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Abstract

Recent advances in reinforcement learning
(RL) fine-tuning methods for large language
models (LLMs) show promise in addressing
multi-objective tasks but still have revealed
significant challenges, including complex ob-
jective balancing, low training efficiency, poor
scalability, and limited explainability. Lever-
aging distributed learning principles, we in-
troduce a distributed multi-objective RL fine-
tuning (DMORL) framework that simultane-
ously trains multiple models with individual
objectives while optimizing their aggregation.
Our method aggregates the last hidden states of
local models to influence the final generation,
supported by a hierarchical grid search algo-
rithm that selects optimal weight combinations
stepwise. This approach optimizes aggrega-
tion weights and significantly reduces the com-
plexity of its selection process. We evaluate
DMORL on a counsellor reflection generation
task, using text-classification LLMs to score
responses and reward RL fine-tuning. Through
comprehensive experiments on the PAIR and
Psych8k datasets, we demonstrate the advan-
tages of DMORL against existing baselines:
significantly lower and more stable training
consumption (17,529 4 1, 650 data points and
6,573 £ 147.43 seconds), improved scalabil-
ity and explainability, and comparable perfor-
mance across multiple objectives.

1 Introduction

The multi-objective of large language models
(LLMs) is a crucial research direction for natu-
ral language processing (NLP) tasks that need to
fulfil diverse requirements (Vaswani, 2017; Qin
et al., 2024; Kumar, 2024). This paper focuses on
the counsellor reflection generation task, a crucial
application of conversational Al in mental health,
coaching, and counselling domains (O’neil et al.,
2023). This task requires generating reflective
responses that optimize multiple key objectives,

Mean Reward

® T5-base ()

® Uniform Weighted (--)
DynaOpt (--)

0 10,000 20,000 30,000 40,000 50,000

Training Data Points

Model Soup (++)
@ DMORL(ours) (++)

Figure 1: Comparison of training efficiency (x-axis) and
mean reward (y-axis). Point size and "+/-" indicate scala-
bility and explainability capabilities. DMORL achieves
comparable mean rewards with lower data consumption
while maintaining better scalability and explainability.

such as reflection, empathy, and fluency in high-
quality counselling interactions. We employ rein-
forcement learning (RL) to fine-tune pre-trained
LLMs for these specific objectives (Lin, 2024;
Parthasarathy et al., 2024). Conventional RL fine-
tuning approaches combine multiple objectives into
one reward function, enabling optimization of vari-
ous and often conflicting objectives (Okano et al.,
2023; Pérez-Rosas et al., 2024; Dann et al., 2023).
However, these approaches face significant chal-
lenges: ensuring scalability as objectives increase,
maintaining training efficiency, adapting models to
dynamic conversations, and determining appropri-
ate weights for each objective (Hayes et al., 2022;
Dulac-Arnold et al., 2021). These challenges high-
light the need for more flexible and efficient RL
fine-tuning methods.

Distributed learning offers a potential solution
for this growing need by training multiple lo-
cal models and aggregating them into a global
model (Vanhaesebrouck et al., 2017). We propose
a novel distributed multi-objective RL fine-tuning
(DMORL) framework for LL.Ms that operates in
two phases: (1) We distribute objectives into mul-
tiple models to train individual objectives. The
results demonstrate that the models with one ob-



jective in reward functions converge significantly
faster than those with multiple objectives. (2) We
introduce a states-level aggregation method and
employ a hierarchical grid search algorithm dur-
ing the aggregation to identify the optimal weights
efficiently. Our experiments demonstrate that the
aggregated output achieves performance compara-
ble to models trained using conventional methods
while achieving significantly higher training effi-
ciency when considering the entire duration of the
training and aggregation phases. This framework
is also highly scalable, allowing additional objec-
tives to be incorporated as modular components.
Additionally, the framework enhances explainabil-
ity by providing insights into the relative impor-
tance of different objectives. The code for our
framework and experiments is publicly available
(for research purposes only) and can be found at
https://github.com/engineerkong/DMORL.

Succinctly, our main contributions are as follows:
(1) We introduce a distributed multi-objective RL
fine-tuning (DMORL) framework for counsellor
reflection generation that separates training and
aggregation phases. (2) We develop an efficient
states-level aggregation method and a hierarchi-
cal grid search algorithm for weight optimization.
(3) We demonstrate our framework’s effectiveness
through comprehensive evaluation against state-of-
the-art baselines, such as significantly lower and
more stable training consumption (17, 529+ 1, 650
data points and 6, 573+147.43 seconds), improved
scalability and explainability, and comparable per-
formance across multiple objectives.

2 Related Work

Prior work on RL fine-tuning of LLMs has explored
various approaches to balance multiple objectives.
These methods can be broadly categorized into sev-
eral key directions, including conventional weight-
ing methods and novel distributed approaches.

