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ABSTRACT

Our goal is to understand why the robustness accuracy would abruptly drop to zero,
after conducting FGSM-style adversarial training for too long. While this phe-
nomenon is commonly explained as overfitting, we observe that it is a twin process:
not only does the model catastrophic overfits to one type of perturbation, but also
the perturbation deteriorates into random noise. For example, at the same epoch
when the FGSM-trained model catastrophically overfits, its generated perturbations
deteriorate into random noise. Intuitively, once the generated perturbations become
weak and inadequate, models would be misguided to overfit those weak attacks
and fail to defend strong ones. In the light of our analyses, we propose APART, an
adaptive adversarial training method, which parameterizes perturbation generation
and progressively strengthens them. In our experiments, APART successfully
prevents perturbation deterioration and catastrophic overfitting. Also, APART
significantly improves the model robustness while maintaining the same efficiency
as FGSM-style methods, e.g., on the CIFAR-10 dataset, APART achieves 53.89%
accuracy under the PGD-20 attack and 49.05% accuracy under the AutoAttack1.

1 INTRODUCTION

While neural networks keep advancing the state of the arts, their vulnerability to adversarial at-
tacks (Szegedy et al., 2013) casts a shadow over their applications—subtle, human-imperceptible
input shifts can fool these models and alter their predictions. Adversarial training adds perturbations
to model inputs during training, and is one of the most successful approaches to establish model
robustness (Goodfellow et al., 2014; Madry et al., 2017; Kurakin et al., 2017; Tramèr et al., 2017;
Zhang et al., 2019b; Liu et al., 2018).

One crucial and common challenge in adversarial training is the significant computation overhead,
e.g., it may take 3-30 times longer to conduct adversarial training than the vanilla training. In
response to this challenge, there has been a recent surge in work aiming to reduce the computation
overhead (Goodfellow et al., 2014; Shafahi et al., 2019a; Zhang et al., 2019a; Wong et al., 2020).
Although these methods successfully accelerates adversarial training, they lead to an unexpected
phenomenon—when conducting FGSM-style adversarial training, the model robustness would
abruptly drop to zero (Rice et al., 2020) at certain epoch. This phenomenon is referred as catastrophic
overfitting, and the robustness drop is usually viewed as model overfitting—the model overfits to one
specific type of perturbation (Rice et al., 2020; Wong et al., 2020; Kim et al., 2021).

Here, we show that the robustness drop is a twin process. Besides the model overfitting to one
type of perturbation, we observe perturbations becoming too weak to establish model robustness.
For example, as visualized in Figure 1, both the model and the perturbation change dramatically
between Epoch 15 and Epoch 16—the robust accuracy of the model drops from 45 to almost zero,
the perturbation strength deteriorates dramatically. As implied by this phenomenon, we suggest that
there exists strong correlations between the catastrophic overfitting and perturbation deterioration.
Intuitively, without perturbation deterioration, even if the model overfits to one type of perturbation
with a reasonable strength, it would lead to a sub-optimal robustness instead of entirely diminished
robust accuracy. Meanwhile, once the perturbation deteriorates into random noise, overfitting to that
random noise-like perturbation could cause the model robustness drop to zero.

1Code will be released under the Apache-2.0 license for future studies.
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Table 1: Notation Table (Elaborated in Section 2)

x is input y is label α is step size L is objective ∆x = ∂L/∂x ∆θ = ∂L/∂θ

θ
(i)
A model parameter θ trained for i epochs by method A

fA(θ,x, y) perturbation generated by method A to attack model θ on x, y

ωx perturbation initialization as parameterized by FGSM+ and APART

GB,i(A) perturbation strength of fA(θ
(i)
A ), calculated as its gap to fB(θ

(i)
A ) on model θ(i)A

Acc(θ
(i1)
A , fB(θ

(i2)
C , ·)) accuracy of θ(i1)A when attacked by perturbations generated by fB(·) for θ(i2)C

Truck Bird Airplane                  Ship

𝟏𝟓𝒕𝒉 epoch

𝟏𝟔𝒕𝒉 epoch

Original Image

Perturbation 
distinguishes the 
object and the 
background

Perturbations is 
in a random 
manner

(a) FGSM-Generated Perturbations.

15!" 16!"

FGSM 
APART-Simple
APART

(b) Test Accuracy under PGD-10.

