
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND RAG VS. LONG-CONTEXT: LEARNING
DISTRACTION-AWARE RETRIEVAL FOR EFFICIENT
KNOWLEDGE GROUNDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) is a framework for grounding Large Lan-
guage Models (LLMs) in external, up-to-date information. However, recent ad-
vancements in context window size allow LLMs to process inputs of up to 128K
tokens or more, offering an alternative strategy: supplying the full document con-
text directly to the model, rather than relying on RAG to retrieve a subset of con-
texts. Nevertheless, this emerging alternative strategy has notable limitations: (i) it
is token-inefficient to handle large and potentially redundant contexts; (ii) it exac-
erbates the ‘lost in the middle’ phenomenon; and (iii) under limited model capac-
ity, it amplifies distraction, ultimately degrading LLM output quality. In this paper,
we propose LDAR (Learning Distraction-Aware Retrieval), an adaptive retriever
that learns to retrieve contexts in a way that mitigates interference from distract-
ing passages, thereby achieving significantly higher performance with reduced
token usage compared to long-context approaches. Extensive experiments across
diverse LLM architectures and six knowledge-intensive benchmarks demonstrate
the effectiveness and robustness of our approach, highlighting the importance of
balancing the trade-off between information coverage and distraction.

1 INTRODUCTION

0.0 0.2 0.4 0.6 0.8 1.0
Cost (Token Usage Ratio)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce

Mistral-Nemo-12B
Qwen-2.5-7B-Instruct
GPT-4o
LDAR

Figure 1: Performance of LLMs across to-
ken usage ratios. Higher ratio corresponds to
retrieving more passages. Lines indicate per-
formance when retrieving top-similarity pas-
sages within a fixed token usage ratio (1.0
= full context). ☆ marks the performance
of LDAR optimized for each LLM, illustrat-
ing its ability to strike a balance between in-
formation coverage and distraction that sur-
passes all fixed token usage baselines.

Despite the remarkable progress of Large Language
Models (LLMs), they continue to exhibit factual er-
rors (Wei et al., 2024; Lv et al., 2024; Li et al.,
2024a), and their knowledge remains limited to the
static dataset on which they were trained. To ad-
dress these limitations, Retrieval-Augmented Gener-
ation (RAG) has been proposed, enabling models to
ground their outputs in external, up-to-date informa-
tion, thereby enhancing both accuracy and relevance
in knowledge-intensive tasks (Zhang et al., 2024a;
Xu et al., 2024). In practice, RAG retrieves a small
set of the most relevant passages from an external
corpus to ground the LLM’s generation process.

Recent advancements have substantially increased
the context length of LLMs, with some models now
supporting inputs of up to 128K tokens or more (e.g.,
GPT-4o (OpenAI, 2024), Gemini 2.5 (Comanici
et al., 2025), Qwen 2.5 (Yang et al., 2025)). This ca-
pability offers an alternative strategy for grounding
model outputs: supplying the full document context
directly to the model, rather than relying on RAG to
supply only a subset of them. With sufficient capac-
ity, LLMs can selectively attend to salient informa-
tion while disregarding irrelevant content, thereby reducing reliance on explicit retrieval mecha-
nisms. Indeed, empirical evidence from emerging benchmarks indicates that providing LLMs with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

full long-contexts frequently outperforms RAG-based approaches (Li et al., 2024b; Wang et al.,
2024b; Li et al., 2025a). Nevertheless, this long-context approach has its own drawbacks, as it can
be token-inefficient to process large, potentially redundant contexts. Moreover, long-context ap-
proaches are prone to the ‘lost in the middle’ phenomenon, where the model struggles to recall
information presented in the middle of a long input sequence (Liu et al., 2023). When model ca-
pacity is limited, supplying the full context may further introduce distraction, thereby degrading
answer quality (Li et al., 2025a). These challenges highlight the need for approaches that integrate
the advantages of both paradigms—approaching the performance of long-context approaches while
maintaining the token efficiency of RAG.

In this paper, we demonstrate that both open and closed-source LLMs can still fail to answer ques-
tions even when the gold passage is retrieved, due to interference from additionally retrieved pas-
sages (i.e., distracting passages) (Shi et al., 2023a; Cuconasu et al., 2024; Amiraz et al., 2025).
However, retrieving passages to minimize such distraction remains a non-trivial challenge, as the
optimal strategy depends not only on the capacity of the target LLM, but also on the combinatorial
interactions among the retrieved passages. To address this challenge, we introduce LDAR (Learning
Distraction-Aware Retrieval), a retriever that learns to select passages to minimize potential inter-
ference from distracting passages in accordance with the capacity of the LLM, thereby achieving
significantly better performance and lower token usage compared to long-context approaches. In
summary, our contributions are as follows:

1. Unlike previous heuristic-based methods, we propose a learning-based retrieval strategy
framework that adaptively balances information coverage and distraction in accordance
with the capacity of the LLM, achieving better performance with significantly reduced
token usage compared to the long-context approach.

2. We empirically demonstrate that retrieving passages in bands (i.e., selecting from contigu-
ous ranges along the similarity-ranked list) is critical for learning a distraction-aware re-
trieval strategy. The banded retrieval strategy provides a form of abstraction that improves
generalization and prevents the retriever from converging to suboptimal solutions.

3. We validate our approach across diverse LLM architectures (both open and closed-source)
and six knowledge-intensive benchmarks, demonstrating both the effectiveness and robust-
ness of the proposed retrieval strategy. Our code is available at this GitHub repository link.

2 RELATED WORKS

RAG vs. Long-context LLM Numerous studies have examined the comparative performance of
RAG versus LLMs provided with the entire input context. While some works report that RAG out-
performs long-context approaches (Xu et al., 2023b), other works demonstrate the opposite trend,
with long-context models surpassing RAG-based methods (Li et al., 2024b). Li et al. (2025a) demon-
strates that this divergence in findings largely stems from the capacity of LLMs used to evaluate the
results. Open-source LLMs typically exhibit limited capacity for processing long contexts and there-
fore benefit substantially from retrieval mechanisms. On the other hand, closed-source LLMs often
possess stronger long-context capabilities and consequently achieve higher performance when given
full-context inputs (Li et al., 2025a). These findings suggest that RAG works as a stopgap technique
to boost models that otherwise struggle with long sequences (Bai et al., 2023; Li et al., 2025a).
Furthermore, several studies highlight that increasing the number of retrieved text chunks yields an
inverted-U pattern: performance initially improves but eventually declines as the model becomes
distracted by irrelevant or misleading passages (Jin et al., 2024; Leng et al., 2024). This observation
underscores the need for retrieval strategies that balance information coverage against the risk of
distraction, thereby optimizing the trade-off in passage selection.

Bridging the Gap between Retriever and LLM Our method can also be interpreted as bridging
the gap between the retriever and the LLM. Since retrievers and LLMs are pretrained under distinct
training objectives and architectures, a preference gap naturally arises between them (Ke et al., 2024;
Ye et al., 2024). The passages retrieved by the retriever can even distract the LLM during answer
generation, thereby degrading downstream performance (Shi et al., 2023a; Cuconasu et al., 2024;
Amiraz et al., 2025). Prior work has attempted to mitigate this gap by fine-tuning the LLM (Izacard
& Grave, 2020; de Jong et al., 2023), fine-tuning the retriever (Shi et al., 2023b; Xu et al., 2023a),
jointly fine-tuning both components (Izacard et al., 2022; Lewis et al., 2020), or training a module

2

https://anonymous.4open.science/r/LDAR-39C2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Co
sin

e
sim

ila
rit

y

Gold passages Retrieve all Cumulatively Retrieve Gold passages First Retrieve Gold Cumulatively

0 5 10 15 20
Passage Rank

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Co
sin

e
sim

ila
rit

y

0 5 10 15 20
Passage Rank

0 5 10 15 20
Passage Rank

0 5 10 15 20
Passage Rank

Cosine Similarity Correct Answer Wrong Answer Retrieved Passage

Figure 2: Visualization of different retrieval strategies and their impact on performance. A green
circle () indicates that retrieving the passage yields a correct answer, a red cross () indicates
retrieving the passage yields a wrong answer, and a purple star () denotes a passage that has already
been incorporated into the retrieved passage set. The black curve represents the cosine similarity
between the query and passages. The top row reports results for an open-source model (Llama-3.1-
8B), while the bottom row shows results for a closed-source model (GPT-4o) on a reasoning task
(Li et al., 2025a).

that bridges the gap (Ke et al., 2024; Ye et al., 2024). Whereas bridge modules identify relevant
passages based on textual information within the top-k candidates retrieved by cosine similarity, our
method instead targets the retrieval stage itself. Specifically, we aim to retrieve sets of passages that
minimize distraction under a fixed pretrained retriever and LLM, relying solely on the similarity
distribution between the query and passages.

