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a b s t r a c t 

We propose and evaluate several deep network architectures for measuring the similarity between 

sketches and photographs, within the context of the sketch based image retrieval (SBIR) task. We study 

the ability of our networks to generalize across diverse object categories from limited training data, and 

explore in detail strategies for weight sharing, pre-processing, data augmentation and dimensionality re- 

duction. In addition to a detailed comparative study of network configurations, we contribute by describ- 

ing a hybrid multi-stage training network that exploits both contrastive and triplet networks to exceed 

state of the art performance on several SBIR benchmarks by a significant margin. 

Datasets and models are available at http://www.cvssp.org . 
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. Introduction 

Sketches are an intuitive modality for communicating everyday

oncepts, and are finding increased application on modern touch-

creen interfaces (e. g. on tablets, phones) where gestural interac-

ion is natural. Such devices are now the platform on which the

ajority of today’s visual content is consumed, motivating research

nto sketch as a medium for searching images and video. 

This paper addresses the problem of sketch based image re-

rieval (SBIR); searching a collection of photographs (images) for a

articular visual concept using a free-hand sketched query. We ex-

lore SBIR from the perspective of a cross-domain modeling prob-

em, in which a low dimensional embedding is learned between

he space of sketches and photographs. Traditionally, SBIR has been

ddressed using sparse feature extraction and dictionary learning,

ollowing the successful application of the same to recognition

nd search in natural images [1–3] . Deep convolutional neural net-

orks (CNNs) have since gained traction as a powerful and flexible

ool for machine perception problems [4] , and recently have been

xplored for SBIR particularly within fine-grain retrieval tasks, e.g.

o find a specific shoe within a dataset of shoes [5,6] . Despite early,

romising results, it is unclear how suitable embeddings learned

y these multi-branch networks are for generalizing across object
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ategories [2,3] . For example, enabling a user to search for visual

ttributes within datasets containing diverse objects (e. g. a specific

urniture form, a spotted dog, or particular building structure); a

roblem explored more extensively by prior work [2,3,7] . 

The technical contributions of this paper are two-fold. First, we

resent a comprehensive investigation of triplet embedding strate-

ies evaluating these against popular SBIR benchmarks (Flickr15k

3] , TU-Berlin [2] ). In the spirit of recent ‘details’ papers studying

eep networks for object recognition [8] , we explore appropriate

NN architectures, weight sharing schemes and training method-

logies to learn a low-dimensional embedding for the representa-

ion of both sketches and photographs—in practical terms, a space

menable to fast approximate nearest neighbor (ANN) search (e. g.

 

2 norm) for SBIR. Second, we describe a novel triplet architec-

ure and training methodology capable of generalizing across hun-

reds of object categories, and show this to outperform existing

BIR methods by a significant margin on leading benchmarks [2,3] .

Concretely, we explore several important questions around ef-

ective learning of deep representations for SBIR: 

1. Generalization: Given the diversity of visual concepts in the

ild ( ∼ 10 5 categories) and the challenges of annotating large

ketch datasets (current best ∼ 10 2 categories [2] ) how well can a

etwork generalize beyond its training to unseen sketched object

ategories? Are class diversity and volume of exemplars equally

mportant? 

2. Input modality: SBIR and the related task of sketched image

lassification variously employ edge extraction as a pre-processing

https://doi.org/10.1016/j.cag.2017.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.12.006&domain=pdf
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step to align the statistics of sketch and photo distributions. Is this

a beneficial strategy when learning a SBIR feature embedding? 

3. Architecture: Recent exploration of SBIR has indicated triplet

loss CNNs as a promising archetype for SBIR embedding, however

what kind of loss objective should be considered and where, and

which weight sharing strategies are most effective? What is the

best way to enforce a low dimensional embedding for efficient

SBIR indexing? 

2. Related work and contributions 

Sketch based image retrieval (SBIR) began to gain momentum

in the early nineties with color-blob based query systems such as

Flickner et al. ’s QBIC [9] that matched coarse attributes of color,

shape and texture using region adjacency graphs. Several global

image descriptors for matching blob based queries were subse-

quently proposed, using spectral signatures derived from Haar

Wavelets [10] and the Short-Time Fourier Transform [11] . This early

wave of SBIR systems was complemented in the late nineties by al-

gorithms accepting line-art sketches, more closely resembling the

free-hand sketches casually generated by lay users in the act of

sketching a throw-away query [12] . Such systems are characterized

by their optimization based matching approach; fitting the sketch

under a deformable model to measure the support for sketched

structure within each photograph in the database [13,14] . Despite

good accuracy, such approaches are slow and scale at best linearly.

It was not until the 2010 decade that global image descriptors were

derived from line-art sketches, enabling more scalable indexing

solutions. 

2.1. SBIR with shallow features 

Mirroring the success of gradient domain features and dictio-

nary learning methods in photo retrieval, both Eitz et al. [15] and

Hu et al. [1] extended Bag of Visual Words (BoVW) to SBIR, also

proposing the Flickr15k benchmark [3] . Sparse features including

the Structure Tensor [16] , SHoG [15] , Gradient Field Histogram of

Oriented Gradients (GF-HOG) [3] and its extended version [17] are

extracted from images pre-processed via Canny edge detection.

