
End-to-end Learning of Logical Rules for Enhancing Document-level
Relation Extraction

Anonymous ACL submission

Abstract

Document-level relation extraction (DocRE)001
aims to extract relations between entities in a002
whole document. One of the pivotal challenges003
of DocRE is to capture the intricate interde-004
pendencies between relations of entity pairs.005
Previous methods have shown that logical rules006
are able to explicitly help capture such interde-007
pendencies. These methods either learn logical008
rules to refine the output of a trained DocRE009
model, or first learn logical rules from anno-010
tated data and then inject the learnt rules to a011
DocRE model using auxiliary training objec-012
tive. In this paper, we argue that these learning013
pipelines may suffer from the issue of error014
propagation. To mitigate this issue, we propose015
Joint Modeling Relation extraction and Logi-016
cal rules or JMRL for short, a novel rule-based017
framework that jointly learns both a DocRE018
model and logical rules in an end-to-end fash-019
ion. Specifically, we parameterize a rule reason-020
ing module in JMRL to simulate the inference021
of logical rules, thereby explicitly modeling the022
reasoning process. We also introduce an auxil-023
iary loss and a residual connection mechanism024
in JMRL to better reconcile the DocRE model025
and the rule reasoning module. Experimental026
results on four benchmark datasets demonstrate027
that the proposed JMRL framework is consis-028
tently superior to existing rule-based frame-029
works on all datasets, improving five baseline030
models for DocRE by a significant margin.031

1 Introduction032

Relation extraction (RE) plays a vital role in in-033

formation extraction (IE). It aims at identifying034

relations between two entities in a given text. Early035

efforts focus mainly on sentence-level RE. In recent036

years, document-level relation extraction (DocRE)037

has received increasing attention. It aims at identi-038

fying relations of all entity pairs in a document.039

Nowadays, DocRE has been widely applied in040

downstream applications such as question answer-041

ing (QA) (Sorokin and Gurevych, 2017), knowl-042

Document Title: Parvathy Jayaram
[1] Ashwathy Kurup, better known by her stage name Parvathy, is an Indian film
actress and classical dancer … [2] Parvathy married film actor Jayaram who
was her co-star in many films on 7th September 1992 at Town Hall, Ernakulam.
[3] She has two children, Kalidas Jayaram and Malavika Jayaram. [4] …
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Logical rules:
hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasChild 𝑧, 𝑦 ,

hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasMother! 𝑧, 𝑦 ,
hasFather 𝑥, 𝑦 ← hasMother 𝑥, 𝑧 	⋀	hasSpouse 𝑧, 𝑦

Reasoning with logical rules:
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Figure 1: Examples in the DocRED dataset, where solid
arrows denote the correct predictions, dotted arrows the
missing predictions and r− the inverse relation of r.

edge graph construction (Luan et al., 2018), etc. 043

Compared to sentence-level RE, DocRE imposes 044

a greater challenge for modeling longer contexts 045

and capturing the more complex interdependencies 046

between entity pairs. 047

Most previous methods for DocRE focus on 048

capturing interdependencies between entity pairs 049

by learning powerful representations through 050

neural models, such as pre-trained language 051

models (Xu et al., 2021; Zhou et al., 2021a), 052

or graph neural networks (Peng et al., 2017; 053

Sahu et al., 2019; Zeng et al., 2020). However, 054

these methods are usually prone to lose the 055

reasoning ability. Figure 1 illustrates such an 056

example, where sub-figure (a) in Figure 1 shows 057

an example of a document in the DocRED dataset, 058

and sub-figure (b) shows the corresponding 059

predictions yielded by ATLOP, a state-of-the-art 060

(SOTA) method for DocRE. We can observe that 061

ATLOP (Zhou et al., 2021a) only extracts apparent 062

facts such as “(Parvathy, hasSpouse, Jayaram)” 063
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and “(Parvathy,hasChild,KalidasJayaram)”,064

but fails to identify potential facts such as065

“(KalidasJayaram, hasFather, Jayaram)” and066

“(Jayaram,hasChild,MalavikaJayaram)” since067

they are not explicitly mentioned in the document.068

In general, logical rules can be used to improve069

the reasoning ability for DocRE by inferring miss-070

ing facts from existing ones. Sub-figure (c) in Fig-071

ure 1 illustrates three logical rules, and sub-figure072

(d) shows their ability in inferring missing facts. To073

enhance existing DocRE models with logical rules,074

two rule-based frameworks have been proposed,075

namely LogicRE (Ru et al., 2021) and MILR (Fan076

et al., 2022). In more details, LogicRE first learns077

logical rules based on the output logits of a trained078

neural model and then refines its predicted relations079

by reasoning with the learnt rules, whereas MILR080

first learns logical rules from annotated data and081

then trains a neural model penalized by an auxil-082

iary loss for reflecting the violation of learnt rules.083

Although both LogicRE and MILR have shown084

promising results in enhancing performance for085

DocRE, they still suffer from the error propagation086

issue due to their pipeline natures.087

In this paper, we target jointly learning a neural088

module for DocRE and a neural module for approx-089

imating logical rules in an end-to-end fashion to090

avoid error propagation. To this end, we propose a091

novel framework named Joint Modeling Relation092

extraction and Logical rules or JMRL for short,093

as illustrated in Figure 2. The intuition of JMRL094

is to reduce the rule learning problem in discrete095

space to a parameter learning problem in continu-096

ous space, yielding a neural module for approxi-097

mating logical rules (called a rule reasoning mod-098

ule) and then integrating it into an existing DocRE099

model. The parameters of the rule reasoning mod-100

ule is tuned along with the parameters of the back-101

bone DocRE model so that the whole model can102

be trained in an end-to-end fashion. Furthermore,103

we introduce an auxiliary loss and a residual con-104

nection mechanism in JMRL to better incorporate105

the backbone DocRE model and the rule reasoning106

module, so as to further improve the performance.107

We impose JMRL to enhance five baseline108

models for DocRE, including LSTM (Yao et al.,109

2019), Bi-LSTM (Yao et al., 2019), GAIN (Zeng110

et al., 2020), ATLOP (Zhou et al., 2021a) and111

DREEAM (Ma et al., 2023a). Experimental re-112

sults on four benchmark datasets DWIE (Zaporo-113

jets et al., 2021), DocRED (Yao et al., 2019), Re-114

DocRED (Tan et al., 2022b), and DocGNRE (Li115

et al., 2023) demonstrate that the proposed JMRL 116

framework is superior to all SOTA rule-based 117

framework for DocRE, improving the baseline 118

models by a significant margin on all datasets. Our 119

analysis and case study further clarify why JMRL 120

is able to improve the performance. 121

The main contributions of this work include: 122

(1) We propose a novel framework named JMRL 123

to integrate a neural module for approximating 124

logical rules into a baseline DocRE model, so that 125

the enhanced DocRE model can be trained in an 126

end-to-end fashion. As far as we know, this is 127

the first end-to-end approach for imposing logical 128

rules upon DocRE models. 129

(2) We theoretically analyze the faithfulness be- 130

tween the rule reasoning module and logical rules. 131

(3) We conduct extensive experiments on four 132

benchmark datasets, demonstrating that the pro- 133

posed JMRL framework pushes forward five base- 134

line SOTA DocRE models by a significant mar- 135

gin. In particular, up to the submission date 136

(2024/02/15), the JMRL-enhanced DREEAM 137

model (submissions under the username jmrl) 138

ranks the first in the public DocRED evaluation1. 139

2 Preliminaries 140

Problem formulation for DocRE. Given a doc- 141

ument d involving a set of named entities Ed = 142

{ei}1≤i≤ne , the task of DocRE aims at predict- 143

ing the relations among all entity pairs {(eh, et) | 144

eh, et ∈ Ed, eh ̸= et}. The set of predictable rela- 145

tions is defined as R+ = R ∪ {⊥}, where R is a 146

pre-defined relation set and ⊥ the “no relation”. 147

Atoms and facts. An atom is of the form r(x, y), 148

where r ∈ R is a predicate, x and y are entity 149

variables or entity constants. An atom is ground if 150

it does not contain any variable. A fact is a ground 151

atom of the form r(a, b), which is also expressed 152

as a triple (a, r, b) throughout the paper. 153

Logical rules. We focus on chain-like logical rules 154

(CRs). A CR is a datalog rule (Abiteboul et al., 155

1995) where all atoms are binary and every body 156

atom shares variables with the previous atom and 157

the next atom. A CR is called an L-CR if it has L 158

body atoms. An L-CR R is of the form: 159

H(x, y)← B1(x, z1)∧B2(z1, z2)∧...∧BL(zL−1, y) 160

where x the head entity, y the tail entity, and z1, 161

. . . , zL−1 variables. The part at the left (resp. right) 162

1https://codalab.lisn.upsaclay.fr/
competitions/365
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side of← is called the head (resp. body) of R. The163