3 MOTIVATION

Although prior works have highlighted the detrimental impact of distracting passages on retrieval
performance (Jin et al., 2024; Leng et al., 2024), relatively little attention has been paid to retrieval
strategies that explicitly mitigate such influence. The columns in Figure 2 illustrate retrieval strate-
gies commonly adopted in practice: (1) gold passages that lead to correct answer when individually
retrieved; (2) retrieving all passages cumulatively from top to bottom, which corresponds to the con-
ventional top-k similarity-based retrieval approach (Lewis et al., 2020; Karpukhin et al., 2020); (3)
retrieving all gold passages first () followed by retrieving additional passages, which corresponds
to reranking the retrieved top-k passages to prioritize relevance (Nogueira & Cho, 2019; Nogueira
et al., 2020; Glass et al., 2022); (4) retrieving gold passages cumulatively from top to bottom, which
resembles the successful outcome of the hybrid strategy: first selecting the top-k passages by sim-
ilarity and then applying a relevance-based top-n selection to retain only the gold passages (Asai
et al., 2024; Ke et al., 2024; Lee et al., 2025).

As shown in (2), top-k retrieval is susceptible to distracting passages. Even when individually correct
passages are included, their joint presence with distracting passages can result in incorrect answers.
Note that retrieving all available passages is effectively equivalent to the long-context approach
setting, which is likewise prone to errors. In (3), reranking approaches that place highly relevant
passages at the front of the retrieved passages still fail when distracting passages are present, as
their inclusion can override or obscure the signal from the relevant ones. Finally, (4) shows that even
when the hybrid strategy, which combines similarity-based top-k retrieval with relevance-based top-
n selection, successfully retains only the gold passages, their joint retrieval can still lead to incorrect
answers. Counterintuitively, even when all passages individually lead to the correct answer, their
collective inclusion can complicate the reasoning process and ultimately cause the model to generate
incorrect outputs. Based on these observations, we define distracting passages as passages that
misguide the LLM in generating the correct answer, irrespective of whether they lead to correct
answer when individually retrieved. Furthermore, the differing outcomes in Figure 2 (top vs. bottom)
demonstrate that retrieval effectiveness is strongly tied to the capacity of the underlying LLM.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Passage Rank

S
im

ila
rit

y

Passage Rank

Similarity
Retrieved
Correct Answer
Wrong Answer

0 10 20 30 40 50
Gradient Step

0.3

0.4

0.5

0.6

Sc
or

e

Performance

0 10 20 30 40 50
Gradient Step

0.2

0.4

0.6

0.8

1.0

Ra
tio

Passage Usage

Band
Bernoulli

Figure 3: (Left) Visualization of passages retrieved by πθ based on the similarity distribution be-
tween queries and passages, with retrieved passages marked in green if they contain the correct
answer and in red otherwise. (Right) Comparison of performance and passage usage ratio across
Bernoulli- and band-based retrieval strategies across gradient steps.

These findings underscore the inherent difficulty of reliably retrieving passages that yield correct
answers, motivating the need for retrieval strategies that explicitly account for distracting effects in
relation to model capacity. Note that a brute-force remedy to minimize distraction would be to em-
ploy a high-capacity LLM to exhaustively read and align every passage to the query. However, this
approach is prohibitively expensive, as inference cost scales with the number of passages, making it
infeasible in practice (especially in the long-context setting). To address this challenge, we propose
a lightweight adaptive retriever framework that learns to minimize distraction by selecting effective
passage sets in accordance with the long-context capability of LLMs. This method relies solely on
the cosine similarity distribution between queries and passages, guided by evaluation signals to learn
an effective balance between information coverage and distraction.

4 MAIN METHOD

RAG employs a pretrained embedding model fϕ that maps a query q and passages {pi}Ni=1 into a
shared vector space Rd, retrieving the top-k passages ranked by semantic similarity. Let si denote
the similarity (e.g., dot product or cosine similarity) between the query and the i-th passage,

∃σ s.t. sσ(1) ≤ sσ(2) ≤ . . . ≤ sσ(N), R = {pσ(N−k+1), . . . , pσ(N)}. (1)

Retrieved passages R with higher similarity scores are semantically closer to the query, as the em-
bedding space is trained via contrastive objectives that pull matched query–passage pairs together
while pushing apart mismatched pairs (Izacard et al., 2021; Li et al., 2023; Zhang et al., 2024b).
This dense retrieval approach has remained the dominant strategy due to its effectiveness in re-
trieving relevant passages at low computational cost, spanning from early RAG models to recent
applications (Lewis et al., 2020; Tang & Yang, 2024; Asai et al., 2024; Li et al., 2025b).

In this section, we present our lightweight retriever πθ that learns to select passages to minimize
potential interference from distracting passages, solely based on the similarity between the query
and passages. As discussed in Section 3, employing a high-capacity LLM to exhaustively align
all passages with the query is impractical, particularly in long-context settings. To ensure our ap-
proach scales to large-scale retrieval scenarios, we deliberately restrict πθ from accessing textual
information. Moreover, our approach avoids the expense of fine-tuning the large pretrained LLM
and embedding model by training only a lightweight neural network to reduce distraction, while
keeping the larger components fixed.

Our retriever πθ operates on the cosine similarity distribution and selects a dynamic set of passages
from a contiguous quantile interval qL, qU ⊂ [0, 1]. When the retriever πθ determines that infor-
mation coverage should be prioritized at the risk of increased distraction, it retrieves passages from
a wide quantile interval. On the contrary, if the risk of having distraction is higher, πθ retrieves
passages from a narrow quantile interval, minimizing the risk of having distraction. Figure 3 (left)
illustrates that optimized πθ adapts its retrieval strategy based on the similarity distribution between
the query and passages. If passages with high semantic similarity exist, πθ tends to focus narrowly
on that region. In contrast, when no passages exhibit strong semantic similarity, πθ expands the re-
trieval range to ensure broader information coverage, even at the cost of incorporating more potential
distracting passages.

Notably, this behavior also depends on the capability of the pretrained LLM: models with stronger
long-context processing generally exhibit lower susceptibility to distraction compared to those with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Attention Pooling

Output

Evaluation

Lower Quantile Upper Quantile

Cosine Similarity
Distribution

Cosine Similarity
Distribution

PassagesQuery

Pretrained Retriever Pretrained LLM

Periodic Embedding

Selected Region

Adaptive Retriever

Transformer Encoder

Dataset

arXiv, novel,

Wikipedia, etc

gradient update

Self Attention

Figure 4: Overview of LDAR, a learning-based retrieval strategy that adapts to each LLM by bal-
ancing information coverage and distraction. Given a query, a fixed pretrained retriever computes
cosine similarity scores between the query and passages. Then periodic embeddings encode each
score into a token, followed by a Transformer encoder that processes the tokenized similarity dis-
tribution. The encoder representations are aggregated via attention pooling, after which two output
heads predict the lower and upper quantiles that define the similarity interval used for retrieval. The
selected passages are passed to a pretrained LLM for prediction, and the evaluation signal is used to
update the adaptive retriever through gradient-based learning.

limited long-context capability (Li et al., 2025a). Later in experiments, we demonstrate that the
LDAR framework adaptively retrieves fewer passages for open-source models compared to closed-
source models on the same task, indicating that our framework aligns retrieval strategies with the
long-context capability of the underlying LLM.

4.1 DESIGNING THE ADAPTIVE RETRIEVER

We provide the adaptive retriever πθ with a cosine similarity vector s ∈ RN between the query and
the N passages, computed by a pretrained embedding model fϕ:

si :=
fϕ(q)

⊤fϕ(pi)

∥fϕ(q)∥ ∥fϕ(pi)∥
, i = 1, . . . , N. (2)

Since the number of passages associated with each query may differ, the dimensionality of s ∈ RN
is not fixed and varies across queries. To accommodate this variability, we employ a bidirectional
self-attention Transformer that maps the token embedding of each similarity score si to a contextu-
alized representation. An attention-pooling layer then aggregates these token-level representations
into a global summary vector, which is fed to output heads that predict the parameters (αL, βL)
and (αU , βU) of two Beta distributions. The lower and upper quantiles qL and qU are then sampled
from these distributions respectively, and the resulting band {qL, qU} ⊂ [0, 1] is used to select the
passages from the similarity distribution.