Figure 1: Analyses of FGSM-generated perturbations (for Pre-ResNet18 on the CIFAR-10 dataset).

From this perspective, the key to prevent catastropic overfitting falls upon shielding models from per-
turbation deterioration. Correspondingly, we design an adaptive adversarial training method, APART,
which parameterizes perturbation generation and updates its parameters to progressively strengthen
the perturbation generator with gradient ascent. Specifically, we first treat perturbation initialization
as parameters—instead of starting from scratch every time, APART improve the initialization with
gradient ascent. Then, APART factorize the input perturbation as a series of perturbations, which
are integrated with learnable step sizes and can self-adapt to different scenarios. In our experi-
ments, APART leads to consistent performance improvements over FGSM-style algorithms while
maintaining roughly the same efficiency.

2 PRELIMINARIES AND NOTATIONS

Given a neural network with n convolution blocks, we denote the input of the i-th block as xi, the
input and output of the entire network as x and y. Note that, x and x1 are the same in conventional
residual networks, such as ResNet (He et al., 2016a), Wide ResNet (Zagoruyko & Komodakis, 2016),
and Pre-Act ResNet (He et al., 2016b). Adversarial training aims to establish the model robustness by
solving the optimization problem as below (θ is the network parameter, δ is the perturbation, (x, y) is
a data-label pair, and f(·) is the perturbation generation function).

min
θ
L(θ,x + δ, y) s.t. δ = f(θ,x, y). (1)

Different adversarial training methods generate perturbations differently. Ideally, adversarial training
should use the most effective (i.e., strongest) perturbation within the same norm constraint, i.e.,
f∗(·) = argmax||δ||≤ε L(θ,x+δ, y). In practice, as an approximation, f(·) is typically implemented
as gradient ascent with fixed iteration and step size. For example, the FGSM algorithm directly
calculates perturbations as fFGSM(θFGSM,x, y) = ε · sign(∆x). Also, we use θ(i)method to refer to
model parameters that are trained by a specific adversarial training algorithm for i epochs. We
use Acc(θ(i1)A , fB(θ

(i2)
C , ·)) to indicate the performance of model θ(i1)A , under fB(θ

(i2)
C , ·)), i.e., the

perturbation generated by method fB(·) to attack θ(i2)C . These notations are summarized in Table 1.
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Figure 2: Perturbation strength in different epochs. In part (a), perturbation strength is estimated by
transfer the adversary image to attack a model trained by PGD-10 separately for 30 epochs. In part
(b), perturbation strength is estimated as the gap to a stronger attack (PGD-10 here)

3 PERTURBATION DETERIORATION AND CATASTROPHIC OVERFITTING

Typically, the robustness drop is viewed as model overfitting (Rice et al., 2020; Wong et al., 2020;
Kim et al., 2021) and this phenomenon is referred as catastrophic overfitting. Meanwhile, it has been
observed that catastrophic overfitting only happens to simple methods like FGSM (Goodfellow et al.,
2014) 2, indicating this phenomenon is not only about model overfitting, but also the strength of
perturbation. Inspired by this observation, we aim to explore the other side of catastophic overfitting,
i.e., perturbation deterioration.

3.1 PERTURBATION STRENGTH

To verify our intuition, we try to empirically estimate the perturbation strength and analyze its
dynamics during the adversarial training.

First, we try to estimate the perturbation strength of fA as Acc(θ30PGD-10, fA(θiA, ·)), i.e., using fA(θiA)
to attack a model trained separately with PGD-10 for 30 epochs. For comparisons, we also list the
performance of θ30PGD-10 under random noise. As visualized in Figure 2(a), in the first 15 epochs, the
perturbation strength of FGSM keeps increasing, while at the 16 epoch, its strength dramatically
drops to the random noise level. This shows that, after the perturbation deterioration, the perturbations
not only look like random noise, but also behaves like random noise.

Alternatively, we estimate the perturbation strength of fA as its gap to a more powerful method fB.
Specifically, we calculate the strength for fA(θ

(i)
A , ·) as GB,i(A) in Equation 2. Intuitively, the weaker

the perturbation fA is, the larger GB,i(A) would be.

