5

Average-Weight 75.3±1.2↑ 66.6±0.2↓ 62.6±4.4↓ 56.9±1.5↓ 67.8±0.8↓ 62.2±1.8↑ 74.2±0.7↑ 74.8±0.3↓ 7.5
Random-Select 77.2±1.7↑ 67.2±0.5↓ 58.1±1.5↓ 59.2±1.7↑ 74.3±0.6↑ 59.3±0.7↓ 71.6±1.4↓ 76.1±1.2 ↑ 6.3

WAS 80.7±0.5↑ 70.5±1.0↑ 73.1±0.5↑ 60.4±0.4↑ 75.4±0.7↑ 63.7±1.5↑ 76.3±1.0↑ 78.4±1.9↑ 1.0

5.1 PERFORMANCE COMPARISION

A1: Performance comparision with Teachers. To answer Q1 (Improvement), we report the
results for seven individual tasks and the model trained by WAS using the seven tasks as its teach-
ers in Table. 2. Besides, we add two additional combination methods, Average-Weight and
Random-Select to better compare the performance. Average-Weight assigns equal weights
to each teacher, and Random-Select randomly select teachers for each instance. From Table. 2,
we can make the following observations: (1) There is no one optimal pre-training task that works
for all datasets, which means we need to choose the most suitable pre-training tasks for each dataset
separately. (2) Most of the results (9 out of 16) of Average-Weight and Random-Select are
worse than the average performance, indicating that importance and compatibility issues are quite
important and challenging. (3) WAS achieves the best performance on all the datasets, which means
that it can handle the compatibility problem between tasks effectively in the vast majority of cases.

A2: Performance comparison with other baselines. For graph-level tasks (Table. 3), we compare
WAS with other state-of-the-art graph pre-training baselines, including AD-GCL (Suresh et al., 2021),
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Table 3: Comparison with leading graph pre-training baselines for the task of molecular property
prediction, where the best and second are marked bold and underlined, respectively.

BACE BBBP ClinTox SIDER Tox21 Toxcast MUV HIV Avg. Rank

AD-GCL 76.3±0.6 70.1±1.2 78.1±3.6 59.4±0.7 74.7±1.1 62.8±0.5 71.6±0.8 77.7±1.2 4.4
R-GCL 73.6±1.2 69.3±0.4 78.9±4.1 59.9±0.9 75.2±0.3 62.4±0.6 74.7±1.2 76.1±0.6 4.3

G-Contextual 76.3±1.9 64.0±1.5 67.6±2.9 61.1±2.5 74.9±0.2 61.7±0.1 74.2±1.4 75.3±1.4 5.6
G-Motif 71.5±0.9 70.3±1.5 81.4±2.2 60.1±1.7 73.1±0.4 61.8±0.6 74.5±0.6 76.0±1.3 5.4
JOAO 73.4±1.2 64.7±0.8 66.1±3.7 60.7±1.0 74.8±0.6 62.4±0.4 75.5±0.9 76.9±1.1 5.0

GraphMAE 75.0±0.7 66.3±0.7 65.3±3.9 57.1±0.7 68.8±0.5 61.5±0.5 71.8±0.3 73.5±0.8 8.3
SimGRACE 75.8±0.4 66.7±0.6 66.8±2.0 58.4±1.1 74.3±0.2 62.1±0.1 74.3±0.8 74.4±1.0 6.6
GraphMVP 80.3±1.4 67.9±1.0 76.4±1.1 60.2±1.6 74.6±0.3 63.5±0.2 75.5±1.6 76.2±0.8 3.8

WAS 80.7±0.5 70.5±1.0 73.1±0.5 60.4±0.4 75.4±0.7 63.7±1.5 76.3±1.0 78.4±1.9 1.8

Table 4: Performance comparison with baseline teachers and other methods for node classification.
The baseline tasks form the task pool of the multi-task methods, while single-task represents other
complex designed tasks. The Blue in line WAS indicates that it beats all multi-task methods. The
results of AGSSL are from its original paper, and the others are reproduced on our platform.

Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv Avg.Rank

ba
se

lin
es

CLU 81.4±0.2 71.8±0.5 79.3±0.6 91.2±0.6 93.5±0.5 92.3±0.4 87.6±0.6 71.5±0.6 11.1
PAR 82.4±0.3 71.6±0.6 79.6±0.4 91.3±0.5 93.1±0.8 92.4±0.5 86.7±0.8 71.3±0.4 11.4

PAIRSIM 82.4±0.4 71.8±0.6 79.3±0.6 91.6±0.5 93.3±0.3 92.5±0.6 87.1±0.9 71.6±0.3 9.9
PAIRDIS 81.9±0.6 72.2±0.5 79.6±0.5 91.4±0.5 94.0±0.6 92.1±0.5 86.5±0.7 71.4±0.3 10.6

DGI 82.1±0.4 72.5±0.4 79.9±0.6 91.8±0.7 93.9±0.6 92.0±0.6 87.4±0.7 71.9±0.3 8.9

si
ng

le
-t

as
k GRLC 82.8±0.1 73.2±0 1 80.8±0.2 89.9±0.2 93.2±0.5 91.9±0.6 88.1±0.4 71.0±0.7 9.4

CG3 83.4±0.4 73.6±0.2 81.1±0.1 91.7±0.4 93.6±0.6 92.1±0.5 87.8±0.9 71.4±0.9 7.1
GCA 83.9±0.4 73.8±0.7 80.1±0.4 92.8±0.4 94.1±0.5 93.2±0.6 88.7±0.2 OOM 3.9

MVGRL 83.4±0.4 72.7±0.6 81.6±0.8 91.7±0.2 OOM 93.1±0.4 87.9±0.2 OOM 6.3
GRACE 80.1±0.6 72.9±0.7 79.7±0.6 91.5±0.4 94.5±0.4 92.4±0.3 88.5±0.5 OOM 8.3

m
ul

ti-
ta

sk ParetoGNN 83.5±0.6 73.9±0.5 80.1±0.2 92.3±0.4 94.4±0.6 93.4±0.2 87.9±0.3 71.0±0.1 5.5
AutoSSL 83.2±0.9 73.4±0.6 80.7±0.7 92.4±0.6 93.9±0.6 93.5±0.7 88.4±0.3 72.3±0.4 4.9
AGSSL 84.2±0.3 73.6±0.6 80.6±0.3 92.4±0.5 94.8±0.3 93.3±0.4 88.7±0.4 72.5±0.3 3.1

WAS 84.4±0.4 74.1±0.5 80.9±0.3 92.6±0.3 94.9±0.3 93.6±0.7 88.9±0.3 71.7±0.3 1.8

+G-Contextual +JOAO +GraphMVP +AD-GCL +R-GCL +G-Motif73

74

75

76

77

78

79

80

Pe
rfo

rm
an

ce

ClinTox WAS
AGSSL

(a) Performance comparison on ClinTox

+G-Contextual +JOAO +GraphMVP +AD-GCL +R-GCL +G-Motif60.0

60.5

61.0

61.5

62.0

Pe
rfo

rm
an

ce

SIDER WAS
AGSSL

(b) Performance comparison on SIDER

Figure 4: Evaluation on whether the performance of WAS can improve as the task pool expands.

