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Abstract001

Recent advances in reinforcement learning002
(RL) fine-tuning methods for large language003
models (LLMs) show promise in addressing004
multi-objective tasks but still have revealed005
significant challenges, including complex ob-006
jective balancing, low training efficiency, poor007
scalability, and limited explainability. Lever-008
aging distributed learning principles, we in-009
troduce a distributed multi-objective RL fine-010
tuning (DMORL) framework that simultane-011
ously trains multiple models with individual012
objectives while optimizing their aggregation.013
Our method aggregates the last hidden states of014
local models to influence the final generation,015
supported by a hierarchical grid search algo-016
rithm that selects optimal weight combinations017
stepwise. This approach optimizes aggrega-018
tion weights and significantly reduces the com-019
plexity of its selection process. We evaluate020
DMORL on a counsellor reflection generation021
task, using text-classification LLMs to score022
responses and reward RL fine-tuning. Through023
comprehensive experiments on the PAIR and024
Psych8k datasets, we demonstrate the advan-025
tages of DMORL against existing baselines:026
significantly lower and more stable training027
consumption (17, 529± 1, 650 data points and028
6, 573 ± 147.43 seconds), improved scalabil-029
ity and explainability, and comparable perfor-030
mance across multiple objectives.031

1 Introduction032

The multi-objective of large language models033

(LLMs) is a crucial research direction for natu-034

ral language processing (NLP) tasks that need to035

fulfil diverse requirements (Vaswani, 2017; Qin036

et al., 2024; Kumar, 2024). This paper focuses on037

the counsellor reflection generation task, a crucial038

application of conversational AI in mental health,039

coaching, and counselling domains (O’neil et al.,040

2023). This task requires generating reflective041

responses that optimize multiple key objectives,042

Figure 1: Comparison of training efficiency (x-axis) and
mean reward (y-axis). Point size and "+/-" indicate scala-
bility and explainability capabilities. DMORL achieves
comparable mean rewards with lower data consumption
while maintaining better scalability and explainability.

such as reflection, empathy, and fluency in high- 043

quality counselling interactions. We employ rein- 044

forcement learning (RL) to fine-tune pre-trained 045

LLMs for these specific objectives (Lin, 2024; 046

Parthasarathy et al., 2024). Conventional RL fine- 047

tuning approaches combine multiple objectives into 048

one reward function, enabling optimization of vari- 049

ous and often conflicting objectives (Okano et al., 050

2023; Pérez-Rosas et al., 2024; Dann et al., 2023). 051

However, these approaches face significant chal- 052

lenges: ensuring scalability as objectives increase, 053

maintaining training efficiency, adapting models to 054

dynamic conversations, and determining appropri- 055

ate weights for each objective (Hayes et al., 2022; 056

Dulac-Arnold et al., 2021). These challenges high- 057

light the need for more flexible and efficient RL 058

fine-tuning methods. 059

Distributed learning offers a potential solution 060

for this growing need by training multiple lo- 061

cal models and aggregating them into a global 062

model (Vanhaesebrouck et al., 2017). We propose 063

a novel distributed multi-objective RL fine-tuning 064

(DMORL) framework for LLMs that operates in 065

two phases: (1) We distribute objectives into mul- 066

tiple models to train individual objectives. The 067

results demonstrate that the models with one ob- 068
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jective in reward functions converge significantly069