Chamfer Matching was employed in Mindfinder [18] , later adopted

by Sun et al. [19] for scalable SBIR indexing billions of images. Qi

et al. [20] implemented an alternative edge detection pre-process

delivering a performance gain in cluttered scenes. Mid-level fea-

tures were explored through the HELO and key-shapes schemes of

Saavedra and Barrios [7,21,22] . Their latest work [7] uses learned

key-shapes and leads the shallow learning approaches. 

2.2. SBIR with deep networks 

SketchANet [23] was among the earliest deep networks for

sketch, exploring recognition (rather than search) using a single-

branch network resembling a short-form AlexNet [4] . SketchANet

forms a component of the very recent work of Bhattacharjee et al.

[24] , coupled with a complex pipeline including object propos-

als, and query expansion. Although we also explored SketchANet,

and compare with several other contemporary architectures which

we show yield superior performance in a triplet framework

( Section 4 ). 

An early work exploring multi-branch networks for sketch re-

trieval (of 3D objects) was the contrastive loss network of Wang

et al. [25] which independently learned branch weights to bridge

the domains of sketch and 2D renderings of silhouette edges. In

a recent short paper, Qi et al. [26] also propose a two-branch

Siamese network with contrastive loss. Their results, although

comparable with other methods using shallow features, are still far

behind state-of-the-art [6,24] by a large margin. As we show later,
earning a single function to map disparate domains to the search

pace appears to under-perform designs where branch weights are

earned independently or semi-independently. 

Triplet CNNs employ three branches [27] : (i) an anchor branch,

hich models the reference object, (ii) one branch representing

ositive examples (which should be similar to the anchor) and

iii) another modeling negative examples (which should differ from

he anchor). The triplet loss function is responsible for guiding the

raining stage considering the relationship between the three mod-

ls. Triplet CNNs have recently been explored for face identifica-

ion [28] , tracking [29] , photographic visual search in [27,30] and

or sketched queries in order to refine search within a single object

lass (e. g. fine-grain search within a dataset of shoes) [5] . Simi-

arly, a fine-grained approach to SBIR was adopted by the recent

ketchy system of Sangkloy et al. [6] in which careful reproduction

f stroke detail is invited for object instance search. In the former

ork [5] , the authors train one model for each target category, and

he embedding is learned using an edgemap extracted from a rela-

ively clutter-free image. They report that using a fully-shared net-

ork was better than use two branches without weight sharing.

owever, the authors in [6] suggest it is more beneficial to avoid

haring any layers in a cross-category retrieval context. Recently, a

ybrid design was explored by Bui et al. [31] using the same ar-

hitecture on both branches but sharing certain layers. However, as

heir model learns mapping between sketch and edgemap (rather

han image directly) its performance is limited. Furthermore, it

s still unclear whether triplet loss works better than contrastive

oss, with [6,31] supporting the former but [32] claiming the lat-

er. Open questions remain around optimal training methodology,

rchitecture, weight-sharing strategies, and loss functions, as well

s the generalization capability of deep models for SBIR. 

Our work explores these open questions, and broadens the in-

estigation of deep learning to SBIR beyond intra-class or instance

evel search to retrieval across multiple object categories. To avoid

onfusion we hereafter refer as no-share or Heterogeneous those

ulti-branch networks for which there are no shared weights be-

ween layers [25] ; as full-share or Siamese those for which all

ranches have shared weights in all layers [5,27] ; and partial-share

r Hybrid those for which only a subset of layers are shared. Our

ontributions for this paper are three-fold: 

• A generic multi-stage training methodology for cross-domain

learning that leverages multiple loss functions in training

shared networks as illustrated in Fig. 1 . 
• An extensive evaluation of convnet architectures and weight

sharing strategies. 
• State-of-the-art performance on three standard SBIR bench-

marks, outperforming other approaches by a significant margin.

. Methodology 

We propose a multi-stage training methodology and investi-

ate several network designs, comparing the Siamese architecture

ith the Heterogeneous and Hybrid ones. Inspired from [31] , we

imed to develop a training strategy for partial sharing networks.

owever, unlike [31] who employed a single training phase with

 single loss function to concurrently train both shared and un-

hared parts of their sketch-edgemap network, we believe training

 sketch-photo network should require more complex procedures.

dditionally, we integrate the two most widely used regression

unctions in deep convnet, the contrastive loss and triplet loss, in

ur training procedure. 

.1. Network architecture 

When learning a cross domain mapping between sketch and

hoto using deep convnet, at least two CNN branches are required
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Fig. 1. Our training procedure illustrated with a SketchANet-AlexNet architecture: pre-training the unshared layers (stage 1), and the shared layers (stage 2) separately before 

plugging those into a triplet network (stages 3 and 4). 

Fig. 2. Four-stage training of the SketchANet-AlexNet model and visualization of the first convolution layer on sketch and image branch. 

t  

a  

X  

a  

t

a  

m  

S  

c  

A  

t  

m

 

l  

a  

o  

l  

w  

e  

t  

s  

l  

a  

s  

l  

p  

a  

c  

a  

r

 

b  

t  

r  

w  

o

Y

o deliver feature embedding for these domains. The sketch branch

nd image branch may have the same or different architecture. Let

 

S = { x S } and X 

I = { x I } be collections of training sketches and im-

ges. Supposed F S 
θS , θC 

(x S ) and F I 
θI , θC 

(x I ) are the embedding func-

ions for sketch and image domains respectively. Parameters θS 

nd θI represent domain-specific layers; while θC are the com-

on/shared parts. In the scope of this paper, we investigated

ketchANet [23] , AlexNet [4] , VGG 16 layers (VGG16) [33] and In-

eptionV1 (GoogLeNet) [34] for the sketch branch { θS , θC }; and

lexNet, VGG16 and InceptionV1 for the image branch { θI , θC }, al-

hough other architectures can also be employed using the same

ethodology. 

