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ABSTRACT

Retrieval-Augmented Generation (RAG) is a framework for grounding Large Lan-
guage Models (LLMs) in external, up-to-date information. However, recent ad-
vancements in context window size allow LLMs to process inputs of up to 128K
tokens or more, offering an alternative strategy: supplying the full document con-
text directly to the model, rather than relying on RAG to retrieve a subset of con-
texts. Nevertheless, this emerging alternative strategy has notable limitations: (i) it
is token-inefficient to handle large and potentially redundant contexts; (ii) it exac-
erbates the ‘lost in the middle’ phenomenon; and (iii) under limited model capac-
ity, it amplifies distraction, ultimately degrading LLM output quality. In this paper,
we propose LDAR (Learning Distraction-Aware Retrieval), an adaptive retriever
that learns to retrieve contexts in a way that mitigates interference from distract-
ing passages, thereby achieving significantly higher performance with reduced
token usage compared to long-context approaches. Extensive experiments across
diverse LLM architectures and six knowledge-intensive benchmarks demonstrate
the effectiveness and robustness of our approach, highlighting the importance of
balancing the trade-off between information coverage and distraction.

1 INTRODUCTION
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Figure 1: Performance of LLMs across to-
ken usage ratios. Higher ratio corresponds to
retrieving more passages. Lines indicate per-
formance when retrieving top-similarity pas-
sages within a fixed token usage ratio (1.0
= full context). ☆ marks the performance
of LDAR optimized for each LLM, illustrat-
ing its ability to strike a balance between in-
formation coverage and distraction that sur-
passes all fixed token usage baselines.

Despite the remarkable progress of Large Language
Models (LLMs), they continue to exhibit factual er-
rors (Wei et al., 2024; Lv et al., 2024; Li et al.,
2024a), and their knowledge remains limited to the
static dataset on which they were trained. To ad-
dress these limitations, Retrieval-Augmented Gener-
ation (RAG) has been proposed, enabling models to
ground their outputs in external, up-to-date informa-
tion, thereby enhancing both accuracy and relevance
in knowledge-intensive tasks (Zhang et al., 2024a;
Xu et al., 2024). In practice, RAG retrieves a small
set of the most relevant passages from an external
corpus to ground the LLM’s generation process.

Recent advancements have substantially increased
the context length of LLMs, with some models now
supporting inputs of up to 128K tokens or more (e.g.,
GPT-4o (OpenAI, 2024), Gemini 2.5 (Comanici
et al., 2025), Qwen 2.5 (Yang et al., 2025)). This ca-
pability offers an alternative strategy for grounding
model outputs: supplying the full document context
directly to the model, rather than relying on RAG to
supply only a subset of them. With sufficient capac-
ity, LLMs can selectively attend to salient informa-
tion while disregarding irrelevant content, thereby reducing reliance on explicit retrieval mecha-
nisms. Indeed, empirical evidence from emerging benchmarks indicates that providing LLMs with
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full long-contexts frequently outperforms RAG-based approaches (Li et al., 2024b; Wang et al.,
2024b; Li et al., 2025a). Nevertheless, this long-context approach has its own drawbacks, as it can
be token-inefficient to process large, potentially redundant contexts. Moreover, long-context ap-
proaches are prone to the ‘lost in the middle’ phenomenon, where the model struggles to recall
information presented in the middle of a long input sequence (Liu et al., 2023). When model ca-
pacity is limited, supplying the full context may further introduce distraction, thereby degrading
answer quality (Li et al., 2025a). These challenges highlight the need for approaches that integrate
the advantages of both paradigms—approaching the performance of long-context approaches while
maintaining the token efficiency of RAG.

In this paper, we demonstrate that both open and closed-source LLMs can still fail to answer ques-
tions even when the gold passage is retrieved, due to interference from additionally retrieved pas-
sages (i.e., distracting passages) (Shi et al., 2023a; Cuconasu et al., 2024; Amiraz et al., 2025).
However, retrieving passages to minimize such distraction remains a non-trivial challenge, as the
optimal strategy depends not only on the capacity of the target LLM, but also on the combinatorial
interactions among the retrieved passages. To address this challenge, we introduce LDAR (Learning
Distraction-Aware Retrieval), a retriever that learns to select passages to minimize potential inter-
ference from distracting passages in accordance with the capacity of the LLM, thereby achieving
significantly better performance and lower token usage compared to long-context approaches. In
summary, our contributions are as follows:

1. Unlike previous heuristic-based methods, we propose a learning-based retrieval strategy
framework that adaptively balances information coverage and distraction in accordance
with the capacity of the LLM, achieving better performance with significantly reduced
token usage compared to the long-context approach.

2. We empirically demonstrate that retrieving passages in bands (i.e., selecting from contigu-
ous ranges along the similarity-ranked list) is critical for learning a distraction-aware re-
trieval strategy. The banded retrieval strategy provides a form of abstraction that improves
generalization and prevents the retriever from converging to suboptimal solutions.

3. We validate our approach across diverse LLM architectures (both open and closed-source)
and six knowledge-intensive benchmarks, demonstrating both the effectiveness and robust-
ness of the proposed retrieval strategy. Our code is available at this GitHub repository link.

2 RELATED WORKS

RAG vs. Long-context LLM Numerous studies have examined the comparative performance of
RAG versus LLMs provided with the entire input context. While some works report that RAG out-
performs long-context approaches (Xu et al., 2023b), other works demonstrate the opposite trend,
with long-context models surpassing RAG-based methods (Li et al., 2024b). Li et al. (2025a) demon-
strates that this divergence in findings largely stems from the capacity of LLMs used to evaluate the
results. Open-source LLMs typically exhibit limited capacity for processing long contexts and there-
fore benefit substantially from retrieval mechanisms. On the other hand, closed-source LLMs often
possess stronger long-context capabilities and consequently achieve higher performance when given
full-context inputs (Li et al., 2025a). These findings suggest that RAG works as a stopgap technique
to boost models that otherwise struggle with long sequences (Bai et al., 2023; Li et al., 2025a).
Furthermore, several studies highlight that increasing the number of retrieved text chunks yields an
inverted-U pattern: performance initially improves but eventually declines as the model becomes
distracted by irrelevant or misleading passages (Jin et al., 2024; Leng et al., 2024). This observation
underscores the need for retrieval strategies that balance information coverage against the risk of
distraction, thereby optimizing the trade-off in passage selection.

Bridging the Gap between Retriever and LLM Our method can also be interpreted as bridging
the gap between the retriever and the LLM. Since retrievers and LLMs are pretrained under distinct
training objectives and architectures, a preference gap naturally arises between them (Ke et al., 2024;
Ye et al., 2024). The passages retrieved by the retriever can even distract the LLM during answer
generation, thereby degrading downstream performance (Shi et al., 2023a; Cuconasu et al., 2024;
Amiraz et al., 2025). Prior work has attempted to mitigate this gap by fine-tuning the LLM (Izacard
& Grave, 2020; de Jong et al., 2023), fine-tuning the retriever (Shi et al., 2023b; Xu et al., 2023a),
jointly fine-tuning both components (Izacard et al., 2022; Lewis et al., 2020), or training a module
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Figure 2: Visualization of different retrieval strategies and their impact on performance. A green
circle ( ) indicates that retrieving the passage yields a correct answer, a red cross ( ) indicates
retrieving the passage yields a wrong answer, and a purple star ( ) denotes a passage that has already
been incorporated into the retrieved passage set. The black curve represents the cosine similarity
between the query and passages. The top row reports results for an open-source model (Llama-3.1-
8B), while the bottom row shows results for a closed-source model (GPT-4o) on a reasoning task
(Li et al., 2025a).

that bridges the gap (Ke et al., 2024; Ye et al., 2024). Whereas bridge modules identify relevant
passages based on textual information within the top-k candidates retrieved by cosine similarity, our
method instead targets the retrieval stage itself. Specifically, we aim to retrieve sets of passages that
minimize distraction under a fixed pretrained retriever and LLM, relying solely on the similarity
distribution between the query and passages.

3 MOTIVATION

Although prior works have highlighted the detrimental impact of distracting passages on retrieval
performance (Jin et al., 2024; Leng et al., 2024), relatively little attention has been paid to retrieval
strategies that explicitly mitigate such influence. The columns in Figure 2 illustrate retrieval strate-
gies commonly adopted in practice: (1) gold passages that lead to correct answer when individually
retrieved; (2) retrieving all passages cumulatively from top to bottom, which corresponds to the con-
ventional top-k similarity-based retrieval approach (Lewis et al., 2020; Karpukhin et al., 2020); (3)
retrieving all gold passages first ( ) followed by retrieving additional passages, which corresponds
to reranking the retrieved top-k passages to prioritize relevance (Nogueira & Cho, 2019; Nogueira
et al., 2020; Glass et al., 2022); (4) retrieving gold passages cumulatively from top to bottom, which
resembles the successful outcome of the hybrid strategy: first selecting the top-k passages by sim-
ilarity and then applying a relevance-based top-n selection to retain only the gold passages (Asai
et al., 2024; Ke et al., 2024; Lee et al., 2025).

As shown in (2), top-k retrieval is susceptible to distracting passages. Even when individually correct
passages are included, their joint presence with distracting passages can result in incorrect answers.
Note that retrieving all available passages is effectively equivalent to the long-context approach
setting, which is likewise prone to errors. In (3), reranking approaches that place highly relevant
passages at the front of the retrieved passages still fail when distracting passages are present, as
their inclusion can override or obscure the signal from the relevant ones. Finally, (4) shows that even
when the hybrid strategy, which combines similarity-based top-k retrieval with relevance-based top-
n selection, successfully retains only the gold passages, their joint retrieval can still lead to incorrect
answers. Counterintuitively, even when all passages individually lead to the correct answer, their
collective inclusion can complicate the reasoning process and ultimately cause the model to generate
incorrect outputs. Based on these observations, we define distracting passages as passages that
misguide the LLM in generating the correct answer, irrespective of whether they lead to correct
answer when individually retrieved. Furthermore, the differing outcomes in Figure 2 (top vs. bottom)
demonstrate that retrieval effectiveness is strongly tied to the capacity of the underlying LLM.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Passage Rank

S
im

ila
rit

y

Passage Rank

Similarity
Retrieved
Correct Answer
Wrong Answer

0 10 20 30 40 50
Gradient Step

0.3

0.4

0.5

0.6

Sc
or

e

Performance

0 10 20 30 40 50
Gradient Step

0.2

0.4

0.6

0.8

1.0

Ra
tio

Passage Usage

Band
Bernoulli

Figure 3: (Left) Visualization of passages retrieved by πθ based on the similarity distribution be-
tween queries and passages, with retrieved passages marked in green if they contain the correct
answer and in red otherwise. (Right) Comparison of performance and passage usage ratio across
Bernoulli- and band-based retrieval strategies across gradient steps.

These findings underscore the inherent difficulty of reliably retrieving passages that yield correct
answers, motivating the need for retrieval strategies that explicitly account for distracting effects in
relation to model capacity. Note that a brute-force remedy to minimize distraction would be to em-
ploy a high-capacity LLM to exhaustively read and align every passage to the query. However, this
approach is prohibitively expensive, as inference cost scales with the number of passages, making it
infeasible in practice (especially in the long-context setting). To address this challenge, we propose
a lightweight adaptive retriever framework that learns to minimize distraction by selecting effective
passage sets in accordance with the long-context capability of LLMs. This method relies solely on
the cosine similarity distribution between queries and passages, guided by evaluation signals to learn
an effective balance between information coverage and distraction.

4 MAIN METHOD

RAG employs a pretrained embedding model fϕ that maps a query q and passages {pi}Ni=1 into a
shared vector space Rd, retrieving the top-k passages ranked by semantic similarity. Let si denote
the similarity (e.g., dot product or cosine similarity) between the query and the i-th passage,

∃σ s.t. sσ(1) ≤ sσ(2) ≤ . . . ≤ sσ(N), R = {pσ(N−k+1), . . . , pσ(N)}. (1)

Retrieved passages R with higher similarity scores are semantically closer to the query, as the em-
bedding space is trained via contrastive objectives that pull matched query–passage pairs together
while pushing apart mismatched pairs (Izacard et al., 2021; Li et al., 2023; Zhang et al., 2024b).
This dense retrieval approach has remained the dominant strategy due to its effectiveness in re-
trieving relevant passages at low computational cost, spanning from early RAG models to recent
applications (Lewis et al., 2020; Tang & Yang, 2024; Asai et al., 2024; Li et al., 2025b).

In this section, we present our lightweight retriever πθ that learns to select passages to minimize
potential interference from distracting passages, solely based on the similarity between the query
and passages. As discussed in Section 3, employing a high-capacity LLM to exhaustively align
all passages with the query is impractical, particularly in long-context settings. To ensure our ap-
proach scales to large-scale retrieval scenarios, we deliberately restrict πθ from accessing textual
information. Moreover, our approach avoids the expense of fine-tuning the large pretrained LLM
and embedding model by training only a lightweight neural network to reduce distraction, while
keeping the larger components fixed.

Our retriever πθ operates on the cosine similarity distribution and selects a dynamic set of passages
from a contiguous quantile interval qL, qU ⊂ [0, 1]. When the retriever πθ determines that infor-
mation coverage should be prioritized at the risk of increased distraction, it retrieves passages from
a wide quantile interval. On the contrary, if the risk of having distraction is higher, πθ retrieves
passages from a narrow quantile interval, minimizing the risk of having distraction. Figure 3 (left)
illustrates that optimized πθ adapts its retrieval strategy based on the similarity distribution between
the query and passages. If passages with high semantic similarity exist, πθ tends to focus narrowly
on that region. In contrast, when no passages exhibit strong semantic similarity, πθ expands the re-
trieval range to ensure broader information coverage, even at the cost of incorporating more potential
distracting passages.