Intuitively, allowing the adaptive retriever πθ to select passages via independent Bernoulli sampling
for each candidate is also a valid strategy. However, as shown in Figure 3 (right), the Bernoulli-based
variant of LDAR fails to identify a balanced trade-off between the RAG and long-context approach.
This limitation arises from its need to explore the entire combinatorial subset selection space, which
impedes generalization and ultimately causes convergence to a local optimum (corresponding to the
long-context approach in this case). In contrast, band-based retrieval reduces the effective search
space from combinatorial subset selection to a low-dimensional and smooth control space, yielding
a temporally abstract retrieval strategy that enables more sample-efficient credit assignment and
promotes better exploration (Baranes & Oudeyer, 2013; Machado et al., 2023; Kim et al., 2025).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Distraction-Aware Adaptive Retrieval

Require: Instances D = {(qm, Pm, ym)}Mm=1, Embedding model fϕ, Adaptive Retriever πθ
1: for m-th query qm and passages {pm,i}Ni=1 in D do
2: si ← fϕ(qm)⊤fϕ(pm,i)

∥fϕ(qm)∥ ∥fϕ(pm,i)∥ for i = 1, · · · , N
3: (qL, qU) ∼ πθ(· | s)
4: ℓ← max(1, ⌊N · qL⌉)
5: u← max(ℓ, ⌊N · qU⌉)
6: σ ← argsort(s) s.t. sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(N)

7: Rm ← {pσ(ℓ), pσ(ℓ+1), . . . , pσ(u)}
8: end for
9: return {Rm}Mm=1

Ultimately, our band-based retrieval strategy allows πθ to achieve an effective trade-off between
information coverage and distraction, yielding a higher score while maintaining a lower passage-
retrieval ratio. (see Figure 3 (right)). We provide an illustration of our adaptive retrieval process in
Figure 4, with corresponding pseudo-code in Algorithm 1.

4.2 OPTIMIZING THE ADAPTIVE RETRIEVER

The main goal of πθ is to retrieve a set of passages that maximizes the likelihood of the pretrained
LLM producing the correct answer to a given query. To this end, we formulate the objective as
maximizing the prediction accuracy of the LLM conditioned on the passage set retrieved by πθ:

max
θ

J(θ) = E(q,P,y)∼D,R∼πθ(·|s) [rψ(q,R, y)] , where rψ(q,R, y) := 1corr (Fψ(q,R), y) . (3)

Here, D denotes the dataset with each instance comprising a query q, a candidate passage pool P ,
and a ground-truth answer y. R denotes the set of passages retrieved by πθ given the similarity
scores s, and 1corr is an indicator function that evaluates whether the output of the LLM Fψ(q,R)
matches ground-truth answer y.

By applying the likelihood ratio gradient with log-derivative trick (Sutton et al., 1999), we can update
θ at k-th gradient update step as:

θk+1 = θk + γ · rψ(q,R, y) · ∇θk log πθk(·|s), (4)

where γ denotes the step size. Through this optimization, πθ learns a distraction-aware retrieval
strategy that reduces the likelihood of distracting passages interfering with the prediction LLM.

5 EXPERIMENTS

5.1 TASKS AND DATASETS

Six datasets encompassing diverse tasks and contexts are used to evaluate LDAR with other base-
lines. Each dataset is partitioned into training and test sets using an 8:2 split ratio, and performance
is assessed on the test set. Both the training and test sets are available in our GitHub repository.

Location, Reasoning, Comparison, Hallucination tasks are from the LaRA benchmark (Li et al.,
2025a), which is delicately designed to compare the performance between RAG and long-context ap-
proach. Notably, these tasks include contexts approaching the maximum supported length of main-
stream commercial and open-weight models (128K tokens), thereby providing a rigorous evaluation
of the long-context capabilities of LLMs. In LaRA, contexts are drawn from novels, financial state-
ments, and academic papers with entity replacement (Li et al., 2020; Zhang et al., 2024c) to mitigate
the risk of data leakage. The Location task evaluates an LLM’s ability to identify precise information
based on the provided context. The Reasoning task examines the model’s capacity for logical infer-
ence, deduction, or computation within the given context. The Comparison task assesses whether
the model can integrate and contrast information across multiple parts of the provided context. The
Hallucination task evaluates whether an LLM can appropriately refuse to answer when the provided
context lacks the required information (which is always the case in this task). We observed that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of retrieval strategies across context lengths and task types. Each cell reports
the average score across LLMs with standard error. White background indicates the average over
open-source LLMs and brown background indicates the average over closed-source LLMs . Num-
bers in parentheses denote the token-usage ratio relative to LC. The best performing strategy for
each task is highlighted in bold. The open-source and closed-source models used to compute the
scores are introduced in Section 5.2. The full results are available in Appendix D.11.

Method Location Reasoning Comparison Hallucination Overall
Context Length 32k

Top-1 52.7± 0.5
(0.019)

56.6± 0.9
(0.019)

23.3± 3.2
(0.019)

37.1± 2.2
(0.019)

20.6± 2.2
(0.018)

33.0± 3.6
(0.018)

86.0± 3.1
(0.019)

89.4± 2.8
(0.019)

45.65± 2.3
(0.018)

54.02± 2.4
(0.018)

Top-5 66.7± 1.2
(0.095)

78.0± 0.5
(0.095)

38.2± 4.8
(0.097)

61.6± 4.8
(0.097)

47.6± 2.7
(0.091)

62.8± 3.8
(0.091)

82.5± 3.4
(0.095)

84.3± 3.3
(0.095)

58.75± 3.0
(0.094)

71.67± 3.1
(0.094)

Top-10 75.3± 1.6
(0.190)

83.4± 1.1
(0.190)

41.6± 4.0
(0.194)

59.5± 3.0
(0.194)

51.5± 5.9
(0.182)

65.2± 3.6
(0.182)

79.1± 6.1
(0.190)

80.8± 4.3
(0.190)

61.87± 4.4
(0.189)

72.22± 3.0
(0.189)

Top-25 78.1± 3.0
(0.474)

87.4± 1.2
(0.474)

39.9± 4.0
(0.486)

61.6± 0.9
(0.486)

50.2± 6.9
(0.457)

70.9± 3.7
(0.457)

74.4± 8.6
(0.476)

77.0± 4.8
(0.476)

60.65± 5.6
(0.473)

74.22± 2.7
(0.473)

Top-50 78.1± 2.8
(0.866)

87.0± 2.5
(0.866)

37.4± 4.0
(0.897)

63.8± 2.6
(0.897)

49.6± 4.2
(0.853)

69.3± 5.4
(0.853)

72.1± 10.6
(0.862)

74.7± 5.0
(0.862)

59.30± 5.4
(0.869)

73.70± 3.9
(0.869)

LC 80.3± 1.9
(1.000)

87.4± 0.7
(1.000)

36.9± 4.0
(1.000)

62.2± 3.2
(1.000)

47.7± 5.3
(1.000)

73.5± 4.0
(1.000)

69.6± 8.4
(1.000)

73.0± 7.3
(1.000)

58.62± 4.9
(1.000)

74.00± 3.8
(1.000)

RAG 76.3± 1.7
(0.095)

82.5± 0.5
(0.095)

43.7± 3.2
(0.097)

59.0± 1.3
(0.097)

47.0± 6.5
(0.091)

61.2± 5.7
(0.091)

81.5± 3.7
(0.095)

79.8± 4.7
(0.095)

62.12± 3.8
(0.094)

70.62± 3.1
(0.094)

Self-Route 80.6± 1.7
(0.255)

89.6± 0.8
(0.295)

40.3± 5.0
(0.258)

62.7± 4.1
(0.232)

47.0± 4.6
(0.244)

67.6± 2.9
(0.312)

69.9± 8.2
(0.949)

76.0± 5.2
(0.967)

59.45± 4.9
(0.426)

73.97± 3.3
(0.451)

Adaptive-k 61.0± 2.2
(0.395)

71.4± 2.2
(0.395)

25.4± 0.4
(0.362)

51.5± 3.5
(0.362)

43.1± 3.0
(0.385)

59.6± 3.8
(0.385)

77.3± 7.1
(0.479)

82.2± 4.4
(0.479)

51.70± 3.2
(0.405)

66.17± 3.5
(0.405)

BGM 78.8± 0.9
(0.048)

82.6± 0.8
(0.057)

46.5± 4.0
(0.067)

59.0± 1.6
(0.074)

50.1± 1.6
(0.066)

61.2± 6.9
(0.064)

75.4± 4.7
(0.049)

75.7± 2.8
(0.045)

62.70± 2.8
(0.057)

69.63± 3.0
(0.060)

RankZephyr 72.4± 1.2
(0.095)

82.1± 1.2
(0.095)