Differences in design can also arise from the degree to which

ayers within the two branches share weights. Most of the existing

pproaches eliminate either { θS , θI } (i. e. full-share) as in [5,26,35] ,

r θC (i. e. no share) in [6,25] . It was shown in [36,37] that low-

evel features are often learned in bottom layers of a CNN net-

ork while higher semantic features tend to emerge from top lay-

rs. Therefore, intuitively we want to share the top layers so that

he feature embedding is learned across domains considering the
emantics (e.g. categories/classes), and let the bottom layers be

earned separately for each domain. If the sketch and image branch

rchitectures are completely different, we possibly need one or

everal fully-connected (FC) layers unifying the branches, as well as

oss functions pre- and post-unification. We explore several design

ermutations, evaluating their performance in Section 4 with the

im of testing the generalization capability of the network across

ategories, and identifying the best performing architecture (CNN

rchitecture, loss) and training strategy to optimize retrieval accu-

acy. 

At certain training stages, a contrastive loss or triplet loss can

e employed. We normalize inputs prior to these losses. The con-

rastive loss function accepts a pair of input examples ( x S , x I ) and

egress their embedding closer or push them away depending on

hether or not x S and x I are similar [38] . Let Y represents the label

f a training pair ( x S , x I ) such that: 

 = 

{
0 if (x 

S , x 

I ) are similar 

1 if (x 

S , x 

I ) are dissimilar 
(1) 
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The cross-domain Euclidean distance between two branch’s

outputs is defined as follows: 

D 

(
x 

S , x 

I 
)

= 

∣∣∣∣F S θS , θC 

(
x 

S 
)

− F I θI , θC 

(
x 

I 
)∣∣∣∣

2 
(2)

Then the contrastive loss can be written as: 

L C 

(
Y, x 

S , x 

I 
)

= 

1 

2 

(1 − Y ) D 

2 
(
x 

S , x 

I 
)

+ 

1 

2 

Y 
{

m − D 

2 
(
x 

S , x 

I 
)}

+ (3)

where { . } + is hinge loss function. Parameter m is a margin defining

an acceptable threshold for x S and x I to be considered as dissimi-

lar. 

The triplet loss , on the other hand, maintains a relative dis-

tance between the anchor example and both a similar example and

a dissimilar example. The function accepts an input triplet of form

(x S , x I + , x I −) consisting an anchor sketch example x S , a similar im-

age x I + , and a dissimilar one x I −. The triplet is then given by: 

L T 

(
x 

S , x 

I 
+ , x 

I 
−
)

= 

1 

2 

{
m + D 

2 
(
x 

S , x 

I 
+ 
)

− D 

2 
(
x 

S , x 

I 
−
)}

+ 
(4)

To accommodate the input triplet (x S , x I + , x I −) , the CNN network

consists of three branches: a sketch branch (anchor) and two iden-

tical image branches (positive and negative). The value of margin

m is fixed at 0.2 in all of our experiments. 

3.2. Dimensionality reduction 

A compact representation is often desirable to allow viable im-

plementation of visual search in systems with processing, bat-

tery and memory constraints. In order to learn the dimensional-

ity reduction during the training stage we add an intermediate

fully-connected (FC) layer without post-activation. As illustrated in

Fig. 1 for the SketchANet-AlexNet, an embedding layer lowerdim

is added between layer FC7 ( D = 4096 ) and the output layer FC8

( D = 250 ). By not adding an activation (ReLU) layer, we prevent

the embedding layer to become a bottleneck in the network. Note

that from the perspective of the softmax-loss layer the connection

from FC7 to FC8 is linear. We empirically verify that during training

the performance of the classification layer is not affected whether

lowerdim is integrated in the architecture or not. Dimensionality

reduction is tested in Section 4.5 . Further gains in compactness

could be explored e.g. via product quantization as [31] but such

optimizations are beyond the scope of this paper. 

3.3. Training procedure 

We now describe a multi-stage training strategy for all network

configurations. Although this strategy is designed for sketch-photo

mapping, it can be applied to other cross-domain learning prob-

lems. Inspired from curriculum learning [39] , we trained our model

by giving it multiple learning tasks, one-by-one with increasing

difficulties. Denote L E and L R the cross-entropy and regularization

losses: 

L E (z ) = − log 

(
e z y ∑ 

i e 
z i 

)
(5)

L R (θ) = 

1 

2 

∑ 

i 

θ2 
i (6)

Our training procedure consists of four stages ( Fig. 1 ): 

– Stage 1: train unshared layers Train the sketch and photo

branches independently using a softmax loss, using pre-trained

model if possible. This is purely a classification task which focuses

on learning a representative model for each domain: 

arg min 

θS , θC 

∑ 

i 

L E 

(
F S 

(
x 

S 
i 

))
+ λL R 

(
θS , θC 

)
(7)
arg min 

θI , θC 

∑ 

i 

L E 

(
F I 

(
x i 

I 
))

+ λL R 

(
θI , θC 

)
(8)

here λ is the weight decay term. Note: in Eqs. (7) and ( 8 ) θC 

as learned independently since no joint training is implemented

t this stage. 