rule R is called r-specific if H = r. By HR and164

BR we denote the atom in the head of R and the165

set of atoms in the body of R, respectively. A rule166

is ground if it does not contain any variable. A rule167

R is a fact if BR is empty and HR is ground. To168

uniformly represent CRs with fixed-length bodies,169

we introduce the identity relation (denoted by I)170

to rule bodies. For example, the 1-CR r(x, y) ←171

p(x, y) can be converted into a 2-CR r(x, y) ←172

p(x, z) ∧ I(z, y).173

Given a set of facts G ⊂ E×R×E , we denote by174

G |= HR(a, b) if there exists a ground instance Rg175

of logical rule R such that HR(a, b) = HRg and176

BRg ⊆ G ∪ G− ∪ {I(e, e) | e ∈ E}, where G− =177

{(et, r−, eh) | (eh, r, et) ∈ G} and r− denotes the178

inverse relation of r. Let Σ be a set of r-specific179

CRs and (a, r, b) ∈ E × R × E an arbitrary fact.180

We denote by G |=Σ (a, r, b) if there exits a logical181

rule R ∈ Σ such that G |= HR(a, b).182

3 Related Work183

Document-level relation extraction. Early efforts184

for DocRE focus on better contextualized repre-185

sentations of relations by employing various tech-186

nologies such as attention mechanisms (Yao et al.,187

2019; Zhou et al., 2021a), pre-trained language188

models (Tang et al., 2020; Xu et al., 2021), and189

knowledge distillation (Tan et al., 2022a; Ma et al.,190

2023a). To capture more complex interdependen-191

cies between entity pairs, recent studies aim at en-192

hancing DocRE models with external modules such193

as graph neural networks (GNNs) (Christopoulou194

et al., 2019; Zhang et al., 2020; Zeng et al., 2020) or195

rule-based frameworks (Ru et al., 2021; Fan et al.,196

2022). Specifically, LogicRE (Ru et al., 2021) and197

MILR (Fan et al., 2022) are two SOTA rule-based198

frameworks for enhancing DocRE. LogicRE first199

learns logical rules based on the output logits of a200

trained neural model and then refines the predicted201

relations of the neural model by learnt rules. MILR202

first learns logical rules from annotated data and203

then trains a neural model penalized by an auxil-204

iary loss for reflecting the violation of learnt rules.205

However, the above two frameworks suffer from206

the error propagation issue due to their pipeline207

natures. In contrast, our proposed JMRL frame-208

work integrates a neural module for rule reasoning209

into a backbone DocRE model, enabling the whole210

model to be trained end-to-end and thus mitigating211

the error propagation issue.212

End-to-end rule learning. In recent years, there 213

is an emerging interest in exploiting neural-based 214

methods (Yang et al., 2017; Sadeghian et al., 2019; 215

Yang and Song, 2020; Xu et al., 2022) for end-to- 216

end rule learning. Inspired by their promising re- 217

sults, we also design a neural-based rule reasoning 218

module in JMRL to approximate logical rules for 219

DocRE. Different from previous methods, our ap- 220

proach can handle the training objective of relation 221

extraction, whereas previous methods are only de- 222

signed for specific tasks in knowledge graph com- 223

pletion such as link prediction (Bordes et al., 2013) 224

and triple classification (Lin et al., 2015). Further- 225

more, our approach can deal with the reasoning 226

scenario where existing facts in the background 227

knowledge are all uncertain (i.e., the existing facts 228

are predicted by a DocRE model with continuous 229

values for their truth degrees). 230

Rule injection in neural models. There exist ap- 231

proaches focusing on injecting logical rules into 232

neural models in different tasks of natural language 233

processing (NLP), including knowledge base con- 234

struction (Demeester et al., 2016; Ding et al., 2018), 235

natural language inference (Li and Srikumar, 2019), 236

sentiment analysis (Deng and Wiebe, 2015), knowl- 237

edge graph validation (Du et al., 2019) and informa- 238

tion extraction (Wang and Pan, 2020; Zhou et al., 239

2021b). These approaches require well-prepared 240

hand-crafted rules as input for the enhancement, 241

which may prevent them from being practically 242

used. In contrast, our proposed JMRL framework 243

does not require hand-crafted rules as input. 244

4 The JMRL Framework 245

To impose logical rules upon a DocRE model, we 246

propose a novel rule-based framework named Joint 247

Modeling Relation extraction and Logical rules 248

or JMRL for short, as illustrated in Figure 2. By 249

and large, JMRL first employs a DocRE model to 250

calculate output logits for all potential facts in a 251

document, and then feeds them into a rule reason- 252

ing module to produce the rule-enhanced logits. 253

The ultimately predicted logits are calculated by 254

the residual connection of the original DocRE log- 255

its and the rule-enhanced logits. Then the entire 256

model is trained by minimizing a weighted sum 257

of classification losses calculated from the original 258

DocRE logits and the ultimately predicted logits. 259

Furthermore, we can extract logical rules from the 260

parameter assignment of the rule reasoning module 261

to compose explanations for the predictions. 262
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Document Title: Parvathy Jayaram
[1] Ashwathy Kurup, better known by her stage
name Parvathy, is an Indian film actress and
classical dancer … [2] Parvathy married film
actor Jayaram who was her co-star in many films
on 7th September 1992 at Town Hall, Ernakulam.
[3] She has two children, Kalidas Jayaram and
Malavika Jayaram. [4] …

DocRE Model Rule Reasoning Module

Logical rules
hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasChild 𝑧, 𝑦

hasChild 𝑥, 𝑦 ← hasSpouse 𝑥, 𝑧 	⋀	hasMother! 𝑧, 𝑦
…

hasFather 𝑥, 𝑦 ← hasMother 𝑥, 𝑧 	⋀	hasSpouse 𝑧, 𝑦

(Jayaram, Parvathy)

(Malavika J., Parvathy)
…

Loss ℒ! Lossℒ"Total loss	𝜆ℒ! + ℒ"

Minimalization Objective

Input

Output

Residual connection

OutputIntput

Rule
extraction

Classification loss Classification loss

Input documents

Extracted logical rules

Neural networks

Training losses

Output logits

(Jayaram, Parvathy)

(Malavika J., Parvathy)
…

+

Explanations

Figure 2: The overview of the proposed JMRL framework.