36.9± 4.7
(0.097)

59.5± 2.7
(0.097)

44.4± 4.3
(0.091)

62.1± 4.8
(0.091)

80.5± 4.4
(0.095)

85.2± 2.4
(0.095)

58.55± 3.7
(0.094)

72.2± 2.8
(0.094)

LDAR 87.7± 1.4
(0.478)

91.9± 1.2
(0.628)

52.7± 4.7
(0.400)

70.1± 0.9
(0.636)

63.1± 2.6
(0.518)

78.9± 4.0
(0.619)

76.5± 6.9
(0.474)

76.8± 5.8
(0.633)

70.00± 3.9
(0.467)

79.42± 3.0
(0.629)

Context Length 128k
Top-1 31.1± 1.1

(0.005)
31.5± 0.9

(0.005)
26.1± 2.8

(0.004)
33.7± 2.4

(0.004)
4.30± 1.5

(0.005)
12.1± 4.4

(0.005)
84.9± 4.5

(0.005)
83.7± 4.0

(0.005)
36.60± 2.5

(0.004)
40.25± 2.9

(0.004)

Top-5 60.1± 1.4
(0.026)

61.7± 1.8
(0.026)

47.4± 3.6
(0.024)

62.6± 3.3
(0.024)

24.3± 3.0
(0.025)

34.1± 2.6
(0.025)

74.1± 6.6
(0.026)

71.6± 5.4
(0.026)

51.47± 3.7
(0.025)

57.50± 3.3
(0.025)

Top-10 66.9± 0.6
(0.053)

70.8± 2.3
(0.053)

53.7± 3.7
(0.049)

67.5± 2.3
(0.049)

29.2± 5.1
(0.050)

42.6± 3.2
(0.050)

70.3± 0.9
(0.052)

64.3± 7.1
(0.052)

55.02± 2.6
(0.051)

61.30± 3.7
(0.051)

Top-25 71.3± 2.7
(0.133)

80.0± 1.2
(0.133)

54.5± 4.6
(0.124)

75.3± 1.9
(0.124)

24.8± 2.2
(0.126)

48.1± 2.5
(0.126)

65.1± 12.0
(0.131)

55.6± 7.8
(0.131)

53.92± 5.4
(0.128)

64.75± 3.4
(0.128)

Top-50 67.9± 4.1
(0.267)

80.3± 0.5
(0.267)

52.4± 3.9
(0.249)

74.3± 2.0
(0.249)

33.6± 3.6
(0.252)

52.4± 4.7
(0.252)

61.2± 11.8
(0.262)

52.7± 7.4
(0.262)

53.77± 5.9
(0.257)

64.92± 3.7
(0.257)

LC 56.2± 10.1
(1.000)

88.0± 2.3
(1.000)

45.1± 6.4
(1.000)

76.9± 2.2
(1.000)

23.8± 5.9
(1.000)

56.6± 4.0
(1.000)

49.5± 11.3
(1.000)

58.4± 9.8
(1.000)

43.65± 8.4
(1.000)

69.97± 4.6
(1.000)

RAG 71.6± 1.5
(0.026)

75.2± 2.1
(0.026)

49.8± 3.6
(0.024)

65.8± 2.3
(0.024)

26.4± 4.4
(0.025)

42.6± 2.3
(0.025)

70.9± 6.5
(0.026)

74.1± 6.5
(0.026)

54.67± 4.0
(0.025)

64.42± 3.3
(0.025)

Self-Route 65.8± 2.6
(0.187)

80.0± 3.2
(0.282)

51.3± 4.6
(0.181)

59.7± 2.0
(0.249)

25.3± 0.2
(0.381)

52.4± 5.0
(0.625)

56.4± 11.3
(0.888)

57.5± 9.7
(0.943)

49.70± 4.7
(0.409)

62.40± 5.0
(0.524)

Adaptive-k 47.7± 4.7
(0.398)

64.4± 2.3
(0.398)

32.1± 6.0
(0.405)

54.1± 1.4
(0.405)

18.5± 3.0
(0.675)

44.4± 1.8
(0.675)

66.0± 8.8
(0.502)

68.3± 6.8
(0.502)

41.07± 5.6
(0.495)

57.80± 3.1
(0.495)

BGM 68.9± 1.6
(0.017)

72.2± 3.0
(0.019)

56.5± 3.1
(0.013)

66.8± 0.8
(0.017)

30.3± 4.8
(0.015)

34.2± 2.2
(0.020)

73.1± 6.1
(0.015)

73.4± 6.0
(0.016)

57.20± 3.9
(0.015)

61.65± 3.0
(0.018)

RankZephyr 56.1± 2.1
(0.026)

62.7± 0.9
(0.026)

54.5± 3.3
(0.024)

71.4± 1.9
(0.024)

20.9± 4.5
(0.025)

28.0± 3.6
(0.025)

73.3± 5.9
(0.026)

75.8± 6.5
(0.026)

51.20± 4.0
(0.025)

59.48± 3.2
(0.025)

LDAR 77.3± 2.2
(0.209)

90.5± 0.8
(0.502)

61.7± 2.3
(0.272)

82.7± 0.8
(0.444)

42.9± 2.3
(0.312)

65.8± 1.4
(0.606)

64.3± 10.5
(0.209)

65.9± 6.3
(0.519)

61.55± 4.3
(0.250)

76.22± 2.3
(0.517)

training models with feedback from the Hallucination task leads to undesirable strategies in practice
(e.g., deliberately retrieving no passage or irrelevant passages to trigger refusal. See Appendix D.1
for more details). This behavior arises because the Hallucination task, by design, rewards avoid-
ance rather than the constructive use of retrieved evidence, leading to degenerate strategies that do
not reflect real-world retrieval requirements. To circumvent this issue, we treated the Hallucination
task purely as an evaluation benchmark rather than a training objective. Consequently, for this task,
we employed models trained on the Location task—the most widely adopted retrieval strategy in
practice—and evaluated them in a zero-shot setting on the Hallucination task using the full dataset.

HotpotQA (Yang et al., 2018) and Natural Questions (NQ) (Kwiatkowski et al., 2019) are widely
used open-domain QA benchmarks that are incorporated into the HELMET benchmark (Yen et al.,
2024). Within HELMET, these datasets are adapted for long-context evaluation by extending input
lengths to approximately 128K tokens through the inclusion of distractor passages, with all contexts
drawn from Wikipedia. Among them, HotpotQA is distinguished as a multi-hop QA task, requiring
the model to retrieve and integrate information from multiple passages to derive the correct answer.

5.2 BASELINES AND EXPERIMENTAL SETTINGS

Baselines We compare LDAR with eight top-k retrieval methods (Top-1, Top-5, Top-10, Top-25,
Top-50, long-context, RAG (Lewis et al., 2020), RankZephyr (Pradeep et al., 2023)), one baseline

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

designed to minimize the gap between a pretrained retriever and a pretrained LLM (BGM (Ke et al.,
2024)), and two retrieval baselines that aim to balance the trade-off between RAG and long-context
processing (Self-Route (Li et al., 2024b), Adaptive-k (Taguchi et al., 2025)). For the top-k retrieval
baselines, we retrieved the top-k passages according to similarity scores. Note that retrieving all
passages (i.e., the full document context) corresponds to the long-context (LC) approach. For RAG,
we applied a bge-reranker-large to reorder the retrieved top-5 passages. BGM trains a sequence-to-
sequence model on textual information to identify the effective passage set among the top-5 candi-
dates retrieved by similarity. Self-Route queries the LLM to decide between RAG and long-context
processing based on the model’s self-assessment of answerability. Adaptive-k retrieves passages by
identifying the largest gap in the sorted similarity score. The listwise reranker RankZephyr jointly
processes the top-50 similarity-retrieved passages and produces a global ranking over them, from
which it selects the final top-5 passages.

Experimental Settings Following the evaluation metric used in LaRA (Li et al., 2025a) and HEL-
MET (Yen et al., 2024), we employed GPT-4o to judge response correctness by providing it with
the query, the ground-truth answer, and the model prediction. Throughout the experiments, we used
bge-large-en-v1.5 as the embedding model. Note LDAR does not use reranker for reordering the
retrieved passages, both to maintain high training efficiency and to demonstrate the effectiveness of
our method in isolation. For open-source LLMs, we used Qwen-2.5-7B-Instruct, Qwen-3-4B-2507,
Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct and Mistral-Nemo-Instruct-12B to evaluate the re-
sults. For closed-source LLMs, we used GPT-4o, GPT-4o-mini, Gemini-2.5-pro, Gemini-2.5-flash
to evaluate the results. Across all LDAR experiments, we used the same hyperparameter configura-
tion, as summarized in Appendix C.2.