2.1 Fixed Weighting

This conventional method in multi-objective opti-
mization involves explicitly defining and combin-
ing multiple objectives. In this approach, objectives
are combined into one reward function or loss func-
tion using fixed weights, as shown in Eq 1, where
A; are fixed weights. (Ziegler et al., 2019) explores
RL fine-tuning for LLMs using fixed weights to
combine task-specific rewards with auxiliary ob-
jectives like fluency and coherence. However, se-

lecting appropriate weights to balance objectives
effectively is challenging. (Mohan et al., 2023) pro-
posed AutoRL to automate the selection of optimal
weights. Nevertheless, AutoRL suffers from unex-
plainability and is computationally intensive as the
number of objectives or hyperparameters grows.

Rtotal = )\1 . Rl + ...+ )\n . Rn (1)

Fixed weighting methods are simple, inter-
pretable, and easy to implement with existing op-
timization frameworks. However, they have limi-
tations: (1) manual tuning of weights is required,
which may not generalize across tasks or datasets;
(2) static weights cannot adapt to dynamic condi-
tions or contexts; and (3) extensive trial-and-error
is needed to find optimal weights. To address
these issues, researchers have explored dynamic
approaches to weight adjustment in the reward
function and the loss function. Alternatively, as
proposed in this paper, the weight selection pro-
cess can be shifted to the model aggregation phase,
reducing computational overhead and complexity.

2.2 Dynamic Weighting

Dynamic weighting methods adjust objective
weights during training based on the model’s per-
formance, context, or external feedback, enabling
a more flexible and adaptive balance between
competing goals. Reward-driven approaches like
(Pérez-Rosas et al., 2024)’s multi-armed bandit and
(Pu et al., 2024)’s tabular MDP framework enable
continuous adaptation based on received rewards.
For gradient-based optimization, (Liu et al., 2020)
employs GradNorm for weight adaptation, while
(Ryu et al., 2024) uses gradient projection to re-
solve objective conflicts in summarization. Alter-
native formulations include (Zhou et al., 2024)’s
RL-free approach using direct preference optimiza-
tion, and (Jafari et al., 2024)’s Pareto surface opti-
mization for prompt-based objectives.

Dynamic weighting is more flexible and adaptive
and thus can handle changing conditions or tasks
without manual intervention. Its weighting mecha-
nism is eager to choose the objectives which have
a higher probability of increasing the reward. How-
ever, this approach requires additional mechanisms
to adjust weights, which increases computational
complexity, and may introduce training instability.
These limitations are evident in Figure 2, where
the dynamic weighting method DynaOpt exhibits
higher training costs and greater instability com-
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pared to the fixed Uniform weighted.

2.3 Distributed Learning

Distributed learning enables training machine learn-
ing models across multiple devices or nodes (Li
et al., 2020). This approach has proven effective
in training models on diverse datasets, as demon-
strated in federated learning (Zhang et al., 2021).
While several studies have explored model aggre-
gation at the parameters-level for multi-objective
learning. (Wortsman et al., 2022) demonstrates
Model Soup that combines fine-tuning, weight av-
eraging, and validation in distributed learning to
average weights from multiple fine-tuned models.
Their learned soup approach leverages the concept
of stacking to aggregate multiple models into a
single model through gradient-based optimization.
(Matena and Raffel, 2022) proposes merging fine-
tuned models by weighting parameters based on
Fisher information, which measures each parame-
ter’s importance for the task, effectively combining
models trained for different objectives. (Zhu and
Jin, 2019) demonstrates using multi-objective evo-
lutionary algorithms to simultaneously optimize
multiple competing objectives, balancing tradeoffs
between objectives through Pareto optimization.

However, as demonstrated in Appendix 11.1,
parameters-level aggregation underperforms in
multi-objective optimization for NLP, particularly
when the objectives differ significantly. It presents
that the application of distributed learning in this
context remains underexplored. In light of this, we
analyze the challenges in the next section by com-
paring the training processes of single-objective
models with multi-objective models using conven-
tional weighting methods.

3 Challenges

We tested 5 fine-tuning setups for counsellor re-
flection generation to demonstrate the challenges,
focusing on reflection, empathy, and fluency. Three
setups optimized single objectives independently,
while two multi-objective approaches combined
all three objectives: (1) Uniform Weighted, assign-
ing equal weights (1/3) to each objective, and (2)
DynaOpt, dynamically adjusting weights using a
multi-armed bandit algorithm. Experiments used
5 random seeds with 3 generation runs each, eval-
uating mean rewards, data, and time consumption.
Progress was tracked via Weights & Biases (W&B),
plotting mean reward against data consumption.
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Figure 2: RL fine-tuning processes logs for 5 setups,
highlighting single-objective models’ advantages in con-
vergence speed, process stability, and performance.