faster than those with multiple objectives. (2) We070

introduce a states-level aggregation method and071

employ a hierarchical grid search algorithm dur-072

ing the aggregation to identify the optimal weights073

efficiently. Our experiments demonstrate that the074

aggregated output achieves performance compara-075

ble to models trained using conventional methods076

while achieving significantly higher training effi-077

ciency when considering the entire duration of the078

training and aggregation phases. This framework079

is also highly scalable, allowing additional objec-080

tives to be incorporated as modular components.081

Additionally, the framework enhances explainabil-082

ity by providing insights into the relative impor-083

tance of different objectives. The code for our084

framework and experiments is publicly available085

(for research purposes only) and can be found at086

https://github.com/engineerkong/DMORL.087

Succinctly, our main contributions are as follows:088

(1) We introduce a distributed multi-objective RL089

fine-tuning (DMORL) framework for counsellor090

reflection generation that separates training and091

aggregation phases. (2) We develop an efficient092

states-level aggregation method and a hierarchi-093

cal grid search algorithm for weight optimization.094

(3) We demonstrate our framework’s effectiveness095

through comprehensive evaluation against state-of-096

the-art baselines, such as significantly lower and097

more stable training consumption (17, 529±1, 650098

data points and 6, 573±147.43 seconds), improved099

scalability and explainability, and comparable per-100

formance across multiple objectives.101

2 Related Work102

Prior work on RL fine-tuning of LLMs has explored103

various approaches to balance multiple objectives.104

These methods can be broadly categorized into sev-105

eral key directions, including conventional weight-106

ing methods and novel distributed approaches.107

2.1 Fixed Weighting108

This conventional method in multi-objective opti-109

mization involves explicitly defining and combin-110

ing multiple objectives. In this approach, objectives111

are combined into one reward function or loss func-112

tion using fixed weights, as shown in Eq 1, where113

λi are fixed weights. (Ziegler et al., 2019) explores114

RL fine-tuning for LLMs using fixed weights to115

combine task-specific rewards with auxiliary ob-116

jectives like fluency and coherence. However, se-117

lecting appropriate weights to balance objectives 118

effectively is challenging. (Mohan et al., 2023) pro- 119

posed AutoRL to automate the selection of optimal 120

weights. Nevertheless, AutoRL suffers from unex- 121

plainability and is computationally intensive as the 122

number of objectives or hyperparameters grows. 123

Rtotal = λ1 ·R1 + ...+ λn ·Rn (1) 124

Fixed weighting methods are simple, inter- 125

pretable, and easy to implement with existing op- 126

timization frameworks. However, they have limi- 127

tations: (1) manual tuning of weights is required, 128

which may not generalize across tasks or datasets; 129

(2) static weights cannot adapt to dynamic condi- 130

tions or contexts; and (3) extensive trial-and-error 131

is needed to find optimal weights. To address 132

these issues, researchers have explored dynamic 133

approaches to weight adjustment in the reward 134

function and the loss function. Alternatively, as 135

proposed in this paper, the weight selection pro- 136

cess can be shifted to the model aggregation phase, 137

reducing computational overhead and complexity. 138

2.2 Dynamic Weighting 139

Dynamic weighting methods adjust objective 140

weights during training based on the model’s per- 141

formance, context, or external feedback, enabling 142

a more flexible and adaptive balance between 143

competing goals. Reward-driven approaches like 144

(Pérez-Rosas et al., 2024)’s multi-armed bandit and 145

(Pu et al., 2024)’s tabular MDP framework enable 146

continuous adaptation based on received rewards. 147

For gradient-based optimization, (Liu et al., 2020) 148

employs GradNorm for weight adaptation, while 149

(Ryu et al., 2024) uses gradient projection to re- 150

solve objective conflicts in summarization. Alter- 151

native formulations include (Zhou et al., 2024)’s 152

RL-free approach using direct preference optimiza- 153

tion, and (Jafari et al., 2024)’s Pareto surface opti- 154

mization for prompt-based objectives. 155

Dynamic weighting is more flexible and adaptive 156

and thus can handle changing conditions or tasks 157

without manual intervention. Its weighting mecha- 158

nism is eager to choose the objectives which have 159

a higher probability of increasing the reward. How- 160

ever, this approach requires additional mechanisms 161

to adjust weights, which increases computational 162

complexity, and may introduce training instability. 163

These limitations are evident in Figure 2, where 164

the dynamic weighting method DynaOpt exhibits 165

higher training costs and greater instability com- 166
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pared to the fixed Uniform weighted.167

2.3 Distributed Learning168

Distributed learning enables training machine learn-169

ing models across multiple devices or nodes (Li170

et al., 2020). This approach has proven effective171

in training models on diverse datasets, as demon-172

strated in federated learning (Zhang et al., 2021).173

While several studies have explored model aggre-174

gation at the parameters-level for multi-objective175

learning. (Wortsman et al., 2022) demonstrates176

Model Soup that combines fine-tuning, weight av-177

eraging, and validation in distributed learning to178

average weights from multiple fine-tuned models.179

Their learned soup approach leverages the concept180

of stacking to aggregate multiple models into a181

single model through gradient-based optimization.182

(Matena and Raffel, 2022) proposes merging fine-183

tuned models by weighting parameters based on184

Fisher information, which measures each parame-185

ter’s importance for the task, effectively combining186

models trained for different objectives. (Zhu and187

Jin, 2019) demonstrates using multi-objective evo-188

lutionary algorithms to simultaneously optimize189

multiple competing objectives, balancing tradeoffs190

between objectives through Pareto optimization.191

However, as demonstrated in Appendix 11.1,192

parameters-level aggregation underperforms in193

multi-objective optimization for NLP, particularly194

when the objectives differ significantly. It presents195

that the application of distributed learning in this196

context remains underexplored. In light of this, we197

analyze the challenges in the next section by com-198

paring the training processes of single-objective199

models with multi-objective models using conven-200

tional weighting methods.201

3 Challenges202

We tested 5 fine-tuning setups for counsellor re-203

flection generation to demonstrate the challenges,204

focusing on reflection, empathy, and fluency. Three205

setups optimized single objectives independently,206

while two multi-objective approaches combined207

all three objectives: (1) Uniform Weighted, assign-208

ing equal weights (1/3) to each objective, and (2)209

DynaOpt, dynamically adjusting weights using a210

multi-armed bandit algorithm. Experiments used211

5 random seeds with 3 generation runs each, eval-212

uating mean rewards, data, and time consumption.213

Progress was tracked via Weights & Biases (W&B),214

plotting mean reward against data consumption.215
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Figure 2: RL fine-tuning processes logs for 5 setups,
highlighting single-objective models’ advantages in con-
vergence speed, process stability, and performance.