R-GCL (Li et al., 2022), GraphMVP (Liu et al., 2022), JOAO (You et al., 2021), GraphMAE (Hou
et al., 2022), SimGRACE (Xia et al., 2022),G-Contextual and G-Motif (Rong et al., 2020). On 6 out
of 8 datasets, WAS performs better than the other state-of-the-art methods, even though it combines
only several simple but classical tasks. For node-level tasks (Table. 4), we compare WAS with other
single-task methods, including GRLC (Peng et al., 2023), GCA (Zhu et al., 2020c), MVGRL (Hassani
& Khasahmadi, 2020b), GRACE (Zhu et al., 2020a) and CG3 (Wan et al., 2020), and three multi-task
methods, e.g., ParetoGNN (Ju et al., 2022), AutoSSL (Jin et al., 2021) and AGSSL (Wu et al., 2022a).
Here we would like to emphasize that the most important contribution of WAS is the handling of the
compatibility, i.e., the continuous performance improvement that WAS can achieve as the number of
tasks increases. To demonstrate this, we extend AGSSL to the graph-level tasks and compare it with
WAS. As shown in Fig. 4, the performance of WAS improves consistently as the number of tasks
gradually increases, but the performance of AGSSL hardly benefits from more tasks.

5.2 EVALUATION ON INSTANCE-LEVEL RESULTS

A3: Customized combinations for different instances. To show the different selecting results for
different instances, we chose 4 molecular graphs from Bace and visualized the probability of being
selected over them for each task in Fig. 5. We can see that the selecting module can select customized
combinations for each instance even if we do not pre-specify the number of selected teachers.
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(d) Select three teachers

Figure 5: Probability of being selected for different teachers (tasks) on different instances from Bace
.
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(c) Selecting on Toxcast
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Figure 6: Comparison of the selecting probabilities and importance weights for different instances.
(a)(b) selecting IG (rangking third importance) as the teacher for an instance from Bace. (c)(d)
selecting GraphCL and CP (ranking fourth importance) as teachers for an instance from Toxcast.

A4: Evolution process of selecting and weighing. Here, we select 2 molecular graphs from Bace
and Toxcast to visualize the results of selecting and weighing. It can be seen from Fig. 6 that the
selected teacher is not necessarily the teacher with the highest weight, which confirms our earlier
statement that two modules need to be decoupled to deal with two issues of the importance and
compatibility separately, and also demonstrates the effectiveness of our decoupled siamese networks.

5.3 ABLATION STUDY

Table 5: Mean and standard deviation of ROC-AUC(%). Ran-
dom means randomly selecting teachers. All means selecting
all teachers. Importance-based means selecting the top-3
important teachers. All of them use learned weights.

BACE HIV Tox21 BBBP

Random 77.2±1.7 76.1±1.2 74.3±0.6 67.2±0.5
All 75.2±1.2 77.8±0.7 73.6±0.9 65.9±0.4

Importance-based 75.4±0.7 73.5±1.2 74.0±0.4 64.4±0.9

WAS w/o MLP 77.4±1.1 75.4±0.9 73.9±0.8 69.6±1.2
WAS w/o re-weighing 65.1±3.7 63.3±2.4 64.1±3.0 60.7±5.1

WAS 80.7±0.5 78.4±1.9 75.4±0.7 70.5±1.0

A5: Ablation study on each compo-
nent. The results in Table. 5 provide
some constructive insights: (1) The
performance of Importance-based se-
lecting can be even lower than that
of Random selecting. This confirms
our claim that the compatibility is-
sue needs to be considered separately
from the importance issue. (2) Re-
moving the projection head (imple-
mented as MLP) would be detrimental
to performance, as it would increase
the risk of coupling the result of se-
lecting with weighing, which highlights the role of the projection head in the selection module. (3)
WAS outperforms all other selecting strategies, which indicates that a proper selecting strategy can
greatly improve performance. (4) Re-weighing after selection is very important. If we remove the
re-weighing, the final sum of the teacher weights will not equal 1, which may result in the number of
selected teachers having a significant impact on performance. Due to space limitations, some more
related experiments on hyperparameter sensitivity and teacher selection are placed in Appendix F.