GB,i(A) = L(δA)− L(δB) where L(δmethod) = L(θ
(i)
A ;x + fmethod(θ

(i)
A ,x, y), y). (2)

We conduct experiments with Pre-Act ResNet18 on the CIFAR-10 dataset and visualize
GPGD-10,i(FGSM) in Figure 2(b). It shows that the strength gap between PGD-10 and FGSM is
small in the early stage, dramatically explodes at the 16th epoch, and keeps a large value since then
(i.e., the perturbation strength mostly vanishes at the 16th epoch).

Perturbation Deterioration. In both cases, the timing of perturbation strength deterioration co-
incides with the timing of the robustness drop, thus supporting our intuition that the other side of

2For a FGSM trained Pre-ResNet18 (on CIFAR-10), its accuracy under PGD-20 attacks drops from 45%
(epoch 15) to 0% (epoch 16); For a PGD-10 trained model, it drops from 49% (epoch 30) to 38% (epoch 200).
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Algorithm 1: APART (the first and the second round propagations are marked with red and blue;
ε is the perturbation bound; µθ, µω , and µα are learning rates for θ, ω, and α; Table 1 summarizes
others notations).

1 while not converged do
2 for x, y in the training set do
3 δ1 ← αω · ωx //initialize the perturbation for the model input.

4 δ1 ← max(min(δ1 + α1 · sign(∂L(θ;x+δ1,y)∂x1
),−ε),+ε) //calculate δ1.

5 for each residual block with index i > 1 do
6 δi ← αi · sign(∂L(θ;x+δ1,y)∂xi

) //calculate perturbations for block i.

7 θ = θ − µθ · ∂L(θ;{xi}ni=1+{δi}
n
i=1,y)

∂θ //update parameters.

8 ωx = max(min(ωx + µω · sign(
∂L(θ;{xi}ni=1+{δi}

n
i=1,y)

∂ωx
),−1), 1) //update ωx.

9 αi = αi + µα · (∂L(θ;{xi}ni=1+{δi}
n
i=1,y)

∂αi
− λ · ∂|αi|22

∂αi
) //update step sizes.

10 return θ

catastrophic overfitting is perturbation deterioration. Intuitively, adversarial training cannot establish
satisfying model robustness without strong enough perturbations, and strong perturbations require
a small gap G(·). However, one local optima of Equation 1 is the parameter θ that deteriorates
f(θ, ·) into random noise, which advances the optimization of Equation 1 at the cost of deteriorated
perturbations. Also, since all parameter updates are made to decrease L, most existing methods have
no regularization to keep the perturbation strength.

3.2 ADAPTIVITY HELPS PREVENT CATASTROPHIC OVERFITTING

Here, we further verify our intuition by showing that it prevents the catastrophic overfitting by
alleviating the perturbation deterioration. Intuitively, one straightforward way to strengthen generators
is to parameterize them and update them together with model parameters. Specifically, we treat the
perturbation initialization for the input (denoted as ωx) and the step size (referred as α) as parameters
of FGSM, and change the objective from Equation 1 to:

max
α,ω

min
θ
L(θ;x + fFGSM(α, ωx; θ,x, y), y). (3)

During model training, we update θ with gradient descent and update α and ωx with gradient ascent.
We refer this variant as APART-Simple. Note that its only difference to FGSM is that APART-
Simple is parameterized and can be enhanced during training, thus suffering less from perturbation
deterioration.

We conduct experiments with Pre-Act ResNet18 on the CIFAR-10 dataset, and visualize
Acc(θ

(30)
PGD-10, fFGSM(θ

(i)
APART-Simple, ·)) in Figure 2(a) and GPGD-10,i(APART-Simple) in Figure 2(b). It shows

that APART-Simple does not suffer from the catastrophic overfitting. This not only supports our
intuition that the perturbation deterioration is one cause of the catastrophic overfitting, but motivates
us to add more adaptivity to the perturbation generator.

4 ADAPTIVE ADVERSARIAL TRAINING

Guided by our analyses, we propose to improve FGSM by further improving the perturbation
generator during the training. Since the algorithm features the ability to adapt itself, we refer our
method as adaptive adversarial training (APART). Specifically, it first factorizes the perturbation
for the input image into a series of perturbations, one for each residual block. Moreover, it employ
different step sizes for different perturbations, treat them as learnable parameters, update them to
integrate perturbations adaptively, and strengthen the generator during the model training.