As shown in Figure 2 and Table 3, our results
highlight key differences between single-objective
and conventional multi-objective RL fine-tuning in
three aspects. First, convergence speed: single-
objective models converged faster, with fluency
models achieving the quickest convergence (4, 809
data points, 1,629.19 seconds). Multi-objective
models were slower, with Uniform Weighted re-
quiring 23, 398 data points and 5, 967.84 seconds,
and DynaOpt needing 31,328 data points and
8,029.15 seconds, due to dynamic weighting. Sec-
ond, process stability: single-objective fine-tuning
showed consistent convergence with minimal vari-
ation (4335 data points, +104.40 seconds for re-
flections). Multi-objective models were less stable,
with Uniform Weighted varying by +7, 390 data
points and +1, 875.50 seconds, and DynaOpt by
416, 736 data points and +4, 365.64 seconds, re-
flecting the complexity of balancing multiple objec-
tives during the fine-tuning process. Third, perfor-
mance metrics: single-objective models achieved
higher rewards (approaching 1.0 for reflection and
empathy), while multi-objective models averaged
below 0.85, indicating inherent performance trade-
offs in optimizing multiple objectives.

This observation suggests a promising research
direction: combining single-objective fine-tuned
models through distributed learning to achieve
multi-objective optimization. Beyond addressing
challenges of convergence, stability, and perfor-
mance, this approach could offer scalability by
adding new objectives without retraining existing
models and improved explainability by identify-
ing which objective-specific models drive perfor-
mance gains. Similar to multi-reward optimization,
the goal is to find an effective compromise that
leverages these potential benefits while delivering
comparable performance.
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Figure 3: The DMORL framework illustrates the process of splitting objectives, training models with single
objectives, and aggregating the models to achieve multiple objectives.

4 Methodology

Our DMORL framework splits objectives, trains
single-objective models, and aggregates them us-
ing weight combinations, as shown in Figure 3.
During training, multiple models are fine-tuned
for individual objectives. In aggregation, we ex-
plore logits, parameters, and states-level aggrega-
tion, with logits and parameters-level aggregation
produced suboptimal results as in Appendix 11,
and states-level aggregation demonstrated promis-
ing performance. This distributed approach trans-
forms multi-objective fine-tuning into optimizing
aggregation weights, a well-studied mathematical
problem. We address this optimization using an
efficient hierarchical grid search algorithm that in-
tegrates grid and binary search principles (Bishop
and Nasrabadi, 2006; Gautschi, 2011).

4.1 States-Level Aggregation

The decoder of LLLMs generates hidden states cap-
turing high-level features, including contextual un-
derstanding, semantic features, cross-attention pat-
terns, and task-specific information (Raffel et al.,
2020). Its last hidden states are processed by the
language model head to compute vocabulary log-
its across 32, 128 tokens, which are then used to
generate tokens via the argmax operation, as illus-
trated in Eq 2. We aggregate the last hidden states
to integrate high-level features cohesively. This
approach ensures consistent text generation while
incorporating features from all objective-specific
models, with weights determining each model’s
contribution to the final output.

n
Sagg = 5 szz
=1

10gitS = flm_head(sagg)
token = argmazx(logits)

2

where S; € RV***" is the last hidden state from
model 7, w; € [0, 1] is its weight, and b, s, h repre-
sent batch size, sequence length, and hidden dimen-
sion, respectively. fim nead projects the aggregated
states to logits over the vocabulary.

4.2 Hierarchical Grid Search

As we transform the problem from multi-objective
fine-tuning to aggregation weights optimization,
the core challenge is to find the weights effectively
and efficiently. The standard grid search method
divides the search space into an N¢ grid for d objec-
tives, with NV uniform divisions along each dimen-
sion, resulting in a computational complexity of
O(NY). Gradient-based methods for determining
weights are often inefficient, prone to converging to
local minima, and require unstable trial-and-error
processes to identify optimal solutions.

We combined grid search with binary search con-
cepts and developed a hierarchical grid search algo-
rithm, which improves the computational efficiency.
With three objectives and a weight precision level
of 0.03125, our approach reduced the number of
evaluations to 135, compared to 32, 768 in standard
grid search, yielding a computational complexity
of O(3%-logy N). In this hierarchical approach, as
shown in Algorithm 1, we first divide each search
axis into 3 parts, creating 3¢ initial grid points. We
then evaluate the generation performance at these
points and identify the most promising region by



finding the 2¢ cube with the highest total perfor-
mance score. This region becomes our next search
space, and we iterate this process of grid generation
and space refinement. The algorithm progressively
focuses on smaller, more promising regions dur-
ing iteration, which is effective for our aggregation
case since the performance varies stably with re-
spect to the weight combinations.