As shown in Figure 2 and Table 3, our results 216

highlight key differences between single-objective 217

and conventional multi-objective RL fine-tuning in 218

three aspects. First, convergence speed: single- 219

objective models converged faster, with fluency 220

models achieving the quickest convergence (4, 809 221

data points, 1, 629.19 seconds). Multi-objective 222

models were slower, with Uniform Weighted re- 223

quiring 23, 398 data points and 5, 967.84 seconds, 224

and DynaOpt needing 31, 328 data points and 225

8, 029.15 seconds, due to dynamic weighting. Sec- 226

ond, process stability: single-objective fine-tuning 227

showed consistent convergence with minimal vari- 228

ation (±335 data points, ±104.40 seconds for re- 229

flections). Multi-objective models were less stable, 230

with Uniform Weighted varying by ±7, 390 data 231

points and ±1, 875.50 seconds, and DynaOpt by 232

±16, 736 data points and ±4, 365.64 seconds, re- 233

flecting the complexity of balancing multiple objec- 234

tives during the fine-tuning process. Third, perfor- 235

mance metrics: single-objective models achieved 236

higher rewards (approaching 1.0 for reflection and 237

empathy), while multi-objective models averaged 238

below 0.85, indicating inherent performance trade- 239

offs in optimizing multiple objectives. 240

This observation suggests a promising research 241

direction: combining single-objective fine-tuned 242

models through distributed learning to achieve 243

multi-objective optimization. Beyond addressing 244

challenges of convergence, stability, and perfor- 245

mance, this approach could offer scalability by 246

adding new objectives without retraining existing 247

models and improved explainability by identify- 248

ing which objective-specific models drive perfor- 249

mance gains. Similar to multi-reward optimization, 250

the goal is to find an effective compromise that 251

leverages these potential benefits while delivering 252

comparable performance. 253

3



Figure 3: The DMORL framework illustrates the process of splitting objectives, training models with single
objectives, and aggregating the models to achieve multiple objectives.

4 Methodology254

Our DMORL framework splits objectives, trains255

single-objective models, and aggregates them us-256

ing weight combinations, as shown in Figure 3.257

During training, multiple models are fine-tuned258

for individual objectives. In aggregation, we ex-259

plore logits, parameters, and states-level aggrega-260

tion, with logits and parameters-level aggregation261

produced suboptimal results as in Appendix 11,262

and states-level aggregation demonstrated promis-263

ing performance. This distributed approach trans-264

forms multi-objective fine-tuning into optimizing265

aggregation weights, a well-studied mathematical266

problem. We address this optimization using an267

efficient hierarchical grid search algorithm that in-268

tegrates grid and binary search principles (Bishop269

and Nasrabadi, 2006; Gautschi, 2011).270

4.1 States-Level Aggregation271

The decoder of LLMs generates hidden states cap-272

turing high-level features, including contextual un-273

derstanding, semantic features, cross-attention pat-274

terns, and task-specific information (Raffel et al.,275

2020). Its last hidden states are processed by the276

language model head to compute vocabulary log-277

its across 32, 128 tokens, which are then used to278

generate tokens via the argmax operation, as illus-279

trated in Eq 2. We aggregate the last hidden states280

to integrate high-level features cohesively. This281

approach ensures consistent text generation while282

incorporating features from all objective-specific283

models, with weights determining each model’s284

contribution to the final output.285

Sagg =
n∑

i=1

wiSi

logits = flm_head(Sagg)

token = argmax(logits)

(2) 286

where Si ∈ Rb×s×h is the last hidden state from 287

model i, wi ∈ [0, 1] is its weight, and b, s, h repre- 288

sent batch size, sequence length, and hidden dimen- 289

sion, respectively. flm_head projects the aggregated 290

states to logits over the vocabulary. 291

4.2 Hierarchical Grid Search 292

As we transform the problem from multi-objective 293

fine-tuning to aggregation weights optimization, 294

the core challenge is to find the weights effectively 295

and efficiently. The standard grid search method 296

divides the search space into an Nd grid for d objec- 297

tives, with N uniform divisions along each dimen- 298

sion, resulting in a computational complexity of 299

O(Nd). Gradient-based methods for determining 300

weights are often inefficient, prone to converging to 301

local minima, and require unstable trial-and-error 302

processes to identify optimal solutions. 303

We combined grid search with binary search con- 304

cepts and developed a hierarchical grid search algo- 305

rithm, which improves the computational efficiency. 306

With three objectives and a weight precision level 307

of 0.03125, our approach reduced the number of 308

evaluations to 135, compared to 32, 768 in standard 309

grid search, yielding a computational complexity 310

of O(3d · log2N). In this hierarchical approach, as 311

shown in Algorithm 1, we first divide each search 312

axis into 3 parts, creating 3d initial grid points. We 313

then evaluate the generation performance at these 314

points and identify the most promising region by 315
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finding the 2d cube with the highest total perfor-316