4.1 Document-level Relation Extraction263

Given a document d involving a set of named en-264

tities Ed = {ei}1≤i≤ne , a typical DocRE model265

F calculates a logit F(eh, et, d) ∈ Rn+1 for each266

entity pair in {(eh, et) | eh, et ∈ Ed, eh ̸= et},267

where n = |R|, [F(eh, et, d)]i denotes the logit268

for a normal relation for all 1 ≤ i ≤ n, and269

[F(eh, et, d)]n+1 denotes the logit for ⊥.270

A DocRE model is usually trained by minimiz-271

ing the binary cross-entropy (BCE) loss (Yao et al.,272

2019; Zeng et al., 2020) or the adaptive threshold-273

ing (AT) loss (Zhou et al., 2021a), a variant of cross-274

entropy. In the inference phase, the set of predicted275

facts {(eh, r, et) | [σ(F(eh, et, d))]r > ϵ} are ob-276

tained by thresholding the predicted probabilities277

of each entity pair, where ϵ is a given threshold, σ is278

an activation function such as the sigmoid function279

or the softmax function.280

4.2 The Rule Reasoning Module281

The rule reasoning module is a neural module pa-282

rameterized to simulate the inference of logical283

rules, approximating outputs as a rule system does.284

This module is trained along with the DocRE model285

to optimize a certain training objective.286

Let N be the maximum number of rules to287

be learnt, L the maximum number of atoms in288

each rule and R∗ = R ∪ R− ∪ {I}. Suppose289

R = {ri}1≤i≤n, its corresponding set of inverse290

relations R− = {ri}n+1≤i≤2n, and I = r2n+1.291

We define an extended logit F+(x, y, d) ∈ R2n+1,292

where [F+(x, y, d)]i = [σ(F(x, y, d))]i for all293

1 ≤ i ≤ n, [F+(x, y, d)]i+n = [σ(F(y, x, d))]i294

for all 1 ≤ i ≤ n, and [F+(x, y, d)]2n+1 = 1 if 295

x = y or 0 otherwise. The goal of our rule reason- 296

ing module is to estimate a truth degree s(N,L)
r,x,y,d for 297

every fact (x, r, y) ∈ Ed ×R∗ × Ed in every doc- 298

ument d, where the estimated truth degree s(N,L)
r,x,y,d 299

reflects the degree of whether the fact (x, r, y) can 300

be inferred by N L-CRs. For every normal relation 301

r ∈ R, 1 ≤ k ≤ N, 1 ≤ l ≤ L, the intermediate 302

estimated truth degree s(k,l)r,x,y,d for the lth atom in 303

the kth rule is defined as: 304

s
(k,l)
r,x,y,d =



2n+1∑
i=1

w
(r,k,l)
i [F+(x, y, d)]i, l = 1

2n+1∑
i=1

w
(r,k,l)
i

∑
(z,ri,y)∈

Ed×R∗×Ed

s
(k,l−1)
r,x,z,d [F+(z, y, d)]i, l > 1

(1) 305

where w(r,k,l) ∈ [0, 1]2n+1 denotes the trainable 306

weights on predicate selection for the lth body atom 307

of the kth rule whose head atom is on r. w(r,k,l) 308

is confined to [0, 1] by a softmax layer. Intuitively, 309

w
(r,k,l)
i = 1 indicates that the ith relation ri is 310

selected as the predicate of the lth body atom. 311

Different from normal relations in R, for the 312

head relation ⊥, we allow ⊥ and its reverse rela- 313

tion to appear in predicates of body atoms. To 314

this end, we alter Equation (1) for r = ⊥ by 315

looping i from 1 to 2n + 3, redefining w(r,k,l) ∈ 316

[0, 1]2n+3, R∗ = R ∪ {⊥} ∪ R− ∪ {⊥−, I}, 317

[F+(x, y, d)]i = [σ(F(x, y, d))]i for all 1 ≤ i ≤ 318

n + 1, [F+(x, y, d)]i+n+1 = [σ(F(y, x, d))]i for 319

all 1 ≤ i ≤ n + 1, and [F+(x, y, d)]2n+3 = 1 if 320

x = y or 0 otherwise. 321

The ultimate truth degree is calculated by aggre- 322
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gating the intermediate degrees of N rules:323

s
(N,L)
r,x,y,d =

N∑
k=1

α(k)
r s

(k,L)
r,x,y,d (2)324

where α(k)
r ∈ [−1, 1] is a trainable weight for the325

kth rule for the head relation r, which is confined326

to [−1, 1] by a tanh layer. Intuitively, α(k)
r denotes327

the confidence score of the kth rule for r.328

By introducing the following notion of induced329

parameter assignment, we show in Theorem 1 that330

the formalization of the proposed rule reasoning331

module is faithful to a certain set of CRs.332

Definition 1. Given a set of r-specific L-CRs333

Σ = {Rk}1≤k≤N for Rk of the form r(x, y) ←334

pk,1(x, z1) ∧ · · · ∧ pk,L(zL−1, y), where pk,l ∈335

R ∪ {⊥} ∪ R− ∪ {⊥−, I} if r = ⊥, or pk,l ∈336

R∪R− ∪ {I} otherwise, we call a parameter as-337

signment of the rule reasoning module θ(N,L)
r =338

{w(r,k,l)
i }1≤k≤N,1≤l≤L,1≤i≤m ∪ {α

(k)
r }1≤k≤N Σ-339

induced if it satisfies the following conditions:340

(1) ∀1 ≤ k ≤ N, 1 ≤ l ≤ L, 1 ≤ i ≤ m :341

w
(r,k,l)
i = 1 if pk,l = ri or w(r,k,l)

i = 0 otherwise,342

where m = 2n + 3 if r = ⊥ or m = 2n + 1343

otherwise.344

(2) ∀1 ≤ k ≤ N, 1 ≤ l ≤ L : α
(k)
r = 1.345

Theorem 1. Suppose [σ(F(x, y, d))]r = 1 if the346

fact (x, r, y) is predicted to be true in document d,347

or [σ(F(x, y, d))]r = 0 otherwise. Let R† = R+348

if r = ⊥ orR† = R otherwise, Gd = {(x, r, y) ∈349

Ed × R† × Ed | [σ(F(x, y, d))]r = 1} be the set350

of predicted true facts for d, Σ = {Rk}1≤k≤N a351

set of r-specific L-CRs and θ(N,L)
r the Σ-induced352

parameter assignment of the rule reasoning module.353

Then for any fact (a, r, b) ∈ Ed×R†×Ed, s(N,L)
r,a,b,d ≥354

1 if and only if Gd |=Σ (a, r, b).355

The proof of Theorem 1 is provided in Ap-356

pendix A. Theorem 1 enables us to extract explain-357

able logical rules from the parameter assignment358

of the learnt neural module. The rule extraction359

algorithm is shown in Appendix B.360

Residual connection. Considering that there ex-361

ist DocRE scenarios where logical reasoning is362

useless, we introduce the well-known residual con-363

nection mechanism to incorporate the output logits364

from the original DocRE model and the estimated365

truth degrees from the rule reasoning module. The366

ultimately predicted logit is calculated by:367

ϕ(x,y,d)r = [F(x, y, d)]r + s
(N,L)
r,x,y,d (3)368

Dataset Split #Doc. #Rel. #Ent. #Facts.

DWIE
train 602

65
16,494 14,403

dev 98 2,785 2,624
test 99 2,623 2,495

DocRED

train 3,053

96

59,493 38,180
dev 998 19,578 12,323
test 1,000 19,539 -
test† 500 9,779 17,448

Table 1: Statistics on datasets, where Doc. (resp. Rel or
Ent) abbreviates documents (resp. relations or entities).