Factorize the Input Perturbation. For a multi-layer network, the perturbation generated at the
input attacks not only the first layer, but also all following layers. Intuitively, existing methods like
PGD-N implicitly blender these attacks with N additional forward- and backward-propagations on
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Table 2: Model Performance of WideResNet34-10 on the CIFAR-10 dataset.

Efficient Methods PGD-20 AA C&W Gaussian Clean Data Time/Epoch

× ATTA-10 54.33% 49.10% 59.11% 77.05% 83.80% 706 secs
× PGD-10 55.41% 52.08% 58.77% 77.70% 86.43% 680 secs
X Free-8 47.68% 46.21% 56.31% 75.98% 85.54% 252 secs
X S+FGSM 36.71% 33.15% 44.50% 81.25% 85.15% 232 secs
X F+FGSM 46.37% 44.27% 56.21% 75.10% 85.10% 122 secs
X APART 53.89% 49.05% 58.50% 77.31% 84.65% 162 secs

the input perturbation, which significantly inflates the computation cost. Here, we factorize the
input perturbation as a series of perturbations and explicitly learn to combine them. Specifically,
we refer to the input of i-th residual block as xi and the output of i-th residual block as xi +
CNNs(xi). Then, we add the perturbation ∆xi to the input of CNNs(·) to establish its robustness,
i.e., xi + CNNs(xi + δi) where δi = αi∆xi. Similar to PGD-N, this approach also involves multiple
perturbations; different from PGD-N, these perturbations can be calculated with the same forward-
and backward-propagations.

Initialization Parameterization. Similar to APART-Simple, we also treat perturbation initializations
as learnable parameters to better defense the deterioration. Since it consumes additional memory,
we only parameterize the perturbation initialization at the input, and keep all other perturbations
zero-initialized. In this way, the additional storage has roughly the same size with the dataset.

APART Algorithm. We summarize APART in Algorithm 1. Same with FGSM, it contains two
rounds of forward- and backward-propagations. In the first round, it initializes the input perturbation
and calculates gradients for both the input of the first layer and the input of all the following blocks.
In the second round, it applies the generated perturbations to the input of the corresponding blocks,
i.e., change xi + CNNs(xi) to xi + CNNs(xi + δi). Then, besides updating model parameters with
gradient descent, we enhance the generator with gradient ascent (i.e., updating step sizes αi and the
perturbation initialization ωx). Note that, to control the magnitude of step sizes αi, we add a L2

regularization to its updates and use λ to control it (as line 9 in Algorithm 1).

Note that, calculating the exact gradients of ωx or αω requires a second order derivation (∆ωx

and ∆αω are based on δi, and the calculation of δi includes some first order derivations involving
ωx and αω). Due to the success of the First-order MAML (FOMAML) (Finn et al., 2017), we
simplifies the calculation by omitting higher order derivations. Specifically, FOMAML demonstrates
the effectiveness to ignore higher order derivations and approximate the exact gradient with only
first order derivations. Here, we have a similar objective with FOMAML—FOMAML aims to find a
good model initialization, and we try to find a good perturbation initialization. Thus, we also restrict
gradient calculations to first-order derivations. In this way, APART has roughly the same computation
complexity with FGSM and it is significantly faster than PGD-N.

5 EXPERIMENTS

As in Figures 2(a) and Figure 2(b), APART shields adversarial training from catastrophic overfitting
and largely alleviates the robustness drop. Systematic evaluations are further conducted as below.

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) as
well as the ImageNet dataset (Krizhevsky et al., 2012).

Neural Architectures. We conduct experiments with ResNet He et al. (2016a), Pre-ResNet (He
et al., 2016b) and WideResNet (Zagoruyko & Komodakis, 2016). Specifically, we use Pre-ResNet18
and WideResNet34-10 on the CIFAR-10 dataset, Pre-ResNet18 on the CIFAR-100 dataset, and
ResNet50 (He et al., 2016a) on the ImageNet dataset.

Data Augmentation. Following the previous work, we apply the standard data augmentation. For
the CIFAR datasets, we apply random flipping as a data augmentation procedure and take a random
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Table 3: Model Performance of Pre-ResNet18 on the CIFAR-10 dataset.