mance score. This region becomes our next search317

space, and we iterate this process of grid generation318

and space refinement. The algorithm progressively319

focuses on smaller, more promising regions dur-320

ing iteration, which is effective for our aggregation321

case since the performance varies stably with re-322

spect to the weight combinations.323

Algorithm 1 Hierarchical Grid Search
Require: objective function f , number of com-

ponents N , iterations I , initial bounds B0 =
[(0, 1)]N

Ensure: Best point p∗, Best score s∗

1: p∗ ← null
2: s∗ ← −∞
3: Bcurrent ← B0

4: for iter = 1 to I do
5: grid_points← GenerateGrid(Bcurrent)
6: results← {}
7: for all point p ∈ grid_points do
8: results[p]← f(p)
9: end for

10: pcurrent ← argmax(results)
11: if results[pcurrent] > s∗ then
12: s∗ ← results[pcurrent]
13: p∗ ← pcurrent
14: end if
15: region← FindBestRegion(results)
16: Bcurrent ← ComputeBounds(region)
17: end for
18: return p∗, s∗

5 Experiments324

5.1 Model325

We employ T5-base1 (220M parameters) as it326

balances efficiency and performance for our dis-327

tributed training approach. While larger models328

like GPT-3 or LLaMA might offer better raw per-329

formance, they would significantly increase com-330

putational costs in our multi-model setup. T5’s331

encoder-decoder architecture also provides clear332

access to hidden states, critical for our states-level333

aggregation method. (Pérez-Rosas et al., 2024)334

demonstrated T5’s effectiveness for counselling335

tasks, making it suitable for our experiments while336

enabling fair comparisons with existing baselines.337

During the training phase, we optimizes reflec-338

tion, empathy, and fluency for counsellor reflection339

1https://huggingface.co/google-t5/t5-base

generation. As the RL algorithm, we utilize Self- 340

Critical Sequence Training (SCST), which gener- 341

ates candidate outputs and computes their mean 342

reward as a baseline for encouraging candidates to 343

outperform the mean reward (Laban et al., 2021). 344

To ensure robustness, we train models using 5 ran- 345

dom seeds per objective and conduct 3 runs per 346

generation. Training is performed with a batch 347

size of 16, validated every 8 steps using a valida- 348

tion batch size of 8. We employ LoRA (Hu et al., 349

2021) for efficient parameter updates, representing 350

updates via low-rank matrices and a scaling factor. 351

During the aggregation phase, we pair three 352

trained models with individual objectives, forming 353

five model pairs. The LoRA parameters are loaded 354

and applied to the T5-base model to construct the 355

trained model. The validation dataset is then used 356

to evaluate the performance of aggregated models 357

with various weight combinations, with a batch size 358

of 16. The best-performing weight combination 359

is saved, allowing us to construct the aggregated 360

model by combining the optimal weights and the 361

LoRA parameters of the objectives. 362

For evaluation, we compare DMORL models 363

against four baselines: T5-base, Uniform Weighted, 364

DynaOpt and Model Soup models. The evaluation 365

encompasses reward metrics for performance as 366

well as evaluation metrics addressing additional 367

aspects such as training efficiency. Additionally, 368

two mental health experts assess the reward met- 369

rics for the generated responses. All experiments 370

were conducted on a Tesla V100 GPU with 32GB 371

memory, 8 CPU cores, and 40GB system memory. 372

5.2 Datasets 373

The PAIR2 dataset is our primary dataset, split into 374

training, validation, and testing sets with a ratio 375

of [80%, 10%, 10%] (Min et al., 2022). It contains 376

2, 544 single-turn client-counsellor exchanges, cov- 377

ering topics ranging from mental health to lifestyle 378

concerns like diet, exercise, and personal devel- 379

opment. Each entry includes a client prompt and 380

multiple reference responses. 381

To assess generalization, we also use the 382

Psych8k3 dataset, sampling 10% of its 8, 187 con- 383

versation pairs. This licensed dataset focuses on 384

mental health interactions, including anxiety, de- 385

pression, relationship issues, and stress manage- 386

ment, and is widely used for training and evalu- 387

ating LLMs in mental health counselling. Each 388

2https://lit.eecs.umich.edu/downloads.html
3https://huggingface.co/datasets/EmoCareAI/Psych8k
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Figure 4: The visualization illustrates the hierarchical grid search process, showing the transition from a broad
search space to a refined one, where optimal weight combinations are identified. The red line on the color map
indicates the maximum mean reward achieved during the search.