4.3 Training Objective 369

JMRL is trained by minimizing a classification loss 370

(BCE or AT, inherited from the backbone DocRE 371

model) calculated by ϕ(x,y,d)r . The formal defini- 372

tions of BCE and AT are given in Appendix C. 373

In practice, it is hard to accurately train the rule 374

reasoning module at the early stage of training, as 375

the facts predicted by the backbone DocRE model 376

are inaccurate at the early stage. To tackle this 377

issue, we introduce an auxiliary loss in JMRL to 378

improve the efficiency of the entire training pro- 379

cess. The classification loss on the output logits 380

F(x, y, d) of the backbone DocRE model is treated 381

as the auxiliary loss. By L1∆ and L2∆ we denote 382

the auxiliary loss and the original loss, respectively, 383

the entire JMRL-enhanced model is trained by min- 384

imizing λL1∆ + L2∆, where ∆ ∈ {BCE,AT} and 385

λ is a hyper-parameter to trade-off the two losses. 386

5 Evaluation 387

5.1 Experimental Setup 388

Datasets and metrics. We used the DWIE, Do- 389

cRED, Re-DocRED, and DocGNRE datasets for 390

evaluation, where the results on Re-DocRED and 391

DocGNRE are moved to appendix. To fairly com- 392

pare with MILR on DocRED, we used the same re- 393

labeled test set as Huang et al. (2022). Statistics for 394

DWIE and DocRED are reported in Table 1, where 395

test† denotes the relabeled test set. Following Yao 396

et al. (2019), we used F1-score and Ign F1-score 397

as evaluation metrics, where Ign F1-score extends 398

F1-score by omitting facts appearing in the inter- 399

section of the training set and the dev (resp. test) 400

set for evaluation on the dev (resp. test) set. 401

Baselines. To compare JMRL with the SOTA rule- 402

based frameworks LogicRE (Ru et al., 2021) and 403

MILR (Fan et al., 2022), we enhanced four base- 404

line models, including LSTM (Yao et al., 2019), 405

Bi-LSTM (Yao et al., 2019), GAIN (Zeng et al., 406

2020) and ATLOP (Zhou et al., 2021a). For a more 407
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Method PLM Dev Test p-valueIgn F1 (%) F1 (%) Ign F1 (%) F1 (%)
ChatGPT (5-shot) (Han et al., 2023) ChatGPT - - - 26.72 -
LSTM (Yao et al., 2019) GloVe 31.71 38.35 31.65 41.42 2.5e-2
LogicRE-LSTM (Ru et al., 2021) GloVe 32.02 (+0.31) 38.48 (+0.13) 32.58 (+0.93) 42.03 (+0.61) 2.2e-2
MILR-LSTM (Fan et al., 2022) GloVe 33.12 (+1.41) 39.95 (+1.60) 33.75 (+2.10) 43.35 (+1.93) 3.9e-2
JMRL-LSTM (this work) GloVe 36.11 (+5.40) 42.87 (+4.52) 43.16 (+11.51) 50.34 (+8.92) -
BiLSTM (Yao et al., 2019) GloVe 32.14 39.66 33.88 43.54 8.0e-3
LogicRE-BiLSTM (Ru et al., 2021) GloVe 32.39 (+0.25) 40.32 (+0.66) 34.21 (+0.33) 43.95 (+0.45) 1.1e-2
MILR-BiLSTM (Fan et al., 2022) GloVe 34.05 (+1.91) 41.22 (+1.56) 35.09 (+1.21) 44.65 (+1.11) 2.2e-2
JMRL-BiLSTM (this work) GloVe 37.88 (+5.74) 43.68 (+4.02) 42.68 (+8.80) 50.70 (+7.16) -
GAIN (Zeng et al., 2020) BERTbase 58.89 63.81 61.36 67.45 1.8e-3
LogicRE-GAIN (Ru et al., 2021) BERTbase 58.98 (+0.09) 64.90 (+1.09) 61.58 (+0.22) 68.71 (+1.26) 3.4e-2
MILR-GAIN (Fan et al., 2022) BERTbase 61.22 (+2.33) 65.85 (+2.04) 62.77 (+1.41) 69.23 (+1.78) 1.5e-1
JMRL-GAIN (this work) BERTbase 61.62 (+2.73) 66.03 (+2.22) 64.59 (+3.23) 69.66 (+2.21) -
ATLOP (Zhou et al., 2021a) BERTbase 63.37 69.87 67.29 75.13 4.0e-3
LogicRE-ATLOP (Ru et al., 2021) BERTbase 64.54 (+1.17) 70.66 (+0.79) 68.13 (+0.84) 75.67 (+0.54) 3.5e-3
MILR-ATLOP (Fan et al., 2022) BERTbase 67.18 (+3.81) 72.05 (+2.97) 69.84 (+2.55) 76.51 (+1.38) 3.9e-3
JMRL-ATLOP (this work) BERTbase 68.41 (+5.04) 73.91 (+4.04) 70.92 (+3.63) 77.85 (+2.72) -

Table 2: Comparison results on the DWIE dataset.

comprehensive comparison, we also applied JMRL408

to enhance the SOTA model DREEAM (Ma et al.,409

2023a) and compared with other SOTA methods410

SSAN (Xu et al., 2021) and KD-DocRE (Tan et al.,411

2022a). Note that these baseline models adopt dif-412

ferent loss functions, where the BCE loss is used413

by LSTM, Bi-LSTM and GAIN, and the AT loss is414

used by ATLOP and DREEAM. We also compared415

JMRL with large language models (LLMs) such416

as ChatGPT (Han et al., 2023), GPT-4 (Peng et al.,417

2023) and FLAN-UL2 (Peng et al., 2023).418

Implementation details. We implemented all419

JMRL-enhanced models by Pytorch 2.0.0 on an420

NVIDIA A100 GPU2. We utilized the public repos-421

itories of backbone models such as LSTM and Bi-422

LSTM3, GAIN4, ATLOP5, and DREEAM6 to im-423

plement our experiments. The hyper-parameter λ424

for JMRL is set to 1 in all experiments. We provide425

detailed hyper-parameter settings in Appendix E,426

where all hyper-parameters were tuned to maxi-427

mize the Ign F1-score on the dev set.428

5.2 Main Results429

We use JMRL-X (resp. LogicRE-X or MILR-X)430

to denote the enhanced models, where X denotes431

an original DocRE model. Table 2 (resp. Table 3)432

reports the comparison results on the DWIE (resp.433

DocRED) dataset. where the results of baselines434

in Table 3 are sourced from (Fan et al., 2022). Re-435

2Code and data about our implementations are available
at: [link removed during double blind reviewing]

3https://github.com/thunlp/DocRED
4https://github.com/DreamInvoker/GAIN
5https://github.com/wzhouad/ATLOP
6https://github.com/YoumiMa/dreeam

Method Test (using test†)
Ign F1 (%) F1 (%)

ChatGPT (5-shot) - 28.89
GAIN 41.26 41.68
LogicRE-GAIN 41.53 (+0.27) 41.89 (+0.21)
MILR-GAIN 42.89 (+1.63) 43.17 (+1.49)
JMRL-GAIN 47.85 (+6.59) 49.58 (+7.90)
ATLOP 41.67 41.95
LogicRE-ATLOP 42.47 (+0.80) 42.73 (+0.78)
MILR-ATLOP 44.30 (+2.63) 44.72 (+2.77)
JMRL-ATLOP 47.32 (+5.65) 47.54(+5.59)

Table 3: Comparison results on the DocRED dataset.

sults show that the proposed JMRL framework im- 436

proves all original DocRE models by a significant 437

margin in both F1-scores and Ign F1-scores with 438

p-values < 0.05 by two-tailed t-tests. These results 439

demonstrate a ubiquitous effectiveness of JMRL 440

across a variety of backbone models which use dif- 441

ferent kinds of word embedding, language models 442

and loss functions. Furthermore, we can observe 443

that JMRL consistently outperforms both the SOTA 444

rule-based frameworks LogicRE and MILR. Specif- 445

ically, JMRL-ALTOP outperforms MILR-ATOP by 446

a significant margin of 1.08% (resp. 3.02%) in Ign 447

F1-score on the DWIE (resp. DocRED) dataset. 448

This is in line with our expectation that a joint 449

training framework (e.g. JMRL) is better than a 450

pipeline framework (e.g. LogicRE and MILR) due 451

to the mitigation of error propagation. From the 452

results reported in Table 4 for comparing with the 453

SOTA DocRE model DREEAM, we see that JMRL- 454

DREEAM achieves new SOTA performance on Do- 455

cRED, namely 67.91% (resp. 65.69%) in F1-score 456

(resp. Ign F1-score). This improvement beyond 457
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Method PLM Dev Test (using test) p-valueIgn F1 (%) F1 (%) Ign F1 (%) F1 (%)
ChatGPT (5-shot) (Han et al., 2023) ChatGPT - 32.21 - - -
GPT-4 (2-shot) (Peng et al., 2023) GPT-4 - - - 27.90 -
FLAN-UL2 (FT) (Peng et al., 2023) FLAN-UL2 (20B) - - - 54.50 -
SSAN (Xu et al., 2021) RoBERTalarge 63.76 65.69 63.78 65.92 3.9e-6
KD-DocRE (Tan et al., 2022a) RoBERTalarge 65.27 67.12 65.24 67.28 3.0e-3
DREEAM (Ma et al., 2023a) RoBERTalarge 65.52 67.41 65.47 67.53 2.4e-2
JMRL-DREEAM (this work) RoBERTalarge 65.64 67.61 65.69 67.91 -

Table 4: Comparison results on the original DocRED dataset.

Method DWIE DocRED p-val.IF1 F1 IF1 F1
JMRL-ATLOP 70.92 77.85 47.32 47.54 -
- residual connection 66.04 73.75 43.70 43.88 8.1e-4
- auxiliary loss 69.62 76.73 44.55 44.75 2.2e-2
Using NeuralLP 68.66 76.60 44.30 44.45 1.1e-2
Using DRUM 69.90 77.08 44.70 44.85 4.0e-2

Table 5: Ablation study on the DWIE test set and origi-
nal DocRED test set, where p-val. abbreviates p-value.