Algorithm 1 Hierarchical Grid Search

Require: objective function f, number of com-
ponents N, iterations I, initial bounds By =
[(0, DI
Ensure: Best point p*, Best score s*
1: p* < null
2: §% ¢ —o0

3 Bcurrent — BO

4: foriter = 1 to I do

5: grid_points <— GenerateGrid(Beyrrent)
6: results « {}

7: for all point p € grid_points do

8: results[p] < f(p)

9: end for

10: Deurrent <— arg max (results)

11: if results[peyrrent) > s* then

12: s* < results[peurrent]

13: P < Deurrent

14: end if

15: region <— FindBestRegion(results)
16: Beurrent < ComputeBounds(region)
17: end for

18: return p*, s*

5 Experiments

5.1 Model

We employ T5-base! (220M parameters) as it
balances efficiency and performance for our dis-
tributed training approach. While larger models
like GPT-3 or LLaMA might offer better raw per-
formance, they would significantly increase com-
putational costs in our multi-model setup. T5’s
encoder-decoder architecture also provides clear
access to hidden states, critical for our states-level
aggregation method. (Pérez-Rosas et al., 2024)
demonstrated T5’s effectiveness for counselling
tasks, making it suitable for our experiments while
enabling fair comparisons with existing baselines.

During the training phase, we optimizes reflec-
tion, empathy, and fluency for counsellor reflection

"https://huggingface.co/google-t5/t5-base

generation. As the RL algorithm, we utilize Self-
Critical Sequence Training (SCST), which gener-
ates candidate outputs and computes their mean
reward as a baseline for encouraging candidates to
outperform the mean reward (Laban et al., 2021).
To ensure robustness, we train models using 5 ran-
dom seeds per objective and conduct 3 runs per
generation. Training is performed with a batch
size of 16, validated every 8 steps using a valida-
tion batch size of 8. We employ LoRA (Hu et al.,
2021) for efficient parameter updates, representing
updates via low-rank matrices and a scaling factor.

During the aggregation phase, we pair three
trained models with individual objectives, forming
five model pairs. The LoRA parameters are loaded
and applied to the T5-base model to construct the
trained model. The validation dataset is then used
to evaluate the performance of aggregated models
with various weight combinations, with a batch size
of 16. The best-performing weight combination
is saved, allowing us to construct the aggregated
model by combining the optimal weights and the
LoRA parameters of the objectives.

For evaluation, we compare DMORL models
against four baselines: T5-base, Uniform Weighted,
DynaOpt and Model Soup models. The evaluation
encompasses reward metrics for performance as
well as evaluation metrics addressing additional
aspects such as training efficiency. Additionally,
two mental health experts assess the reward met-
rics for the generated responses. All experiments
were conducted on a Tesla V100 GPU with 32GB
memory, 8 CPU cores, and 40GB system memory.

5.2 Datasets

The PAIR? dataset is our primary dataset, split into
training, validation, and testing sets with a ratio
of [80%, 10%, 10%] (Min et al., 2022). It contains
2, 544 single-turn client-counsellor exchanges, cov-
ering topics ranging from mental health to lifestyle
concerns like diet, exercise, and personal devel-
opment. Each entry includes a client prompt and
multiple reference responses.

To assess generalization, we also use the
Psych8k? dataset, sampling 10% of its 8, 187 con-
versation pairs. This licensed dataset focuses on
mental health interactions, including anxiety, de-
pression, relationship issues, and stress manage-
ment, and is widely used for training and evalu-
ating LL.Ms in mental health counselling. Each

“https://lit.eecs.umich.edu/downloads.htm]
3https://huggingface.co/datasets/EmoCare Al/Psych8k
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Figure 4: The visualization illustrates the hierarchical grid search process, showing the transition from a broad
search space to a refined one, where optimal weight combinations are identified. The red line on the color map
indicates the maximum mean reward achieved during the search.

entry consists of an instruction ("If you are a coun-
sellor, please answer the questions based on the
description of the patient."), a client input, and a
counsellor’s reference response.

53

We evaluate multiple metrics beyond performance,
focusing on six key aspects: (1) Diversity-2 mea-
sures linguistic diversity; (2) Edit rate quantifies
the avoidance of verbatim repetition; (3) Data con-
sumption tracks the cumulative number of training
samples processed; (4) Time consumption records
the wall-clock time for each training iteration; (5)
Scalability assesses the model’s ability to incor-
porate additional objectives; (6) Explainability
examines the transparency of how each objective
contributes to the final model.

For reward metrics, we employ specific LLMs
to score three objectives on a scale from 0.0 to 1.0:
(1) Reflection is assessed using the "roberta-base*",
which evaluates the relevance and contextual appro-
priateness of responses. (2) Empathy is measured
using the "bert-empathy>", which gauges emotional
resonance and understanding. (3) Fluency is eval-
uated using "gpt2%" by computing the inverse of
perplexity, ensuring linguistic smoothness.

