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Abstract

In-Context Learning (ICL) is one of the main mechanisms driving few shot learning1

capabilities of large language models (LLMs). A rich literatures explores the causal2

factors giving rise to this mechanism, while recent studies has pointed out that3

this mechanism can be transient. In this work, we study ICL on a synthetic task4

consisting of a probabilistic mixture of Markov chains which is simple enough5

to allow theoretical analysis yet rich enough to reproduce multiple phenomena6

discussed in the ICL literature. Here, we focus on analyzing the transient nature7

of ICL using this setup and elucidate the role of data and model training using a8

mechanistic phase diagram. Our findings conclude to: 1) A certain data diversity9

is required for ICL 2) a non-generalizing Bayesian solution might arise later10

in training if its circuit complexity is higher. We conclude: ICL, or any other11

generalizing solution, is subject to transience if there exists a better solution12

narrowly fitting the training distribution accessible by gradient descent.13

1 Introduction14

Figure 1: Markov Mixtures data explains multiple In-Context Learning Phenomena Autoregres-
sive transformers trained on Markov Mixtures exhibits multiple phenomena of In-Context Learning.
a) Data Diversity threshold for ICL [1] b) Emergence of Induction Heads for ICL [2, 3, 4, 5] c) This
work’s focus: Transient Nature of ICL [6, 7] d) Task Retrieval and Task Learning Phases of ICL
[8] e) Early Ascent of ICL Accuracy [9] f) Bounded Efficacy of ICL [10]
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In-Context Learning (ICL) is often attributed to be at the core of the impressive capabilities of15

LLMs[11, 12, 13]. Motivated by this, many past work has explored different aspects of ICL,16

including algorithms [14, 15, 16, 17, 18, 19], data dependence [1, 5], training dynamics [2, 3, 20, 21],17

test time behavior [9, 8, 22, 23, 10]. Recently, it has been proposed that ICL can also be transient18

[6, 7]. In this work, we develop a synthetic dataset which is defined in discrete token space unlike19

the common linear regression setup[14, 16, 21, 1] called Markov Mixtures. This simple dataset20

reproduces multiple phenomenologies explored in the literature as seen in Fig. 1. We then focus on21

one specific phenomena, the transient nature of ICL, and explain why and when ICL is transient.22

Our main contributions is as follows:23

1. Markov Mixtures Setup as a dataset to study ICL: We introduce a discrete sequence24

dataset, Markov Mixture, simple enough to postulate analytic solutions yet which reproduces25

many ICL phenomena.26

2. Discovering control variables for ICL: We discover data diversity and training time as27

two sharp requirements for ICL to emerge.28

3. Explaining the transient nature of ICL We provide a simple explanation of why ICL29

emerges: “There exists a non-generalizing solution which performs better on the training30

set".31

4. Elucidating the role of data and model training for generalization We run extensive32

experiments to reveal the role of data and model training in controlling generalization33

strategies.34

2 Setup35

Markov Mixtures Dataset Our data generating process (DGP) consists of a probabilistic mixture36

of Markov chains. n, k and l are hyperparameters of the DGP each controlling: how many transition37

matrices can we draw from, how big is the state space and how long is the sequence. The dataset is38

described in further detail in Appendix A39

Figure 2: Markov Mixtures Dataset Our dataset consists of n predefined matrices from which a
single matrix is chosen every time a datapoint(sequence) is drawn from the dataset.

Bayesian Solutions First, we introduce two simple Bayesian solutions which can be used to predict40

the next token on the Markov Mixtures dataset. .Since the training transition matrices are needed to41

compute the solution, the model needs to internalize(memorize) the training matrices to implement42

this solution. The first solution is Unigram Likelihood Bayesian Averaging(ULBA), which observes43

the stationary distribution of the given context and computes the likelihood over the different transition44

matrices which can explain the given distribution. The second solution, conceptually very similar is45

the Bigram Likelihood Bayesian Averaging(BLBA) solution, which is similar to ULBA, but uses a46

bigram based likelihood. I.e., this solution computes the likelihood over transitions instead of states.47

Please refer to Appendix B for the mathematical formulation of these solutions.48