SOTA is also statistically significant with a p-value458

< 0.05. This confirms that JMRL is able to further459

enhance SOTA DocRE models.460

Besides, we also compared JMRL with LLMs,461

including ChatGPT, GPT-4 and FLAN-UL2 (FT).462

The comparison results reported in Table 2,3,4463

show that LLMs achieve relatively lower perfor-464

mance on both DWIE and DocRED, even though465

they were fine-tuned on the training data. The rea-466

sons are two-fold. On one hand, LLMs like Chat-467

GPT and GPT-4 can hardly make full use of the468

training data for adapting to a new task. On the469

other hand, LLMs are generative models that are470

too general to fit the DocRE task, which is a classifi-471

cation task, when compared with JMRL-enhanced472

models that are discriminative models. We provide473

more detailed discussions on LLMs in Appendix F.474

5.3 Analysis475

Ablation study. Table 5 reports our results for abla-476

tion study. In the first variant model, we omitted the477

residual connection mechanism in JMRL. Results478

show that the performance of this variant signif-479

icantly drops compared to JMRL-ATLOP with a480

low p-value=8.1e-4 by a two-tailed t-test. In the481

second variant model, we omitted the auxiliary loss482

in JMRL. Results show that the use of auxiliary loss483

results in a significant performance gain with a p-484

value=2.2e-2. These results demonstrate the effec-485

tiveness of key components in JMRL. For the third486

and the fourth variant models, we respectively al-487

tered the rule reasoning module by the well-known488
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Figure 3: Comparison results for different distances.

end-to-end rule learning models NeuralLP (Yang 489

et al., 2017) and DRUM (Sadeghian et al., 2019). 490

Results show that JMRL-ATOP significantly out- 491

performs these two variants with p-values < 0.05. 492

The reason why our proposed rule reasoning mod- 493

ule outperforms both NeuralLP and DRUM may lie 494

in the fact that both NeuralLP and DRUM introduce 495

an extra LSTM network to express the relevance 496

of weights for predicate selection in adjacent body 497

atom, while this extra component introduces more 498

parameters that can hardly be optimized by noisy 499

facts output from the backbone DocRE model. 500

Analysis on long-range dependencies. To ver- 501

ify whether logical rules are benefit for captur- 502

ing long-range dependencies between entity men- 503

tions, we separate the set of entity pairs into four 504

groups according to the distances between entity 505

pairs, where the distance between two entities is 506

measured by the minimum number of tokens be- 507

tween the mentions of these two entities in a docu- 508

ment. Figure 3 shows the comparison results on the 509

dev set of DWIE. We can see that JMRL-ATLOP 510

consistently outperforms the baselines in all four 511

groups. Moreover, the performance generally de- 512

creases with increasing distances. However, JMRL- 513

ATLOP achieves better performance in the range 514

[100, 200) than in the range [0, 100). These results 515

imply that JMRL is more effective in capturing 516
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German Chancellor Angela Merkel has confirmed that she
will stand for the chancellery in the 2017 election, German
media reports. The Christian Democrat Leader ( CDU ) first
took office in 2005. After months of speculation, German
Chancellor Angela Merkel reportedly told her fellow
Christian Democrats ( CDU ) in Berlin on Sunday that she is
prepared to lead the party into next year ‘s election. An
official statement …

Documents Predictions (MILR-ATLOP) Predictions (JMRL-ATLOP)

German

Angela Merkel

Christian Democrats 
( CDU )

base_in

head_of_govhead
_of

German

Angela Merkel

Christian Democrats 
( CDU )

base_in

head_of_govhead
_of

This will not change although Israel has criticized and will
continue to criticize the agreement with Iran . What do you
think is behind the thinking of the Iranian leadership ? The
Iranians see two models - in terms of non - proliferation or
in terms of dismantling the nuclear capabilities . They see
Libya under the Gadhafi model and ... IranGadhafi

head_of_state

citizen_of

LibyaGadhafi
head_of_state

citizen_of

𝛿 = 4.173

𝛿 = 5.503

Figure 4: Case study for MILR-ATLOP and JMRL-ATLOP on the DWIE test set, where black solid lines denote
true predictions, red lines denote false predictions, and dashed lines denote missing predictions.
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Figure 5: Analysis on the hyper-parameter λ.

long-range dependencies betwen entity mentions.517

Analysis on the hyper-parameter λ. We con-518

ducted analysis on the hyper-parameter λ, where519

the experiments were conducted on the dev set of520

DocRED, based on JMRL-ATLOP. Figure 5 illus-521

trates the comparison results. It can be observed522

that both F1-score and Ign F1-score only moder-523

ately fluctuate when λ ranges from 0 to 1.8, and that524

both of them reach the maximum when λ = 1.0.525

Therefore, we set λ = 1.0 in all our experiments.526

Case study. We conducted case study for527

comparing MILR-ATLOP with JMRL-ATLOP528

on the DWIE test set, as shown in Figure 4.529

We first introduce a metric δ to estimate, in530

the residual connection, the ratio of the de-531

gree that the rule-enhance logit dominates the532

ultimately predicted logit to the degree that533

the DocRE logit dominates the ultimately pre-534

dicted logit; formally, δ = dis(vori, vori +535

vrule)/dis(vrule, vori + vrule), where vori and vrule536

denote the DocRE logit and the rule-enhanced537

logit, respectively, and dis is the Euclidean dis-538

tance function. In the first case, MILP-ATLOP539

fails to predict the true relation “head_of” be-540

tween “Angela Merkel” and “Christian Democrats 541

(CDU)”, whereas JMRL-ATLOP predicts this true 542

relation. The correct prediction of JMRL-ATLOP 543

can be explained by a rule “head_of(x, y) ← 544

head_of_gov(x, z) ∧ base_in−(z, y)” extracted 545

from the parameter assignment of the rule rea- 546

soning module, while MILP-ATLOP fails to dis- 547

cover this rule. In the second case, MILP- 548

ATLOP predicts two false relations between 549

“Gadhafi” and “Iran”, whereas JMRL-ATLOP 550

predicts true relations between “Gadhafi” and 551

“Libya”. Although both MILP-ATLOP and JMRL- 552

ATLOP may discover the rule “citizen_of(x, y)← 553

head_of_state(x, y)”, MILP-ATLOP propagates 554

the false relation “head_of_state” between “Gad- 555

hafi” and “Iran” to final predictions, while JMRL- 556

ATLOP can avoid error propagation by its end-to- 557

end nature. Besides, JMRL-ALTOP has δ > 4 in 558

both cases, implying that it is the rule reasoning 559

module that dominates the ultimate prediction. 560

6 Conclusion and Future work 561

In this paper we have proposed an end-to-end learn- 562

ing framework named JMRL to empower existing 563

DocRE models with stronger reasoning abilities. 564

Notably, we have proposed a novel rule reasoning 565

module in JMRL to simulate the inference of logi- 566

cal rules, thereby enhancing the reasoning ability. 567

Furthermore, we have shown theoretically that the 568

parameterization of this module is faithful to the 569

formalization of logical rules. Experimental results 570

on four benchmark datasets verify the effectiveness 571

of JMRL. Future work will extend JMRL to jointly 572

learn named entity recognition (NER), DocRE and 573

more expressive rules in an end-to-end fashion. 574
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7 Limitations575

The main limitations of JMRL are two-fold. On576

one hand, the rule reasoning module in JMRL simu-577

lates the inference of chain-like logical rules. How-578

ever, chain-like logical rules may not be sufficiently579

expressive in some complex reasoning scenarios,580

e.g., they cannot express type constraints (Wu et al.,581

2022) on individual entities. The limited expres-582

sivity of chain-like logical rules may impair the583

reasoning ability of JMRL. On the other hand,584

JMRL is a rule-based framework for enhancing the585

DocRE task, whereas the task of DocRE requires586

a set of entities involved in the given document as587

input. Therefore, applying JMRL to the real-world588

scenarios requires a preprocess of named entity589

recognition (NER). Errors coming from an imper-590

fect NER model may propagate to JMRL, resulting591

in performance degradation. We will make up for592

the above deficiencies in future work, by extending593

JMRL to learn more expressive logical rules and594

extending JMRL to jointly train an NER module.595

8 Ethics Statement596

JMRL is a SOTA solution for the DocRE task with597

high effectiveness and interpretability. Therefore,598

JMRL may be used to extract private information599

among different users. To mitigate this concern,600

we only use public benchmark datasets for evalua-601

tion. These datasets do not involve users’ private602

information. Moreover, the proposed JMRL frame-603

work should not be used to extract and analyze any604

private information without user authorization.605
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A Proof 773