Notably, this behavior also depends on the capability of the pretrained LLM: models with stronger
long-context processing generally exhibit lower susceptibility to distraction compared to those with

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Attention Pooling

Output

Evaluation

Lower Quantile Upper Quantile

Cosine Similarity 
Distribution

Cosine Similarity 
Distribution

PassagesQuery

Pretrained Retriever Pretrained LLM

Periodic Embedding

Selected Region

Adaptive Retriever

Transformer Encoder

Dataset

arXiv, novel, 

Wikipedia, etc

gradient update

Self Attention

Figure 4: Overview of LDAR, a learning-based retrieval strategy that adapts to each LLM by bal-
ancing information coverage and distraction. Given a query, a fixed pretrained retriever computes
cosine similarity scores between the query and passages. Then periodic embeddings encode each
score into a token, followed by a Transformer encoder that processes the tokenized similarity dis-
tribution. The encoder representations are aggregated via attention pooling, after which two output
heads predict the lower and upper quantiles that define the similarity interval used for retrieval. The
selected passages are passed to a pretrained LLM for prediction, and the evaluation signal is used to
update the adaptive retriever through gradient-based learning.

limited long-context capability (Li et al., 2025a). Later in experiments, we demonstrate that the
LDAR framework adaptively retrieves fewer passages for open-source models compared to closed-
source models on the same task, indicating that our framework aligns retrieval strategies with the
long-context capability of the underlying LLM.

4.1 DESIGNING THE ADAPTIVE RETRIEVER

We provide the adaptive retriever πθ with a cosine similarity vector s ∈ RN between the query and
the N passages, computed by a pretrained embedding model fϕ:

si :=
fϕ(q)

⊤fϕ(pi)

∥fϕ(q)∥ ∥fϕ(pi)∥
, i = 1, . . . , N. (2)

Since the number of passages associated with each query may differ, the dimensionality of s ∈ RN
is not fixed and varies across queries. To accommodate this variability, we employ a bidirectional
self-attention Transformer that maps the token embedding of each similarity score si to a contextu-
alized representation. An attention-pooling layer then aggregates these token-level representations
into a global summary vector, which is fed to output heads that predict the parameters (αL, βL)
and (αU , βU ) of two Beta distributions. The lower and upper quantiles qL and qU are then sampled
from these distributions respectively, and the resulting band {qL, qU} ⊂ [0, 1] is used to select the
passages from the similarity distribution.

Intuitively, allowing the adaptive retriever πθ to select passages via independent Bernoulli sampling
for each candidate is also a valid strategy. However, as shown in Figure 3 (right), the Bernoulli-based
variant of LDAR fails to identify a balanced trade-off between the RAG and long-context approach.
This limitation arises from its need to explore the entire combinatorial subset selection space, which
impedes generalization and ultimately causes convergence to a local optimum (corresponding to the
long-context approach in this case). In contrast, band-based retrieval reduces the effective search
space from combinatorial subset selection to a low-dimensional and smooth control space, yielding
a temporally abstract retrieval strategy that enables more sample-efficient credit assignment and
promotes better exploration (Baranes & Oudeyer, 2013; Machado et al., 2023; Kim et al., 2025).

5
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Algorithm 1 Distraction-Aware Adaptive Retrieval

Require: Instances D = {(qm, Pm, ym)}Mm=1, Embedding model fϕ, Adaptive Retriever πθ
1: for m-th query qm and passages {pm,i}Ni=1 in D do
2: si ← fϕ(qm)⊤fϕ(pm,i)

∥fϕ(qm)∥ ∥fϕ(pm,i)∥ for i = 1, · · · , N
3: (qL, qU ) ∼ πθ(· | s)
4: ℓ← max(1, ⌊N · qL⌉)
5: u← max(ℓ, ⌊N · qU⌉)
6: σ ← argsort(s) s.t. sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(N)

7: Rm ← {pσ(ℓ), pσ(ℓ+1), . . . , pσ(u)}
8: end for
9: return {Rm}Mm=1

Ultimately, our band-based retrieval strategy allows πθ to achieve an effective trade-off between
information coverage and distraction, yielding a higher score while maintaining a lower passage-
retrieval ratio. (see Figure 3 (right)). We provide an illustration of our adaptive retrieval process in
Figure 4, with corresponding pseudo-code in Algorithm 1.

4.2 OPTIMIZING THE ADAPTIVE RETRIEVER

The main goal of πθ is to retrieve a set of passages that maximizes the likelihood of the pretrained
LLM producing the correct answer to a given query. To this end, we formulate the objective as
maximizing the prediction accuracy of the LLM conditioned on the passage set retrieved by πθ:

max
θ

J(θ) = E(q,P,y)∼D,R∼πθ(·|s) [rψ(q,R, y)] , where rψ(q,R, y) := 1corr (Fψ(q,R), y) . (3)

Here, D denotes the dataset with each instance comprising a query q, a candidate passage pool P ,
and a ground-truth answer y. R denotes the set of passages retrieved by πθ given the similarity
scores s, and 1corr is an indicator function that evaluates whether the output of the LLM Fψ(q,R)
matches ground-truth answer y.

By applying the likelihood ratio gradient with log-derivative trick (Sutton et al., 1999), we can update
θ at k-th gradient update step as:

θk+1 = θk + γ · rψ(q,R, y) · ∇θk log πθk(·|s), (4)

where γ denotes the step size. Through this optimization, πθ learns a distraction-aware retrieval
strategy that reduces the likelihood of distracting passages interfering with the prediction LLM.

5 EXPERIMENTS

5.1 TASKS AND DATASETS

Six datasets encompassing diverse tasks and contexts are used to evaluate LDAR with other base-
lines. Each dataset is partitioned into training and test sets using an 8:2 split ratio, and performance
is assessed on the test set. Both the training and test sets are available in our GitHub repository.

Location, Reasoning, Comparison, Hallucination tasks are from the LaRA benchmark (Li et al.,
2025a), which is delicately designed to compare the performance between RAG and long-context ap-
proach. Notably, these tasks include contexts approaching the maximum supported length of main-
stream commercial and open-weight models (128K tokens), thereby providing a rigorous evaluation
of the long-context capabilities of LLMs. In LaRA, contexts are drawn from novels, financial state-
ments, and academic papers with entity replacement (Li et al., 2020; Zhang et al., 2024c) to mitigate
the risk of data leakage. The Location task evaluates an LLM’s ability to identify precise information
based on the provided context. The Reasoning task examines the model’s capacity for logical infer-
ence, deduction, or computation within the given context. The Comparison task assesses whether
the model can integrate and contrast information across multiple parts of the provided context. The
Hallucination task evaluates whether an LLM can appropriately refuse to answer when the provided
context lacks the required information (which is always the case in this task). We observed that

6
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Table 1: Comparison of retrieval strategies across context lengths and task types. Each cell reports
the average score across LLMs with standard error. White background indicates the average over
open-source LLMs and brown background indicates the average over closed-source LLMs . Num-
bers in parentheses denote the token-usage ratio relative to LC. The best performing strategy for
each task is highlighted in bold. The open-source and closed-source models used to compute the
scores are introduced in Section 5.2. The full results are available in Appendix D.11.

Method Location Reasoning Comparison Hallucination Overall
Context Length 32k

Top-1 52.7± 0.5
(0.019)

56.6± 0.9
(0.019)

23.3± 3.2
(0.019)

37.1± 2.2
(0.019)

20.6± 2.2
(0.018)

33.0± 3.6
(0.018)

86.0± 3.1
(0.019)

89.4± 2.8
(0.019)

45.65± 2.3
(0.018)

54.02± 2.4
(0.018)

Top-5 66.7± 1.2
(0.095)

78.0± 0.5
(0.095)

38.2± 4.8
(0.097)

61.6± 4.8
(0.097)

47.6± 2.7
(0.091)

62.8± 3.8
(0.091)

82.5± 3.4
(0.095)

84.3± 3.3
(0.095)

58.75± 3.0
(0.094)

71.67± 3.1
(0.094)

Top-10 75.3± 1.6
(0.190)

83.4± 1.1
(0.190)

41.6± 4.0
(0.194)

59.5± 3.0
(0.194)

51.5± 5.9
(0.182)

65.2± 3.6
(0.182)

79.1± 6.1
(0.190)

80.8± 4.3
(0.190)

61.87± 4.4
(0.189)

72.22± 3.0
(0.189)

Top-25 78.1± 3.0
(0.474)

87.4± 1.2
(0.474)

39.9± 4.0
(0.486)

61.6± 0.9
(0.486)

50.2± 6.9
(0.457)

70.9± 3.7
(0.457)

74.4± 8.6
(0.476)

77.0± 4.8
(0.476)

60.65± 5.6
(0.473)

74.22± 2.7
(0.473)

Top-50 78.1± 2.8
(0.866)

87.0± 2.5
(0.866)

37.4± 4.0
(0.897)

63.8± 2.6
(0.897)

49.6± 4.2
(0.853)

69.3± 5.4
(0.853)

72.1± 10.6
(0.862)

74.7± 5.0
(0.862)

59.30± 5.4
(0.869)

73.70± 3.9
(0.869)

LC 80.3± 1.9
(1.000)

87.4± 0.7
(1.000)

36.9± 4.0
(1.000)

62.2± 3.2
(1.000)

47.7± 5.3
(1.000)

73.5± 4.0
(1.000)

69.6± 8.4
(1.000)

73.0± 7.3
(1.000)

58.62± 4.9
(1.000)

74.00± 3.8
(1.000)

RAG 76.3± 1.7
(0.095)

82.5± 0.5
(0.095)

43.7± 3.2
(0.097)

59.0± 1.3
(0.097)

47.0± 6.5
(0.091)

61.2± 5.7
(0.091)

81.5± 3.7
(0.095)

79.8± 4.7
(0.095)

62.12± 3.8
(0.094)

70.62± 3.1
(0.094)

Self-Route 80.6± 1.7
(0.255)

89.6± 0.8
(0.295)

40.3± 5.0
(0.258)

62.7± 4.1
(0.232)

47.0± 4.6
(0.244)

67.6± 2.9
(0.312)

69.9± 8.2
(0.949)

76.0± 5.2
(0.967)

59.45± 4.9
(0.426)

73.97± 3.3
(0.451)

Adaptive-k 61.0± 2.2
(0.395)

71.4± 2.2
(0.395)

25.4± 0.4
(0.362)

51.5± 3.5
(0.362)

43.1± 3.0
(0.385)

59.6± 3.8
(0.385)

77.3± 7.1
(0.479)

82.2± 4.4
(0.479)

51.70± 3.2
(0.405)

66.17± 3.5
(0.405)

BGM 78.8± 0.9
(0.048)

82.6± 0.8
(0.057)

46.5± 4.0
(0.067)

59.0± 1.6
(0.074)

50.1± 1.6
(0.066)

61.2± 6.9
(0.064)

75.4± 4.7
(0.049)

75.7± 2.8
(0.045)

62.70± 2.8
(0.057)

69.63± 3.0
(0.060)

RankZephyr 72.4± 1.2
(0.095)

82.1± 1.2
(0.095)

36.9± 4.7
(0.097)

59.5± 2.7
(0.097)

44.4± 4.3
(0.091)

62.1± 4.8
(0.091)

80.5± 4.4
(0.095)

85.2± 2.4
(0.095)

58.55± 3.7
(0.094)

72.2± 2.8
(0.094)

LDAR 87.7± 1.4
(0.478)

91.9± 1.2
(0.628)

52.7± 4.7
(0.400)

70.1± 0.9
(0.636)

63.1± 2.6
(0.518)

78.9± 4.0
(0.619)

76.5± 6.9
(0.474)

76.8± 5.8
(0.633)

70.00± 3.9
(0.467)

79.42± 3.0
(0.629)

Context Length 128k
Top-1 31.1± 1.1

(0.005)
31.5± 0.9

(0.005)
26.1± 2.8

(0.004)
33.7± 2.4

(0.004)
4.30± 1.5

(0.005)
12.1± 4.4

(0.005)
84.9± 4.5

(0.005)
83.7± 4.0

(0.005)
36.60± 2.5

(0.004)
40.25± 2.9

(0.004)

Top-5 60.1± 1.4
(0.026)

61.7± 1.8
(0.026)

47.4± 3.6
(0.024)

62.6± 3.3
(0.024)

24.3± 3.0
(0.025)

34.1± 2.6
(0.025)

74.1± 6.6
(0.026)

71.6± 5.4
(0.026)

51.47± 3.7
(0.025)

57.50± 3.3
(0.025)

Top-10 66.9± 0.6
(0.053)

70.8± 2.3
(0.053)

53.7± 3.7
(0.049)

67.5± 2.3
(0.049)

29.2± 5.1
(0.050)

42.6± 3.2
(0.050)

70.3± 0.9
(0.052)

64.3± 7.1
(0.052)

55.02± 2.6
(0.051)

61.30± 3.7
(0.051)

Top-25 71.3± 2.7
(0.133)

80.0± 1.2
(0.133)

54.5± 4.6
(0.124)

75.3± 1.9
(0.124)

24.8± 2.2
(0.126)

48.1± 2.5
(0.126)