– Stage 2: train shared layers We form a double-branch net-

ork, freeze the unshared layers which were already learned dur-

ng stage 1. Next, we use contrastive loss together with softmax

oss to train the shared layers. The use of softmax loss helps the

haring layers to learn discriminative features from both domains,

hile contrastive loss ( Eq. (3) ) provides an early step of regression

o bring the two domains together: 

rg min 

θC 

∑ 

i 

L E 

(
F S 

(
x 

S 
i 

))
+ 

∑ 

i 

L E 

(
F I 

(
x 

I 
i 

))

+ α
∑ 

i 

L C 

(
Y i , x 

S 
i , x 

I 
i 

)
+ λL R 

(
θC 

)
(9)

here α is weight of the regression term. We set α = 2 . 0 in all

xperiments. 

– Stage 3: train the whole network Unfreeze all frozen lay-

rs, form a triplet network and train it with triplet ( Eq. (4) ) and

oftmax loss functions. We begin the training with two losses con-

ributing equally, then later increase loss weight of the triplet func-

ion ( α = 2 . 0 ) to steer the learning toward regression: 

arg min 

θS , θI , θC 

∑ 

i 

L E 

(
F S 

(
x 

S 
i 

))
+ 

∑ 

i 

L E 

(
F I 

(
x 

I 
i + 

))
+ 

∑ 

i 

L E 

(
F I 

(
x 

I 
i −

))

+ α
∑ 

i 

L T 

(
x 

S 
i , x 

I 
i + , x 

I 
i −

)
+ λL R 

(
θS , θI , θC 

)
(10)

– Stage 4: (Optional) Repeat stage 3 on any auxiliary sketch-

hoto datasets available to further refine the model. 

Our proposed training procedure allows the shared and un-

hared layers to be learned independently at separate stages. The

nshared layers of each branch should learn unique features dis-

inctive for its domain without being polluted from other domain

stage 1). The shared layers should learn common features (usu-

lly high level) between the two domains by comparing and con-

rasting low level features from both domains (stage 2). Finally, the

hole network is adjusted/refined using triplet loss (stages 3–4). 

Although contrastive and triplet losses are crucial in regression

earning, we find them not tight enough to regulate the training.

hat is why a softmax loss layer is always included in our network

t every training stage since it provides a stricter regularization.

ur findings are consistent with the work in [6,35] claiming the

oftmax loss plays an important part for convergence of the train-

ng. On the other hands, our approach differs from [6,35] in that

t allows partial sharing across branches; which further reduces

verfitting (since number of training parameters are significantly

educed) while retaining the learning flexibility for each domain. 

.4. Data augmentation 

Data augmentation plays an important role in preventing over-

tting, especially when training data is limited. In all experiments

e apply the following augmentation techniques for both sketch

nd photo: random crop (crop size 225 × 225 for SketchANet,

27 × 227 for Alexnet and 224 × 224 for VGG and Inception), ran-

om rotation in range [ −5 , 5] degrees, random scaling in range

0.9, 1.1] and random horizontal flip. 

We also propose an augmentation method applicable for

ketches only. For sketches with at least N strokes ( N = 10 in our

xperiments) we divide them into four equal groups of strokes

n drawing order. The first group contains the most important

trokes—related to the more coarse structure of the object—and it
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s always kept. A new sketch is created by randomly discarding

ome of the other groups. This technique is inspired by Yu et al.

5,23] who observe that people tend to draw sketches in stages at

istinct levels of abstraction. We observed a ∼ 1% mAP improve-

ent across the board using this random stroke removal augmen-

ation method on the Flickr15k benchmark. 

. Experiments 

We evaluated our training strategies on all variants of the

ketch and image architectures and weight sharing schemes to de-

ermine the best performing embedding for SBIR. In particular we

valuated the ability of the network to generalize beyond the cate-

ories to which it is exposed during training. This is important for

BIR in the wild, where one cannot reasonably train with a suffi-

iently diverse sample of potential query images. We also investi-

ated the impact of volume of sketch data used to train the net-

ork, and the impact of using photos or their edge-maps during

raining (in addition to the various weight sharing variants). 

The structure of this section is as follows. We introduces

rain and test datasets in Section 4.1 , experimental settings in

ection 4.2 . We evaluate generalization properties in Section 4.3 ,

etwork architectures and sharing in Section 4.4 , and dimensional

eduction in Section 4.5 . Finally, Section 4.6 compares our pro-

osed approach with state-of-art algorithms. 

.1. Datasets 

We trained and evaluated our networks using five sketch

atasets: 

– TU-Berlin-Class [2] (training stages 1–3) for sketch classifica- 

ion comprising 250 categories of sketches, 80 per category, crowd-

ourced from 1350 different non-expert participants with diverse

rawing styles; 

– TU-Berlin-Retr [15] (testing) takes into account not only the

ategory of the retrieved images but also the relative order of the

elevant images. The dataset consists of 31 sketches and 40 ranked

mages for each sketch (1240 total images), mixed with a set of

0 0,0 0 0 distracting Flickr photos. The authors propose a Kendal

core as the evaluation method; 

– Sketchy [6] (model fine-tuning at stage 4) is a fine-grained

ataset in which each photo image has ∼ 5 instance-level match-

ng sketches drawn by different subjects. In total it has 12,500

hoto images and 75,471 corresponding sketches of 125 categories

f which 100s exist in the TU-Berlin-Class and 25s are the new

ategories; 

– Flickr15K [3] (testing) is a large scale category-level dataset.

t has labels for 33 categories of sketches, 10 sketches per category

rawn by 10 non-expert sketchers. It also has a different number

f photo images per category totaling 15,024 images crawled from

lickR. The authors suggest to use Mean Average Precision (mAP)

s the performance metric; 

– Saavedra-SBIR [40] (testing) another category-level dataset,

onsisting 53 sketches and 1326 images organized into 50 classes.

imilar to Flickr15K, the authors recommended mAP for evaluation.