Efficient Methods PGD-20 AA C&W Gaussian Clean Data Time/Epoch

× ATTA-10 49.03% 45.70% 58.30% 73.10% 82.10% 140 secs
× PGD-10 52.16% 48.50% 58.97% 72.33% 82.05% 133 secs
X Free-8 47.37% 44.53% 56.10% 72.56% 81.64% 62 secs
X S+FGSM 34.47% 32.15% 42.21% 73.45% 89.28% 61 secs
X F+FGSM 46.06% 42.37% 55.34% 72.25% 83.81% 20 secs
X APART 51.30% 45.92% 58.73% 73.65% 82.80% 29 secs

crop with 32× 32 from images padded by 4 pixels on each side (Lee et al., 2015). For the ImageNet
dataset, we divide the training into three phases, where phases 1 and 2 use images resized to 160 and
352 pixels and the third phase uses the original images (Wong et al., 2020).

Optimizer. For all experiments, we use SGD with momentum as the optimizer. The momentum
factor is set to 0.9 and the training is conducted for 60 epochs with cyclic learning rate (Smith, 2017),
where the maximum learning rate is set to 0.2 and minimum learning rate is set to 0. For the ImageNet
dataset, we adopt a setting similar to Wong et al. (2020) and train the model for 15 epochs; The
maximum learning rate of cyclic learning rate schedule is set to 0.4 and the learning rate is set to 0.

Other Hyper-parameters. For all experiments, we apply the cyclic learning rate scheduler for µα.
On the CIFAR datasets, the maximum learning rate and λ are set as 5× 10−8 and 200, respectively;
on the ImageNet dataset, they are set as 4 × 10−9 and 5000, respectively. Due to the similarity
between line 4 and line 7 in Algorithm 1, we set µω as α1

αω
, which makes the update on ω has a similar

impact with the update in line 4 of Algorithm 1.

Robustness Evaluation. We adopt PGD-20, AutoAttack (Croce & Hein, 2020), Gaussian random
noise, and C&W (Carlini & Wagner, 2017) as the attack methods for evaluation. For both adversarial
training and evaluation, we restrict perturbations to |δ|∞ ≤ 8/255 on the CIFAR datasets, |δ|∞ ≤
2/255 on the ImageNet dataset.

Infrastructure. Our experiments are conducted with NVIDIA Quadro RTX 8000 GPUs; mixed-
precision arithmetic (Micikevicius et al., 2018) is adopted to accelerate model training; the training
speed of APART or baselines is evaluated on an idle GPU.

5.2 COMPARED METHODS

For comparison, we select three state-of-the-art adversarial training methods, which features efficient
training. Also, we list two other adversarial training methods that are significant slower. On the
CIFAR datasets, we report accuracy and training time based on our experiments. As to ImageNet, we
directly refer to the number reported in the original papers.

• PGD-N (Madry et al., 2017) is a classical, sophisticated adversarial training method. PGD is an
iterative version of FGSM with uniform random noise as initialization and N is the number of
iterations.

• ATTA-K (Zheng et al., 2019) uses the adversarial examples from neighboring epochs. K is the
number of iterations and denotes the strength of attack.

• Free-m (Shafahi et al., 2019a) uses the same backward propagation to update both the model and
trains on the same minibatch m times in a row. Here we set m = 8.

• F+FGSM (Wong et al., 2020) uses a large step size and random initialization to improve FGSM. It
achieves comparable performance with PGD-10, but still suffers from the robustness drop.

• S+FGSM (Kim et al., 2021) uses several checkpoints to validate the inner interval of perturbation
direction to determine the appropriate magnitude of the perturbation of each image.

5.3 PERFORMANCE COMPARISON

Generally, we observe that PGD and ATTA achieves better performance than other methods, at
the cost of significant training overheads. Meanwhile, APART achieves consistent performance
improvements over FGSM-style methods, while maintaining roughly the same training speed.

6



Under review as a conference paper at ICLR 2022

Table 4: Model Performance of Pre-ResNet18 on the CIFAR-100 dataset.

Efficient Methods PGD-20 AA C&W Gaussian Clean Data Time/Epoch

× ATTA-10 25.60% 22.90% 30.75% 42.10% 56.20% 140 secs
× PGD-10 28.10% 25.11% 33.35% 42.41% 57.23% 133 secs
X Free-8 25.88% 22.15% 30.55% 42.15% 55.13% 62 secs
X S+FGSM 10.15% 8.91% 15.11% 50.00% 71.10% 61 secs
X F+FGSM 25.31% 21.32% 30.06% 42.03% 57.95% 20 secs
X APART 27.56% 23.38% 32.36% 44.37% 58.40% 29 secs

Table 5: Model Performance of ResNet50 on the ImageNet dataset. + indicates single precision
training.