We conducted human evaluation of 640 re-
sponses sampled from five models (T5-base,
Uniform Weighted, DynaOpt, Model Soup and

Metrics

“https://huggingface.co/Facebook Al/roberta-base
Shttps://huggingface.co/MoaazZaki/bert-empathy
®https://huggingface.co/openai-community/gpt2

DMORL) across two datasets (PAIR and Psych8k).
Two mental health experts independently rated each
response on three reward metrics using a 3-point
scale, normalized to 0.0-1.0: (1) Reflection: 0 (no
reflection), 1 (simple mirroring), 2 (complex inter-
pretation); (2) Empathy: O (no emotional aware-
ness), 1 (basic understanding), 2 (deep emotional
resonance); (3) Fluency: O (poor coherence), 1
(clear but awkward), 2 (natural and clear).

6 Results Analysis

Hierarchical Grid Visualization Demonstrates
Explainable Results. Figure 4 illustrates the hi-
erarchical grid search process: in iteration 1 (left
subplot), we evaluated 3 x 3 x 3 weight combi-
nations for reflection, empathy, and fluency, with
color mapping indicating mean reward values. The
top-performing 2 X 2 x 2 combinations were then
used to refine the search space for subsequent itera-
tions. The right subplot of Figure 4 shows iteration
5, where the search converges to a more precise
and refined space: (0.75,0.8125), (0.4375,0.5)
and (0.0, 0.0625) for the aggregation weights of re-
flection, empathy, and fluency models respectively.
This progressive narrowing allows for the precise
identification of optimal weight combinations.
The visualization also reveals important insights
about each objective’s contribution to the overall
performance. The aggregation benefits from higher
weights of the reflection model (orange points).
Empathy delivers optimal overall performance with
moderate weights, with both too-high and too-low



Table 1: The automated evaluation metrics on the PAIR dataset highlight additional measures beyond performance.
They demonstrate that our DMORL framework offers advantages in generation diversity, low training consumption,
enhanced scalability, and improved explainability, outperforming other methods.

T5-base

Uniform Weighted

DynaOpt Model Soup DMORL (ours)

0.8851+0.0056
0.8087+0.0127

0.3561+0.0837
0.8870+0.0247
23398+7390

Diversity-2 ()

Edit Rate ()

Data Consumption ()
Time Consumption ()
Scalability -
Explainability -

5967.84+1875.50

0.3621+0.0951
0.8929+0.0246

0.4327+0.0932
0.8672+0.0326

0.6516+0.0524
0.8734+0.0240

31328+16736 18924 +4672 17529+1650
8029.15+4365.64 H823+1262.24 6573+147.43
- + +
- + +

values reducing the mean reward. The fluency
model demonstrates a negative effect on other ob-
jectives when assigned high weights (cyan points).
Lower weights of the fluency model facilitate better
integration with the other objectives (orange points
in its low-weight regions). Although the results
vary across aggregation experiments with differ-
ent sampled models, the visualization underscores
the interpretability and explainability of DMORL
during the aggregation phase.

DMORL Shows Promise Across Multiple Eval-
uation Metrics. As shown in Table 1, DMORL
achieves the highest diversity-2 score among fine-
tuned models, averaging above 0.65, compared to
0.35-0.43 for other fine-tuned models and 0.88 for
the pre-trained model T5-base. This highlights
DMORL’s ability to generate diverse responses,
which is achieved by aggregating hidden states
and delegating the token generation to the model.
While edit rates vary slightly among fine-tuned
models, DMORL has the lowest rate but remains
0.07 higher than T5-base, indicating all models
avoid verbatim repetition of client words.
DMORL demonstrates superior efficiency
in resource utilization, consuming approxi-
mately 17,529 data points and 6,573 seconds
of training time. Its distributed architec-
ture, where total consumption is determined
by max(ctrain(06j1)7 Ctrain(Obj2)7 Ctrain(Obj?;)) +
Cagg, €nables over 0.5x faster training compared to
conventional multi-objective methods. Compared
to another distributed learning method, Model
Soup, DMORL maintains the lowest and most
stable data consumption, as gradient-based algo-
rithms in Model Soup often struggle with local
optima, leading to increased consumption. How-
ever, DMORL’s token-by-token generation using
model() slightly increases time consumption, mak-
ing it higher than both the Model Soup and Uni-
form Weighted methods. DMORL also exhibits
greater stability, with variations of only 1,650 data
points and 147.43 seconds, significantly lower than