65.1± 12.0
(0.131)

55.6± 7.8
(0.131)

53.92± 5.4
(0.128)

64.75± 3.4
(0.128)

Top-50 67.9± 4.1
(0.267)

80.3± 0.5
(0.267)

52.4± 3.9
(0.249)

74.3± 2.0
(0.249)

33.6± 3.6
(0.252)

52.4± 4.7
(0.252)

61.2± 11.8
(0.262)

52.7± 7.4
(0.262)

53.77± 5.9
(0.257)

64.92± 3.7
(0.257)

LC 56.2± 10.1
(1.000)

88.0± 2.3
(1.000)

45.1± 6.4
(1.000)

76.9± 2.2
(1.000)

23.8± 5.9
(1.000)

56.6± 4.0
(1.000)

49.5± 11.3
(1.000)

58.4± 9.8
(1.000)

43.65± 8.4
(1.000)

69.97± 4.6
(1.000)

RAG 71.6± 1.5
(0.026)

75.2± 2.1
(0.026)

49.8± 3.6
(0.024)

65.8± 2.3
(0.024)

26.4± 4.4
(0.025)

42.6± 2.3
(0.025)

70.9± 6.5
(0.026)

74.1± 6.5
(0.026)

54.67± 4.0
(0.025)

64.42± 3.3
(0.025)

Self-Route 65.8± 2.6
(0.187)

80.0± 3.2
(0.282)

51.3± 4.6
(0.181)

59.7± 2.0
(0.249)

25.3± 0.2
(0.381)

52.4± 5.0
(0.625)

56.4± 11.3
(0.888)

57.5± 9.7
(0.943)

49.70± 4.7
(0.409)

62.40± 5.0
(0.524)

Adaptive-k 47.7± 4.7
(0.398)

64.4± 2.3
(0.398)

32.1± 6.0
(0.405)

54.1± 1.4
(0.405)

18.5± 3.0
(0.675)

44.4± 1.8
(0.675)

66.0± 8.8
(0.502)

68.3± 6.8
(0.502)

41.07± 5.6
(0.495)

57.80± 3.1
(0.495)

BGM 68.9± 1.6
(0.017)

72.2± 3.0
(0.019)

56.5± 3.1
(0.013)

66.8± 0.8
(0.017)

30.3± 4.8
(0.015)

34.2± 2.2
(0.020)

73.1± 6.1
(0.015)

73.4± 6.0
(0.016)

57.20± 3.9
(0.015)

61.65± 3.0
(0.018)

RankZephyr 56.1± 2.1
(0.026)

62.7± 0.9
(0.026)

54.5± 3.3
(0.024)

71.4± 1.9
(0.024)

20.9± 4.5
(0.025)

28.0± 3.6
(0.025)

73.3± 5.9
(0.026)

75.8± 6.5
(0.026)

51.20± 4.0
(0.025)

59.48± 3.2
(0.025)

LDAR 77.3± 2.2
(0.209)

90.5± 0.8
(0.502)

61.7± 2.3
(0.272)

82.7± 0.8
(0.444)

42.9± 2.3
(0.312)

65.8± 1.4
(0.606)

64.3± 10.5
(0.209)

65.9± 6.3
(0.519)

61.55± 4.3
(0.250)

76.22± 2.3
(0.517)

training models with feedback from the Hallucination task leads to undesirable strategies in practice
(e.g., deliberately retrieving no passage or irrelevant passages to trigger refusal. See Appendix D.1
for more details). This behavior arises because the Hallucination task, by design, rewards avoid-
ance rather than the constructive use of retrieved evidence, leading to degenerate strategies that do
not reflect real-world retrieval requirements. To circumvent this issue, we treated the Hallucination
task purely as an evaluation benchmark rather than a training objective. Consequently, for this task,
we employed models trained on the Location task—the most widely adopted retrieval strategy in
practice—and evaluated them in a zero-shot setting on the Hallucination task using the full dataset.

HotpotQA (Yang et al., 2018) and Natural Questions (NQ) (Kwiatkowski et al., 2019) are widely
used open-domain QA benchmarks that are incorporated into the HELMET benchmark (Yen et al.,
2024). Within HELMET, these datasets are adapted for long-context evaluation by extending input
lengths to approximately 128K tokens through the inclusion of distractor passages, with all contexts
drawn from Wikipedia. Among them, HotpotQA is distinguished as a multi-hop QA task, requiring
the model to retrieve and integrate information from multiple passages to derive the correct answer.

5.2 BASELINES AND EXPERIMENTAL SETTINGS

Baselines We compare LDAR with eight top-k retrieval methods (Top-1, Top-5, Top-10, Top-25,
Top-50, long-context, RAG (Lewis et al., 2020), RankZephyr (Pradeep et al., 2023)), one baseline
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designed to minimize the gap between a pretrained retriever and a pretrained LLM (BGM (Ke et al.,
2024)), and two retrieval baselines that aim to balance the trade-off between RAG and long-context
processing (Self-Route (Li et al., 2024b), Adaptive-k (Taguchi et al., 2025)). For the top-k retrieval
baselines, we retrieved the top-k passages according to similarity scores. Note that retrieving all
passages (i.e., the full document context) corresponds to the long-context (LC) approach. For RAG,
we applied a bge-reranker-large to reorder the retrieved top-5 passages. BGM trains a sequence-to-
sequence model on textual information to identify the effective passage set among the top-5 candi-
dates retrieved by similarity. Self-Route queries the LLM to decide between RAG and long-context
processing based on the model’s self-assessment of answerability. Adaptive-k retrieves passages by
identifying the largest gap in the sorted similarity score. The listwise reranker RankZephyr jointly
processes the top-50 similarity-retrieved passages and produces a global ranking over them, from
which it selects the final top-5 passages.

Experimental Settings Following the evaluation metric used in LaRA (Li et al., 2025a) and HEL-
MET (Yen et al., 2024), we employed GPT-4o to judge response correctness by providing it with
the query, the ground-truth answer, and the model prediction. Throughout the experiments, we used
bge-large-en-v1.5 as the embedding model. Note LDAR does not use reranker for reordering the
retrieved passages, both to maintain high training efficiency and to demonstrate the effectiveness of
our method in isolation. For open-source LLMs, we used Qwen-2.5-7B-Instruct, Qwen-3-4B-2507,
Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct and Mistral-Nemo-Instruct-12B to evaluate the re-
sults. For closed-source LLMs, we used GPT-4o, GPT-4o-mini, Gemini-2.5-pro, Gemini-2.5-flash
to evaluate the results. Across all LDAR experiments, we used the same hyperparameter configura-
tion, as summarized in Appendix C.2.

5.3 MAIN RESULTS

Table 1 demonstrates the performance of LDAR compared to baseline methods. To ensure statistical
significance, we report the average score across LLMs with standard errors, and provide separate
averages for open-source and closed-source models as introduced in Section 5.2. LDAR generally
achieves significantly higher performance compared to all other baselines, while using only about
half the token usage of the long-context approach. It is worth noting that no penalty on token usage
was imposed during the training of LDAR; the model was optimized solely for prediction accuracy
(see Appendix D.5 for the cost-regularized variant of LDAR). These results suggest that a trade-off
between information coverage and distraction does exist, and that LDAR is able to balance such
trade-offs by leveraging the similarity distribution between the query and the passages. As LDAR
typically retrieves more passages than RAG but fewer than the long-context approach, it achieves
Hallucination scores that are generally higher than those of the long-context approach yet lower
than those of RAG. This trend arises because retrieving a larger number of passages increases the
likelihood of including misleading but seemingly relevant passages, thereby increasing the risk of
hallucination. Nevertheless, LDAR consistently outperforms RAG across all other tasks, resulting
in a significantly higher overall performance.

The average token usage ratio of LDAR relative to the long-context approach is: 0.47 (32K open-
source), 0.63 (32K closed-source), 0.25 (128K open-source), 0.52 (128K closed-source). LDAR
tends to use more tokens for closed-source models, which generally exhibit stronger long-context
capability than open-source models. Notably, when the context length extends to 128K, the LDAR
framework adapts by retrieving smaller portion of passages compared to the context length 32K
setting, indicating that the risk of having distraction with the long-context approach increases with
longer input contexts. These results indicate that the LDAR framework dynamically aligns its re-
trieval strategy to the long-context capability of the underlying LLM, adaptively balancing informa-
tion coverage against potential distraction.

Breaking down by task, the average token usage ratio relative to the long-context approach is: 0.45
(Location), 0.43 (Reasoning), 0.50 (Comparison), 0.42 (Hallucination). Since the Comparison task
requires integrating information from multiple regions of a whole context, LDAR is optimized to
retrieve a larger number of passages relative to other tasks. This highlights that the optimal retrieval
strategy varies across tasks, and our framework effectively adapts its retrieval strategy accordingly.
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5.4 COMPARISON TO BASELINE METHODS

As demonstrated in Table 1, LDAR achieves significantly better performance compared to the Top-k
baselines, implying that LDAR executes a different retrieval strategy based on the similarity distri-
bution between the query and passages (see Figure 3 (left) for visualizations). Heuristic baseline
methods that try to balance the trade-off between RAG and long-context processing (Self-Route,
Adaptive-k) fail to retrieve passages based on the long-context capability of LLMs, leading to worse
performance. The reranker baselines (RAG, BGM, RankZephyr) also yield limited performance
improvements, as they operate solely within the top-similarity region and only reorder those pas-
sages, effectively disregarding the LLM’s long-context reasoning capability. Specifically, the learn-
ing method that selects the top-k passages by similarity and subsequently identifying the optimal
subset based on textual information through evaluation signals (BGM) yield only marginal gains in
long-context settings. While increasing k might seem like a straightforward solution, it substantially
enlarges the combinatorial subset selection space, causing the model to converge to a suboptimal
strategy. Accordingly, we report the best performance of BGM with k = 5, which is consistent
with the original paper setting. In contrast, LDAR is explicitly designed for scalability by reducing
the search space to a low-dimensional, smooth control space (Section 4.1), resulting in significantly
better performance across overall settings.

5.5 ZERO-SHOT EVALUATION OF LDAR

Table 2: Zero-shot performance results of LDAR on
HotpotQA and NQ dataset. White cells denote LC,
gray denotes RAG , and red denotes LDAR . Num-
bers in parentheses show token-usage ratio relative to
LC. The best performing strategy for each task within
each LLM is highlighted in bold.

Method HotpotQA NQ
Llama-3.1-8B-Instruct 52.0

(1.000)
50.0
(0.019)

59.0
(0.499)

43.0
(1.000)

40.0
(0.021)

49.0
(0.213)

Llama-3.2-3B-Instruct 54.0
(1.000)

52.0
(0.019)

54.0
(0.207)

42.0
(1.000)

37.0
(0.021)

43.0
(0.146)

Qwen-2.5-7B-Instruct 30.0
(1.000)

63.0
(0.019)

64.0
(0.305)

25.0
(1.000)

42.0
(0.021)

54.0
(0.126)

Qwen-3-4B-Instruct 56.0
(1.000)

51.0
(0.019)

62.0
(0.536)

54.0
(1.000)

41.0
(0.021)

53.0
(0.486)

Mistral-Nemo-12B 29.0
(1.000)

63.0
(0.019)

61.0
(0.061)

23.0
(1.000)

45.0
(0.021)

47.0
(0.099)

Open-source Average 44.2
(1.000)

55.8
(0.019)

60.0
(0.321)

37.4
(1.000)

41.0
(0.021)

49.2
(0.214)

GPT-4o 81.0
(1.000)

65.0
(0.019)

84.0
(0.579)

61.0
(1.000)

54.0
(0.021)

60.0
(0.738)

GPT-4o-mini 64.0
(1.000)

65.0
(0.019)

76.0
(0.629)

59.0
(1.000)

52.0
(0.021)

59.0
(0.374)

Gemini-2.5-pro 85.0
(1.000)

55.0
(0.019)

84.0
(0.638)

62.0
(1.000)

37.0
(0.021)

65.0
(0.518)

Gemini-2.5-flash 82.0
(1.000)

57.0
(0.019)

83.0
(0.953)

54.0
(1.000)

37.0
(0.021)

60.0
(0.564)

Closed-source Average 78.0
(1.000)

60.5
(0.019)

81.8
(0.699)

59.0
(1.000)

45.0
(0.021)

61.0
(0.457)

Table 2 evaluates whether retrieval strate-
gies learned in the LaRA benchmark can
generalize in a zero-shot manner to tasks
in another benchmark (HELMET). To
ensure alignment across multi-hop and
single-hop tasks, LDAR trained on the
Comparison task is evaluated zero-shot on
long-context HotpotQA task, and LDAR
trained on the Location task is evalu-
ated zero-shot on long-context NQ task.
Although the observed performance gap
is smaller than in Table 1, LDAR still
achieves better average performance com-
pared to RAG or the long-context ap-
proach, while also attaining a lower to-
ken usage ratio relative to the long-
context approach. These results indicate
that LDAR’s learned retrieval strategies
can generalize to tasks in another bench-
mark in a zero-shot manner.

5.6 COST EFFICIENCY ANALYSIS OF LDAR

While LDAR brings performance improvements, it introduces additional cost, both from its training
procedure and from the extra inference-time overhead incurred by the forward pass of the learned
retriever πθ. To quantify this overhead, we measured the end-to-end inference time per example in
Location task with all baseline methods. Specifically, the inference time includes the time required
to (1) compute the query and passage embeddings, (2) run the bridge model (e.g., reranker or LDAR
retriever), and (3) process the selected passages through the prediction LLM to generate the final
answer.