It is important to note that the Flickr15K and TU-Berlin-Retr

atasets are independent from the training ones in term of not

nly categories but also depiction styles. The TU-Berlin-Class and

ketchy covers common objects frequently encountered in daily

ife (stationary, vehicles, food, bird, mammal, ...). The Flickr15K

ontains mostly landmarks and buildings (e.g. Eiffel tower, Colos-

eum, Taj Mahal, ...) while the TU-Berlin-Retr tends to be scenery

pecific ( Fig. 3 (a–d)). On the other hand, Saavedra-SBIR happens

o share 30 common categories with TU-Berlin-Class, but its query

et contains distinct sketches with exceptionally high level of de-

ails ( Fig. 3 (e)). These settings motivate a need for good general-
zation beyond training. Additionally, it helps to avoid bias when

omparing with non-learning methods which do not require any

raining data. 

As TU-Berlin-Class comprises only sketches, in order to obtain

ur training triplets we automatically generated per-category pho-

ograph sets by querying the 250 category names on Creative Com-

ons image repositories. The Flickr API was used to download im-

ges from 184 categories. Google and Bing engines were used for

he remaining 66 categories which are mainly human body parts

e.g. brain, tooth, skeleton) and fictional objects (e.g. UFO, mer-

aid, dragon) where Flickr content is sparse. We manually selected

he 100 most relevant photos per category, forming a 25k training

orpus (Flickr25K). 

.2. Experimental settings 

We followed the four training stages outlined in Section 3.3 .

hoto images are first resized retaining aspect ratio so that max-

mum dimension is 256 pixels, then padded with duplicate pixels

long the edges to form unified 256 × 256 input data. Sketches are

lso centered in 256 × 256 canvas such that the longest side of its

ounding box is fixed at 200 pixels. Since the training procedure

nvolves multiple sketch datasets whose stroke thickness may vary,

ll sketches are skeletonized to have 1-pixel stroke width using the

orphological thinning method described in [41] . 

Data augmentation is implemented as in Section 3.3 . One ex-

eption is the implementation of random flip in stage 4 where

he finegrained Sketchy dataset is being used. To keep the fine-

rain properties, random flip is performed jointly over the anchor-

ositive pair. We do not do the same with random rotation and

caling since the rotation range [ −5,5] and resizing scale [0.9, 1.1]

re relatively small and can account for the alignment error be-

ween the images and corresponding sketches. 

We used Caffe the deep-learning library [42] to train our mod-

ls. When training the contrastive and triplet networks (stage 2

nward), the anchor-positive and negative pairs are selected ran-

omly. However, depending on the dataset, a pair/triplet can be

f either categorical-level (where the positive image has the same

ategory label as the anchor’s and the negative image is from a dif-

erent category) or instance-level (the positive image has the same

nstance label i.e. same object, while the negative image has the

ame category label but different instance’s). We used categorical-

evel pair for stage 2 and categorical-level triplet for stage 3 since

he TU-Berlin-Class dataset only supports category matching. For

he Sketchy dataset (stage 4), we combined both categorical and

nstance-levels in triplet formation. Specifically, for a given training

ketch there is 20% chance a categorical triplet is formed and 80%

hance for an instance-level triplet. This helps to learn a model

hat is both intra- and inter-categorical representative. Our idea is

imilar to the Quadruplet network [35] but instead of introducing

 new quadruplet input format and a new loss function we achieve

t via data selection. We do not implemented hard negative mining

ince the instance-level selection of triplets in stage 4 is already

ard enough for the training to properly converge. An example of

raining a SketchANet-AlexNet model is illustrated in Fig. 2 . 

.3. Generalization 

We first report the results of generalization capability of our

riplet networks when varying amount of training data. A series of

xperiments was carried out, starting with a subset of 20 random

raining categories and 20 sketches per category, up to the whole

raining dataset. As the TU-Berlin-Class has 80 sketches per cate-

ory, the remaining sketches of the chosen categories were used

or validation. For simplicity we used SketchANet for the sketch

ranch and AlexNet for image branch. We modified the SketchANet
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Fig. 3. Example sketches and images of the training (a–b) and test (c–e) datasets. 
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design to enable sharing with AlexNet. Specifically, layers 1–3 of

the sketch branch have SketchANet architecture, layers 6–7 mir-

ror AlexNet while the middle layers 4–5 we have modified from

SketchANet as a hybridization of the two designs. The modified

sketch branch is trained from scratch while the image branch is

initialized using the ImageNet pre-trained model [4] . Apart from

testing generalization we aimed to compare and contrast this par-

tial sharing design with the fully shared and no-share architec-

tures; also to verify whether our sketch-photo direct matching is

better than the sketch-edgemap reported in [31] . 