DynaOpt’s variations of 16,736 data points and
4,365.64 seconds. This stability is attributed to
DMORL’s consistent single-objective training and
uniform aggregation resource consumption facili-
tated by hierarchical grid search. These advantages
position DMORL as an efficient and stable fine-
tuning approach for multi-objective tasks.
DMORL achieves both scalability and explain-
ability as another distributed learning method,
Model Soup. Its scalability is evident when adding
new objectives: instead of retraining the entire
model, DMORL trains the new single-objective
model and aggregates it with existing models. For
explainability, DMORL provides clear insights
through objective weight combinations and states-
level aggregation patterns. As shown in Figure 4,
the final hidden states reflect varying contributions:
reflection at approximately 0.8, empathy at around
0.5, and fluency at about 0.05. Adjusting one ob-
jective’s weight enhances its performance but may
impact others, revealing trade-offs and quantifying
each objective’s contribution. In contrast, conven-
tional multi-objective models lack scalability and
interpretability, as they require extensive training
to incorporate new objectives and rely on trial-and-
error to determine the importance of each objective.

DMORL Delivers Comparable Performance in
Reward Metrics. We evaluated our DMORL
method on the PAIR and Psych8k datasets for re-
flection, empathy, and fluency. Although DMORL
does not achieve the highest scores, it maintains
performance comparable to the conventional multi-
objective model and significantly outperforms both
the T5-base model and the Model Soup model.
On the PAIR dataset, DMORL achieves a re-
flection score of 0.9106, only 0.05 below the best-
performing Uniform Weighted model. Its empathy
score is approximately 0.07 lower than DynaOpt,
and its fluency score of 0.6248 is about 0.12 below
the Uniform Weighted model. This indicates strong
reflection capabilities but suggests room for im-
provement in fluency aggregation. On the Psych8k



Table 2: The reward metrics are evaluated automatically and through human assessment on the PAIR and Psych8k
datasets. The human-evaluated scores are overall lower compared to the automated scores. In both evaluation
approaches, the results demonstrate that our DMORL method achieves performance comparable to other methods.

Reflection ()

Empathy ()

Fluency (1)

T5-base 0.0418+0.0108 0.4648+0.0160  0.4849+0.0185
PAIR Uniform Weighted 0.9616-+0.0212  0.8078+0.0251 0.7498+0.0176

DynaOpt 0.934940.0234  0.8141+0.0329 0.7271+0.0300
Model Soup 0.9204+0.0315  0.7418+0.0264  0.4324+0.0186
DMORL (ours) 0.9106+0.0406 0.7466+0.0178 0.6248+0.0113
T5-base 0.0968+0.0099 0.3198+0.0120  0.6397+0.0062

Psych8k Uniform Weighted 0.9694+0.0066  0.7317+0.0314  0.7897+0.0173
DynaOpt 0.9755+0.0148  0.7330+0.0487  0.7725+0.0247
Model Soup 0.9518+0.0126  0.6722+0.0235  0.4602+0.0162
DMORL (ours) 0.9784+0.0164 0.6438+0.0268 0.7062+0.0108
T5-base 0.2618 0.2563 0.6875

Human Uniform Weighted 0.5074 0.4563 0.4438
DynaOpt 0.5608 0.5473 0.3118
Model Soup 0.5178 0.5122 0.2490
DMORL (ours) 0.5308 0.4858 0.3758

dataset, DMORL achieves the highest reflection
score (0.9784), demonstrating strong generaliza-
tion. However, its empathy and fluency scores re-
main 0.07-0.09 below the best models. This obser-
vation aligns with the aggregation weights shown
in Figure 4: reflection at approximately 0.8, empa-
thy at around 0.5, and fluency at about 0.05. The
trade-off between objectives is evident, as increas-
ing one weight often reduces performance in others.
Model Soup, using parameters-level aggregation,
performs poorly on both datasets, especially in flu-
ency metrics (0.4463), indicating this approach is
less effective and may hinder generation fluency.

Human evaluation scores are lower than auto-
mated metrics, indicating a discrepancy between
LLM scoring objectives and real-world human per-
ception. Nevertheless, human evaluation supports
our findings: All fine-tuned models show improve-
ments in reflection and empathy but a slight decline
in fluency. DMORL achieves the second-highest
scores in reflection (0.5308), empathy (0.4858) and
fluency (0.3758) among fine-tuned models, demon-
strating comparable performance across all met-
rics and underscoring its potential as an effective
fine-tuning method. As shown in the sample gen-
erations in Figure 5, DMORL improves reflection
and empathy by employing second-person speech
and crafting responses that are understandable and
empathetic to the prompts. However, the generated
responses are not highly human-like, due to limi-
tations of the TS5 model and RL fine-tuning, where
models tend to optimize toward extremes. Despite
this, DMORL can generate responses that align
well with the desired objectives, highlighting its
competitive effectiveness.

Prompt: | have been feeling quite overwhelmed and immobilized
recently. Last week, it got to the point where | just couldn't take it
anymore due to an injury that was going to put me out.