Efficient Methods Clean Data PGD-10 Attack Time/Epoch

× ATTA-2 (Zheng et al., 2019) 60.70% 44.57% 4.85+ hrs

X Free-4 (Shafahi et al., 2019a) 64.44% 43.52% 3.46 hrs
X F+FGSM (Wong et al., 2020) 60.90% 43.46% 0.8 hrs
X APART 60.52% 44.30% 1 hrs

Table 6: Ablation study of APART on the CIFAR-10 dataset with Pre-ResNet20.

Training Methods Clean Data PGD-20 Attack AA

APART 82.80% 51.30% 45.92%
APART (w/o layer-wise perturbation) 83.64% 47.28% 43.10%
APART (w/o perturbation initialization) 82.42% 50.10% 45.10%

Specifically, we summarize results on the CIFAR-10 in Table 2 and Table 3, CIFAR-100 in Table 4,
and ImageNet in Table 5. Comparing to Free-8, S+FGSM, and F+FGSM, APART achieves consistent
performance improvements against PGD-20, AutoAttack, and C&W attack for both Pre-ResNet18
and WideResNet34-10. As to ATTA-10 and PGD-10, APART achieves slightly worse performance
with 4+ times speedup. Among all methods, F+FGSM is the fastest method, and APART significantly
improves the model robustness without significant computation overheads. For example, F+FGSM
takes 122 secs/epoch for training WideResNet34-10 on the CIFAR-10 dataset, and APART takes 162
secs/epoch to achieve a 7.52 absolute accuracy improvement under the PGD-20 attack and a 4.78
absolute accuracy improvement under the AutoAttack.

It is worth mentioning that, on CIFAR-10 and CIFAR-100, S-FGSM has the best performance under
Gaussian noise attack due to its high clean accuracy while the performances under PGD-20 and C&W
attack are much poorer than other methods. This trade-off is further discussed in Section 5.4.

5.4 BALANCING CLEAN ACCURACY AND ROBUST ACCURACY

As shown in Tables 3, 2, and 4, the robustness improvement usually comes at the cost of accuracy
on clean images. Meanwhile, the performances on corrupted images have consistent trends, e.g., if
method A outperforms B under PGD-20 attack, A likely also outperforms B under AutoAttack or
C&W attack. To better understand the trade-off between the clean accuracy and the model robustness,
we employ different ε values during training (i.e., [ 2

255 ,
3

255 , · · · ,
10
255 ]), train multiple models for each

method, and visualize their performance of Pre-ResNet20 on the CIFAR-10 dataset in Figure 4. Points
of APART locate in the right top corner of the figure and significantly outperform other methods.
This further verifies the effectiveness of APART.

5.5 ABLATION STUDIES

APART employs two techniques to parameterize the perturbation generator. The first is to learn an
initialization for the perturbation, and the second is to factorize input perturbations into a series of
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Figure 5: APART can alleviate the robust overfitting (note that APART is ∼ 4x faster than PGD-10).

perturbations. To understand the effectiveness of them, we conduct an ablation study and summarized
the results in Table 6. Removing layer-wise perturbations leads to a 4.02% drop and a 2.48% drop on
accuracy under PGD-20 attack and AutoAttack respectively; Removing perturbation initialization
leads to a 1.20% drop and a 0.82% drop on accuracy under PGD-20 attack and AutoAttack respectively.
Therefore, both techniques are helpful and necessary to achieve a better model robustness.

5.6 EVOLUTION OF STEP SIZES

After factorizing the input perturbation as a series of perturbations, we employ learnable step sizes
to compose perturbations more effectively. To better understand these step sizes, we visualize their
values during the training of Pre-ResNet20 on the CIFAR-10 dataset in Figure 3. It shows that the
first-layer perturbation is more important than others. Also, the step sizes of perturbation at the first
and the second layers decrease after 10 epochs, while other step sizes keep increasing across the
training. This phenomenon verifies that APART is able to adapt the generator setting to different
training stages.