Purely In-Context Solutions We discuss two purely In-Context solutions. We add the prefix49

“purely" to illustrate that these solutions are generalizing solutions with no performance gap between50

an In-Distribution (ID) evaluation and an Out-Of-Distribution (OOD) evaluation. Unigram In-51

Context Learning (UICL) infers the stationary token distribution from the context and draws new52
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token form that distribution. Bigram In-Context Learning (BICL) generates the transition matrix53

by counting transitions from the context. This solution is the generalizing “world model" solution.54

3 Results55

We train a transformer[24] with a autoregressive next token cross entropy loss on our Markov Mixtures56

dataset with k = 10, l = 512 and n ∈ 2{2,3,4,5,6,7,8,9,10,11}. Please see Appendix A for more details.57

3.1 Requirements for ICL58

Figure 3: Data Diversity and Enough Training is Required for ICL a) OOD KL divergence
depending on n and optimization steps. (Brighter is Higher, Worse) b,c,d) OOD and ID KL divergence
of difference solutions and the model, respectively at the checkpoint corresponding to A,B,C in
subpanel a).

Fig. 3 clearly demonstrates the joint data diversity and optimization step requirements for ICL. ICL59

emerges when, in this case, at least 600 gradient steps has been applied and when there are more60

than 26 latent transitions. It is notable that the compute requirement is extremely sharp, e.g. highly61

emergent behavior shows up as seen in Edelman et al. [4]. Subpanel b suggestst that checkpoint A62

is implementing UICL and checkpoint C is implementing BLBA, but only robustly for the ID data.63

Subpanel d shows that BICL has emerged and both ID and OOD data has a lower KL with more64

exemplars.65

3.2 Why Can ICL be Transient66

Figure 4: The implementation BLBP drives the transience of ICL a) ID, OOD model KL and
different solution KLs. n=64 b) same for n=128 c) Mechanistic Decomposition of model outputs and
corresponding test performance prediction.

Fig. 4 demonstrates why ICL can be transient. Fig. 4(a,b) shows that across different data diversity,67

the BICL solution starts fading away and the OOD KL divergence starts increasing when BLBP is im-68

plemented. The model does not optimize for test data, so the very mechanistic change which reduces69

the training data KL harms the OOD performance driving the transience of ICL. Fig. 4(c) shows70

that using a mechanistic decomposition approach(Explained in Appendix C), we can decompose the71

model into the 4 suggested mechanisms and get their weights, only using the training distribution.72

These weights are then used to predict the OOD performance as seen in the upper panel. This73

suggests that mechanistic decomposition on ID data and proper modelling of different mechanisms74

can explain/predict non-monotonic OOD performance.75
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3.3 The Role of Data and Model Training76

Figure 5: Model Variants and Data Variants induces a phase diagram Change. a) Using learned
positional encodings b) Using thinner MLP layers c) using a smaller state space. d) Using transition
encoding tokens.

Using the mechanistic decomposition seen above, we can draw a phase diagram of what solution the77

model implements. Here, we show that we can analyze the role of data and model training using these78

phase diagrams. Over different data and architectural changes, the general shape of the phase diagram79

remains. Notably we find that a thinner MLP suppresses the BLBP solution which intuitivelty makes80

sense as BLBP requires memorization of the training matrices. We also find that using tokens which81

embed states AND transitions, the BLBP solution emerges faster and to higher data diversity. We82

conclude: Data defines the optimality of different solution mechanisms and model training determines83

how these solutions are navigated.84

4 Discussion85

World Models v.s. Stochastic Parrots Recently, researchers have been interested in taking a86

position on the question of whether neural networks acquire world models or learn surface statistics87

(commonly said stochastic parrots).1 Some researchers have pointed out the possibility of a parrot[25,88