Table 3 summarizes the average per-example inference time with corresponding performance across
all baselines using both open-source LLMs and closed-source LLMs. With open-source models, LC
exhibits the highest latency as it forwards all retrieved passages to the underlying LLM. Methods
that rely on text-based rerankers (RAG, RankZephyr, BGM) also incur substantial overhead due to
heavy cross-encoder computation. In contrast, LDAR employs a lightweight, text-free adaptive re-
trieval mechanism, selecting passages to minimize potential interference from distracting passages.
As a result, LDAR achieves the fastest inference time among LC and all reranker baselines, while
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Table 3: Comparison of retrieval strategies on LaRA Location task. Each cell reports the average
per-example inference time or performance with standard error, computed using open-source and
closed-source LLMs. Numbers in parentheses denote standard error for inference time and the token-
usage ratio for performance metrics, respectively.

Metric Top-1 Top-5 Top-10 Top-25 Top-50 LC RAG Self-
Route

Adap-
tive-k BGM Rank

Zephyr LDAR

Time (Open-source) 1.3
(0.55)

1.5
(0.73)

1.7
(0.91)

2.5
(0.99)

4.0
(1.31)

15.4
(5.17)

18.4
(0.86)

4.5
(5.93)

8.6
(11.70)

13.3
(1.14)

10.2
(1.07)

3.9
(1.61)

Time (Closed-source) 3.9
(2.29)

4.7
(1.91)

5.2
(2.36)

5.8
(2.52)

5.9
(2.20)

8.2
(2.67)

22.6
(1.75)

9.0
(4.09)

6.5
(4.70)

17.8
(5.94)

13.6
(2.56)

8.0
(2.69)

Score (Open-source) 31.1
(0.01)

60.1
(0.03)

66.9
(0.05)

71.3
(0.13)

67.9
(0.27)

56.2
(1.00)

71.6
(0.03)

65.8
(0.19)

47.7
(0.40)

68.9
(0.02)

56.1
(0.03)

77.3
(0.21)

Score (Closed-source) 31.5
(0.01)

61.7
(0.03)

70.8
(0.05)

80.0
(0.13)

80.3
(0.27)

88.0
(1.00)

75.2
(0.03)

80.0
(0.28)

64.4
(0.40)

72.2
(0.02)

62.7
(0.03)

90.5
(0.50)
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Figure 5: Average performance plotted against total cumulative computational cost (GPU hours)
for both training and inference. The left two panels report the total cost when applying LDAR at
different training epochs under 100K and 500K inference calls using open-source LLMs; the right
two panels show the corresponding results for closed-source LLMs.

simultaneously achieving the best overall performance. In the closed-source LLMs, the underly-
ing LLM is highly optimized for fast inference, making total inference time less sensitive to input
length. Even under these conditions, LDAR remains faster than LC and all reranker baselines while
also achieving better performance.

In addition, we include an analysis illustrating how the cost benefits accumulate over time when
deploying the learned lightweight adaptive retriever πθ in Figure 5. For each LDAR training epoch,
we compute (1) the cumulative training cost up to that epoch and (2) the inference cost when deploy-
ing πθ learned until that epoch with a certain number of inference calls (100K and 500K inference
calls). We include CAG (Chan et al., 2025), a cache-augmented generation method that accelerates
inference by preloading documents and reusing a precomputed KV-cache, as an additional baseline
to compare inference-time efficiency with LDAR.

Since LDAR has lower inference-time overhead compared to LC, its cost advantage becomes in-
creasingly pronounced as the number of deployments grows. Importantly, as LDAR trains, it learns
to identify the most effective passage set that minimizes distraction. This not only improves per-
formance but also reduces token usage during both training and inference. As shown in the right
panels of Figure 5, LDAR progressively selects fewer tokens over training epochs, thereby reducing
the per-epoch training cost. These results demonstrate that LDAR ensures a favorable cost–benefit
trade-off in practice.

6 CONCLUSION

In this paper, we demonstrated retrieving passages to minimize distraction remains a challenging
problem, as the optimal strategy depends on both the capacity of the target LLM and the interactions
among retrieved passages. Although a high-capacity LLM could exhaustively align all passages with
the query to minimize distraction, the cost grows prohibitively with passage count, making this ap-
proach impractical. To this end, we present LDAR, an adaptive retriever that selects passages in
accordance with LLM’s long-context capability to minimize potential interference from distracting
passages, relying solely on the similarity distribution. Experiments across diverse LLM architectures
and knowledge-intensive benchmarks demonstrate that LDAR achieves significantly better perfor-
mance compared to baselines with lower token usage compared to the long-context approach.
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A THE USE OF LLM IN PAPER WRITING

We utilized large language models to improve the clarity and phrasing of the text.

B LIMITATIONS AND FUTURE WORK

While LDAR was trained using task-specific signal, retrieval scenarios in practice are often diverse
and may not align neatly with a single task formulation. As our results in Section 5.3 indicate that
the optimal retrieval strategy varies across tasks, a promising direction for future research would
be to develop a meta-classifier capable of identifying the underlying retrieval task and employing a
mixture-of-experts framework (Shazeer et al., 2017), where task-specialized retrieval strategies are
adaptively combined.

Moreover, LDAR neither explicitly models the ordering of retrieved passages nor employs a reranker
to reorder them, which may affect downstream performance. While rerankers were deliberately ex-
cluded to maintain high training efficiency, an important direction is to explore learning-based re-
trieval strategies that jointly optimize both passage selection and ordering in long-context settings.

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS OF THE ADAPTIVE RETRIEVAL PROCESS

We employ periodic embedding layer (Gorishniy et al., 2022) for encoding numeric features, which
projects batch of raw scalar inputs s ∈ RB×N×1 to the embedding dimension RB×N×d, followed
by layer normalization. The embedded tokens are then processed by a self-attention Transformer
model and outputs h ∈ RB×N×D. A learned linear token scorer projects each Transformer output
to a scalar, which is normalized with a softmax to obtain attention weights w ∈ RB×N . We then
form a global summary by attention pooling over the token dimension N : zb,d =

∑N
n=1 wb,nhb,n,d,

and pass z ∈ RB×D through a small MLP head to obtain g. From g, four linear heads produce
the parameters of two Beta distributions: (αL, βL) for the lower quantile and (α∆, β∆) for the band
width q∆ to ensure that lower quantile qL to be smaller than upper quantile qU . In addition, we apply
softplus to ensure all parameters of Beta distributions are strictly positive.

We train LDAR on 4 NVIDIA RTX 3090 GPUs for 32K context length settings and 1 NVIDIA RTX
PRO 6000 GPU for 128K context length settings.

C.2 HYPERPARAMETER SETTINGS

Our hyperparameter settings are summarized in Table 4. The same configuration is used consistently
across all experiments.

Table 4: Hyperparameter settings used for LDAR

Hyperparameter Setting
Batch Size 32
Embedding Dimension 256
Transformer Hidden Dimension 256
Baseline EMA coefficient 0.5
# Transformer Layer 2
# Transformer Head 4
Optimizer Adam(β = [0.9, 0.999], ϵ = 1e-8)
learning rate γ 3e-4

C.3 IMPLEMENTATION DETAILS OF TEXT CHUNKING PROCEDURE

We followed the standard LaRA benchmark chunking procedure, forming 600-token passages with
100-token overlap. As the size of each passage is equal in length, we can compute the number
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of passages directly from the information provided in Table 1. This results in approximately 64
passages for the 32k context-length setting and 256 passages for the 128k setting, which are used
consistently across all methods. Since the reported token-usage ratio corresponds exactly to the
fraction of passages retrieved, the number of passages retrieved by each baseline can be computed
directly from the table.

C.4 IMPLEMENTATION DETAILS OF BASELINE METHODS

Self-Route Li et al. (2024b) leverages the LLM itself to decide whether to use the RAG or long-
context approach. The method consists of two simple steps: (1) the query and Top-k retrieved pas-
sages are provided to the LLM, which is prompted to predict whether the query can be answered
with the given passages; (2) if the LLM predicts the query is answerable, the LLM generates the an-
swer directly. Otherwise, the full passage pool is passed to the LLM to produce the final prediction
using the long-context approach. To implement this routing process, we adapt the prompt used in
the LaRA benchmark (Li et al., 2025a), following the design of Self-Route (see Appendix C in Li
et al., 2024b).

Here are some chunks retrieved from some {datatype}. Read these chunks to answer a question.
Be concise. If the question cannot be answered based on the information in the article, write
“unanswerable”. {context} Question: {question} Only give me the answer and do not output any
other words. If the question cannot be answered based on the information in the article, write
“unanswerable”. Answer:

Table 5: Prompt we used for Self-Route baseline.

Adaptive-k Taguchi et al. (2025) retrieves passages by locating the largest gap in the sorted simi-
larity scores. Following the pseudo-code described in the original paper, we compute the difference
between consecutive similarity scores in sorted order, identify the index corresponding to the maxi-
mum gap, and retrieve all passages preceding this index.

BGM Ke et al. (2024) proposed a learning method that first selects the top-k passages based on
similarity scores and subsequently identifies the optimal subset using textual information guided by
evaluation learning signals. Since the official implementation is not publicly available, we imple-
mented BGM by following the procedure described in the paper. Since the paper does not specify
the number of silver passages required for the supervised learning stage, we constructed 50 silver
passages per task and used the evaluation signal to further fine-tune the sequence-to-sequence model.

CAG Chan et al. (2025) operates by first computing a KV-cache over a combined set of documents
D = {d1, d2, . . .} that corresponds to a set of queries {q1, q2, . . .}. Once this large unified KV-cache
is constructed, the model can process each instance efficiently by reusing the cached representations.
In their experiments on HotPotQA, the largest-scale setting aggregates 64 documents (approximately
85k tokens) to build this cache. However, in long-context benchmarks such as LaRA, a single docu-
ment associated with a single query already reaches the context-length limit of LLMs (which is 128k
tokens in our experiments). Therefore, computing a KV-cache over multiple documents is infeasi-
ble under long-context setting, and CAG effectively exhibits the same computational complexity
as standard LC. That said, the LaRA benchmark has a particular characteristic: each document is
paired with multiple queries (e.g., 10 queries per document). This enables CAG to gain some benefit
by caching individual documents and reusing their cached representations across queries that refer-
ence the same document. Accordingly, in our experiments, we implemented CAG by caching each
document separately and applying the cache to all associated queries. We report results based on this
fair and practically feasible adaptation of CAG for long-context evaluation. With such experimental
settings, CAG achieved performance comparable to LC, but yields a 2.5× reduction in latency (15.41
seconds for LC vs. 4.31 seconds for CAG per inference on average).
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D ADDITIONAL EXPERIMENT RESULTS

D.1 TRAINING LDAR ON HALLUCINATION TASK
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Figure 6: Performance and passage-usage ratio of LDAR trained with the Hallucination task signal.
Results are shown for Llama-3.1-8B under 32K and 128K context-length settings.

We visualize the training curve of LDAR when trained with the evaluation signal from the Halluci-
nation task in the LaRA benchmark. The Hallucination task measures whether an LLM can correctly
refuse to answer when the provided context lacks the required information (which is always the case
in this task). As shown in Figure 6, LDAR quickly learns to retrieve almost no passages, thereby
forcing the LLM to refuse answering. This behavior results in degenerate strategies that do not
reflect realistic retrieval requirements. Consequently, we treat the Hallucination task purely as an
evaluation benchmark rather than a training objective. We employed models trained on the Location
task–the most widely adopted retrieval strategy in practice–to evaluate and report the performance
of LDAR in Hallucination task at Table 1.
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D.2 VISUALIZATION OF RETRIEVAL STRATEGIES LEARNED BY LDAR

Figure 7 shows additional visualizations of retrieval strategies learned by LDAR. LDAR adaptively
determines both the lower and upper bounds of the similarity distribution band used for passage
retrieval, thereby maximizing LLM prediction accuracy by balancing information coverage against
the risk of distraction.
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Figure 7: Visualization of passages retrieved by LDAR based on the similarity distribution, with
retrieved passages marked in green if they contain the correct answer and in red otherwise.
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Case study of LDAR’s Retrieval Strategy Figure 8 shows a case-study analyzing LDAR’s
learned retrieval strategies. When the similarity distribution shows a clear high-similarity region,
LDAR tends to focus narrowly on that region. In these cases, the useful passage tends to be located
within the top rank passages as illustrated in Figure 8 (top).

Conversely, when the overall similarity distribution is low in value and relatively flat in shape, LDAR
expands its retrieval interval to ensure broader coverage, even at the risk of including more distract-
ing passages. In these cases, the useful passage is often not located within the top rank passages as
illustrated in Figure 8 (bottom), making a wider retrieval band necessary.

Although LDAR does not receive any textual information, this case study demonstrates that the
shape of the similarity distribution is indicative of where useful passages tend to appear. LDAR
learns these patterns and adapts its retrieval strategy accordingly.

Query: How does the Chain-of-thought (CoT) technique improve fairness in LLMs according? 

Case Study A: Distribution containing a clear high-similarity region

Case Study B: Distribution that is low in magnitude and relatively flat in shape

Answer: The CoT technique enhances the hopeful and performance of LLMs towards fairness by ...


Rank1:  The  technique  the hopeful and performance of LLMs towards  by ...CoT enhances fairness

Rank5:  Language modeling bias, often defined as "bias that results in harm to various social groups" ...