Fig. 4 (top) shows that the performance is benefited by increas-

ing the number of training categories. All five network designs

achieved near-linear improvement of retrieval performance against

Flickr15k benchmark (discarding the four intersecting categories

with the training set) with exposure to more diverse category set

during training. The mAP of all models jumped by ∼ 20% when

raising training data from 20 to 250 categories. Fig. 4 (middle) has

similar trend when we keep number of training categories fixed

at 250s and vary number of training sketches per category. As the

results of seeing more data during training, all models achieve an

improvement of up to 4% mAP on Flickr15k. Fig. 4 (bottom) depicts

that number of training samples is not the only factor that matters

most. Here we increase the number of categories from 20s to 80s

while at the same time decreasing per category samples, keeping

the training volume fixed at 4800 sketches. The general trend is an

improvement as number of categories increase. We conclude that

category diversity is crucial for training a generalized network. 

All three above figures report the superior performance of

the partially shared triplet architecture against the no-share and

fully shared networks regardless of its matching formats (sketch-

edgemap or sketch-photo). Also, the sketch-photo models outper-

forms the sketch-edgemap ones by a large margin. This is under-

standable since working directly on photo images enable the net-

work access full information from raw data. In contrast, during

edge extraction, certain information such as color and texture that

may be distinctive to identify the objects of interest will be lost,

leaving the network with less informative data to learn from. 

For completeness, Fig. 5 compares our multi-stage training

method ( Section 3.3 ) with Siamese and Triplet models using one-
hot training. The network design is the same i. e. SketchANet-

lexNet for three models but the Siamese and Triplet models are

rained within a single training stage (with weights also initialized

rom pretrained models). We observed a 5% improvement in mAP

ith our multi-stage model. Note all three box-plots have large in-

erquartile range (IQR) and whiskers, which illustrates a great per-

ormance diversity among sketch queries e. g. clean sketches can

chieve 100% retrieval precision while messy sketches may end up

0% performance. 

.4. Convnet architecture settings and parameter sharing 

We experimented various architectures among SketchANet,

lexNet, VGG16 and InceptionV1 for sketch and image branches.

or each sketch-image architecture combination, we test all possi-

le sharing options and report the best performed model. For ex-

mple, the fully connected layer 7 (FC7) and later in AlexNet and

GG are share-able while SketchANet and InceptionV1 can only

hare parameters after the dimensional reduction layer ( lowerdim

n Fig. 1 ). 

Table 1 shows the performance of all available combinations of

ketch-image designs on the Flickr15k benchmark. Again, we found

hat for certain sketch-photo architecture combinations there al-

ays exists a partial sharing configuration better than the full-

hare and no-share ones. For example, AlexNet-VGG16 has the

ighest performance (39.77% mAP) when sharing from layer FC7,

ketchANet-AlexNet performs the best at sharing from FC6. Incep-

ionV1 has a distinct architecture however we found that sharing

ll layers following lowerdim (i.e. the n-way classifier FC layer) re-

ults in a better mAP. 

It is worth noting that the sketch branch should not be

ore complex than the image branch. The AlexNet-VGG16,

lexNet-InceptionV1 and VGG16-InceptionV1 designs all outper-

orm their VGG16-AlexNet, InceptionV1-AlexNet and InceptionV1-

GG16 counterparts by 2–7% mAP. Additionally, when InceptionV1

s selected for the image branch, choosing SketchANet for the

ketch branch is more efficient than AlexNet or VGG16 although

ketchANet is simpler and has fewer parameters than the two

thers. We hypotheses that having an over-complicated design for
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Table 1 

Performance of various network designs on the FlickR15K benchmark. Note: (i) SketchANet- 

SketchANet is the only sketch-edgemap model (reported in [31] ), the rest are sketch-photo 

models; (ii) lowerdim is fixed at 128-D for all models. 

Flickr15K SBIR mAP(%) Image branch 

SketchANet [31] AlexNet VGG16 InceptionV1 

Sketch branch SketchANet 24.45 37.41 36.80 41.99 

AlexNet - 45.16 39.77 41.65 

VGG16 - 36.22 49.99 40.74 

InceptionV1 - 34.98 38.77 51.11 

Fig. 4. Experiments with generalization capability of our learned models w.r.t. (top) 

number of training categories (20 sketches per category); (middle) number of train- 

ing sketches per category (250 categories); (bottom) fixed training volume (fixed 

4800 training samples); tested on the Flickr15K benchmark. 

t  

t

 

i  

l  

i  

i  

b  

b  

t

Fig. 5. Multi-stage training compared with single-stage models, tested on Flickr15K. 
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he sketch branch can cause it over-trained in a contrastive or

riplet network, especially with limited training data. 

Nevertheless, using identical architecture for both sketch and

mage branches results in the highest performance (the diagonal

ine of Table 1 ). We conjecture that partially shared sketch and

mage branches may enable more balanced weight updates dur-

ng back-propagation, mitigating against over-training in a single

ranch. This may prove a useful strategy more generally in com-

ating over-fitting alongside popular methods such as regulariza-

ion and dropout. 
Details of the weight sharing experiments for identical branch

i.e. homogeneous) triplet networks are shown in Fig. 6 . The best

haring configurations for AlexNet-AlexNet and VGG16-VGG16 are

rom conv5 and block5 respectively. For InceptionV1-InceptionV1,

here is a drop in performance at Inception block 4d where the

econd auxiliary classifier ( tendrill ) is attached. Removing the aux-

liary classifiers (the main classifiers at top of the network remain

hared), we achieve peak performance when sharing from incep-

ion layer 4e. In all three cases the no-share configuration under-

erforms both the full-share and partial-sharing performance (the

erformance gain ranges from 7% for VGG16 to 14% for AlexNet). 