entry consists of an instruction ("If you are a coun-389

sellor, please answer the questions based on the390

description of the patient."), a client input, and a391

counsellor’s reference response.392

5.3 Metrics393

We evaluate multiple metrics beyond performance,394

focusing on six key aspects: (1) Diversity-2 mea-395

sures linguistic diversity; (2) Edit rate quantifies396

the avoidance of verbatim repetition; (3) Data con-397

sumption tracks the cumulative number of training398

samples processed; (4) Time consumption records399

the wall-clock time for each training iteration; (5)400

Scalability assesses the model’s ability to incor-401

porate additional objectives; (6) Explainability402

examines the transparency of how each objective403

contributes to the final model.404

For reward metrics, we employ specific LLMs405

to score three objectives on a scale from 0.0 to 1.0:406

(1) Reflection is assessed using the "roberta-base4",407

which evaluates the relevance and contextual appro-408

priateness of responses. (2) Empathy is measured409

using the "bert-empathy5", which gauges emotional410

resonance and understanding. (3) Fluency is eval-411

uated using "gpt26" by computing the inverse of412

perplexity, ensuring linguistic smoothness.413

We conducted human evaluation of 640 re-414

sponses sampled from five models (T5-base,415

Uniform Weighted, DynaOpt, Model Soup and416

4https://huggingface.co/FacebookAI/roberta-base
5https://huggingface.co/MoaazZaki/bert-empathy
6https://huggingface.co/openai-community/gpt2

DMORL) across two datasets (PAIR and Psych8k). 417

Two mental health experts independently rated each 418

response on three reward metrics using a 3-point 419

scale, normalized to 0.0-1.0: (1) Reflection: 0 (no 420

reflection), 1 (simple mirroring), 2 (complex inter- 421

pretation); (2) Empathy: 0 (no emotional aware- 422

ness), 1 (basic understanding), 2 (deep emotional 423

resonance); (3) Fluency: 0 (poor coherence), 1 424

(clear but awkward), 2 (natural and clear). 425

6 Results Analysis 426

Hierarchical Grid Visualization Demonstrates 427

Explainable Results. Figure 4 illustrates the hi- 428

erarchical grid search process: in iteration 1 (left 429

subplot), we evaluated 3 × 3 × 3 weight combi- 430

nations for reflection, empathy, and fluency, with 431

color mapping indicating mean reward values. The 432

top-performing 2× 2× 2 combinations were then 433

used to refine the search space for subsequent itera- 434

tions. The right subplot of Figure 4 shows iteration 435

5, where the search converges to a more precise 436

and refined space: (0.75, 0.8125), (0.4375, 0.5) 437

and (0.0, 0.0625) for the aggregation weights of re- 438

flection, empathy, and fluency models respectively. 439

This progressive narrowing allows for the precise 440

identification of optimal weight combinations. 441

The visualization also reveals important insights 442

about each objective’s contribution to the overall 443

performance. The aggregation benefits from higher 444

weights of the reflection model (orange points). 445

Empathy delivers optimal overall performance with 446

moderate weights, with both too-high and too-low 447
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Table 1: The automated evaluation metrics on the PAIR dataset highlight additional measures beyond performance.
They demonstrate that our DMORL framework offers advantages in generation diversity, low training consumption,
enhanced scalability, and improved explainability, outperforming other methods.

T5-base Uniform Weighted DynaOpt Model Soup DMORL (ours)
Diversity-2 (↑) 0.8851±0.0056 0.3561±0.0837 0.3621±0.0951 0.4327±0.0932 0.6516±0.0524

Edit Rate (↑) 0.8087±0.0127 0.8870±0.0247 0.8929±0.0246 0.8672±0.0326 0.8734±0.0240