6 CONCLUSION

With hundreds of graph pre-training tasks proposed, combining the information drawn by multiple pre-
training tasks has become a hot research topic. In this paper, we identify two important collaborative
processes for this combination operation: weigh and select; we provide extensive experiments to
explain why the collaboration of the two is important, how it differs from the weighing-only based
methods and why do the two need to be decoupled. Furthermore, we propose a novel decoupled
framework WAS that is capable of customizing a selecting & weighing strategy for each downstream
instance separately. Extensive experiments on 16 graph datasets show that WAS can not only achieve
comparable performance to other leading counterparts by selecting and weighing several simple but
classical tasks, but also achieve consistent performance improvements as the task pool expands.
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Appendix
A. DETAILS ON PRE-TRAINING TASKS

Here, we provide a high-level comparison among existing graph pre-training tasks in Table. A1.

Generative tasks: The generative tasks focus on the intra-data information embedded in the graph
and aim to reconstruct the important structures or features for each graph. By doing so, it learns a
better representation that encodes the key components of the data.

Contrastive tasks: The contrastive tasks handle inter-data information by first applying transfor-
mations to construct different views for each graph. Each view contains information at a different
granularity. The training objective is to align the representations of views from the same data (positive
pairs) and pull apart the representations of views from different data (negative pairs).

Predictive tasks: The predictive methods generally self-generate labels by some simple statistical
analysis or expert knowledge and then perform prediction-style tasks based on self-generated labels.

Table A1: Comparison between existing pre-training tasks.

Pre-training Tasks Generative Contrastive Predictive

EdgePred (Hamilton et al., 2017) ✓ - -
AttrMask (Hu et al., 2019) ✓ - -

GPT-GNN (Hu et al., 2020c) ✓ - -
GraphMVP-G (Liu et al., 2022) ✓ - -

DGI (Velickovic et al., 2019) - ✓ -
InfoGraph (Sun et al., 2019) - ✓ -
ContextPred (Hu et al., 2019) - ✓ -

G-Contextual (Rong et al., 2020) - ✓ -
GraphCL (You et al., 2020a) - ✓ -
GraphLoG (Xu et al., 2021) - ✓ -

AD-GCL (Suresh et al., 2021) - ✓ -
JOAO (You et al., 2021) - ✓ -

SimGRACE (Xia et al., 2022) - ✓ -
R-GCL (Li et al., 2022) - ✓ -

GraphMVP-C (Liu et al., 2022) - ✓ -
GraphMAE (Hou et al., 2022) - - ✓

PAIRSIM (Jin et al., 2020) - - ✓
PAIRDIS (Peng et al., 2020) - - ✓

CLU (You et al., 2020b) - - ✓
PAR (You et al., 2020b) - - ✓

G-Motif (Rong et al., 2020) - - ✓

Baseline. For graph-level classification tasks, we take seven classic graph pre-training tasks to
make up our task pool. (1) AttrMask (Hu et al., 2020b), which learns the regularities of node/edge
attributes. (2) ContextPred (Hu et al., 2020b), which explores graph structures by predicting the
contexts. (3) EdgePred (Hamilton et al., 2017), which predicts the connectivity of node pairs. (4)
GPTGNN (Hu et al., 2020c), which introduces an attributed graph generation task to pre-train
GNNs. (5) GraphLoG (Xu et al., 2021), which introduces a hierarchical prototype to capture the
global semantic clusters. (6) GraphCL (You et al., 2020a), which constructs specific contrastive
views of graph data. (7) InfoGraph (Sun et al., 2019), which maximizes the mutual information
between the representations of the graph and substructures. For node-level classification tasks, we
follow AutoSSL (Jin et al., 2021) to adopt five classic tasks. (1) DGI (Velickovic et al., 2019),
which maximizes the mutual information between graph representation and node representation. (2)
CLU (You et al., 2020b), which predicts pseudo-labels from K-means clustering on node features.
(3) PAR (You et al., 2020b), which predicts pseudo-labels from Metis graph partition (Karypis &
Kumar, 1998). (4) PAIRSIM (Jin et al., 2020), which predicts pairwise feature similarity between
nodes. (5) PAIRDIS (Peng et al., 2020), which predicts the shortest path length between nodes.
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B. PSEUDO CODE

The pseudo-code of WAS is summarized in Algorithm 1 (node-level) and Algorithm 2 (graph-level).