.5. Dimensionality reduction 

Fig. 7 reports the mAP and retrieval time of our best model in

able 1 (InceptionV1-InceptionV1) when varying output dimension

ithin range D ∈ [64, 1024]. In general the mAP steadily improves

s size of lowerdim increases. We achieve a record performance of

5.06% mAP on Flickr15K at D = 1024. However, retrieval time also

inearly increases (note the x-axis of Fig. 7 is log scale). On a com-

odity 2.80 GHz Intel i7 workstation, a simple linear search using

 single CPU thread takes from 3 ms to 34 ms per query when

ncreasing lowerdim ’s dimension from 64-D to 1024-D. 

Considering the trade off between speed and accuracy we se-

ected D = 256 as our final model (53.26% mAP, 4.4 ms retrieval

ime). This allows us to encode the whole Flickr15K dataset using

ust 15MB of memory, or 1MB footprint for every 1K images. Since

he linear search complexity is O ( ND ) and feature extraction time

s averagely 15.2 ms per query (on a GeForce GTX 1070 GPU), in

heory our model can retain interactive speed (i. e. retrieval time

ess than 1 s) when querying up to 3M images. For larger datasets,

ore efficient indexing methods e. g. kd-tree, inverted index,... are

ecommended. 



84 T. Bui et al. / Computers & Graphics 71 (2018) 77–87 

Fig. 6. From full-share to no-share: effects of partial sharing on accuracy (a) AlexNet-AlexNet; (b) VGG16-VGG16; and (c) InceptionV1-InceptionV1 networks, evaluated over 

FlickR15K. 

Fig. 7. Accuracy and speed performance of InceptionV1-InceptionV1 model with 

different output dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

SBIR comparison results (mAP) on the Flickr15K benchmark. Methods that do not 

originally report on Flickr15K are marked with † . Our proposed convnet uses Incep- 

tionV1 architecture for both sketch and image branches with partial sharing from 

inception block 4e. 

Method Dim. mAP (%) 

Partial sharing convnet (stage 4) 256 53.26 

Partial sharing convnet (stage 3) 256 41.13 

Sketchy triplet [6] † 1024 35.91 

Partial sharing convnet (stage 2) 256 34.83 

Query-adaptive re-ranking CNN [24] 5120 32.30 

Quadruplet_MT [35] 1024 32.16 

Asymmetric feature map (AFM) [47] 243 30.40 

Learned KeyShapes (LKS) [7] 1350 24.50 

Triplet sketch-edgemap [31] 100 24.45 

Rst-SP-SHELO [22] 3060 20.05 

Siamese with Contrastive Loss [26] 64 19.54 

Perceptual Edge [20] 3780 18.37 

Color GF-HoG [17] 50 0 0 18.20 

HLR + S+C+R [46] 20 0 0 17.10 

SHELO [45] 1296 12.36 

GF-HoG [3] 3500 12.22 

SHoG [15] 10 0 0 10.93 

SSIM [44] 500 9.57 

SIFT [48] 10 0 0 9.11 

Shape Context [43] 3500 8.14 

Structure Tensor [16] 500 7.98 
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4.6. Benchmark evaluation 

We compare our selected model (InceptionV1-InceptionV1 with

partial sharing from inception block 4e, output dimension 256-D)

with other approaches in the literature. The first benchmark is the

defacto Flickr15k [3] datasets used in ∼ 20 published SBIR algo-

rithms and variants. Some key approaches are: 

• Hand-crafted approaches: these methods use hand-crafted fea-

tures and often dictionary learning to deliver global finger-

print for each image. Notable algorithms include Structure

Tensor [16] , Shape Context [43] , Self Similarity (SSIM) [44] ,

SHoG [15] , SHELO and its variants [22,45] , HLR and its

variants [46] , KeyShapes [7] , GF-HoG and its color ver-

sion [3,17] and Perceptual Edge [20] . 
• CNN-related approaches: use deep features with various archi-

tecture settings and loss functions. These include Siamese net-

work [26] , Triplet sketch-edgemap network [31] , Asymmetric

feature map (AFM) [47] , Quadruplet_MT [35] , Query-adaptive

CNN with re-ranking [24] . 

The results are reported in Table 2 . Our partially-shared net-

work outperforms the rest by a significant margin even at earlier

training stages. Specifically, our proposed approach leads the clos-

est method by 17% mAP and achieves twice performance as the

best hand-craft method (LKS) while having 5 times more compact

descriptor. This further demonstrates the needs of a partial shar-

ing network and the advantages of multi-stage training in solving

a cross-domain problem. Table 2 explores how much improvement

is obtained following each individual stage of the multiple stage
raining process. Table 1 and Fig. 6 indicate a deeper backbone net-

ork such as InceptionV1-InceptionV1 and an appropriate partial

eight sharing strategy can improve 7–15% mAP. Fig. 4 shows the

mportance of training data volume, especially for ensuring gen-

ralization beyond training categories, and that data augmentation

an improve a further 1% mAP. 