5.3 MAIN RESULTS

Table 1 demonstrates the performance of LDAR compared to baseline methods. To ensure statistical
significance, we report the average score across LLMs with standard errors, and provide separate
averages for open-source and closed-source models as introduced in Section 5.2. LDAR generally
achieves significantly higher performance compared to all other baselines, while using only about
half the token usage of the long-context approach. It is worth noting that no penalty on token usage
was imposed during the training of LDAR; the model was optimized solely for prediction accuracy
(see Appendix D.5 for the cost-regularized variant of LDAR). These results suggest that a trade-off
between information coverage and distraction does exist, and that LDAR is able to balance such
trade-offs by leveraging the similarity distribution between the query and the passages. As LDAR
typically retrieves more passages than RAG but fewer than the long-context approach, it achieves
Hallucination scores that are generally higher than those of the long-context approach yet lower
than those of RAG. This trend arises because retrieving a larger number of passages increases the
likelihood of including misleading but seemingly relevant passages, thereby increasing the risk of
hallucination. Nevertheless, LDAR consistently outperforms RAG across all other tasks, resulting
in a significantly higher overall performance.

The average token usage ratio of LDAR relative to the long-context approach is: 0.47 (32K open-
source), 0.63 (32K closed-source), 0.25 (128K open-source), 0.52 (128K closed-source). LDAR
tends to use more tokens for closed-source models, which generally exhibit stronger long-context
capability than open-source models. Notably, when the context length extends to 128K, the LDAR
framework adapts by retrieving smaller portion of passages compared to the context length 32K
setting, indicating that the risk of having distraction with the long-context approach increases with
longer input contexts. These results indicate that the LDAR framework dynamically aligns its re-
trieval strategy to the long-context capability of the underlying LLM, adaptively balancing informa-
tion coverage against potential distraction.

Breaking down by task, the average token usage ratio relative to the long-context approach is: 0.45
(Location), 0.43 (Reasoning), 0.50 (Comparison), 0.42 (Hallucination). Since the Comparison task
requires integrating information from multiple regions of a whole context, LDAR is optimized to
retrieve a larger number of passages relative to other tasks. This highlights that the optimal retrieval
strategy varies across tasks, and our framework effectively adapts its retrieval strategy accordingly.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 COMPARISON TO BASELINE METHODS

As demonstrated in Table 1, LDAR achieves significantly better performance compared to the Top-k
baselines, implying that LDAR executes a different retrieval strategy based on the similarity distri-
bution between the query and passages (see Figure 3 (left) for visualizations). Heuristic baseline
methods that try to balance the trade-off between RAG and long-context processing (Self-Route,
Adaptive-k) fail to retrieve passages based on the long-context capability of LLMs, leading to worse
performance. The reranker baselines (RAG, BGM, RankZephyr) also yield limited performance
improvements, as they operate solely within the top-similarity region and only reorder those pas-
sages, effectively disregarding the LLM’s long-context reasoning capability. Specifically, the learn-
ing method that selects the top-k passages by similarity and subsequently identifying the optimal
subset based on textual information through evaluation signals (BGM) yield only marginal gains in
long-context settings. While increasing k might seem like a straightforward solution, it substantially
enlarges the combinatorial subset selection space, causing the model to converge to a suboptimal
strategy. Accordingly, we report the best performance of BGM with k = 5, which is consistent
with the original paper setting. In contrast, LDAR is explicitly designed for scalability by reducing
the search space to a low-dimensional, smooth control space (Section 4.1), resulting in significantly
better performance across overall settings.

5.5 ZERO-SHOT EVALUATION OF LDAR

Table 2: Zero-shot performance results of LDAR on
HotpotQA and NQ dataset. White cells denote LC,
gray denotes RAG , and red denotes LDAR . Num-
bers in parentheses show token-usage ratio relative to
LC. The best performing strategy for each task within
each LLM is highlighted in bold.

Method HotpotQA NQ
Llama-3.1-8B-Instruct 52.0

(1.000)
50.0
(0.019)

59.0
(0.499)

43.0
(1.000)

40.0
(0.021)

49.0
(0.213)

Llama-3.2-3B-Instruct 54.0
(1.000)

52.0
(0.019)

54.0
(0.207)

42.0
(1.000)

37.0
(0.021)

43.0
(0.146)

Qwen-2.5-7B-Instruct 30.0
(1.000)

63.0
(0.019)

64.0
(0.305)

25.0
(1.000)

42.0
(0.021)

54.0
(0.126)

Qwen-3-4B-Instruct 56.0
(1.000)

51.0
(0.019)

62.0
(0.536)

54.0
(1.000)

41.0
(0.021)

53.0
(0.486)

Mistral-Nemo-12B 29.0
(1.000)

63.0
(0.019)

61.0
(0.061)

23.0
(1.000)

45.0
(0.021)

47.0
(0.099)

Open-source Average 44.2
(1.000)

55.8
(0.019)

60.0
(0.321)

37.4
(1.000)

41.0
(0.021)

49.2
(0.214)

GPT-4o 81.0
(1.000)

65.0
(0.019)

84.0
(0.579)

61.0
(1.000)

54.0
(0.021)

60.0
(0.738)

GPT-4o-mini 64.0
(1.000)

65.0
(0.019)

76.0
(0.629)

59.0
(1.000)

52.0
(0.021)

59.0
(0.374)

Gemini-2.5-pro 85.0
(1.000)

55.0
(0.019)

84.0
(0.638)

62.0
(1.000)

37.0
(0.021)

65.0
(0.518)

Gemini-2.5-flash 82.0
(1.000)

57.0
(0.019)

83.0
(0.953)

54.0
(1.000)

37.0
(0.021)

60.0
(0.564)

Closed-source Average 78.0
(1.000)

60.5
(0.019)

81.8
(0.699)

59.0
(1.000)

45.0
(0.021)

61.0
(0.457)

Table 2 evaluates whether retrieval strate-
gies learned in the LaRA benchmark can
generalize in a zero-shot manner to tasks
in another benchmark (HELMET). To
ensure alignment across multi-hop and
single-hop tasks, LDAR trained on the
Comparison task is evaluated zero-shot on
long-context HotpotQA task, and LDAR
trained on the Location task is evalu-
ated zero-shot on long-context NQ task.
Although the observed performance gap
is smaller than in Table 1, LDAR still
achieves better average performance com-
pared to RAG or the long-context ap-
proach, while also attaining a lower to-
ken usage ratio relative to the long-
context approach. These results indicate
that LDAR’s learned retrieval strategies
can generalize to tasks in another bench-
mark in a zero-shot manner.

5.6 COST EFFICIENCY ANALYSIS OF LDAR

While LDAR brings performance improvements, it introduces additional cost, both from its training
procedure and from the extra inference-time overhead incurred by the forward pass of the learned
retriever πθ. To quantify this overhead, we measured the end-to-end inference time per example in
Location task with all baseline methods. Specifically, the inference time includes the time required
to (1) compute the query and passage embeddings, (2) run the bridge model (e.g., reranker or LDAR
retriever), and (3) process the selected passages through the prediction LLM to generate the final
answer.

Table 3 summarizes the average per-example inference time with corresponding performance across
all baselines using both open-source LLMs and closed-source LLMs. With open-source models, LC
exhibits the highest latency as it forwards all retrieved passages to the underlying LLM. Methods
that rely on text-based rerankers (RAG, RankZephyr, BGM) also incur substantial overhead due to
heavy cross-encoder computation. In contrast, LDAR employs a lightweight, text-free adaptive re-
trieval mechanism, selecting passages to minimize potential interference from distracting passages.
As a result, LDAR achieves the fastest inference time among LC and all reranker baselines, while

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Comparison of retrieval strategies on LaRA Location task. Each cell reports the average
per-example inference time or performance with standard error, computed using open-source and
closed-source LLMs. Numbers in parentheses denote standard error for inference time and the token-
usage ratio for performance metrics, respectively.