Algorithm 1 Algorithm of the WAS framework for node-level tasks
Input: K Pre-training Tasks T1, T2, · · · , TK , Graph G = (A,X) with N nodes, and Number of Epochs:
Iteration.
Output: GNN Encoder hθ(·) and Projection Head gω(·).
Use K pre-training tasks to pre-train GNN encoder to get teacher models’ parameters {θ∗k, ω∗

k}Kk=1.
for iter = 1, 2, · · · , Iteration do

for i = 1, 2, · · · , N do
Save the output

{
P(k, i) = gω∗

k
(hθ∗

k
(xi))

}K

k=1
on G from the pre-trained teachers and then freeze them.

Input P(k, i) into Weighing and Selecting module to obtain the weights λinit(k, i) and selecting results
κ(k, i) of each teacher.
Weigh those selected teachers with weights λ(k, i) = κ(k,i)exp(λinit(k,i))∑K

k=1
κ(k,i)exp(λinit(k,i))

.

Integrate the knowledge of different teachers by PT (xi) =
∑K

k=1 κ(k, i)λ(k, i)P(k, i).
Distill the integrated knowledge to the student model by Eq. (5).

end for
end for
Return: Student’s Enocder hθ(·) and Prediction Head gω(·).

Algorithm 2 Algorithm of the WAS framework for graph-level tasks
Input: K Pre-training Tasks T1, T2, · · · , TK , a set of graph G = {G1,G2, · · · ,GM}, and Number of Epochs:
Iteration.
Output: GNN Enocder hθ(·) and Projection Head gω(·).
Use K pre-training tasks to pre-train GNN encoder to get teacher models’ parameters {θ∗k, ω∗

k}Kk=1.
for iter = 1, 2, · · · , Iteration do

for i = 1, 2, · · · ,M do
Save the output

{
P(k, i) = gω∗

k
(hθ∗

k
(Gi))

}K

k=1
from the pre-trained teachers and then freeze them.

Input P(k, i) into Weighing and Selecting module to obtain the weights λinit(k, i) and selecting results
κ(k, i) of each teacher.
Weigh those selected teachers with weights λ(k, i) = κ(k,i)exp(λinit(k,i))∑K

k=1
κ(k,i)exp(λinit(k,i))

.

Integrate the knowledge of different teachers by PT (Gi) =
∑K

k=1 κ(k, i)λ(k, i)P(k, i).
Distill the integrated knowledge to the student model by Eq. (5).

end for
end for
Return: Student’s Enocder hθ(·) and Prediction Head gω(·).

C. COMPLEXITY ANALYSIS

(1) [Few additional parameters] Despite the additional parameters introduced, WAS achieves a
similar computational efficiency as previous works, because the training with multiple tasks is more
hard to optimize than the training with one single task. The two processes, weigh and select, actually
use only 2KT (C + 1) + T 2 more parameters (T is teacher numbers, K is the dimension of the label
distribution, and C is the dimension of latent space), which is acceptable, as T is usually small.

(2) [Few additional memory] Since we adopt a multi-teacher architecture, we can not only train
multiple teachers in parallel, but also save only their outputs instead of the full model parameters.

(3) [Few additional time consumption] In Table. A2, we demonstrate the training time (in the
pre-training and fine-tuning setting) of a single method (Clu and DGI) and WAS (train in parallel)
here. Specifically, to illustrate that the two processes, weigh and select, will not cause an unacceptable
time consumption, we additionally compare the case without them.