(T5-base) Response: | feel very immobilized. | need to get back to
work a bit, as | have been feeling an amount of a lot lately.

(Uniform Weighted) Response: You know you want to take
anymore due to an injury that was going to put you out. You know
you want to take your injury further.

(DynaOpt) Response: That's the fact that you feel quite
overwhelmed and immobilized recently, you know that you need an
injury that was going to put you out.

(Model Soup) Response: So overwhelmed and feeling that you
can't take it anymore feeling that you are feeling so overwhelmed
and immobilized.

(DMORL) Response: You are feeling overwhelmed and immobilized
by the feeling of being out of the office with your injury that you
were going to put you out of the job.

Figure 5: Sample reflection generations of different
models on the counselor reflection generation task.

7 Conclusion

Our study addresses the challenges of conventional
multi-objective RL fine-tuning in counsellor reflec-
tion generation, where multiple linguistic objec-
tives are combined into one reward function. We
identify challenges with convergence speed, pro-
cess stability, and performance metrics and pro-
pose DMORL, a novel framework using distributed
learning to train models on individual objectives.
DMORL employs single-objective model training
and states-level aggregation, transforming multi-
objective fine-tuning into a weight optimization
problem solved via hierarchical grid search. The
results demonstrate that DMORL achieves greater
diversity, efficiency, scalability, and explainabil-
ity while maintaining performance comparable to
existing baselines in counsellor generation tasks,
bypassing the parameters-level aggregation meth-
ods. This demonstrates the potential of distributed
learning to enhance RL fine-tuning processes.



8 Limitations

Our study has several limitations that suggest direc-
tions for future research. First, the current imple-
mentation focuses on single-turn generation, which
does not capture the dynamics of real counselling
conversations. The RL interaction is limited to
one-time evaluations without dialogue history, and
responses are generated based solely on prompts,
failing to leverage RL’s potential for complex in-
teractions. Future work should explore multi-turn
conversations, potentially incorporating dynamic
weighting of model aggregation across turns.

Second, our study uses moderate-scale LLMs,
which may not achieve practical application-level
performance. As shown in Figure 5, while DMORL
generates more responses addressing the second
human’s perspective compared to the pre-trained
model, the overall quality remains limited. This
indicates that baseline model constraints affect
generation quality, despite improvements in tar-
geted behaviors. Future research should implement
DMORL on larger models with billions of parame-
ters to enhance performance and capabilities.

Finally, challenges remain in effectiveness and
efficiency. While DMORL achieves comparable
results across objectives, improving performance
to surpass conventional RL fine-tuning remains a
key challenge. Additionally, states-level aggrega-
tion requires token-by-token generation, impacting
processing speed. Future work should explore ad-
vanced aggregation methods to enhance computa-
tional efficiency and output quality while retaining
the benefits of distributed learning.

9 Potential Risks

We suggest that our models are not advocated for
deployment in clinical or mental health settings.
This is because human understanding and commu-
nication are indispensable in these domains, and the
behavior of language models remains incompletely
explored. Instead, we propose that our method and
models be utilized for methodological research.

10 Ethical Considerations

The PAIR and Psych8K datasets used in our study
are either open-source or licensed under CC-BY-
NC. These datasets include one-turn motivational
interviewing conversations as well as mental health
interactions between counsellors and patients. We
ensured that the source datasets processed the dia-
logues to redact any personally identifiable infor-

mation. Generative Al was employed solely to
assist with bug fixing and grammatical error cor-
rection. All other work presented in this paper was
conducted entirely by us.
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11 Appendix

11.1 Parameters-level aggregation

We investigated parameters-level aggregation of lo-
cal models using LoRA updates, following Eq 3,
where A, B, and « represent the LoRA matrices
and scaling factor respectively, and subscript ¢ de-
notes the local model index. However, this ap-
proach yielded suboptimal results. As shown in
Figure 6, the overall mean reward achieved only
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Table 3: Comparison of single-objective and multi-objective fine-tuning in addressing the challenges.

Mean Reward (7)

Data Consumption ()

Time Consumption ()

Reflection 0.9967 £ 0.0028 13209 +£ 335 4175.05 £ 104.40
Empathy 0.9935 £ 0.0037 7136 =474 2232.18 £ 82.62
Fluency 0.8803 +0.0003 4809 + 178 1629.19 £ 58.03
Uniform Weighted 0.8489 £0.0172 23398 £ 7390 5967.84 £ 1875.50
DynaOpt 0.8318 £ 0.0076 31328 + 16736 8029.15 £ 4365.64

Table 4: Demonstration of DMORL’s best-performing
weight combinations for 5 model pairs in the experi-
ments, along with their average combination.