Rank50: This vision integrates the cutting edge of technological innovation with an unwavering ...  

Rank100: Fairness Amidst Non-IID Graph Data: Current Achievements and Future Directions. arXiv ...

Query: What are the symbolic keywords highlighted in Table 2 in paper 0?

Answer: The symbols are 'Edit Area,' 'Edit Function,' 'No Training,' 'Batch Edit,' and 'Edited #Params.'


Rank1:  ...  | Phenomenon | Paradigms | Example | | :---: | :---: | :---: | | Anapho ... </ >Table 2 end of paper 2

Rank5:  ...  shows the result of our evaluation on these newly assembled datasets. Although ...Table 1

Rank10: ... M. Brockschmidt, "Codesearchnet challenge: Evaluating the state of semantic code  ...

Rank21: : ... LLMs. ‘No Training’ refers ... ‘Batch Edit’ means ... ‘Editor #Params’ indicates ...Table 2

Distractors

Conservative Coverage

Figure 8: A case study illustrating LDAR’s learned retrieval behavior. When the similarity distribu-
tion contains a clear high-similarity region, LDAR tends to focus narrowly on that region. When the
overall similarity distribution is low in value and relatively flat in shape, LDAR expands its retrieval
interval to ensure broader coverage, even at the risk of including more distracting passages.
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D.3 ANALYSIS OF LDAR’S TRAINING / INFERENCE EFFICIENCY

LDAR introduces a small additional computation during inference because it performs a forward
pass of the learned LDAR retrieval strategy πθ. To quantify this overhead, we measured the end-to-
end inference time per example in Location task. Specifically, the inference time includes the time
required to (1) compute the query and passage embeddings, (2) run the bridge model (e.g., reranker
or LDAR retriever), and (3) process the selected passages through the prediction LLM to generate
the final answer. Note as baseline methods distribute their computation differently across these three
stages, their total inference cost varies accordingly.

Table 6 summarizes the average per-example inference time across all methods using both open-
source LLMs and closed-source LLMs. With open-source models, LC exhibits the highest la-
tency because it forwards all retrieved passages to the prediction LLM. Methods such as RAG,
RankZephyr, and BGM (which rely on text-based rerankers) also incur substantial overhead due to
heavy cross-encoder computation. In contrast, LDAR employs a lightweight, text-free adaptive re-
trieval mechanism, selecting passages to minimize potential interference from distracting passages.
As a result, LDAR achieves the fastest inference time among LC and all reranker baselines, while
simultaneously achieving the best overall performance.

In the closed-source setting, the prediction LLM is highly optimized for fast inference, making total
inference time less sensitive to input length. Even under these conditions, LDAR remains faster than
LC and all reranker baselines while also achieving better performance. These results demonstrate
that LDAR provides distraction-aware and long-context-capability-aware retrieval in a computation-
ally efficient manner at inference time.

Table 6: Comparison of retrieval strategies on LaRA Location task. Each cell reports the average
per-example inference time or performance with standard error, computed using open-source and
closed-source LLMs. Numbers in parentheses denote standard error for inference time and the token-
usage ratio for performance metrics, respectively.

Metric Top-1 Top-5 Top-10 Top-25 Top-50 LC RAG Self-
Route

Adap-
tive-k BGM Rank

Zephyr LDAR

Time (Open-source) 1.3
(0.55)

1.5
(0.73)

1.7
(0.91)

2.5
(0.99)

4.0
(1.31)

15.4
(5.17)

18.4
(0.86)

4.5
(5.93)

8.6
(11.70)

13.3
(1.14)

10.2
(1.07)

3.9
(1.61)

Time (Closed-source) 3.9
(2.29)

4.7
(1.91)

5.2
(2.36)

5.8
(2.52)

5.9
(2.20)

8.2
(2.67)

22.6
(1.75)

9.0
(4.09)

6.5
(4.70)

17.8
(5.94)

13.6
(2.56)

8.0
(2.69)

Score (Open-source) 31.1
(0.01)

60.1
(0.03)

66.9
(0.05)

71.3
(0.13)

67.9
(0.27)

56.2
(1.00)

71.6
(0.03)

65.8
(0.19)

47.7
(0.40)

68.9
(0.02)

56.1
(0.03)

77.3
(0.21)

Score (Closed-source) 31.5
(0.01)

61.7
(0.03)

70.8
(0.05)

80.0
(0.13)

80.3
(0.27)

88.0
(1.00)

75.2
(0.03)

80.0
(0.28)

64.4
(0.40)

72.2
(0.02)

62.7
(0.03)

90.5
(0.50)

Based on the analysis of LDAR’s inference-time efficiency, we now illustrate how the cost benefits
accumulate over time when deploying the learned LDAR strategy. For each LDAR training epoch,
we compute (1) the cumulative training cost up to that epoch and (2) the inference cost when apply-
ing LDAR strategy learned until that epoch with a certain number of inference calls (10K, 100K, and
500K inference calls). We then plot the cumulative cost on the x-axis and the resulting performance
on the y-axis. Figure 9 (top, bottom) shows the results for using open-source and closed-source
LLMs are prediction models, respectively. Because LDAR has lower inference-time overhead com-
pared to LC, its cost advantage becomes increasingly pronounced as the number of deployments
grows.

Importantly, as LDAR trains, it learns to identify the most effective passage set that minimizes
distraction. This not only improves performance but also reduces token usage during both train-
ing and inference. As shown in the center plot of Figure 9 (bottom), LDAR progressively selects
fewer tokens over training epochs, thereby lowering the per-epoch training cost as well. CAG (Chan
et al., 2025) is a cache-augmented generation method that speeds up inference by preloading docu-
ments and reusing a precomputed KV-cache. We included CAG as an additional baseline to compare
inference-time efficiency with LDAR.

Additionally, to provide a fair comparison in terms of API usage, we converted all training and
inference costs into USD and visualized the results in Figure 10. GPU hours are converted into USD
based on the pricing of the cloud computing services we used, and API costs are computed according
to the official pricing of OpenAI and Google. Under this USD-based metric, LDAR demonstrates
greater cost efficiency than LC, particularly when closed-source LLMs are used as the prediction
model, as the cost of processing long-context inputs is extremely high.
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Figure 9: Average performance plotted against the total cumulative computational cost (GPU hours)
for both training and inference. Each figure shows total cost incurred when using the LDAR retriever
at different training epochs and running certain number of inference calls (10K, 100K, and 500K).
The top row presents results using open-source LLMs, while the bottom row presents results using
closed-source LLMs.
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Figure 10: Average performance plotted against the total cumulative computational cost (USD) for
both training and inference. We converted GPU hours into USD based on the pricng of cloud com-
puting service we used, and API costs are computed according to the official pricing of OpenAI and
Google. Each figure shows total cost incurred when using the LDAR retriever at different training
epochs and running certain number of inference calls (10K, 100K, and 500K). The top row presents
results using open-source LLMs, while the bottom row presents results using closed-source LLMs.
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D.4 CROSS-EMBEDDER GENERALIZATION

For an LDAR strategy trained with one embedding model to generalize to another, we found that a
certain degree of scale alignment and rank alignment between the two embedders is necessary.

To illustrate this, Figure 11 (left) compares the mean cosine-similarity values produced by bge-
large-en-v1.5 (Xiao et al., 2024) and gte-large-en-v1.5 (Zhang et al., 2024b) over 100 randomly
sampled query–passage pairs from the Location task. Figure 11 (right) further shows how passages
ranked by the bge-large-en-v1.5 map to their corresponding ranks in the gte-large-en-v1.5. These
plots demonstrate that the two embedding models exhibit some amount of scale alignment (their
similarity ranges are comparable) and rank alignment (higher-ranked passages in one model tend to
remain relatively high-ranked in the other. Correlation: 0.7715). Because of this alignment, LDAR
strategy trained with bge-large-en-v1.5 can generalize to gte-large-en-v1.5 to a reasonable extent,
and vice versa, as shown in Table 7.
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Figure 11: Comparison of cosine-similarity and rank agreement between bge-large-en-v1.5 and gte-
large-en-v1.5 on the LaRA Location task. (Left) Average sorted cosine-similarity curve with stan-
dard deviation across all examples. (Right) Passage ranks under bge-large-en-v1.5 plotted against
their ranks under gte-large-en-v1.5; the dashed line indicates perfect rank agreement between the
two embedding models.

Table 7: Performance comparison across Location, Reasoning, Comparison, and Hallucination tasks.

(a) Location

Embedding Model LC RAG LDAR

bge-large-en-v1.5 69.3 (1.0) 72.4 (0.03) 77.6 (0.22)
gte-large-en-v1.5 69.3 (1.0) 70.4 (0.02) 74.4 (0.44)
bge→ gte-large-en-v1.5 69.3 (1.0) 70.4 (0.02) 74.4 (0.30)
gte→ bge-large-en-v1.5 69.3 (1.0) 72.4 (0.03) 75.5 (0.34)

(b) Reasoning

Embedding Model LC RAG LDAR

bge-large-en-v1.5 50.6 (1.0) 45.4 (0.02) 59.6 (0.36)
gte-large-en-v1.5 50.6 (1.0) 51.9 (0.02) 57.1 (0.31)
bge→ gte-large-en-v1.5 50.6 (1.0) 51.9 (0.02) 58.4 (0.25)
gte→ bge-large-en-v1.5 50.6 (1.0) 45.4 (0.02) 54.5 (0.39)

(c) Comparison

Embedding Model LC RAG LDAR

bge-large-en-v1.5 34.1 (1.0) 19.5 (0.03) 41.5 (0.50)
gte-large-en-v1.5 34.1 (1.0) 24.3 (0.02) 39.0 (0.54)
bge→ gte-large-en-v1.5 34.1 (1.0) 24.3 (0.02) 26.8 (0.62)
gte→ bge-large-en-v1.5 34.1 (1.0) 19.5 (0.03) 24.9 (0.47)

(d) Hallucination

Embedding Model LC RAG LDAR

bge-large-en-v1.5 58.4 (1.0) 78.3 (0.03) 73.3 (0.22)
gte-large-en-v1.5 58.4 (1.0) 77.9 (0.02) 70.1 (0.44)
bge→ gte-large-en-v1.5 58.4 (1.0) 77.9 (0.02) 71.4 (0.31)
gte→ bge-large-en-v1.5 58.4 (1.0) 78.3 (0.03) 68.8 (0.36)

(e) Average

Embedding Model LC RAG LDAR

bge-large-en-v1.5 53.1 (1.0) 53.9 (0.03) 63.0 (0.32)
gte-large-en-v1.5 53.1 (1.0) 56.1 (0.02) 60.1 (0.43)
bge→ gte-large-en-v1.5 53.1 (1.0) 56.1 (0.02) 57.7 (0.37)
gte→ bge-large-en-v1.5 53.1 (1.0) 53.9 (0.03) 55.9 (0.39)
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D.5 TRAINING LDAR WITH COST-REGULARIZED OBJECTIVE

Figure 12 shows the optimization of LDAR if we included a penalty term proportional to the number
of retrieved tokens during training. Introducing such a cost term caused the optimization to collapse
into a local optimum, where the LDAR strategy retrieved too few passages and suffered a drop in
accuracy.

Including a cost term would have been necessary if performance increases monotonically with the
number of retrieved passages. However, both prior work (e.g., the inverted-U findings in (Jin et al.,
2024; Leng et al., 2024)) and our own experiments show that performance peaks at an intermediate
retrieval size and then decreases, forming an inverted-U relationship due to distraction from addi-
tional passages. Because the objective is not a linear trade-off but rather identifying the peak of this
inverted-U, we found penalizing token usage during training often pushes the model away from the
optimal region.

Therefore, instead of imposing an explicit cost term, we focused on letting LDAR learn to retrieve
passages near the performance peak of the inverted-U. Notably, even without a cost term, LDAR
naturally avoids the high-distraction region and achieves both higher accuracy and lower token usage
compared to the long-context baseline (Table 1).
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Figure 12: Performance and passage-usage ratio of LDAR with and without the cost-regularization
term, evaluated on the LaRA Reasoning task using Qwen-2.5-7B.
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D.6 VISUALIZATION OF LDAR’S LEARNED RETRIEVAL STRATEGY IN CLUSTERS

To better understand LDAR’s retrieval behavior, we performed a clustering analysis over LDAR’s
retrieval on both an open-source model (Qwen-2.5-7B) and a closed-source model (Gemini-2.5-
pro) (Figure 13 and 14). We collected 100 similarity distributions and clustered them based on
LDAR’s retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). The figure
summarizes the mean similarity distribution for each cluster along with LDAR’s average retrieval
band (qL, qU ).

The visualization demonstrates that when the similarity distribution contains a relatively high-
similarity region, LDAR concentrates its retrieval on that narrow interval (Cluster 0). Conversely,
when similarity values are relatively low, LDAR expands the retrieval range to increase informa-
tion coverage (Cluster 1). To specifically examine cases where LDAR avoids the top interval, we
additionally isolated all instances where the learned upper quantile satisfies qU < 1.0. These cases
typically fall within Cluster 1, but we regrouped them separately to analyze this behavior in finer
detail. As illustrated in the third plot, these distributions exhibit the lowest overall similarity values.
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Figure 13: Visualization of clustering analysis over LDAR’s retrieval behavior on Qwen-2.5-7B
in Location task. We collected 100 similarity distributions and clustered them based on LDAR’s
retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). We additionally
isolated all instances where the learned upper quantile satisfies qU < 1.0. The figure shows the
mean similarity distribution for each cluster along with LDAR’s average retrieval band (qL, qU ). n
indicates the number of samples in each cluster and group.
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Figure 14: Visualization of clustering analysis over LDAR’s retrieval behavior on Gemini-2.5-pro
in Location task. We collected 100 similarity distributions and clustered them based on LDAR’s
retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). In this case, there is
no instance where the learned upper quantile satisfies qU < 1.0. The figure shows the mean similar-
ity distribution for each cluster along with LDAR’s average retrieval band (qL, qU ). n indicates the
number of samples in each cluster and group.