Metric Top-1 Top-5 Top-10 Top-25 Top-50 LC RAG Self-
Route

Adap-
tive-k BGM Rank

Zephyr LDAR

Time (Open-source) 1.3
(0.55)

1.5
(0.73)

1.7
(0.91)

2.5
(0.99)

4.0
(1.31)

15.4
(5.17)

18.4
(0.86)

4.5
(5.93)

8.6
(11.70)

13.3
(1.14)

10.2
(1.07)

3.9
(1.61)

Time (Closed-source) 3.9
(2.29)

4.7
(1.91)

5.2
(2.36)

5.8
(2.52)

5.9
(2.20)

8.2
(2.67)

22.6
(1.75)

9.0
(4.09)

6.5
(4.70)

17.8
(5.94)

13.6
(2.56)

8.0
(2.69)

Score (Open-source) 31.1
(0.01)

60.1
(0.03)

66.9
(0.05)

71.3
(0.13)

67.9
(0.27)

56.2
(1.00)

71.6
(0.03)

65.8
(0.19)

47.7
(0.40)

68.9
(0.02)

56.1
(0.03)

77.3
(0.21)

Score (Closed-source) 31.5
(0.01)

61.7
(0.03)

70.8
(0.05)

80.0
(0.13)

80.3
(0.27)

88.0
(1.00)

75.2
(0.03)

80.0
(0.28)

64.4
(0.40)

72.2
(0.02)

62.7
(0.03)

90.5
(0.50)

0.1
00

K
0.1

50
K

0.2
00

K
0.2

50
K

0.3
00

K
0.3

50
K

0.4
00

K

Training + Inference GPU Hours

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

Open-source · 100K Inferences

0.5
00

K
0.7

50
K

1.0
00

K
1.2

50
K

1.5
00

K
1.7

50
K

2.0
00

K

Training + Inference GPU Hours

0.5

0.6

0.7

0.8
Open-source · 500K Inferences

0.2
24

K
0.2

26
K

0.2
28

K
0.2

30
K

0.2
32

K
0.2

34
K

Training + Inference GPU Hours

0.775

0.800

0.825

0.850

0.875

0.900

Closed-source · 100K Inferences

1.1
15

K
1.1

20
K

1.1
25

K
1.1

30
K

Training + Inference GPU Hours

0.775

0.800

0.825

0.850

0.875

0.900

Closed-source · 500K Inferences
LDAR LC CAG

Figure 5: Average performance plotted against total cumulative computational cost (GPU hours)
for both training and inference. The left two panels report the total cost when applying LDAR at
different training epochs under 100K and 500K inference calls using open-source LLMs; the right
two panels show the corresponding results for closed-source LLMs.

simultaneously achieving the best overall performance. In the closed-source LLMs, the underly-
ing LLM is highly optimized for fast inference, making total inference time less sensitive to input
length. Even under these conditions, LDAR remains faster than LC and all reranker baselines while
also achieving better performance.

In addition, we include an analysis illustrating how the cost benefits accumulate over time when
deploying the learned lightweight adaptive retriever πθ in Figure 5. For each LDAR training epoch,
we compute (1) the cumulative training cost up to that epoch and (2) the inference cost when deploy-
ing πθ learned until that epoch with a certain number of inference calls (100K and 500K inference
calls). We include CAG (Chan et al., 2025), a cache-augmented generation method that accelerates
inference by preloading documents and reusing a precomputed KV-cache, as an additional baseline
to compare inference-time efficiency with LDAR.

Since LDAR has lower inference-time overhead compared to LC, its cost advantage becomes in-
creasingly pronounced as the number of deployments grows. Importantly, as LDAR trains, it learns
to identify the most effective passage set that minimizes distraction. This not only improves per-
formance but also reduces token usage during both training and inference. As shown in the right
panels of Figure 5, LDAR progressively selects fewer tokens over training epochs, thereby reducing
the per-epoch training cost. These results demonstrate that LDAR ensures a favorable cost–benefit
trade-off in practice.

6 CONCLUSION

In this paper, we demonstrated retrieving passages to minimize distraction remains a challenging
problem, as the optimal strategy depends on both the capacity of the target LLM and the interactions
among retrieved passages. Although a high-capacity LLM could exhaustively align all passages with
the query to minimize distraction, the cost grows prohibitively with passage count, making this ap-
proach impractical. To this end, we present LDAR, an adaptive retriever that selects passages in
accordance with LLM’s long-context capability to minimize potential interference from distracting
passages, relying solely on the similarity distribution. Experiments across diverse LLM architectures
and knowledge-intensive benchmarks demonstrate that LDAR achieves significantly better perfor-
mance compared to baselines with lower token usage compared to the long-context approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Chen Amiraz, Florin Cuconasu, Simone Filice, and Zohar Karnin. The distracting effect: Under-
standing irrelevant passages in rag. arXiv preprint arXiv:2505.06914, 2025.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically mo-
tivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

Brian J Chan, Chao-Ting Chen, Jui-Hung Cheng, and Hen-Hsen Huang. Don’t do rag: When cache-
augmented generation is all you need for knowledge tasks. In Companion Proceedings of the
ACM on Web Conference 2025, pp. 893–897, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano,
Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. The power of noise: Redefining re-
trieval for rag systems. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 719–729, 2024.

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Sumit Sanghai, William W Cohen,
and Joshua Ainslie. Glimmer: generalized late-interaction memory reranker. arXiv preprint
arXiv:2306.10231, 2023.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Rajaram Naik, Pengshan
Cai, and Alfio Gliozzo. Re2g: Retrieve, rerank, generate. arXiv preprint arXiv:2207.06300, 2022.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2020.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with re-
trieval augmented language models. arXiv preprint arXiv:2208.03299, 1(2):4, 2022.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context llms meet rag: Overcoming
challenges for long inputs in rag. arXiv preprint arXiv:2410.05983, 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Zixuan Ke, Weize Kong, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Bridg-
ing the preference gap between retrievers and llms. arXiv preprint arXiv:2401.06954, 2024.

Myunsoo Kim, Hayeong Lee, Seong-Woong Shim, JunHo Seo, and Byung-Jun Lee. Nbdi: A simple
and effective termination condition for skill extraction from task-agnostic demonstrations. arXiv
preprint arXiv:2501.12668, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Dahyun Lee, Yongrae Jo, Haeju Park, and Moontae Lee. Shifting from ranking to set selection for
retrieval augmented generation. arXiv preprint arXiv:2507.06838, 2025.

Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, and Michael Carbin. Long context rag
performance of large language models. arXiv preprint arXiv:2411.03538, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for named entity
recognition. IEEE transactions on knowledge and data engineering, 34(1):50–70, 2020.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong
Wen. The dawn after the dark: An empirical study on factuality hallucination in large language
models. arXiv preprint arXiv:2401.03205, 2024a.

Kuan Li, Liwen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Shuai Wang, and Minhao Cheng. Lara:
Benchmarking retrieval-augmented generation and long-context llms–no silver bullet for lc or rag
routing. arXiv preprint arXiv:2502.09977, 2025a.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025b.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval aug-
mented generation or long-context llms? a comprehensive study and hybrid approach. arXiv
preprint arXiv:2407.16833, 2024b.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine
highlighting: Reducing knowledge hallucination in large language models. arXiv preprint
arXiv:2410.15116, 2024.

Marlos C Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of machine learning research,
24(80):1–69, 2023.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a pretrained sequence-
to-sequence model. arXiv preprint arXiv:2003.06713, 2020.

OpenAI. Gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust zero-
shot listwise reranking is a breeze! arXiv preprint arXiv:2312.02724, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

12

https://openai.com/index/hello-gpt-4o/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In International Conference on Machine Learning, pp. 31210–31227. PMLR, 2023a.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. arXiv
preprint arXiv:2301.12652, 2023b.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Chihiro Taguchi, Seiji Maekawa, and Nikita Bhutani. Efficient context selection for long-context
qa: No tuning, no iteration, just adaptive-k. arXiv preprint arXiv:2506.08479, 2025.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
hop queries. arXiv preprint arXiv:2401.15391, 2024.

Chonghua Wang, Haodong Duan, Songyang Zhang, Dahua Lin, and Kai Chen. Ada-leval: Eval-
uating long-context llms with length-adaptable benchmarks. arXiv preprint arXiv:2404.06480,
2024a.

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, et al. Leave no document behind: Benchmarking long-context llms
with extended multi-doc qa. arXiv preprint arXiv:2406.17419, 2024b.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi
Peng, Ruibo Liu, Da Huang, et al. Long-form factuality in large language models. Advances in
Neural Information Processing Systems, 37:80756–80827, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
compression and selective augmentation. arXiv preprint arXiv:2310.04408, 2023a.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models. arXiv preprint arXiv:2310.03025, 2023b.

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu.
Knowledge conflicts for llms: A survey. arXiv preprint arXiv:2403.08319, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
iheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Fuda Ye, Shuangyin Li, Yongqi Zhang, and Lei Chen. Rˆ 2ag: Incorporating retrieval information
into retrieval augmented generation. arXiv preprint arXiv:2406.13249, 2024.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thor-
oughly. arXiv preprint arXiv:2410.02694, 2024.