Data Consumption (↓) 23398±7390 31328±16736 18924±4672 17529±1650

Time Consumption (↓) 5967.84±1875.50 8029.15±4365.64 5823±1262.24 6573±147.43

Scalability - - + +
Explainability - - + +

values reducing the mean reward. The fluency448

model demonstrates a negative effect on other ob-449

jectives when assigned high weights (cyan points).450

Lower weights of the fluency model facilitate better451

integration with the other objectives (orange points452

in its low-weight regions). Although the results453

vary across aggregation experiments with differ-454

ent sampled models, the visualization underscores455

the interpretability and explainability of DMORL456

during the aggregation phase.457

DMORL Shows Promise Across Multiple Eval-458

uation Metrics. As shown in Table 1, DMORL459

achieves the highest diversity-2 score among fine-460

tuned models, averaging above 0.65, compared to461

0.35-0.43 for other fine-tuned models and 0.88 for462

the pre-trained model T5-base. This highlights463

DMORL’s ability to generate diverse responses,464

which is achieved by aggregating hidden states465

and delegating the token generation to the model.466

While edit rates vary slightly among fine-tuned467

models, DMORL has the lowest rate but remains468

0.07 higher than T5-base, indicating all models469

avoid verbatim repetition of client words.470

DMORL demonstrates superior efficiency471

in resource utilization, consuming approxi-472

mately 17,529 data points and 6,573 seconds473

of training time. Its distributed architec-474

ture, where total consumption is determined475

by max(ctrain(obj1), ctrain(obj2), ctrain(obj3)) +476

cagg, enables over 0.5× faster training compared to477

conventional multi-objective methods. Compared478

to another distributed learning method, Model479

Soup, DMORL maintains the lowest and most480

stable data consumption, as gradient-based algo-481

rithms in Model Soup often struggle with local482

optima, leading to increased consumption. How-483

ever, DMORL’s token-by-token generation using484

model() slightly increases time consumption, mak-485

ing it higher than both the Model Soup and Uni-486

form Weighted methods. DMORL also exhibits487

greater stability, with variations of only 1,650 data488

points and 147.43 seconds, significantly lower than489

DynaOpt’s variations of 16,736 data points and 490

4,365.64 seconds. This stability is attributed to 491

DMORL’s consistent single-objective training and 492

uniform aggregation resource consumption facili- 493

tated by hierarchical grid search. These advantages 494

position DMORL as an efficient and stable fine- 495

tuning approach for multi-objective tasks. 496

DMORL achieves both scalability and explain- 497

ability as another distributed learning method, 498

Model Soup. Its scalability is evident when adding 499

new objectives: instead of retraining the entire 500

model, DMORL trains the new single-objective 501

model and aggregates it with existing models. For 502

explainability, DMORL provides clear insights 503

through objective weight combinations and states- 504

level aggregation patterns. As shown in Figure 4, 505

the final hidden states reflect varying contributions: 506

reflection at approximately 0.8, empathy at around 507

0.5, and fluency at about 0.05. Adjusting one ob- 508

jective’s weight enhances its performance but may 509

impact others, revealing trade-offs and quantifying 510

each objective’s contribution. In contrast, conven- 511

tional multi-objective models lack scalability and 512

interpretability, as they require extensive training 513

to incorporate new objectives and rely on trial-and- 514

error to determine the importance of each objective. 515

DMORL Delivers Comparable Performance in 516

Reward Metrics. We evaluated our DMORL 517

method on the PAIR and Psych8k datasets for re- 518

flection, empathy, and fluency. Although DMORL 519

does not achieve the highest scores, it maintains 520

performance comparable to the conventional multi- 521

objective model and significantly outperforms both 522

the T5-base model and the Model Soup model. 523

On the PAIR dataset, DMORL achieves a re- 524

flection score of 0.9106, only 0.05 below the best- 525

performing Uniform Weighted model. Its empathy 526

score is approximately 0.07 lower than DynaOpt, 527

and its fluency score of 0.6248 is about 0.12 below 528

the Uniform Weighted model. This indicates strong 529

reflection capabilities but suggests room for im- 530

provement in fluency aggregation. On the Psych8k 531
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Table 2: The reward metrics are evaluated automatically and through human assessment on the PAIR and Psych8k
datasets. The human-evaluated scores are overall lower compared to the automated scores. In both evaluation
approaches, the results demonstrate that our DMORL method achieves performance comparable to other methods.

Reflection (↑) Empathy (↑) Fluency (↑)

PAIR

T5-base 0.0418±0.0108 0.4648±0.0160 0.4849±0.0185

Uniform Weighted 0.9616±0.0212 0.8078±0.0251 0.7498±0.0176

DynaOpt 0.9349±0.0234 0.8141±0.0329 0.7271±0.0300

Model Soup 0.9204±0.0315 0.7418±0.0264 0.4324±0.0186

DMORL (ours) 0.9106±0.0406 0.7466±0.0178 0.6248±0.0113

Psych8k

T5-base 0.0968±0.0099 0.3198±0.0129 0.6397±0.0062

Uniform Weighted 0.9694±0.0066 0.7317±0.0314 0.7897±0.0173

DynaOpt 0.9755±0.0148 0.7330±0.0487 0.7725±0.0247

Model Soup 0.9518±0.0126 0.6722±0.0235 0.4602±0.0162

DMORL (ours) 0.9784±0.0164 0.6438±0.0268 0.7062±0.0108

Human

T5-base 0.2618 0.2563 0.6875
Uniform Weighted 0.5074 0.4563 0.4438
DynaOpt 0.5608 0.5473 0.3118
Model Soup 0.5178 0.5122 0.2490
DMORL (ours) 0.5308 0.4858 0.3758

dataset, DMORL achieves the highest reflection532

score (0.9784), demonstrating strong generaliza-533

tion. However, its empathy and fluency scores re-534

main 0.07-0.09 below the best models. This obser-535

vation aligns with the aggregation weights shown536

in Figure 4: reflection at approximately 0.8, empa-537

thy at around 0.5, and fluency at about 0.05. The538

trade-off between objectives is evident, as increas-539

ing one weight often reduces performance in others.540

Model Soup, using parameters-level aggregation,541

performs poorly on both datasets, especially in flu-542

ency metrics (0.4463), indicating this approach is543

less effective and may hinder generation fluency.544

Human evaluation scores are lower than auto-545

mated metrics, indicating a discrepancy between546

LLM scoring objectives and real-world human per-547

ception. Nevertheless, human evaluation supports548

our findings: All fine-tuned models show improve-549

ments in reflection and empathy but a slight decline550

in fluency. DMORL achieves the second-highest551

scores in reflection (0.5308), empathy (0.4858) and552

fluency (0.3758) among fine-tuned models, demon-553

strating comparable performance across all met-554

rics and underscoring its potential as an effective555

fine-tuning method. As shown in the sample gen-556

erations in Figure 5, DMORL improves reflection557

and empathy by employing second-person speech558

and crafting responses that are understandable and559

empathetic to the prompts. However, the generated560

responses are not highly human-like, due to limi-561

tations of the T5 model and RL fine-tuning, where562

models tend to optimize toward extremes. Despite563

this, DMORL can generate responses that align564

well with the desired objectives, highlighting its565

competitive effectiveness.566

Figure 5: Sample reflection generations of different
models on the counselor reflection generation task.