To better understand why LDAR band shifts downward in such cases, we performed a fixed-
width sliding-window experiment (Figure 18). For each cluster, we sweep windows of size w ∈
{20, 50, 100} across the similarity-ranked passages and measured accuracy using each window as
the retrieved set. The sliding-window experiment demonstrates that when the similarity distribu-
tion contains a relatively high-similarity region (Cluster 0), narrower interval (w = 20, 50) shows
a better performance peak than wider interval (w = 100). Conversely, when similarity values are
relatively low (Cluster 1), wider interval (w = 100) shows a better performance peak. This behavior
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aligns with LDAR’s learned retrieval bands. Interestingly, for Cluster 1 we observe a secondary per-
formance peak when a wide window (w = 100) covers the mid-quantile region. This suggests that,
in low-similarity scenarios, informative passages are often dispersed across the middle ranks rather
than concentrated at the very top. We believe such occasional peaks in the mid-quantile region made
LDAR to occasionally shifts its retrieval band downward to select mid-similarity passages when the
overall similarity scale is low. The sliding-window experiment for the group qU < 1.0 (Figure 18
(bottom)) further shows that the highest-ranked passage can sometimes act as a distractor when the
overall similarity scale is low.

By comparing LDAR’s behavior across open-source and closed-source LLMs (Figure 13 and 14),
LDAR generally uses wider quantile bands when interacting with closed-source models, reflecting
the fact that these models possess stronger long-context processing capabilities. Additionally, the
frequency of non–top-interval retrieval (i.e., cases where qU < 1.0) decreases notably for closed-
source models. This indicates that closed-source LLMs are inherently more resilient to noisy or
misleading passages, reducing the need for LDAR to shift its retrieval band downward to avoid
distraction. Together, these observations highlight that LDAR internalizes and adapts to the long-
context characteristics of the underlying LLM, producing retrieval behaviors that are both model-
aware and capability-aligned.
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D.7 VISUALIZATION OF LDAR’S ZERO-SHOT RETRIEVAL ON HELMET AND ADA-LEVAL
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Figure 15: Visualization of clustering analysis of LDAR’s zero-shot retrieval behavior on GPT-4o-
mini for the BestAnswer task in the Ada-LEval benchmark (Wang et al., 2024a). We used the LDAR
checkpoint pretrained with the Location task for zero-shot evaluation. We collected 100 similarity
distributions and clustered them based on LDAR’s retrieval band value, In this setting, the analysis
yields a single coherent cluster, indicating that LDAR consistently applies a similar retrieval strategy
across examples.
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Figure 16: Visualization of clustering analysis of LDAR’s zero-shot retrieval behavior on GPT-
4o-mini for the HotpotQA task. We used the LDAR checkpoint pretrained with the Comparison
task for zero-shot evaluation. We collected 100 similarity distributions and clustered them based
on LDAR’s retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). We
additionally isolated all instances where the learned upper quantile satisfies qU < 1.0. The figure
shows the mean similarity distribution for each cluster along with LDAR’s average retrieval band
(qL, qU ). n indicates the number of samples in each cluster and group.
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Figure 17: Visualization of clustering analysis of LDAR’s zero-shot retrieval behavior on GPT-4o-
mini for the NQ task. We used the LDAR checkpoint pretrained with the Location task for zero-shot
evaluation. We collected 100 similarity distributions and clustered them based on LDAR’s retrieval
band value, resulting in two primary clusters (Cluster 0 and Cluster 1). We additionally isolated all
instances where the learned upper quantile satisfies qU < 1.0. The figure shows the mean similarity
distribution for each cluster along with LDAR’s average retrieval band (qL, qU ). n indicates the
number of samples in each cluster and group.
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To show that LDAR’s learned retrieval behavior is not just corpus-specific distributional quirks,
we additionally conducted a zero-shot evaluation on a long-context benchmark constructed from
StackOverflow. In this task, each question is paired with many candidate answers, and the LLM
must identify the single answer originally marked as the most helpful (Wang et al., 2024a).

LDAR can zero-shot generalize to tasks with other corpus (i.e., exhibit semantic robustness) as long
as the overall similarity distribution is similar in scale. Figure 13 - 17 show that similarity distribu-
tion of tasks with different semantics (LaRA (novel, paper, finance), Ada-LEval (StackOverflow),
and HELMET (Wikipedia)) are in similar scale, and LDAR succeeds in showing similar behaviors.
This also leads to meaningful zero-shot performance on tasks with different semantics (Table 2 and
Table 8). Thus, as long as the embedder provides a stable and comparable similarity scale between
queries and passages across different corpus, the learned LDAR strategy can zero-shot generalize to
corpus with different semantics.

Table 8: Zero-shot evaluation on a long-context benchmark constructed from StackOverflow ques-
tions paired with many candidate answers, where the LLM must identify the single answer originally
marked as the most helpful (Wang et al., 2024a).

Ada-LEval LC RAG LDAR
Qwen-2.5-7B 24.0 (1.0) 63.0 (0.016) 65.0 (0.273)
Gemini-2.5-pro 87.5 (1.0) 80.0 (0.016) 89.5 (0.669)
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D.8 ANALYZING LDAR’S LEARNED RETRIEVAL STRATEGY VIA SLIDING WINDOW
EXPERIMENTS
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Figure 18: Visualization of clustering analysis over LDAR’s retrieval behavior on Qwen-2.5-7B
in Location task, along with the corresponding sliding-window experiments for each cluster. We
collected 100 similarity distributions and clustered them based on LDAR’s retrieval band value, re-
sulting in two primary clusters (Cluster 0 and Cluster 1). We additionally isolated all instances where
the learned upper quantile satisfies qU < 1.0. The figure shows the mean similarity distribution for
each cluster along with LDAR’s average retrieval band (qL, qU ). n indicates the number of samples
in each cluster and group.
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D.9 ABLATION STUDIES ON ARCHITECTURAL CHOICES

As the number of passages associated with each query varies (Section 4.1), it produces similarity
vectors of different lengths. We used Transformer encoder as it can handle variable-length sequences
and is able to model relationships within the similarity distribution. To demonstrate the effectiveness
of our architectural design choices, we performed an ablation study with different design variants
of LDAR. For our MLP variant, we followed the common practice by summarizing each similarity
vector into a fixed-size representation using simple pooling (i.e., taking the mean over similarity
scores across passages), and feed this pooled representation into a stack of MLP layers (Zaheer
et al., 2017). Table 9 shows that LDAR with the transformer encoder shows significantly better
performance compared to LDAR with MLP.

Also, we used periodic embeddings because they are highly effective for capturing fine-grained
variation in continuous inputs Gorishniy et al. (2022). As shown in Table 9, LDAR with periodic
embeddings achieves significantly better performance than LDAR using a standard learnable em-
bedding.

LLM Architecture Location Reasoning Comp Hallu Average
Llama-3.1-8B Transformer with periodic embedding (LDAR) 77.6 (0.216) 59.6 (0.361) 41.5 (0.501) 73.3 (0.217) 63.0 (0.324)
Llama-3.1-8B Transformer with learnable embedding 77.5 (0.359) 55.8 (0.158) 36.5 (0.353) 67.5 (0.359) 59.3 (0.307)
Llama-3.1-8B MLP 71.4 (0.319) 54.5 (0.286) 34.1 (0.424) 70.1 (0.323) 57.5 (0.338)

GPT-4o-mini Transformer with periodic embedding (LDAR) 88.8 (0.397) 80.5 (0.254) 63.4 (0.613) 51.8 (0.397) 71.1 (0.415)
GPT-4o-mini Transformer with learnable embedding 86.7 (0.520) 79.2 (0.285) 58.5 (0.600) 35.0 (0.521) 64.9 (0.481)
GPT-4o-mini MLP 84.6 (0.332) 77.9 (0.307) 56.0 (0.497) 29.8 (0.335) 63.3 (0.367)

Table 9: Ablation of architecture choices for LDAR.

D.10 ABLATION STUDY ON TASK ALIGNMENT

Most tasks in LaRA (such as Location) are single-hop QA tasks, where the answer can be derived
from a single relevant passage. In contrast, the Comparison task in LaRA and HotpotQA in HEL-
MET both require multi-hop reasoning, where multiple passages must be retrieved and combined to
produce the correct answer (Section 5.1).

Our analysis in Section 5.3 shows that for multi-hop tasks, LDAR optimizes to retrieve a larger
number of passages compared to other single-hop tasks (e.g., Location task). Based on this observed
behavior, we want to highlight that our zero-shot mapping is structurally motivated.

To further validate that the positive zero-shot results are not coincidental, we conducted an additional
misaligned transfer experiment. Specifically, we evaluate (1) Location-trained LDAR (single-hop)
transferred to HotpotQA (multi-hop), and (2) Comparison-trained LDAR (multi-hop) transferred to
NQ (single-hop). As shown in Table 10, misaligned transfers lead to degraded performance: Loca-
tion → HotpotQA retrieves too few passages to support multi-hop reasoning, while Comparison →
NQ retrieves too many passages, introducing additional distraction that harms performance. These
results demonstrate that LDAR’s zero-shot transfer benefits arise from alignment between task struc-
ture, rather than coincidence.

Table 10: Ablation study on task alignment. The top table shows the aligned task setting (Compari-
son → HotpotAQ, Location → NQ). The bottom table shows the misaligned task setting (Location
→ HotpotAQ, Comparison → NQ).

Task aligned HotpotQA NQ
LC RAG LDAR LC RAG LDAR

Qwen-3-4B 0.56 (1.0) 0.51 (0.019) 0.62 (0.536) 0.51 (1.0) 0.41 (0.021) 0.53 (0.486)
GPT-4o-mini 0.64 (1.0) 0.65 (0.019) 0.76 (0.629) 0.59 (1.0) 0.52 (0.021) 0.59 (0.374)

Task misaligned HotpotQA NQ
LC RAG LDAR LC RAG LDAR

Qwen-3-4B 0.56 (1.0) 0.51 (0.019) 0.60 (0.417) 0.51 (1.0) 0.41 (0.021) 0.50 (0.575)
GPT-4o-mini 0.64 (1.0) 0.65 (0.019) 0.74 (0.493) 0.59 (1.0) 0.52 (0.021) 0.58 (0.424)
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D.11 FULL COMPARISON RESULTS OF RETRIEVAL STRATEGIES

In this subsection, we provide more detailed result of Table 1 by showing the performance table
for each LLM. Table 11-19 compares the performance of retrieval strategies across context lengths
and tasks for each LLM. In this subsection, the columns are grouped by context length. Within
each group, Loc, Reas, Comp, and Hallu denote the Location, Reasoning, Comparison, and
Hallucination tasks in LaRA benchmark, respectively.

Table 11: Comparison of retrieval strategies under context length settings of 32k and 128k for
LLaMA-3.1-8B. Each cell reports accuracy, with the value in parentheses denoting the token-usage
ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Method Context Length 32k Context Length 128k
Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall

Top-1 51.7
(0.019)

17.0
(0.019)

19.3
(0.018)

87.3
(0.019)

43.8
(0.019)

33.6
(0.005)

18.1
(0.004)

2.4
(0.005)

88.8
(0.005)

35.7
(0.005)

Top-5 64.2
(0.095)

40.4
(0.097)

45.1
(0.091)

84.3
(0.095)

58.5
(0.095)

64.2
(0.026)

41.5
(0.024)

24.3
(0.025)

77.7
(0.026)

51.9
(0.025)

Top-10 71.4
(0.190)

34.0
(0.194)

61.2
(0.182)

83.0
(0.190)

62.4
(0.189)

68.3
(0.053)

50.6
(0.049)

24.3
(0.050)

76.7
(0.052)

55.0
(0.051)

Top-25 76.7
(0.474)

42.5
(0.486)

58.0
(0.457)

76.0
(0.476)

63.3
(0.473)

68.3
(0.133)

54.5
(0.124)

24.3
(0.126)

75.9
(0.131)

55.8
(0.129)

Top-50 82.1
(0.866)

27.6
(0.897)

51.6
(0.853)

79.5
(0.862)

60.2
(0.869)

67.3
(0.267)

55.8
(0.249)

31.7
(0.252)

72.4
(0.262)

56.8
(0.258)

LC 82.1
(1.000)

40.4
(1.000)

51.6
(1.000)

78.8
(1.000)

63.2
(1.000)

69.3
(1.000)

50.6
(1.000)

34.1
(1.000)

58.4
(1.000)

53.1
(1.000)

RAG 80.3
(0.095)

46.8
(0.097)

58.0
(0.091)

83.7
(0.095)

67.2
(0.095)

72.4
(0.026)

45.4
(0.024)

19.5
(0.025)

78.3
(0.026)

53.9
(0.025)

Self-Route 78.5
(0.271)

44.6
(0.385)

48.3
(0.327)

75.2
(0.976)

61.7
(0.490)

67.3
(0.205)

53.2
(0.265)

24.3
(0.501)

63.2
(0.933)

52.0
(0.476)