13

https://arxiv.org/abs/2412.15115

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Peitian Zhang, Zheng Liu, Shitao Xiao, Zhicheng Dou, and Jian-Yun Nie. A multi-task embedder
for retrieval augmented llms. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 3537–3553, 2024a.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
reranking models for multilingual text retrieval. arXiv preprint arXiv:2407.19669, 2024b.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. Infty bench: Extending long context evaluation
beyond 100k tokens. arXiv preprint arXiv:2402.13718, 2024c.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LLM IN PAPER WRITING

We utilized large language models to improve the clarity and phrasing of the text.

B LIMITATIONS AND FUTURE WORK

While LDAR was trained using task-specific signal, retrieval scenarios in practice are often diverse
and may not align neatly with a single task formulation. As our results in Section 5.3 indicate that
the optimal retrieval strategy varies across tasks, a promising direction for future research would
be to develop a meta-classifier capable of identifying the underlying retrieval task and employing a
mixture-of-experts framework (Shazeer et al., 2017), where task-specialized retrieval strategies are
adaptively combined.

Moreover, LDAR neither explicitly models the ordering of retrieved passages nor employs a reranker
to reorder them, which may affect downstream performance. While rerankers were deliberately ex-
cluded to maintain high training efficiency, an important direction is to explore learning-based re-
trieval strategies that jointly optimize both passage selection and ordering in long-context settings.

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS OF THE ADAPTIVE RETRIEVAL PROCESS

We employ periodic embedding layer (Gorishniy et al., 2022) for encoding numeric features, which
projects batch of raw scalar inputs s ∈ RB×N×1 to the embedding dimension RB×N×d, followed
by layer normalization. The embedded tokens are then processed by a self-attention Transformer
model and outputs h ∈ RB×N×D. A learned linear token scorer projects each Transformer output
to a scalar, which is normalized with a softmax to obtain attention weights w ∈ RB×N . We then
form a global summary by attention pooling over the token dimension N : zb,d =

∑N
n=1 wb,nhb,n,d,

and pass z ∈ RB×D through a small MLP head to obtain g. From g, four linear heads produce
the parameters of two Beta distributions: (αL, βL) for the lower quantile and (α∆, β∆) for the band
width q∆ to ensure that lower quantile qL to be smaller than upper quantile qU . In addition, we apply
softplus to ensure all parameters of Beta distributions are strictly positive.

We train LDAR on 4 NVIDIA RTX 3090 GPUs for 32K context length settings and 1 NVIDIA RTX
PRO 6000 GPU for 128K context length settings.

C.2 HYPERPARAMETER SETTINGS

Our hyperparameter settings are summarized in Table 4. The same configuration is used consistently
across all experiments.

Table 4: Hyperparameter settings used for LDAR

Hyperparameter Setting
Batch Size 32
Embedding Dimension 256
Transformer Hidden Dimension 256
Baseline EMA coefficient 0.5
Transformer Layer 2
Transformer Head 4
Optimizer Adam(β = [0.9, 0.999], ϵ = 1e-8)
learning rate γ 3e-4

C.3 IMPLEMENTATION DETAILS OF TEXT CHUNKING PROCEDURE

We followed the standard LaRA benchmark chunking procedure, forming 600-token passages with
100-token overlap. As the size of each passage is equal in length, we can compute the number

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

of passages directly from the information provided in Table 1. This results in approximately 64
passages for the 32k context-length setting and 256 passages for the 128k setting, which are used
consistently across all methods. Since the reported token-usage ratio corresponds exactly to the
fraction of passages retrieved, the number of passages retrieved by each baseline can be computed
directly from the table.

C.4 IMPLEMENTATION DETAILS OF BASELINE METHODS

Self-Route Li et al. (2024b) leverages the LLM itself to decide whether to use the RAG or long-
context approach. The method consists of two simple steps: (1) the query and Top-k retrieved pas-
sages are provided to the LLM, which is prompted to predict whether the query can be answered
with the given passages; (2) if the LLM predicts the query is answerable, the LLM generates the an-
swer directly. Otherwise, the full passage pool is passed to the LLM to produce the final prediction
using the long-context approach. To implement this routing process, we adapt the prompt used in
the LaRA benchmark (Li et al., 2025a), following the design of Self-Route (see Appendix C in Li
et al., 2024b).

Here are some chunks retrieved from some {datatype}. Read these chunks to answer a question.
Be concise. If the question cannot be answered based on the information in the article, write
“unanswerable”. {context} Question: {question} Only give me the answer and do not output any
other words. If the question cannot be answered based on the information in the article, write
“unanswerable”. Answer:

Table 5: Prompt we used for Self-Route baseline.

Adaptive-k Taguchi et al. (2025) retrieves passages by locating the largest gap in the sorted simi-
larity scores. Following the pseudo-code described in the original paper, we compute the difference
between consecutive similarity scores in sorted order, identify the index corresponding to the maxi-
mum gap, and retrieve all passages preceding this index.

BGM Ke et al. (2024) proposed a learning method that first selects the top-k passages based on
similarity scores and subsequently identifies the optimal subset using textual information guided by
evaluation learning signals. Since the official implementation is not publicly available, we imple-
mented BGM by following the procedure described in the paper. Since the paper does not specify
the number of silver passages required for the supervised learning stage, we constructed 50 silver
passages per task and used the evaluation signal to further fine-tune the sequence-to-sequence model.

CAG Chan et al. (2025) operates by first computing a KV-cache over a combined set of documents
D = {d1, d2, . . .} that corresponds to a set of queries {q1, q2, . . .}. Once this large unified KV-cache
is constructed, the model can process each instance efficiently by reusing the cached representations.
In their experiments on HotPotQA, the largest-scale setting aggregates 64 documents (approximately
85k tokens) to build this cache. However, in long-context benchmarks such as LaRA, a single docu-
ment associated with a single query already reaches the context-length limit of LLMs (which is 128k
tokens in our experiments). Therefore, computing a KV-cache over multiple documents is infeasi-
ble under long-context setting, and CAG effectively exhibits the same computational complexity
as standard LC. That said, the LaRA benchmark has a particular characteristic: each document is
paired with multiple queries (e.g., 10 queries per document). This enables CAG to gain some benefit
by caching individual documents and reusing their cached representations across queries that refer-
ence the same document. Accordingly, in our experiments, we implemented CAG by caching each
document separately and applying the cache to all associated queries. We report results based on this
fair and practically feasible adaptation of CAG for long-context evaluation. With such experimental
settings, CAG achieved performance comparable to LC, but yields a 2.5× reduction in latency (15.41
seconds for LC vs. 4.31 seconds for CAG per inference on average).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENT RESULTS

D.1 TRAINING LDAR ON HALLUCINATION TASK

0 20 40 60 80 100
Gradient Step

0.85

0.90

0.95

1.00

Sc
or

e

Performance

0 20 40 60 80 100
Gradient Step

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Passage Usage
32K
128K

Figure 6: Performance and passage-usage ratio of LDAR trained with the Hallucination task signal.
Results are shown for Llama-3.1-8B under 32K and 128K context-length settings.

We visualize the training curve of LDAR when trained with the evaluation signal from the Halluci-
nation task in the LaRA benchmark. The Hallucination task measures whether an LLM can correctly
refuse to answer when the provided context lacks the required information (which is always the case
in this task). As shown in Figure 6, LDAR quickly learns to retrieve almost no passages, thereby
forcing the LLM to refuse answering. This behavior results in degenerate strategies that do not
reflect realistic retrieval requirements. Consequently, we treat the Hallucination task purely as an
evaluation benchmark rather than a training objective. We employed models trained on the Location
task–the most widely adopted retrieval strategy in practice–to evaluate and report the performance
of LDAR in Hallucination task at Table 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.2 VISUALIZATION OF RETRIEVAL STRATEGIES LEARNED BY LDAR

Figure 7 shows additional visualizations of retrieval strategies learned by LDAR. LDAR adaptively
determines both the lower and upper bounds of the similarity distribution band used for passage
retrieval, thereby maximizing LLM prediction accuracy by balancing information coverage against
the risk of distraction.