7 Conclusion 567

Our study addresses the challenges of conventional 568

multi-objective RL fine-tuning in counsellor reflec- 569

tion generation, where multiple linguistic objec- 570

tives are combined into one reward function. We 571

identify challenges with convergence speed, pro- 572

cess stability, and performance metrics and pro- 573

pose DMORL, a novel framework using distributed 574

learning to train models on individual objectives. 575

DMORL employs single-objective model training 576

and states-level aggregation, transforming multi- 577

objective fine-tuning into a weight optimization 578

problem solved via hierarchical grid search. The 579

results demonstrate that DMORL achieves greater 580

diversity, efficiency, scalability, and explainabil- 581

ity while maintaining performance comparable to 582

existing baselines in counsellor generation tasks, 583

bypassing the parameters-level aggregation meth- 584

ods. This demonstrates the potential of distributed 585

learning to enhance RL fine-tuning processes. 586
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8 Limitations587

Our study has several limitations that suggest direc-588

tions for future research. First, the current imple-589

mentation focuses on single-turn generation, which590

does not capture the dynamics of real counselling591

conversations. The RL interaction is limited to592

one-time evaluations without dialogue history, and593

responses are generated based solely on prompts,594

failing to leverage RL’s potential for complex in-595

teractions. Future work should explore multi-turn596

conversations, potentially incorporating dynamic597

weighting of model aggregation across turns.598

Second, our study uses moderate-scale LLMs,599

which may not achieve practical application-level600

performance. As shown in Figure 5, while DMORL601

generates more responses addressing the second602

human’s perspective compared to the pre-trained603

model, the overall quality remains limited. This604

indicates that baseline model constraints affect605

generation quality, despite improvements in tar-606

geted behaviors. Future research should implement607

DMORL on larger models with billions of parame-608

ters to enhance performance and capabilities.609

Finally, challenges remain in effectiveness and610

efficiency. While DMORL achieves comparable611

results across objectives, improving performance612

to surpass conventional RL fine-tuning remains a613

key challenge. Additionally, states-level aggrega-614

tion requires token-by-token generation, impacting615

processing speed. Future work should explore ad-616

vanced aggregation methods to enhance computa-617

tional efficiency and output quality while retaining618

the benefits of distributed learning.619

9 Potential Risks620

We suggest that our models are not advocated for621

deployment in clinical or mental health settings.622

This is because human understanding and commu-623

nication are indispensable in these domains, and the624

behavior of language models remains incompletely625

explored. Instead, we propose that our method and626

models be utilized for methodological research.627

10 Ethical Considerations628

The PAIR and Psych8K datasets used in our study629

are either open-source or licensed under CC-BY-630

NC. These datasets include one-turn motivational631

interviewing conversations as well as mental health632

interactions between counsellors and patients. We633

ensured that the source datasets processed the dia-634

logues to redact any personally identifiable infor-635

mation. Generative AI was employed solely to 636

assist with bug fixing and grammatical error cor- 637

rection. All other work presented in this paper was 638

conducted entirely by us. 639
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11 Appendix 788

11.1 Parameters-level aggregation 789

We investigated parameters-level aggregation of lo- 790

cal models using LoRA updates, following Eq 3, 791

where A, B, and α represent the LoRA matrices 792

and scaling factor respectively, and subscript i de- 793

notes the local model index. However, this ap- 794

proach yielded suboptimal results. As shown in 795

Figure 6, the overall mean reward achieved only 796
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Table 3: Comparison of single-objective and multi-objective fine-tuning in addressing the challenges.

Mean Reward (↑) Data Consumption (↓) Time Consumption (↓)
Reflection 0.9967± 0.0028 13209± 335 4175.05± 104.40
Empathy 0.9935± 0.0037 7136± 474 2232.18± 82.62
Fluency 0.8803± 0.0003 4809± 178 1629.19± 58.03
Uniform Weighted 0.8489± 0.0172 23398± 7390 5967.84± 1875.50
DynaOpt 0.8318± 0.0076 31328± 16736 8029.15± 4365.64

Table 4: Demonstration of DMORL’s best-performing
weight combinations for 5 model pairs in the experi-
ments, along with their average combination.