(4) [Few additional Time complexity] The time complexity of WAS is based on: 1. Training
teachers: O(T (||A||F +NdF )), N is the number of instances, ||A|| is the number of non-zero values
in the adjacency matrix, and d and F are the dimensions of input and hidden spaces. 2. Knowledge
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integrating: O((N + 1)FT ). The overall complexity is still determined by the first term. Moreover,
we can reduce the complexity of training teachers to O(||A||F +NdF ) by parallel training.

Table A2: Training time of a single method (Clu and DGI) and WAS (train in parallel).

Cora Citeseer Pumbed Photo

Clu 6.75s 9.57s 28.39s 11.95s
DGI 9.18s 9.26s 26.23s 12.06s

WAS (w/o select&weigh) 11.73s 12.19s 32.17s 15.79s
WAS (w/o select) 12.04s 12.61s 32.82s 16.23s

WAS 12.97s 12.76s 34.07s 16.78s

D. DATASET STATISTICS

In this section, we summarize 16 datasets used in this paper.

Dataset about Pharmacology: The Blood-Brain Barrier Penetration (BBBP) (Martins et al., 2012)
dataset measures the penetration properties of a molecule into the central nervous system. The
Side Effect Resource (SIDER) (Kuhn et al., 2016) dataset represents the adverse drug reactions.
Tox21 (Huang et al., 2016b), ToxCast (Richard et al., 2016), and ClinTox (Gayvert et al., 2016)
are related to the toxicity of molecular compounds.

Dataset about Biophysics: Maximum Unbiased Validation (MUV) (Rohrer & Baumann, 2009) using
refined nearest neighbor analysis to construct based on PubChem (Kim et al., 2016). HIV (Zaharevitz,
2015) aims at predicting inhibit HIV replication. BACE, which is gathered in MoleculeNet (Wu et al.,
2018), measures the binding results for inhibitors of β-secretase 1. Following the setting of (Liu et al.,
2022), we use scaffold splitting to split datasets into train/val/test sets by ratios of 0.7/0.2/0.1.

Table A3: Statistical information of the graph-level datasets.

Dataset BACE BBBP ClinTox Sider Tox21 ToxCast MUV HIV

# Tasks 1 1 2 27 12 617 17 1
# Molecules 1,513 2,039 1,478 1,427 7,831 8,576 93,087 41,127

Dataset about Citation network: Cora (Sen et al., 2008), Citeseer (Giles et al., 1998),
ogbn-arxiv (Hu et al., 2020a) and Pubmed (McCallum et al., 2000) consists of papers from
different fields and each node is a scientific paper.

Dataset about Co-authorship network: Coauthor-CS (CS) and Coauthor-Physics
(Physics) (Shchur et al., 2018) are Co-authorship network datasets consisting of undi-
rected graphs, where nodes represent authors and are connected by edges if they are co-authors.
Different authors have different research areas.

Dataset about Co-purchase network: Amazon-Photo (Photo) and Amazon-Computers
(Computers) (Shchur et al., 2018) are datasets consisting of an undirected graph, where the
nodes represent goods and the edges represent two goods that are often purchased at the same time.
When we evaluate the performance of node classification, we need to use the training and testing data.
For Cora, Citeseer, and Pubmed, we follow the data splitting strategy in (Kipf & Welling, 2016). For
CS, Physics, Photo, and Computers, we follow (Zhang et al., 2021; Luo et al., 2021) to randomly
split the data into train/val/test sets, and each random seed corresponds to a different splitting. For
ogbn-arxiv, we use the public data splits provided by the authors (Hu et al., 2020a).

E. DETAILS ON EXPERIMENTAL SETUP

Experimental settings. For graph-level tasks, we follow the setting of GraphMVP (Liu et al., 2022).
We pre-trained all methods on the same dataset based on GEOM (Axelrod & Gomez-Bombarelli,
2020) using the GIN (Xu et al., 2018) as the backbone model, and then we fine-tune them on 8
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Table A4: Statistical information of the node-level datasets.