Rewards Reflection Empathy Fluency
A; o 0.7936 0.9375 0.71875  0.0625
Az 0.7960 1.0 0.625 0.125
Az 0.8092 1.0 0.625 0.125
As 0.7942 1.0 0.5 0.0625
As  0.8093 0.78125 0.5 0.0625
A 0.8005 0.94375 0.59365  0.0875

Table 5: PAIR and Psych8k datasets statistics.

statistics PAIR dataset  Psych8k dataset
# of Exchange Pairs 2,544 8,187
Avg # of Words 32.39 45.18

0.7123, notably lower than the states-level aggre-
gation method. The fluency metric performed par-
ticularly poorly, reaching merely 0.4323. This un-
derperformance likely stems from the fundamental
difference in model objectives. Unlike federated
learning, where local models share the same objec-
tive but train on different datasets, our local models
are optimized for distinct objectives. Model Soup
employs parameters-level aggregation by integrat-
ing various weight selection methods. However,
this approach ultimately fails to effectively com-
bine diverse objectives, highlighting the need for
further research into more complex and effective
parameters-level aggregation strategies.

0 =00+ (B1A1)aiwy + ... + (BpAn)anw, (3)

11.2 Logits-level aggregation

We further explored logits-level aggregation as an
alternative approach. Instead of combining the last
hidden states, we aggregated the logits, which rep-
resent token probabilities across the 32,128-token
vocabulary and directly influence token generation.
As illustrated in Figure 7, this method performed
even worse, achieving a maximum mean reward of
only 0.5934, with the fluency metric scoring a mere
0.1575. This poor performance can be attributed to
the naive combination of vocabulary probabilities,
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Figure 6: Parameters-Level Aggregation Results.

where tokens generated by different local models
are simply concatenated. This process severely
impacts fluency, as the resulting text comprises
disconnected words calculated by different mod-
els. In contrast, the last hidden states aggregation
proves more effective by preserving the high-level
contextual information during generation.

logits aggregation 1.0
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Figure 7: Logits-Level Aggregation Results.

11.3 Evaluation Instruction

The human evaluation is supported by two anno-
tators, one is from China, and the other is from



Germany. The evaluation, based on their cross-
cultural understanding, supports the robust human-
annotated results. When evaluating responses,
choose the most appropriate score (0, 1, or 2) based
on these criteria. Responses may vary in complex-
ity, and the judgment should be guided by the de-
gree to which they reflect upon the client’s prompt.
Reflection: 0 (Non-Reflection), 1( Simple
Reflection), or 2 (Complex Reflection). Non-
Reflection (0): A response is considered a non-
reflection when it does not engage with the client’s
input or the task at hand. It may be off-topic, irrel-
evant, or simply fail to address the client’s query.
Simple Reflection (1): A response is categorized
as a simple reflection when it acknowledges the
client’s input or question without adding substan-
tial depth or insight. It might repeat or rephrase
the client’s words, showing understanding but not
extending the conversation significantly. Simple
reflections demonstrate basic engagement with the
client’squery. Complex Reflection (2): A response
is identified as a complex reflection when it goes
beyond mere acknowledgment and engages deeply
with the client’s input or question. It demonstrates
an understanding of the client’s thoughts, feelings,
or concerns and provides a thoughtful, insightful,
or elaborate response. Complex reflections con-
tribute to the conversation by expanding upon the
client’s ideas or by offering new perspectives.
Empathy: 0 (Non-Empathetic), 1 (Basic Empa-
thy), or 2 (Advanced Empathy). Non-Empathetic
(0): A response that shows no recognition or ac-
knowledgment of the person’s emotional state or
perspective. E.g. Dismiss or invalidate feelings.
Change the subject without addressing emotions.
Offer purely factual or technical responses when
emotional support is needed. Show complete mis-
alignment with the person’s emotional state Basic
Empathy (1): A response that demonstrates fun-
damental recognition of emotions and attempts to
understand the person’s perspective. E.g. Acknowl-
edge obvious or stated emotions. Use basic emo-
tional labelling (""That must be hard"). Mirror the
person’s expressed feelings. Show surface-level
understanding without deeper exploration. Offer
general supportive statements. Advanced Empathy
(2): A response that shows deep emotional attune-
ment and sophisticated understanding of the per-
son’s experience. Connect different aspects of the
person’s experience and recognize nuanced emo-
tional states. Demonstrate understanding of the
broader context and implications. Show genuine

12

emotional resonance while maintaining appropriate
boundaries. Help the person gain new insights into
their emotional experience.

Fluency: Assess the linguistic naturalness and
smoothness of the counsellor’s responses. Re-
sponses are rated on a scale from O to 2, where
0 indicates responses that lack fluency, 1 signifies
somewhat fluent responses, and 2 represents re-
sponses that are highly fluent and natural in their
expression. Fluent counsellor responses should
convey information in a clear and easily understand-
able manner, ensuring effective communication.
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