5.7 ALLEVIATION OF ROBUST OVERFITTING

Besides shielding the model from catastrophic overfitting, we observe that APART can also alleviate
the robust overfitting. Specifically, as visualize the training curve of APART and PGD-10 in Figure 5,
both APART and PGD-10 consistently get better training accuracy in the first 200 epochs. Meanwhile,
after the first 30 epochs, both methods suffer from robustness drop against the PGD-20 attack. This
phenomenon is referred as robust overfitting, and we can observe that APART suffers less from
the robust overfitting. To better understand this phenomenon, we also calculated their perturbation
strength gap to PGD-20, i.e., GPGD-20,i(method) = L(θ

(i)
method;x+fmethod(θ

(i)
method,x, y), y)−L(θ

(i)
method;x+

fPGD-20(θ
(i)
method,x, y), y). We can find that both methods get larger perturbation strength gap in the

later stage of training, and APART consistently gets a smaller gap. Intuitively, adaptive perturbation
generator can prevents the model overfitting to a single type of perturbation, thus alleviating the
robust overfitting.
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6 RELATED WORK

6.1 ADVERSARIAL TRAINING

Goodfellow et al. (2014) first recognize the cause of the adversarial vulnerability to be the extreme
nonlinearity of deep neural networks and introduced the fast gradient sign method (FGSM) to generate
adversarial examples with a single gradient step. Madry et al. (2017) propose an iterative method
based on FGSM with random starts, Projected Gradient Descent (PGD). PGD adversarial training
is effective but time-consuming, and thus some recent work also pays attention to the efficiency of
adversarial training. For example, Shafahi et al. (2019b) propose to update both the model parameters
and image perturbations using one simultaneous backward pass. Zhang et al. (2019a) show that
the first layer of the neural network is more important than other layers and make the adversary
computation focus more on the first layer. Zheng et al. (2019) also improve the utilization of gradients
to reuse perturbations across epochs. Wong et al. (2020) use uniform random initialization to improve
the performance of FGSM adversarial training. APART improves the efficiency and effectiveness
of adversarial training by factorizing the input perturbation as a series of perturbations. Previous
methods only added the perturbation to input images, while APART adds perturbation to the input
of residual blocks. Perturbations added to intermediate variables help improve the robustness, as
discussed in Section 5.5.

6.2 ROBUSTNESS DROP

Wong et al. (2020) mention the robustness drop as overfitting and first identify a failure mode named
as “catastrophic overfitting”, which caused FGSM adversarial training to fail against PGD attacks.
Rice et al. (2020) further explore the overfitting in other adversarial training methods, such as PGD
adversarial training and TRADES. They observe that the best test set performance was achieved after
a certain epochs and further training would lead to a consistent decrease in the robust test accuracy,
and therefore explain it as “robust overfitting”. Rice et al. (2020) show that robustness drop is a
general phenomenon but they did not analyze its cause. Kim et al. (2021) asserts that catastrophic
overfitting is caused by the fixed perturbation step size in single-step adversarial training, while we
found PGD-2 may also suffer from catastrophic overfitting, even it does not fix the perturbation step
size. In this work, we explore the nature of robustness drop in adversarial training and further propose
APART to address the perturbation deterioration issue.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we attempt to explore the mechanism behind catastrophic overfitting. As the common
wisdom views the robustness drop as model overfitting, our analyses in Section 3 present a novel
perspective and suggest that the other side of catastrophic overfitting is perturbation deterioration.
Guided by our analyses, we propose APART, an adaptive adversarial training framework. APART
parameterizes the perturbation initialization, factorizes the input perturbation into a series of per-
turbations (one for each layer in the neural networks), and progressively strengthens them during
the training. In our experiments, APART not only successfully shields the model from catastrophic
overfitting, but also achieves consistently performance improvements while maintaining roughly the
same training efficiency with FGSM-style methods.

The major limitations of our method is that it can only be applied to residual networks, and it achieves
faster training at the cost of some model robustness. There are several interesting directions to
pursue in future work, including applying APART to general neural models, further improve the
performance of APART by further strengthing the perturbation generator. Besides, we plan to explore
the underlying mechanism of other phenomenons, like the trade-off between clean accuracy and
robust accuracy.

Reproducibility. In this study, we conduct experiments on three public datasets, i.e., CIFAR-10,
CIFAR-100, and ImageNet. We will release implementations for all methods and scripts for all
experiments on GitHub, under the Apache-2.0 license.
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