Adaptive-k 58.9
(0.395)

31.9
(0.362)

41.9
(0.385)

84.3
(0.479)

54.2
(0.405)

56.1
(0.398)

37.6
(0.405)

19.5
(0.675)

69.8
(0.502)

45.8
(0.495)

BGM 78.6
(0.047)

46.8
(0.085)

54.8
(0.071)

77.4
(0.056)

64.4
(0.065)

69.4
(0.023)

49.4
(0.018)

21.9
(0.020)

77.8
(0.017)

54.6
(0.019)

RankZephyr 73.2
(0.095)

42.5
(0.097)

51.6
(0.091)

81.3
(0.095)

62.2
(0.095)

57.1
(0.026)

48.0
(0.024)

9.7
(0.025)

76.7
(0.026)

47.9
(0.025)

LDAR 91.0
(0.474)

55.3
(0.545)

67.7
(0.624)

82.6
(0.671)

74.2
(0.579)

77.6
(0.216)

59.6
(0.361)

41.5
(0.501)

73.3
(0.217)

63.0
(0.324)

Table 12: Comparison of retrieval strategies under context length settings of 32k and 128k for
LLaMA-3.2-3B. Each cell reports accuracy, with the value in parentheses denoting the token-usage
ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 53.5

(0.019)
14.8
(0.019)

19.3
(0.018)

86.5
(0.019)

43.5
(0.019)

27.5
(0.005)

23.3
(0.004)

2.4
(0.005)

88.0
(0.005)

35.3
(0.005)

Top-5 66.0
(0.095)

23.4
(0.097)

35.4
(0.091)

83.0
(0.095)

51.9
(0.095)

56.1
(0.026)

38.9
(0.024)

14.6
(0.025)

77.2
(0.026)

46.7
(0.025)

Top-10 71.4
(0.19)

31.9
(0.194)

29.0
(0.182)

83.0
(0.190)

44.1
(0.189)

65.3
(0.053)

42.8
(0.049)

19.5
(0.05)

78.5
(0.052)

51.5
(0.051)

Top-25 78.5
(0.474)

27.6
(0.486)

45.1
(0.457)

83.4
(0.476)

58.7
(0.473)

66.3
(0.133)

41.5
(0.124)

17.0
(0.126)

71.9
(0.131)

49.2
(0.129)

Top-50 76.7
(0.866)

31.9
(0.897)

38.7
(0.853)

80.8
(0.862)

57.0
(0.869)

66.3
(0.267)

42.8
(0.249)

21.9
(0.252)

63.7
(0.262)

48.7
(0.258)

LC 80.3
(1.000)

25.5
(1.000)

32.2
(1.000)

65.1
(1.000)

50.8
(1.000)

68.3
(1.000)

33.7
(1.000)

19.5
(1.000)

52.0
(1.000)

43.4
(1.000)

RAG 78.5
(0.095)

31.9
(0.097)

22.5
(0.091)

79.7
(0.095)

53.2
(0.095)

70.4
(0.026)

41.5
(0.024)

14.6
(0.025)

69.4
(0.026)

49.0
(0.025)

Self-Route 78.5
(0.225)

21.2
(0.116)

32.2
(0.151)

68.2
(0.889)

50.0
(0.345)

63.2
(0.086)

35.0
(0.05)

24.3
(0.263)

56.0
(0.765)

44.6
(0.291)

Adaptive-k 58.9
(0.395)

14.8
(0.362)

32.2
(0.385)

78.6
(0.479)

46.1
(0.405)

47.9
(0.398)

24.6
(0.405)

12.1
(0.675)

67.4
(0.502)

38.0
(0.495)

BGM 78.4
(0.058)

31.2
(0.063)

45.2
(0.083)

74.8
(0.037)

57.4
(0.06)

66.3
(0.013)

48.9
(0.008)

17.0
(0.011)

75.4
(0.012)

51.9
(0.011)

RankZephyr 69.6
(0.095)

19.1
(0.097)

35.4
(0.091)

84.7
(0.095)

52.2
(0.095)

50.0
(0.026)

48.0
(0.024)

12.1
(0.025)

76.4
(0.026)

46.6
(0.025)

LDAR 85.7
(0.649)

34.0
(0.407)

58.0
(0.776)

76.5
(0.513)

63.6
(0.586)

73.5
(0.15)

55.5
(0.185)

34.2
(0.211)

69.1
(0.15)

58.1
(0.174)
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Table 13: Comparison of retrieval strategies under context length settings of 32k and 128k for Qwen-
2.5-7B. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio
relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 53.5

(0.019)
31.9
(0.019)

19.3
(0.018)

88.2
(0.019)

48.2
(0.019)

30.6
(0.005)

24.6
(0.004)

2.4
(0.005)

85.7
(0.005)

35.8
(0.005)

Top-5 71.4
(0.095)

31.9
(0.097)

48.3
(0.091)

83.0
(0.095)

58.7
(0.095)

58.1
(0.026)

45.4
(0.024)

21.9
(0.025)

75.6
(0.026)

50.2
(0.025)

Top-10 78.5
(0.19)

42.5
(0.194)

58.0
(0.182)

83.0
(0.190)

59.7
(0.189)

66.3
(0.053)

58.4
(0.049)

19.5
(0.05)

71.6
(0.052)

53.9
(0.051)

Top-25 85.7
(0.474)

46.8
(0.486)

58.0
(0.457)

81.3
(0.476)

68.0
(0.473)

74.4
(0.133)

58.4
(0.124)

29.2
(0.126)

72.2
(0.131)

58.5
(0.129)

Top-50 82.1
(0.866)

46.8
(0.897)

54.8
(0.853)

80.8
(0.862)

66.1
(0.869)

74.4
(0.267)

53.2
(0.249)

34.1
(0.252)

64.8
(0.262)

56.6
(0.258)

LC 83.9
(1.000)

46.8
(1.000)

54.8
(1.000)

76.4
(1.000)

65.5
(1.000)

35.7
(1.000)

41.5
(1.000)

12.2
(1.000)

42.5
(1.000)

33.0
(1.000)

RAG 78.5
(0.095)

44.6
(0.097)

45.1
(0.091)

84.3
(0.095)

63.1
(0.095)

71.4
(0.026)

59.7
(0.024)

24.9
(0.025)

71.0
(0.026)

56.8
(0.025)

Self-Route 85.7
(0.272)

42.5
(0.366)

41.9
(0.268)

78.6
(0.972)

62.2
(0.47)

61.2
(0.285)

53.2
(0.227)

24.3
(0.239)

67.7
(0.912)

51.6
(0.416)

Adaptive-k 64.2
(0.395)

23.4
(0.362)

48.3
(0.385)

83.4
(0.479)

54.8
(0.405)

37.7
(0.398)

23.3
(0.405)

17.0
(0.675)

70.8
(0.502)

37.2
(0.495)

BGM 77.0
(0.043)

49.2
(0.065)

48.4
(0.066)

77.4
(0.048)

63.0
(0.055)

72.4
(0.011)

62.3
(0.013)

39.0
(0.017)

75.9
(0.012)

62.4
(0.013)

RankZephyr 75.0
(0.095)

40.4
(0.097)

51.6
(0.091)

82.6
(0.095)

62.4
(0.095)

62.2
(0.026)

55.8
(0.024)

26.8
(0.025)

73.2
(0.026)

54.5
(0.025)

LDAR 91.0
(0.474)

59.5
(0.39)

61.2
(0.404)

83.4
(0.489)

73.8
(0.439)

76.5
(0.129)

64.9
(0.273)

46.3
(0.307)

69.1
(0.129)

64.2
(0.21)

Table 14: Comparison of retrieval strategies under context length settings of 32k and 128k for Qwen-
3-4B. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio rela-
tive to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 53.5

(0.019)
25.5
(0.019)

29.0
(0.018)

93.4
(0.019)

50.4
(0.019)

30.6
(0.005)

31.1
(0.004)

7.3
(0.005)

94.1
(0.005)

40.8
(0.005)

Top-5 66.0
(0.095)

48.9
(0.097)

51.6
(0.091)

91.7
(0.095)

64.5
(0.095)

61.2
(0.026)

57.1
(0.024)

31.7
(0.025)

90.4
(0.026)

60.1
(0.025)

Top-10 78.5
(0.19)

53.1
(0.194)

51.6
(0.182)

91.3
(0.19)

68.6
(0.189)

68.3
(0.053)

64.9
(0.049)

39.0
(0.05)

87.5
(0.052)

64.9
(0.051)

Top-25 82.1
(0.474)

48.9
(0.486)

64.5
(0.457)

90.4
(0.476)

71.5
(0.473)

80.6
(0.133)

68.8
(0.124)

29.2
(0.126)

87.0
(0.131)

66.4
(0.129)

Top-50 82.1
(0.866)

46.8
(0.897)

61.2
(0.853)

89.5
(0.862)

69.9
(0.869)

77.5
(0.267)

64.9
(0.249)

43.9
(0.252)

88.0
(0.262)

68.6
(0.258)

LC 82.1
(1.000)

42.5
(1.000)

61.2
(1.000)

88.6
(1.000)

68.6
(1.000)

79.5
(1.000)

67.3
(1.000)

41.4
(1.000)

82.0
(1.000)

67.5
(1.000)

RAG 71.4
(0.095)

44.6
(0.097)

54.8
(0.091)

91.3
(0.095)

65.5
(0.095)

76.5
(0.026)

57.1
(0.024)

36.5
(0.025)

87.6
(0.026)

64.4
(0.025)

Self-Route 83.9
(0.239)

51.0
(0.174)

58.0
(0.267)

88.2
(0.945)

70.3
(0.406)

75.5
(0.166)

63.6
(0.151)

31.7
(0.453)

81.2
(0.917)

63.0
(0.422)

Adaptive-k 67.8
(0.395)

38.2
(0.362)

45.1
(0.385)

90.4
(0.479)

60.4
(0.405)

60.2
(0.398)

53.2
(0.405)

29.2
(0.675)

88.0
(0.502)

57.6
(0.495)

BGM 82.3
(0.054)

49.8
(0.082)

49.2
(0.072)

88.7
(0.067)

67.5
(0.069)

72.4
(0.023)

63.6
(0.019)

41.7
(0.02)

86.5
(0.022)

66.0
(0.021)

RankZephyr 69.4
(0.095)

46.8
(0.097)

51.6
(0.091)

90.0
(0.095)

64.5
(0.095)

58.1
(0.026)

66.2
(0.024)

21.9
(0.025)

88.6
(0.026)

58.7
(0.025)

LDAR 87.5
(0.559)

57.4
(0.486)

70.9
(0.544)

90.0
(0.493)

76.4
(0.52)

85.7
(0.488)

68.8
(0.493)

46.3
(0.537)

86.0
(0.448)

71.7
(0.491)
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Table 15: Comparison of retrieval strategies under context length settings of 32k and 128k for
Mistral-Nemo-12B. Each cell reports accuracy, with the value in parentheses denoting the token-
usage ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 51.7

(0.019)
27.6
(0.019)

16.1
(0.018)

74.7
(0.019)

42.5
(0.019)

33.6
(0.005)

33.7
(0.004)

9.7
(0.005)

67.9
(0.005)

36.2
(0.005)

Top-5 66.0
(0.095)

46.8
(0.097)

45.1
(0.091)

70.8
(0.095)

57.2
(0.095)

61.2
(0.026)

54.5
(0.024)

29.2
(0.025)

50.0
(0.026)

48.7
(0.025)

Top-10 76.7
(0.19)

46.8
(0.194)

58.0
(0.182)

55.6
(0.19)

59.3
(0.189)

66.3
(0.053)

51.9
(0.049)

43.9
(0.05)

37.5
(0.052)

49.9
(0.051)

Top-25 67.8
(0.474)

34.0
(0.486)

25.8
(0.457)

41.3
(0.476)

42.2
(0.473)

67.3
(0.133)

48.0
(0.124)

24.3
(0.126)

18.5
(0.131)

39.5
(0.129)

Top-50 67.8
(0.866)

34.0
(0.897)

41.9
(0.853)

30.0
(0.862)

43.4
(0.869)

54.0
(0.267)

45.4
(0.249)

36.5
(0.252)

17.4
(0.262)

38.3
(0.258)

LC 73.2
(1.000)

29.7
(1.000)

38.7
(1.000)

39.5
(1.000)

45.3
(1.000)

28.6
(1.000)

32.5
(1.000)

12.2
(1.000)

12.7
(1.000)

21.5
(1.000)

RAG 73.2
(0.095)

51.0
(0.097)

54.8
(0.091)

68.6
(0.095)

61.9
(0.095)

67.3
(0.026)

45.4
(0.024)

36.5
(0.025)

48.4
(0.026)

49.4
(0.025)

Self-Route 76.7
(0.271)

42.5
(0.252)

54.8
(0.208)

39.5
(0.964)

53.4
(0.424)

62.2
(0.195)

51.9
(0.214)

21.9
(0.453)

14.0
(0.917)

37.5
(0.445)

Adaptive-k 55.3
(0.395)

19.1
(0.362)

48.3
(0.385)

50.0
(0.479)

43.2
(0.405)

36.7
(0.398)

22.0
(0.405)

14.6
(0.675)

34.1
(0.502)

26.9
(0.495)

BGM 78.5
(0.037)

54.6
(0.042)

51.9
(0.04)

59.1
(0.038)

61.0
(0.039)

64.3
(0.017)

58.4
(0.006)

31.7
(0.006)

50.0
(0.015)

51.1
(0.011)