Fig. 10 depicts the precision-recall (PR) curves of our proposed

pproaches along with another CNN-related method and one of

he state-of-art hand-crafted approaches on Flickr15k. While the

R curve of Color GF-HoG [17] is smooth the deeply learned (CNN)

pproaches have irregular PR curves. Nevertheless, there is an

mprovement in the level of smoothness from the curves stage

–4, indicating potential of our model to generalize to data “in

he wild”, given sufficient category diversity in the training data.

ig. 9 shows the embedding of Flickr15k sketches and images. SBIR

xamples are given in Fig. 8 . 

Next, we evaluated over Saavedra-SBIR (using mAP) and TU-

erlin-Retr (using T b proposed in [15] ). Tables 3 and 4 show our

nal model also achieving state-of-art performance. While the

raining stages 2–3 is supplied with categorical-level data only, the

netuning stage 4 on Sketchy helps to learn more detailed repre-

entation of sketches and images, contributing to an improvement
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Fig. 8. Representative SBIR results on Flickr15K using (left) sketches and (right) images as queries. For each query, two sets of results are returned, one for intra-domain and 

the other for cross domain search. Red bounding boxes indicate false positives. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 9. t-sne visualization of the Flickr15K dataset within our best performing embedding (InceptionV1-InceptionV1). Sketches and photographs of objects are mapped to 

similar locations in 128-D space. 
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Fig. 10. PR curve of the proposed approaches compared with a state-of-the-art 

non-learning method [17] . 

Table 3 

SBIR comparison results (using Kendal’s rank correlation coefficient, T b ) on TU- 

Berlin-Retr dataset [15] . 

Method Dim. T b 

Partial sharing convnet (stage 4) 256 44.8 

Quadruplet_MT [35] 1024 43.3 

Sketchy triplet [6] † 1024 37.5 

Partial sharing convnet (stage 3) 256 35.6 

Partial sharing convnet (stage 2) 256 31.8 

KeyShapes [21] - 28.9 

SHoG [15] 10 0 0 27.7 

Triplet sketch-edgemap [31] 100 22.3 

HoG (global) [15] 768 22.3 

Structure Tensor [16] 500 22.3 

Spark [15] 10 0 0 21.7 

HoG (local) [49] 10 0 0 17.5 

Shape Context [43] 3500 16.1 

Table 4 

SBIR comparison results on Saavedra dataset [40] . 

Method Dim. mAP (%) 

Partial sharing convnet (stage 4) 256 65.99 

Partial sharing convnet (stage 3) 256 63.37 

Sketchy triplet [6] † 1024 62.02 

Partial sharing convnet (stage 2) 256 57.15 

LKS [7] 2400 32.51 

Rst-SP-SHELO [22] 3060 29.36 

SHELO [45] 1296 27.66 

HoG [49] 900 23.55 

HELO [40] 72 14.32 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Average retrieval precision by query groups on Saavedra-SBIR. 
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of 4% mAP on Saavedra-SBIR and 1.5 T b on TU-Berlin-Retr as op-

posed to the closest approaches. 

In Fig. 11 , we analyze the retrieval performance of the query

sketches whose categories are known to the model during train-

ing and compare with those are not. The queries with seen cat-

egories indeed have better retrieval rate than those belong to

unseen categories. However, our final model (stage 4) gains the

highest retrieval precision on these challenging queries. Also, our

model achieves the smallest performance gap between the “seen”

and “unseen” groups, which further demonstrates the generaliza-

tion capability of our model. 

5. Conclusion 

We proposed a hybrid CNN exploiting both contrastive and

triplet loss architectures to learn a joint sketch-photo embedding
uitable for measuring visual similarity in SBIR. We presented com-

rehensive experiments exploring variants of our triplet CNN, con-

rasting appropriate strategies for weight sharing, dimensionality

eduction, and training data pre-processing and reporting on the

eneralization capabilities across categories including object cate-

ories unseen during training. Training sketches were derived from

he two largest available sketch datasets: the TU-Berlin dataset

f Eitz et al. and the Sketchy dataset of Sangkloy et al. [6] . The

odel was trained using exemplar triplets formed using these

uery sketches augmented by positive and negative training pho-

os from the web. Our optimal network configuration comprised a

riplet architecture with branch structure derived from GoogLeNet

ith partially-shared weights, and achieved 53.3% mAP over the

lickr15k benchmark; more than 17% increase in performance ac-

uracy over the published state of the art ( Table 2 ). 

Further work might build upon this performance gain explor-

ng multi-domain learning, for example sketch-photo-3D models

apping or multi-style work-art retrieval. Recently deep convolu-

ional generative-adversarial networks (DC-GAN) have shown great

otential for sketch driven synthesis [50] and so might offer an

nteresting avenue for SBIR as an alternative deep representation

or sketch-photo matching. Currently DC-GANs suffer limitations in

bject class diversity when trained that could be investigated as

ere. 
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upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.cag.2017.12.006 . 

A video demo of our proposed model, InceptionV1- InceptionV1

56-D partial sharing from inception-4e, depicts SBIR by an am-

teur sketcher on a tablet running Android 5.1.1. In several parts

f the demo, the sketcher intentionally draws different objects by

dding incremental line strokes to their existing sketches, and ob-

erves changes in the returned results. This drawing procedure

elps sketchers to refine their queries, also to understand which

trokes are important for retrieving desired photo images. 

https://doi.org/10.1016/j.cag.2017.12.006
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