A.1 Proof of Lemma 1 774

To prove Theorem 1, we first introduce Lemma 1. 775

Lemma 1. Suppose [σ(F(x, y, d))]r = 1 if the 776

fact (x, r, y) is predicted to be true in document d, 777

or [σ(F(x, y, d))]r = 0 otherwise. Let R† = R+ 778

if r = ⊥ orR† = R otherwise, Gd = {(x, r, y) ∈ 779

Ed × R† × Ed | [σ(F(x, y, d))]r = 1} be the set 780
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of predicted true facts for d, R an r-specific L-CR781

of the form r(x, y)← r1(x, z1)∧ r2(z1, z2)∧ ...∧782

rL(zL−1, y), and θ(1,L)r the {R}-induced param-783

eter assignment of the rule reasoning module in784

JMRL. Then for any fact (a, r, b) ∈ Ed ×R† × Ed,785

we have: (1) s(1,L)r,a,b,d ≥ 1 if Gd |= HR(a, b), and (2)786

s
(1,L)
r,a,b,d = 0 if Gd ̸|= HR(a, b).787

Proof. Let Kd = Gd ∪ G−d ∪ {(e, I, e) | e ∈ Ed},788

where Ed is the set of entities appearing in Gd.789

(I) Consider the case where Gd |= HR(a, b).790

There exists at least one ground instance Rg of791

R such that HR(a, b) = HRg and BRg ⊆ Kd.792

There will be a sequence of entities c1, . . . , cL−1793

and a sequence of relations r1, . . . , rL such that794

(a, r1, c1), (c1, r2, c2). . . , (cL−1, rL, b) ∈ Kd. Sup-795

pose r1 is the kth relation inR†∪R−
† ∪{I}, then by796

Condition 1 in Definition 1, we have w(r,1,1)
k = 1797

for some k. By Equation (1), we further have798

s
(1,1)
r,a,c1,d

≥ 1. Likewise, suppose r2 is the kth rela-799

tion inR†∪R−
† ∪{I}, then by Condition 1 in Def-800

inition 1, we have w(r,1,2)
k = 1. By Equation (1),801

we further have s(1,2)r,a,c2,d
≥ 1. In the same way, we802

can show that s(1,3)r,a,c3,d
≥ 1, . . . , s(1,L−1)

r,a,cL−1,d
≥ 1 and803

s
(1,L)
r,a,b,d ≥ 1 in turn. Therefore, we have s(1,L)r,a,b,d ≥ 1804

if Gd |= HR(a, b).805

(II) Consider the case where Gd ̸|= HR(a, b).806

Suppose s(1,L)r,a,b,d ≥ 1, then by Equation (1), there807

must be some k ∈ {1, . . . ,m} such that w(r,1,1)
k =808

1, where m = 2n + 3 if r = ⊥ or 2n + 1809

otherwise, there exists (a, rk, c1) ∈ Kd fulfilling810

s
(1,1)
r,a,c1,d

≥ 1. Since s(1,1)r,a,c1,d
≥ 1, by Equation (1),811

there must be also some k ∈ {1, . . . ,m} such that812

w
(r,1,2)
k = 1, where m = 2n + 3 if r = ⊥ or813

2n + 1 otherwise, there exists (c1, rk, c2) ∈ Kd814

fulfilling s(1,2)r,a,c2,d
≥ 1. In the same way, we can815

show that there exists relation ru and entity cu816

such that (cu−1, ru, cu) ∈ Kd and s(1,u)r,a,cu,d
≥ 1 for817

u = 3, . . . , L − 1 in turn, while there exists rela-818

tion rL such that (cL−1, rL, b) ∈ Kd. Hence there819

exists a sequence of entities c1, . . . , cL−1 and a se-820

quence of relations r1, . . . , rL such that (a, r1, c1),821

(c1, r2, c2). . . , (cL−1, rL, b) ∈ Kd. These two822

sequences constitute a ground instance Rg of R823

such that HR(a, b) = HRg and BRg ⊆ Kd, con-824

tradicting Gd ̸|= HR(a, b). Thus s(1,L)r,a,b,d < 1.825

By Equation (1), Condition 1 in Definition 1 and826

∀(x, r, y) ∈ Ed × R† × Ed : [σ(F(x, y, d))]r ∈827

{0, 1}, we further have s(1,L)r,a,b,d = 0. Therefore, we 828

have s(1,L)r,a,b,d = 0 if Gd ̸|= HR(a, b). 829

A.2 Proof of Theorem 1 830

Proof. Lemma 1 implies that, for all Rk ∈ Σ, 831

s
(k,L)
r,a,b,d ≥ 1 if Gd |= HRk

(a, b) and s(k,L)r,a,b,d = 0 832

otherwise. 833

(⇒) Suppose s(N,L)
r,a,b,d ≥ 1. Then by Equation (2) 834

and Condition 2 in Definition 1, there exists at least 835

one r-specific L-CR Rk ∈ Σ such that s(k,L)r,a,b,d ≥ 1. 836

By Lemma 1 we have Gd |= HRk
(a, b). Since 837

Gd |= HRk
(a, b) and Rk ∈ Σ, we have Gd |=Σ 838

(a, r, b). 839

(⇐) Suppose Gd |=Σ (a, r, b). Then we have 840

Gd |= HRk
(a, b) for some Rk ∈ Σ. By Lemma 1 841

we have s(k,L)r,a,b,d ≥ 1 and for all k′ ̸= k, s(k
′,L)

r,a,b,d ≥ 0. 842

By Equation (2) and Condition 2 in Definition 1, 843

we have s(N,L)
r,a,b,d ≥ 1. 844

B Rule Extraction 845

Based on the theoretical result of Theorem 1, we 846

can interpret chain-like rules (CRs) from the pa- 847

rameter assignment of the rule reasoning module 848

in JMRL. The process of interpretation is shown 849

in Algorithm 1. Intuitively, Algorithm 1 interprets 850

CRs from the parameter assignment of the rule rea- 851

soning module in JMRL using beam search, where 852

b is the beam size, fl is the set of (R′, ψ)-pairs for 853

the lth atom, and where R′ is the currently inter- 854

preted (partial) rule and ψ its estimated score. It 855

should be noted that the process for interpreting r- 856

specific L-CRs outputs up to b interpreted rules for 857

a target rule, where all interpreted rules for the kth 858

target rule share the same confidence score α(k)
r . 859

C Formalization of Loss Functions 860

Due to space limitation, we omit the detailed for- 861

malization of the BCE loss function and the AT 862

loss function in Section 4. In the following, we 863

supplement these formalization as follows. 864

Let D = {di}1≤i≤ND be the set of documents 865

for training, Ed the set of mentioned entities in doc- 866

ument d ∈ D, and Gd = {(eh, r, et)i}1≤i≤NGd
the 867

set of annotated facts in document d ∈ D, where 868

eh, et ∈ Ed, r ∈ R+, ND denotes the number of 869

documents in D, and NGd
the number of facts in 870

Gd. Then the BCE loss function J (x,y,d)
BCE for the 871
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Algorithm 1: Interpreting r-specific L-
CRs

1 Input: beam size b ≥ 1 and a parameter
assignment of the rule reasoning module in
JMRL for the head relation r, namely
θ
(N,L)
r = {w(r,k,l)

i }1≤k≤N,1≤l≤L,1≤i≤m ∪
{α(k)

r }1≤k≤N where m = 2n+ 3 if r = ⊥
or m = 2n+ 1 otherwise.