RankZephyr 75.0
(0.095)

36.1
(0.097)

32.2
(0.091)

63.9
(0.095)

51.8
(0.095)

53.0
(0.026)

54.5
(0.024)

34.1
(0.025)

51.8
(0.026)

73.3
(0.025)

LDAR 83.9
(0.236)

57.4
(0.172)

58.0
(0.245)

50.0
(0.208)

62.3
(0.215)

73.5
(0.102)

59.7
(0.048)

46.3
(0.006)

24.1
(0.102)

50.9
(0.065)

Table 16: Comparison of retrieval strategies under context length settings of 32k and 128k for GPT-
4o. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio relative
to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 58.9

(0.019)
42.5
(0.019)

35.4
(0.018)

90.4
(0.019)

56.8
(0.019)

33.6
(0.005)

32.4
(0.004)

17.0
(0.005)

87.8
(0.005)

42.7
(0.005)

Top-5 78.5
(0.095)

70.2
(0.097)

58.0
(0.091)

83.0
(0.095)

72.4
(0.095)

65.3
(0.026)

70.1
(0.024)

31.7
(0.25)

74.8
(0.026)

60.5
(0.025)

Top-10 83.9
(0.19)

63.8
(0.194)

67.7
(0.182)

78.6
(0.19)

73.5
(0.189)

73.4
(0.053)

74.0
(0.049)

43.9
(0.05)

66.1
(0.052)

64.3
(0.051)

Top-25 91.0
(0.474)

61.7
(0.486)

77.4
(0.457)

75.2
(0.476)

76.3
(0.473)

82.6
(0.133)

79.2
(0.124)

51.2
(0.126)

63.4
(0.131)

69.1
(0.129)

Top-50 92.8
(0.866)

70.2
(0.897)

77.4
(0.854)

72.1
(0.862)

78.1
(0.87)

79.5
(0.267)

77.9
(0.249)

65.8
(0.252)

61.9
(0.262)

71.3
(0.258)

LC 87.5
(1.000)

70.2
(1.000)

80.6
(1.000)

72.3
(1.000)

77.6
(1.000)

90.8
(1.000)

80.5
(1.000)

65.8
(1.000)

56.3
(1.000)

73.4
(1.000)

RAG 83.9
(0.095)

55.3
(0.097)

67.7
(0.091)

78.3
(0.095)

71.3
(0.095)

80.6
(0.026)

63.6
(0.024)

46.3
(0.25)

67.3
(0.026)

64.5
(0.082)

Self-Route 91.0
(0.302)

70.2
(0.271)

70.9
(0.327)

75.6
(0.984)

76.9
(0.471)

80.6
(0.295)

80.5
(0.316)

63.4
(0.762)

60.5
(0.956)

71.2
(0.582)

Adaptive-k 75.0
(0.395)

59.5
(0.362)

64.5
(0.385)

81.3
(0.479)

70.1
(0.405)

64.2
(0.398)

57.1
(0.405)

48.7
(0.675)

67.4
(0.502)

59.4
(0.495)

BGM 80.4
(0.045)

61.7
(0.081)

61.3
(0.058)

73.9
(0.038)

69.3
(0.056)

75.5
(0.017)

66.2
(0.02)

31.7
(0.018)

70.4
(0.012)

60.9
(0.017)

RankZephyr 83.9
(0.095)

61.7
(0.097)

64.5
(0.091)

82.1
(0.095)

73.1
(0.095)

64.2
(0.026)

75.3
(0.024)

36.5
(0.025)

71.9
(0.026)

62.0
(0.025)

LDAR 94.6
(0.597)

72.3
(0.73)

87.0
(0.514)

76.9
(0.598)

82.7
(0.61)

91.8
(0.376)

84.4
(0.35)

68.3
(0.58)

60.3
(0.376)

76.2
(0.42)
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Table 17: Comparison of retrieval strategies under context length settings of 32k and 128k for GPT-
4o-mini. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio
relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 55.3

(0.019)
36.1
(0.019)

41.9
(0.018)

81.3
(0.019)

53.6
(0.019)

32.6
(0.005)

40.2
(0.004)

21.9
(0.005)

76.4
(0.005)

42.8
(0.005)

Top-5 78.5
(0.095)

48.9
(0.097)

74.1
(0.091)

75.6
(0.095)

69.3
(0.095)

63.2
(0.026)

66.2
(0.024)

41.4
(0.025)

62.6
(0.026)

58.4
(0.025)

Top-10 80.3
(0.19)

51.0
(0.194)

74.1
(0.182)

70.0
(0.19)

68.9
(0.189)

69.3
(0.053)

67.5
(0.049)

51.2
(0.05)

53.1
(0.052)

60.3
(0.051)

Top-25 85.7
(0.474)

61.7
(0.486)

77.4
(0.457)

64.3
(0.476)

72.3
(0.473)

77.5
(0.133)

75.3
(0.124)

43.9
(0.126)

45.2
(0.131)

60.5
(0.129)

Top-50 89.2
(0.866)

57.4
(0.897)

77.4
(0.853)

62.1
(0.862)

71.5
(0.869)

79.5
(0.267)

74.0
(0.249)

48.7
(0.252)

40.7
(0.262)

60.7
(0.258)

LC 87.5
(1.000)

55.3
(1.000)

77.4
(1.000)

52.8
(1.000)

68.2
(1.000)

81.6
(1.000)

71.4
(1.000)

58.3
(1.000)

32.0
(1.000)

60.8
(1.000)

RAG 82.1
(0.095)

59.5
(0.097)

70.9
(0.091)

67.1
(0.095)

69.9
(0.095)

70.4
(0.026)

72.7
(0.024)

46.3
(0.025)

59.3
(0.026)

62.2
(0.025)

Self-Route 87.5
(0.336)

51.0
(0.213)

74.1
(0.268)

61.7
(0.968)

68.6
(0.446)

71.4
(0.195)

72.7
(0.151)

43.9
(0.524)

29.3
(0.946)

54.3
(0.454)

Adaptive-k 75.0
(0.395)

55.3
(0.362)

64.5
(0.385)

70.4
(0.479)

66.3
(0.405)

59.1
(0.398)

50.6
(0.405)

41.4
(0.675)

49.4
(0.502)

50.1
(0.495)

BGM 82.1
(0.052)

57.4
(0.063)

80.3
(0.082)

64.3
(0.056)

71.0
(0.063)

78.6
(0.016)

67.3
(0.01)

36.6
(0.02)

57.9
(0.012)

60.1
(0.014)

RankZephyr 83.9
(0.095)

53.1
(0.097)

74.1
(0.091)

70.0
(0.095)

70.3
(0.095)

62.2
(0.026)

66.2
(0.024)

31.7
(0.025)

58.9
(0.026)

54.8
(0.025)

LDAR 89.2
(0.666)

70.2
(0.433)

80.6
(0.741)

60.4
(0.684)

75.1
(0.631)

88.8
(0.397)

80.5
(0.254)

63.4
(0.613)

51.8
(0.397)

71.1
(0.415)

Table 18: Comparison of retrieval strategies under context length settings of 32k and 128k for
Gemini-2.5-pro. Each cell reports accuracy, with the value in parentheses denoting the token-usage
ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 57.1

(0.019)
31.9
(0.019)

29.0
(0.018)

93.4
(0.019)

52.8
(0.019)

29.5
(0.005)

33.7
(0.004)

4.8
(0.005)

93.3
(0.005)

40.3
(0.005)

Top-5 76.7
(0.095)

59.5
(0.097)

58.0
(0.091)

90.8
(0.095)

71.2
(0.095)

61.2
(0.026)

58.4
(0.024)

29.2
(0.025)

85.4
(0.026)

58.6
(0.025)

Top-10 83.9
(0.19)

63.8
(0.194)

58.0
(0.182)

89.5
(0.19)

73.8
(0.189)

75.5
(0.053)

64.9
(0.049)

36.5
(0.05)

82.5
(0.052)

64.8
(0.051)

Top-25 85.7
(0.474)

63.8
(0.486)

64.5
(0.457)

86.5
(0.476)

75.1
(0.473)

81.6
(0.133)

76.6
(0.124)

53.6
(0.126)

78.0
(0.131)

72.4
(0.129)

Top-50 83.9
(0.866)

63.8
(0.897)

67.7
(0.853)

84.7
(0.862)

75.0
(0.869)

81.6
(0.267)

76.6
(0.249)

43.9
(0.252)

71.9
(0.262)

68.5
(0.258)

LC 89.2
(1.000)

59.5
(1.000)

62.1
(1.000)

86.5
(1.000)

74.3
(1.000)

91.8
(1.000)

80.5
(1.000)

46.3
(1.000)

76.6
(1.000)

73.8
(1.000)

RAG 82.1
(0.095)

61.7
(0.097)

61.2
(0.091)

87.3
(0.095)

73.1
(0.095)

75.5
(0.026)

64.9
(0.024)

36.5
(0.025)

84.4
(0.026)

65.3
(0.025)

Self-Route 89.2
(0.255)

63.8
(0.291)

64.5
(0.414)

86.0
(0.968)

75.9
(0.482)

86.7
(0.285)

71.4
(0.239)

43.9
(0.596)

70.1
(0.935)

68.0
(0.514)

Adaptive-k 69.6
(0.395)

44.6
(0.362)

61.2
(0.385)

90.0
(0.479)

66.3
(0.405)

70.4
(0.398)

53.2
(0.405)

41.4
(0.675)

78.3
(0.502)

60.8
(0.495)

BGM 83.9
(0.068)

61.7
(0.07)

54.8
(0.067)

80.3
(0.049)

70.2
(0.064)

68.3
(0.023)

64.9
(0.019)

29.3
(0.022)

81.3
(0.022)

60.9
(0.021)

RankZephyr 82.1
(0.095)

65.9
(0.097)

58.0
(0.091)

90.4
(0.095)

74.1
(0.095)

64.2
(0.026)

71.4
(0.024)

21.9
(0.025)

87.8
(0.026)

61.3
(0.025)

LDAR 92.8
(0.641)

68.0
(0.668)

67.7
(0.668)

86.9
(0.641)

78.8
(0.655)

91.8
(0.738)

83.1
(0.52)

63.4
(0.632)

80.7
(0.738)

79.8
(0.657)
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Table 19: Comparison of retrieval strategies under context length settings of 32k and 128k for
Gemini-2.5-flash. Each cell reports accuracy, with the value in parentheses denoting the token-
usage ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 55.3

(0.019)
38.2
(0.019)

25.8
(0.018)

92.6
(0.019)

53.0
(0.019)

30.6
(0.005)

28.5
(0.004)

4.8
(0.005)

93.3
(0.005)

39.3
(0.005)

Top-5 78.5
(0.095)

68.0
(0.097)

61.2
(0.091)

87.8
(0.095)

73.9
(0.095)

57.1
(0.026)

55.8
(0.024)

34.1
(0.025)

85.4
(0.026)

58.1
(0.025)

Top-10 85.7
(0.19)

59.5
(0.194)

61.2
(0.182)

85.2
(0.19)

72.9
(0.189)

65.3
(0.053)

63.6
(0.049)

39.0
(0.05)

82.5
(0.052)

62.6
(0.051)

Top-25 87.5
(0.474)

59.5
(0.486)

64.5
(0.457)

82.1
(0.476)

73.4
(0.473)

78.5
(0.133)

70.1
(0.124)

43.9
(0.126)

78.0
(0.131)

67.6
(0.129)

Top-50 82.1
(0.866)

63.8
(0.897)

54.8
(0.853)

80.0
(0.862)

70.2
(0.869)

80.6
(0.267)

68.8
(0.249)

51.2
(0.252)

71.9
(0.262)

68.1
(0.258)

LC 85.7
(1.000)

63.8
(1.000)

74.1
(1.000)

80.4
(1.000)

76.0
(1.000)

87.8
(1.000)

75.3
(1.000)

56.1
(1.000)

68.8
(1.000)

72.0
(1.000)

RAG 82.1
(0.095)

59.5
(0.097)

45.1
(0.091)

86.5
(0.095)

68.3
(0.095)

74.5
(0.026)

62.3
(0.024)

41.4
(0.025)

85.7
(0.026)

66.0
(0.025)

Self-Route 91.0
(0.287)

65.9
(0.232)

61.2
(0.239)

80.8
(0.948)

74.7
(0.426)

81.6
(0.355)

74.0
(0.29)

58.5
(0.619)

70.1
(0.935)

71.0
(0.55)

Adaptive-k 66.0
(0.395)

46.8
(0.362)

48.3
(0.385)

87.3
(0.479)

62.1
(0.405)

64.2
(0.398)

55.8
(0.405)

46.3
(0.675)

78.3
(0.502)

61.2
(0.495)

BGM 83.9
(0.064)

55.3
(0.08)

48.4
(0.05)

84.3
(0.038)

68.0
(0.058)

66.3
(0.02)

68.8
(0.018)

39.0
(0.02)

84.1
(0.016)

64.5
(0.018)

RankZephyr 78.5
(0.095)

57.4
(0.097)

51.6
(0.091)

88.2
(0.095)

68.9
(0.095)

60.2
(0.026)

72.7
(0.024)

21.9
(0.025)

84.4
(0.026)

59.8
(0.025)

LDAR 91.0
(0.611)

70.2
(0.716)

80.6
(0.556)

83.0
(0.61)

81.2
(0.623)

89.8
(0.498)

83.1
(0.654)

68.3
(0.602)

71.1
(0.565)

78.1
(0.58)
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