Dataset Cora Citeseer Pubmed Photo CS Physics Computers ogbn-arxiv

# Nodes 2,708 3,327 19,717 7,650 18,333 34,493 13,752 169,343
# Edges 5,278 4,614 44,324 119,081 81,894 247,962 245,861 1,166,243
# Features 1,433 3,703 500 745 6,805 8,415 767 128
# Classes 7 6 3 8 15 5 10 40

classical molecular property prediction datasets. For a fair comparison, the model with the highest
validation accuracy is selected for testing. For node-level tasks, we follow the settings in AGSSL (Wu
et al., 2022a) exactly (search space of hyperparameter, model architecture, experiment setting, etc.)
for a fair comparison. For pre-training, we pre-train the GNN encoder (using GCN (Kipf & Welling,
2016)) with pre-training tasks and for fine-tuning, we use the pre-trained GNN encoder with a
projection head under the supervision of a specific downstream task. We conduct our experiments on
NVIDIA Tesla V100 GPU and we use Intel(R) Xeon(R) Gold 6240R @ 2.40GHz CPU.

Hyperparameter Settings. The following hyperparameters are set the same for all molecular
datasets: Adam optimizer with weight decay w = 0; Epoch E = 250 (E = 500 for ClinTox and
Toxcast). The other hyperparameters settings (including loss weight α, temperature τ , momentum
rate m, and learning rate lr) are included in Table. A5. The following hyperparameters are set the
same for node classification tasks: Adam optimizer with weight decay w = 5e− 4; Epoch E = 500.
The other hyperparameter settings (including hidden dimension F ) are included in Table. A6.

Table A5: Hyperparameters of graph-level tasks.

BACE BBBP ClinTox SIDER Tox21 Toxcast MUV HIV

α 3.6 3.3 0.4 4.2 4.1 2.7 1.6 4.2
τ 3.5 1.1 4.9 1.3 1.6 1.5 1.5 1.5
m 0.9 0.9 0.9 0.5 0.1 0.5 0.5 0.3
lr 0.01 0.01 0.001 0.01 0.01 0.001 0.01 0.01

Table A6: Hyperparameters of node-level tasks.

Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv

F 128 256 512 64 256 64 128 512
α 1 20 10 5 10 0.5 0.1 1
τ 1.2 1 1 1 1.5 1.2 2 1.2
m 0.3 0.5 0.5 0.3 0.5 0.7 0.7 0.7
lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001
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F. MORE RELATED EXPERIMENTS

EVALUATION ON HYPERPARAMETER SENSITIVITY

The hyperparameter sensitivity on the loss weight α is provided in Fig. A1, from which we can make
two observations that (1) As the loss weight α increases, the model performance first improves and
then decreases, which suggests that knowledge transferring helps to improve performance, but too
large an α can cause the loss directly associated with the downstream task to be masked, causing
performance degradation. (2) Larger α leads to smaller variance, probably because combining the
knowledge of multiple pre-training tasks can effectively improve the stability of the student model.
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Figure A1: Hyperparameter sensitivity analysis on the loss weight α.

EVALUATION ON TEACHER SELECTION

In Table. A7, we count the average number of selected teachers, and then count the ratio of selecting
Top-1/Top-[number] important teacher. From the results reported in Table. A7, we can draw the
following conclusions: (1) teachers with the highest weights have a higher probability of being
selected, and (2) the selection module does not necessarily always select the higher-weight teachers.

Table A7: Average number of teachers being selected, and the ratios of Top-1/Top-[number] important
teachers. The selection module does not necessarily always select the higher-importance teachers.

Cora Citeseer BACE BBBP

average number of selected teachers 2.7 3.9 2.9 3.1
ratios of selecting Top-1 important teacher (%) 0.63 0.71 0.68 0.55

ratios of selecting Top-[number] important teacher (%) 0.26 0.34 0.41 0.10
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