2 Output: a set of up to bN r-specific L-CRs
3 R← ∅;
4 for 1 ≤ k ≤ N do
5 f0 ← {(∆L, 1)} where ∆ denotes a

placeholder to be filled;
6 ∀1 ≤ l ≤ L : fl ← ∅;
7 for 1 ≤ l ≤ L do
8 for (R,ψ) ∈ fl−1 do
9 for 1 ≤ i ≤ m do

10 R′ ← R with the lth

placeholder replaced with
ri;

11 fl ← fl ∪ {(R′, w
(r,k,l)
i ψ)};

12 sort fl = {(R,ψ)j}1≤j≤bm in the
descending order of ψ and preserve
the top-b in fl;

13 Q← {R′ rewritten from R to the form
of a CR | (R,ψ) ∈ fL} ;

14 R← R ∪Q;

15 return R;

entity pair (x, y) in document d is defined as872

J (x,y,d)
BCE = −

∑
r∈R+

I((x, r, y) ∈ Gd) log σ(ϕ(x,y,d)r )

+ I((x, r, y) /∈ Gd) log(1− σ(ϕ(x,y,d)r ))
(4)873

where σ denotes the sigmoid function, and I(C) is874

an indicator function that returns 1 if C is true or875

0 otherwise. The adaptive thresholding (AT) loss876

J (x,y,d)
AT for the entity pair (x, y) in d is defined as877

J (x,y,d)
AT = −

∑
r∈Rpos

exp(ϕ
(x,y,d)
r )∑

r′∈Rd
pos∪{⊥} exp(ϕ

(x,y,d)
r′ )

−
exp(ϕ

(x,y,d)
⊥ )∑

r′∈Rd
neg∪{⊥} exp(ϕ

(x,y,d)
r′ )

(5)878

where Rd
pos = {r | (x, r, y) ∈ Gd, r ∈ R} and879

Rd
neg = {r | (x, r, y) /∈ Gd, r ∈ R}. Then the880

entire loss function is calculated by: 881

L∆ =
∑
d∈D

∑
x,y∈Ed,x ̸=y

J (x,y,d)
∆ (6) 882

where ∆ ∈ {BCE,AT}. 883

D Experiments on Re-DocRE and 884

DocGNRE 885

Dataset Split #Doc. #Rel. #Ent. #Facts.

Re-DocRED
train 3053

96
59,359 85,932

dev 500 9,684 17,284
test 500 9,779 17,448

DocGNRE
GPT 3,053

96

59,359 96,505
mGPT 3,053 59,359 103,561
test 500 9,779 19,526

Table 6: Statistics on datasets, where Doc. (resp. Rel or
Ent) abbreviates documents (resp. relations or entities).

Method Ign F1 F1

DREEAM 77.34 77.94
JMRL-DREEAM (this work) 77.98 78.61

Table 7: Comparison results on Re-DocRED.

Due to the space limitation, the experiments 886

on the Re-DocRED (Tan et al., 2022b) and 887

DocGNRE (Li et al., 2023) datasets are reported 888

in this section. Statistical details of Re-DocRED 889

and DocGNRE are reported in Table 6. Note that 890

we have done comparisons on Re-DocRED (Ta- 891

ble 3), following the setting used in MILR for a 892

fair comparison. This setting uses the training set 893

of DocRED for training and uses the test set of Re- 894

DocRED for test. To further verify the effective- 895

ness of JMRL, we conducted experiments on the 896

Re-DocRED dataset under the original setting, as 897

reported in Table 7. Results show that the proposed 898

JMRL framework pushes DREEAM by an absolute 899

gain of 0.67% (resp. 0.64%) in terms of F1-scores 900

(resp. Ign F1-scores). These results demonstrate 901

that JMRL is able to enhance the SOTA DocRE 902

method DREEAM on the Re-DocRED dataset un- 903

der the original setting. 904

Furthermore, we also conducted experiments on 905

the DocGNRE dataset. Note that DocGNRE is 906

a new dataset that constitutes three training sets 907

and a test set, where two of three training sets are 908

enhanced by distant supervision using the large 909

language model ChatGPT, and the test set is also 910

enhanced by distant supervision using ChatGPT 911
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Training data Test data PLM Method P R F1

Re-DocRED DocGNRE BERTbase DREEAM 81.45 56.98 67.05
Re-DocRED DocGNRE BERTbase JMRL-DREEAM 88.02 57.52 69.57
Re-DocRED DocGNRE RoBERTalarge DREEAM 85.00 64.29 73.21
Re-DocRED DocGNRE RoBERTalarge JMRL-DREEAM 89.31 63.12 73.96

Re-DocRED (GPT) DocGNRE BERTbase DREEAM 83.66 57.62 68.24
Re-DocRED (GPT) DocGNRE BERTbase JMRL-DREEAM 84.55 59.16 69.61
Re-DocRED (GPT) DocGNRE RoBERTalarge DREEAM 84.92 63.86 72.90
Re-DocRED (GPT) DocGNRE RoBERTalarge JMRL-DREEAM 83.83 65.92 73.81

Re-DocRED (mGPT) DocGNRE BERTbase DREEAM 81.71 58.23 68.00
Re-DocRED (mGPT) DocGNRE BERTbase JMRL-DREEA 82.55 59.39 69.08
Re-DocRED (mGPT) DocGNRE RoBERTalarge DREEAM 80.93 66.98 73.29
Re-DocRED (mGPT) DocGNRE RoBERTalarge JMRL-DREEAM 84.24 64.84 73.28

Table 8: Comparison results on the DocGNRE dataset.

Hyper-parameter
DWIE DocRED Re-DocRED+DocGNRE

LSTM BiLSTM GAIN ALTOP GAIN ALTOP DREEAM DREEAM† DREEAM

Number of rules N 20 20 20 20 20 20 20 20 20
Maximum length L 2 2 2 2 2 2 2 2 2
Optimizer for training Adam Adam AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Maximum training epoch 300 300 300 300 20 20 10 30 30
Learning rate (DocRE model) 1e-3 1e-3 2e-5 2e-5 2e-5 2e-5 1e-6 5e-5 2e-5
Learning rate (rule module) 1e-1 1e-1 3e-1 3e-1 3e-1 3e-1 1e-2 1e-1 1e-2
Batch size for training 4 4 4 4 4 4 4 4 4
Dropout rate 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Warmup ratio 0.0 0.0 0.0 0.06 0.0 0.06 0.1 0.06 0.06
Weight decay 0.0 0.0 1e-4 0.0 1e-4 0.0 0.0 0.0 0.0
λ for trading-off losses 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 9: Hyper-parameter settings for different datasets, where DREEAM† denotes BERT is used as PLM.

and further revised by human annotators. The com-912

parison results are reported in Table 8. We can913

observe that JMRL-DREEAM is able to consis-914

tently outperform DREEAM for all settings in F1915

scores on the DocGNRE set, with the sole excep-916

tion being trained with Re-DocRED (mGPT) and917

meanwhile using RoBERTalarge to calculate con-918

textualized representations. These results further919

confirm the effectiveness of JMRL. Besides, we920

also observe from the comparison results that the921

use of distant data cannot further improve the per-922

formance of JMRL-DREEAM. The reason may lie923

in two-fold. On one hand, the external knowledge924

within the distant supervision data from ChatGPT925

may be covered by JMRL. On the other hand, the926

distant data from ChatGPT may introduce noise to927

training data, resulting in performance degradation.928

E Hyper-parameter Details929

To help reproduce our results, we provide the hyper-930

parameter settings used in our experiments. Ta-931

ble 9 reports the detailed hyper-parameter settings932

in regard to different baseline models and datasets.933

Method F1-score

ChatGPT (2-shot ICL) 12.4
Davinci (2-shot ICL) 22.9
GPT-4 (2-shot ICL) 27.9
FLAN-UL2 (2-shot ICL) 1.9
FLAN-UL2 (fine-tuned) 54.5

JMRL-DREEAM (this work) 67.9

Table 10: Comparison results on DocRED for LLMs.