Rewards Reflection Empathy Fluency
A1 0.7936 0.9375 0.71875 0.0625
A2 0.7960 1.0 0.625 0.125
A3 0.8092 1.0 0.625 0.125
A4 0.7942 1.0 0.5 0.0625
A5 0.8093 0.78125 0.5 0.0625
Ā 0.8005 0.94375 0.59365 0.0875

Table 5: PAIR and Psych8k datasets statistics.

statistics PAIR dataset Psych8k dataset
# of Exchange Pairs 2,544 8,187
Avg # of Words 32.39 45.18

0.7123, notably lower than the states-level aggre-797

gation method. The fluency metric performed par-798

ticularly poorly, reaching merely 0.4323. This un-799

derperformance likely stems from the fundamental800

difference in model objectives. Unlike federated801

learning, where local models share the same objec-802

tive but train on different datasets, our local models803

are optimized for distinct objectives. Model Soup804

employs parameters-level aggregation by integrat-805

ing various weight selection methods. However,806

this approach ultimately fails to effectively com-807

bine diverse objectives, highlighting the need for808

further research into more complex and effective809

parameters-level aggregation strategies.810

θ = θ0+(B1A1)α1w1+ ...+(BnAn)αnwn (3)811

11.2 Logits-level aggregation812

We further explored logits-level aggregation as an813

alternative approach. Instead of combining the last814

hidden states, we aggregated the logits, which rep-815

resent token probabilities across the 32,128-token816

vocabulary and directly influence token generation.817

As illustrated in Figure 7, this method performed818

even worse, achieving a maximum mean reward of819

only 0.5934, with the fluency metric scoring a mere820

0.1575. This poor performance can be attributed to821

the naive combination of vocabulary probabilities,822

Figure 6: Parameters-Level Aggregation Results.

where tokens generated by different local models 823

are simply concatenated. This process severely 824

impacts fluency, as the resulting text comprises 825

disconnected words calculated by different mod- 826

els. In contrast, the last hidden states aggregation 827

proves more effective by preserving the high-level 828

contextual information during generation. 829

Figure 7: Logits-Level Aggregation Results.

11.3 Evaluation Instruction 830

The human evaluation is supported by two anno- 831

tators, one is from China, and the other is from 832

11



Germany. The evaluation, based on their cross-833

cultural understanding, supports the robust human-834

annotated results. When evaluating responses,835

choose the most appropriate score (0, 1, or 2) based836

on these criteria. Responses may vary in complex-837

ity, and the judgment should be guided by the de-838

gree to which they reflect upon the client’s prompt.839

Reflection: 0 (Non-Reflection), 1( Simple840

Reflection), or 2 (Complex Reflection). Non-841

Reflection (0): A response is considered a non-842

reflection when it does not engage with the client’s843

input or the task at hand. It may be off-topic, irrel-844

evant, or simply fail to address the client’s query.845

Simple Reflection (1): A response is categorized846

as a simple reflection when it acknowledges the847

client’s input or question without adding substan-848

tial depth or insight. It might repeat or rephrase849

the client’s words, showing understanding but not850

extending the conversation significantly. Simple851

reflections demonstrate basic engagement with the852

client’squery. Complex Reflection (2): A response853

is identified as a complex reflection when it goes854

beyond mere acknowledgment and engages deeply855

with the client’s input or question. It demonstrates856

an understanding of the client’s thoughts, feelings,857

or concerns and provides a thoughtful, insightful,858

or elaborate response. Complex reflections con-859

tribute to the conversation by expanding upon the860

client’s ideas or by offering new perspectives.861

Empathy: 0 (Non-Empathetic), 1 (Basic Empa-862

thy), or 2 (Advanced Empathy). Non-Empathetic863

(0): A response that shows no recognition or ac-864

knowledgment of the person’s emotional state or865

perspective. E.g. Dismiss or invalidate feelings.866

Change the subject without addressing emotions.867

Offer purely factual or technical responses when868

emotional support is needed. Show complete mis-869

alignment with the person’s emotional state Basic870

Empathy (1): A response that demonstrates fun-871

damental recognition of emotions and attempts to872

understand the person’s perspective. E.g. Acknowl-873

edge obvious or stated emotions. Use basic emo-874

tional labelling ("That must be hard"). Mirror the875

person’s expressed feelings. Show surface-level876

understanding without deeper exploration. Offer877

general supportive statements. Advanced Empathy878

(2): A response that shows deep emotional attune-879

ment and sophisticated understanding of the per-880

son’s experience. Connect different aspects of the881

person’s experience and recognize nuanced emo-882

tional states. Demonstrate understanding of the883

broader context and implications. Show genuine884

emotional resonance while maintaining appropriate 885

boundaries. Help the person gain new insights into 886

their emotional experience. 887

Fluency: Assess the linguistic naturalness and 888

smoothness of the counsellor’s responses. Re- 889

sponses are rated on a scale from 0 to 2, where 890

0 indicates responses that lack fluency, 1 signifies 891

somewhat fluent responses, and 2 represents re- 892

sponses that are highly fluent and natural in their 893

expression. Fluent counsellor responses should 894

convey information in a clear and easily understand- 895

able manner, ensuring effective communication. 896
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