26] while others found evidence towards world models[27, 28, 29]. This work suggests a simple89

answer: “You get a parrot if the parrot works better, you get a world model if the world model works90

better", however, depending on your training setup, your world model or your parrot might not have91

arrived yet.92

Optimization and Simplicity Bias Past work has explored competing solutions to a task with a93

simplicity perspective[30, 31]. From the simplicity perspective, we expect a transient generalizing94

solution when there exists a solution which is 1) better performing with respect to the training95

distribution and 2) complex enough to take a lot of optimization to learn. Our BLBA solution is96

indeed such case, as one can see from its attention matrix, which requires additional diagonal weights97

on top of an induction head. Our experiments with transition encoding tokens reveals that making98

this solution more accessible accelerates(in training steps) and severes(in data diversity) the transient99

nature of the BICL solution.100

Conclusion We conclude our work with a hypothesis which we name The Obvious Hypothesis, as101

it might be indeed obvious for some readers:102

The Obvious Hypothesis: Model training simply optimizes it on the training data, generalization103

happens when the mechanism it currently implements on the training data turns out to be a generaliz-104

ing one. A discovery of a better performing algorithm on the training set could lead to a deactivation105

of the generalizing mechanism.106

1The authors believe this is not a question one can answer with rigor and generality, but more of a nu-
ance/position survey.
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A Experimental Details204

A.1 Data205

n determines the number of pre-drawn transition matrices of the training set. k is the number of206

states, here equivalent to the number of tokens. The transition matrix is thus R(k,k). When drawing a207

new data point from the dataset, a transition matrix is chosen from the n matrices, say Ti. Then a208

start token is drawn from πi, the stationary distribution corresponding to Ti. The Markov chain is209

continued using the same transition matrix, until a length of l is reached. k is fixed to 10 except in210

Fig 5(c), and l is always fixed to 512 during training.211

A.2 Model212

We use a standard transformer[24] architecture with a Rotational Positional Embedding(RoPE)[32]213

unless otherwise specified. The transformer has 2 layers, 4 heads and an embedding dimension of 64.214

The MLP layers upsample to 256 dimensions(a ratio of 4) expect in Fig 5(b) where the ratio is set to215

0.25. The number of steps are adjusted to match the same total compute FLOPs.216

A.3 Training217

We train the model with the DGP using a batch size of 128. We have tried a batch size of 64 and218

256 and observed the same results. We use the AdamW[33] optimizer with a learning rate of 1e− 3.219

Model parameters are initialized to N (0, 0.02Σ).220

B Additional Details for Solutions221

Eq. 1 and Eq. 2 respectively defines the unigram and bigram likelihood over the training set transition222

matrices. πi is the stationary distribution corresponding to Ti, which satisfies πT = π.223

Unigram Likelihood: LU (Ti|x0:t) = Πt
j=1πi[xj ] (1)

Bigram Likelihood: LB(Ti|x0:t) = Πt−1
j=1Ti[xj−1,xj ] (2)

Bayesian Solution: p(xt|x0:t−1) =
∑
i

pi L(Ti|x0:t−1) Ti[xt−1,xt] (3)

Eq. 3 describes the Bayesian averaging process, which takes either of the unigram or bigram likelihood224

and computes the next token probability. The next token probability can be simply understood as a225

weighted average over hypotheses of what transition matrix might be underlying the data.226

Eq. 4 and Eq. 5 respectively defines the transition matrix inferred by the UICL solution and the BICL227

solution. Note that the transition matrix elements inferred from UICL does not depend on the indice228

i, i.e. it does not depend on the current state as it is a unigram solution.229

Unigram ICL: T̂U
[i,j](xt) = π̂[j](xt) =

∑t
k=1 δxk,j

t
(4)

Bigram ICL: T̂B
[i,j](xt) =

1 +
∑t−1

k=1 δxk,iδxk+1,j

k +
∑t−1

k=1 δxk,i

(5)

C Mechanistic Decomposition230

We decompose the model output logits linearly as:231

M(xt|x0:t−1) = wULBAULBA(xt|x0:t−1) + wBLBABLBA(xt|x0:t−1) (6)
+ wUICLUICL(xt|x0:t−1) + wBICLBICL(xt|x0:t−1) (7)
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This system might seem under determined just from this equation, however232

ULBA,BLBA,UICL,BICL has no hyperparameters and there is an infinite amount of233

x0:t we can sample, so there exists an unique optimal solution. In practice, we draw 300 chains to234

determine the weights at each checkpoint. The phase diagrams in Fig 5 are constructed by assining235

each weight a color.236
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