These hyper-parameters are set to maximize the 934

Ign F1-scores on the development set. 935

F Discussion on LLMs 936

In this section, we provide detailed discussions on 937

comparing JMRL with the current SOTA LLMs, 938

including ChatGPT, GPT-4, Davinci and FLAN- 939

UL2. Table 10 reports the comparison results on 940

the DocRED dataset, where the results of LLMs are 941

sourced from (Peng et al., 2023). Results show that 942

there is a huge performance gap between the SOTA 943

LLMs and JMRL-DREEAM on DocRED. We can 944

also observe that the performance of FLAN-UL2 945

significantly improves after being fine-tuned on the 946
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Dataset Logical rules Weight

DWIE

head_of_gov(x, y)← head_of_state(x, z) ∧ in−(z, y) 0.9999
agency_of(x, y)← agency_of(x, z) ∧ based_in(z, y) 0.9999
appears_in(x, y)← player_of(x, z) ∧ appears_in(z, y) 0.9999

in(x, y)← in(x, z) ∧ based_in−(z, y) 0.9999
⊥(x, y)← in(x, z) ∧ ⊥(z, y) 0.9999

mayor_of(x, y)← citizen_of(x, y) -0.9774

DocRED

child(x, y)← father−(x, z) ∧ sibling(z, y) 0.9998
production_company(x, y)← series(x, z) ∧ production_company(z, y) 0.9976

publisher(x, y)← series(x, z) ∧ developer(z, y) 0.9589
mother(x, y)← spouse(x, z) ∧ sibling−(z, y) 0.8394

⊥(x, y)← ⊥−(x, y) 0.5716
residence(x, y)← child(x, z) ∧ residence(z, y) -0.9997

Table 11: Case study of learnt rules, where r− denotes the reverse relation of r.

training data. It implies that LLMs with few-shot947

ICL can hardly leverage the full domain knowledge948

within the training data. Besides, it can also be ob-949

served that JMRL-DREEAM still significantly out-950

performs FLAN-UL2 even after FLAN-UL2 was951

fine-tuned on the training data. The reasons may be952

two-fold. On one hand, FLAN-UL2 is too general953

to fit the DocRE task, which is a classification task,954

when compared with JMRL-enhanced models that955

are discriminative models. There is a significant956

gap between the generative training objective and957

the discriminative training objective for classifica-958

tion tasks. On the other hand, LLMs inherently959

suffer from the hallucination issue (Ji et al., 2023),960

e.g., LLMs may generate unexpected relations as961

the final predictions. This issue cannot be fully962

addressed by fine-tuning on the training data. In963

summary, these comparison results demonstrate964

that JMRL remains an effective solution for the965

DocRE task with SOTA performances on bench-966

mark datasets. Furthermore, compared with LLMs,967

the JMRL-enhanced models have evident advan-968

tages in terms of memory cost and inference speed.969

Nevertheless, combining JMRL with large lan-970

guage models is a promising way to further im-971

prove performances. For example, the work (Ma972

et al., 2023b) has shown that few-shot ICL for973

LLMs cannot generalize well in the IE tasks, but974

they found that LLMs are able to address some hard975

examples. This provides us with an innovate way976

to combine JMRL with LLMs, by employing the977

JMRL enhanced model to deal with most simple978

cases, and employing LLMs to handle some hard979

examples. We argue that such combination is able980

to help JMRL to generalize in more knowledge-981

intensive scenarios. Besides, the work (Luo et al.,982

2023) has shown that LLMs like ChatGPT can gen-983

erate logical rules for reasoning, by leveraging the984

Method Total size Extra size Ratio
ATLOP 115,087,170 0 0.0%
JMRL-ALTOP 117,369,453 2,282,283 1.9%
Using NeuralLP 175,386,173 60,299,003 34%
Using DRUM 175,485,113 60,397,943 34%

Table 12: Comparison on parameter sizes.
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Figure 6: Comparison results on the inference time.

relational paths as input. We argue that the induced 985

logical rules from ChatGPT can be used to initial- 986

ize the parameter assignment of the rule reasoning 987

module in JMRL. This process is possible to help 988

JMRL learn more logical rules for reasoning, re- 989

sulting in better convergence and performance. 990

G Analysis on Model Efficiency 991

JMRL introduces external parameters to learn logi- 992

cal rules. To clarify whether JMRL is efficient in 993

the DocRE task, we analyzed the model efficiency. 994

First, we compared the model parameters of ATOP, 995

JMRL-ATOP and other variant models, as reported 996

in Table 12. It can be seen that JMRL-ATLOP intro- 997

duces only 1.9% extra model parameters, while the 998

other variants of JMRL-ALTOP that use NeurlLP 999

or DRUM as the rule reasoning module require to 1000

14



introduce more than 30% extra model parameters.1001

These results indicate that JMRL is parameter ef-1002

ficient. Second, we compared the inference time1003

of ATOP, JMRL-ATOP and other variant models.1004

Figure 6 illustrates the comparison results between1005

different methods on the average inference time1006

in seconds. It can be seen that the employment of1007

JMRL increases the inference time by about 0.031008

seconds, whereas both the two variants of JMRL1009

increase the inference time by about 0.3 seconds.1010

These results imply that JMRL is able to signif-1011

icantly improve performance of the DocRE task1012

with a small overhead on the inference time.1013

In addition, we also analyzed the time complex-1014

ities of the rule reasoning module in JMRL and1015

other rule-based methods. Specifically, The theoret-1016

ical inference time complexity of the rule reasoning1017

module in JMRL is O(nNL(2n+ 1)|E|2), where1018

n = |R∗|. By parallel implementation, the amor-1019

tized time complexity reduces toO(nNL(2n+1)).1020

The time complexity of the baseline method Logi-1021

cRE is O(nNL(2n+ 1)|E|2 + nNLd2(2n+ 1)),1022

where d is the hidden size. The additional part1023

O(nNLd2(2n+ 1)) comes from the Transformer1024

network used in LogicRE for rule generation. Note1025

that LogicRE is a path-based method for rule rea-1026

soning, thus it has no parallel implementation for1027

rule reasoning. The amortized time complexity re-1028

duces toO(nNL(2n+1)|E|2+nNLd2(2n+1))1029

due to the parallelization of Transformer. Be-1030

sides, the amortized time complexity of previous1031

rule learning methods NeuralLP and DRUM is1032

O(nNL(2n+1)+nNLd2(2n+1)) due to the use1033

of LSTM for calculating w(r,k,l)
i . These analysis1034

shows that the rule reasoning module in JMRL is1035

more efficient than previous rule-based methods.1036

H Case Study of Learnt Rules1037

We showcase in Table 11 some logical rules ex-1038

tracted from the parameter assignment of the rule1039

reasoning module in JMRL-ATLOP for both the1040

DWIE and DocRED datasets. These rules are ex-1041

tracted by applying Algorithm 1 with the beam size1042

set to 100 and then simplified by omitting identity1043

body atoms. The weight of each rule is sourced1044

from α
(r)
r in Equation (2). It can be observed that1045

expressive logical rules with different weights and1046

different numbers of body atoms can be extracted1047

for both the DWIE and DocRED datasets. More-1048

over, some rules for inferring the head relation ⊥1049

can also be discovered by JMRL, see the fifth rule1050

for DWIE and the fifth rule for DocRED. It should 1051

be noted that LogicRE and MILR do not learn rules 1052

for the head relation ⊥. The introduction of logical 1053

rules for the head predicate ⊥ could make the pre- 1054

diction of no-relation between two entities more 1055

accurate since extra information is exploited. This 1056

is also a potential reason for explaining why JMRL 1057

outperforms both LogicRE and MILR. 1058

I Analysis on the Learnt Distribution 1059

We analyzed the learnt distribution ofw(r,k,l)
i on the 1060

DWIE dataset. Specifically, we utilized the mean 1061

symmetric Kullback-Leibler divergence (KLD) 1062

score between w(r,k,l)
i and the uniform distribution 1063

to represent the distribution of w(r,k,l)
i . Note that 1064

w
(r,k,l)
i is initialized randomly. The mean symmet- 1065

ric Kullback-Leibler divergence (KLD) score be- 1066

tweenw(r,k,l)
i and the uniform distribution is 2.1e-5 1067

at the initial stage of training phase, and the KLD 1068

score increases to 4.3 after training. These results 1069

indicate that w(r,k,l)
i becomes sharp after training, 1070

implying that the model has learned the discrete 1071

distribution of logical rules. 1072

J Discussion on Other Applications 1073

JMRL is an end-to-end framework for jointly 1074

learning specific neural models and logical rules. 1075

Therefore, we argue that JMRL can be used to 1076

enhance the application scenarios where logical 1077

rules are useful. For instance, JMRL can be ap- 1078

plied to other information extraction tasks such 1079

as document-level event argument extraction (Liu 1080

et al., 2023) and document-level event causality 1081

identification (Chen et al., 2023). Apart from in- 1082

formation extraction, we argue that JMRL can also 1083

benefit the field of knowledge-aware recommen- 1084

dations (Spillo et al., 2022). The exploration of 1085

extending JMRL to these applications is a part of 1086

our future work. 1087
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