2772001000
Passage Rank

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Si
m

ila
rit

y

197150100500
Passage Rank

0.4

0.5

0.6

0.7

0.8

Si
m

ila
rit

y
191150100500

Passage Rank

0.40

0.45

0.50

0.55

0.60

0.65

Si
m

ila
rit

y

98806040200
Passage Rank

0.45

0.50

0.55

0.60

0.65

0.70

Si
m

ila
rit

y

98806040200
Passage Rank

0.40

0.45

0.50

0.55

0.60

Si
m

ila
rit

y

182150100500
Passage Rank

0.40

0.45

0.50

0.55

0.60

0.65

Si
m

ila
rit

y

185150100500
Passage Rank

0.45

0.50

0.55

0.60

0.65

0.70

Si
m

ila
rit

y

5840200
Passage Rank

0.45

0.50

0.55

0.60

0.65

0.70

Si
m

ila
rit

y

636040200
Passage Rank

0.55

0.60

0.65

0.70

Si
m

ila
rit

y

383020100
Passage Rank

0.50

0.55

0.60

0.65

0.70

Si
m

ila
rit

y

393020100
Passage Rank

0.5

0.6

0.7

0.8
Si

m
ila

rit
y

3020100
Passage Rank

0.45

0.50

0.55

0.60

0.65

Si
m

ila
rit

y

48403020100
Passage Rank

0.4

0.5

0.6

0.7

Si
m

ila
rit

y

164150100500
Passage Rank

0.4

0.5

0.6

0.7

Si
m

ila
rit

y

144100500
Passage Rank

0.4

0.5

0.6

0.7

0.8

Si
m

ila
rit

y

206200150100500
Passage Rank

0.60

0.65

0.70

0.75

0.80

0.85

Si
m

ila
rit

y

Figure 7: Visualization of passages retrieved by LDAR based on the similarity distribution, with
retrieved passages marked in green if they contain the correct answer and in red otherwise.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Case study of LDAR’s Retrieval Strategy Figure 8 shows a case-study analyzing LDAR’s
learned retrieval strategies. When the similarity distribution shows a clear high-similarity region,
LDAR tends to focus narrowly on that region. In these cases, the useful passage tends to be located
within the top rank passages as illustrated in Figure 8 (top).

Conversely, when the overall similarity distribution is low in value and relatively flat in shape, LDAR
expands its retrieval interval to ensure broader coverage, even at the risk of including more distract-
ing passages. In these cases, the useful passage is often not located within the top rank passages as
illustrated in Figure 8 (bottom), making a wider retrieval band necessary.

Although LDAR does not receive any textual information, this case study demonstrates that the
shape of the similarity distribution is indicative of where useful passages tend to appear. LDAR
learns these patterns and adapts its retrieval strategy accordingly.

Query: How does the Chain-of-thought (CoT) technique improve fairness in LLMs according?

Case Study A: Distribution containing a clear high-similarity region

Case Study B: Distribution that is low in magnitude and relatively flat in shape

Answer: The CoT technique enhances the hopeful and performance of LLMs towards fairness by ...

Rank1: The technique the hopeful and performance of LLMs towards by ...CoT enhances fairness

Rank5: Language modeling bias, often defined as "bias that results in harm to various social groups" ...

Rank50: This vision integrates the cutting edge of technological innovation with an unwavering ...

Rank100: Fairness Amidst Non-IID Graph Data: Current Achievements and Future Directions. arXiv ...

Query: What are the symbolic keywords highlighted in Table 2 in paper 0?

Answer: The symbols are 'Edit Area,' 'Edit Function,' 'No Training,' 'Batch Edit,' and 'Edited #Params.'

Rank1: ... | Phenomenon | Paradigms | Example | | :---: | :---: | :---: | | Anapho ... </ >Table 2 end of paper 2

Rank5: ... shows the result of our evaluation on these newly assembled datasets. Although ...Table 1

Rank10: ... M. Brockschmidt, "Codesearchnet challenge: Evaluating the state of semantic code ...

Rank21: : ... LLMs. ‘No Training’ refers ... ‘Batch Edit’ means ... ‘Editor #Params’ indicates ...Table 2

Distractors

Conservative Coverage

Figure 8: A case study illustrating LDAR’s learned retrieval behavior. When the similarity distribu-
tion contains a clear high-similarity region, LDAR tends to focus narrowly on that region. When the
overall similarity distribution is low in value and relatively flat in shape, LDAR expands its retrieval
interval to ensure broader coverage, even at the risk of including more distracting passages.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 ANALYSIS OF LDAR’S TRAINING / INFERENCE EFFICIENCY

LDAR introduces a small additional computation during inference because it performs a forward
pass of the learned LDAR retrieval strategy πθ. To quantify this overhead, we measured the end-to-
end inference time per example in Location task. Specifically, the inference time includes the time
required to (1) compute the query and passage embeddings, (2) run the bridge model (e.g., reranker
or LDAR retriever), and (3) process the selected passages through the prediction LLM to generate
the final answer. Note as baseline methods distribute their computation differently across these three
stages, their total inference cost varies accordingly.

Table 6 summarizes the average per-example inference time across all methods using both open-
source LLMs and closed-source LLMs. With open-source models, LC exhibits the highest la-
tency because it forwards all retrieved passages to the prediction LLM. Methods such as RAG,
RankZephyr, and BGM (which rely on text-based rerankers) also incur substantial overhead due to
heavy cross-encoder computation. In contrast, LDAR employs a lightweight, text-free adaptive re-
trieval mechanism, selecting passages to minimize potential interference from distracting passages.
As a result, LDAR achieves the fastest inference time among LC and all reranker baselines, while
simultaneously achieving the best overall performance.

In the closed-source setting, the prediction LLM is highly optimized for fast inference, making total
inference time less sensitive to input length. Even under these conditions, LDAR remains faster than
LC and all reranker baselines while also achieving better performance. These results demonstrate
that LDAR provides distraction-aware and long-context-capability-aware retrieval in a computation-
ally efficient manner at inference time.

Table 6: Comparison of retrieval strategies on LaRA Location task. Each cell reports the average
per-example inference time or performance with standard error, computed using open-source and
closed-source LLMs. Numbers in parentheses denote standard error for inference time and the token-
usage ratio for performance metrics, respectively.

Metric Top-1 Top-5 Top-10 Top-25 Top-50 LC RAG Self-
Route

Adap-
tive-k BGM Rank

Zephyr LDAR

Time (Open-source) 1.3
(0.55)

1.5
(0.73)

1.7
(0.91)

2.5
(0.99)

4.0
(1.31)

15.4
(5.17)

18.4
(0.86)

4.5
(5.93)

8.6
(11.70)

13.3
(1.14)

10.2
(1.07)

3.9
(1.61)

Time (Closed-source) 3.9
(2.29)

4.7
(1.91)

5.2
(2.36)

5.8
(2.52)

5.9
(2.20)

8.2
(2.67)

22.6
(1.75)

9.0
(4.09)

6.5
(4.70)

17.8
(5.94)

13.6
(2.56)

8.0
(2.69)

Score (Open-source) 31.1
(0.01)

60.1
(0.03)

66.9
(0.05)

71.3
(0.13)

67.9
(0.27)

56.2
(1.00)

71.6
(0.03)

65.8
(0.19)

47.7
(0.40)

68.9
(0.02)

56.1
(0.03)

77.3
(0.21)

Score (Closed-source) 31.5
(0.01)

61.7
(0.03)

70.8
(0.05)

80.0
(0.13)

80.3
(0.27)

88.0
(1.00)

75.2
(0.03)

80.0
(0.28)

64.4
(0.40)

72.2
(0.02)

62.7
(0.03)

90.5
(0.50)

Based on the analysis of LDAR’s inference-time efficiency, we now illustrate how the cost benefits
accumulate over time when deploying the learned LDAR strategy. For each LDAR training epoch,
we compute (1) the cumulative training cost up to that epoch and (2) the inference cost when apply-
ing LDAR strategy learned until that epoch with a certain number of inference calls (10K, 100K, and
500K inference calls). We then plot the cumulative cost on the x-axis and the resulting performance
on the y-axis. Figure 9 (top, bottom) shows the results for using open-source and closed-source
LLMs are prediction models, respectively. Because LDAR has lower inference-time overhead com-
pared to LC, its cost advantage becomes increasingly pronounced as the number of deployments
grows.

Importantly, as LDAR trains, it learns to identify the most effective passage set that minimizes
distraction. This not only improves performance but also reduces token usage during both train-
ing and inference. As shown in the center plot of Figure 9 (bottom), LDAR progressively selects
fewer tokens over training epochs, thereby lowering the per-epoch training cost as well. CAG (Chan
et al., 2025) is a cache-augmented generation method that speeds up inference by preloading docu-
ments and reusing a precomputed KV-cache. We included CAG as an additional baseline to compare
inference-time efficiency with LDAR.

Additionally, to provide a fair comparison in terms of API usage, we converted all training and
inference costs into USD and visualized the results in Figure 10. GPU hours are converted into USD
based on the pricing of the cloud computing services we used, and API costs are computed according
to the official pricing of OpenAI and Google. Under this USD-based metric, LDAR demonstrates
greater cost efficiency than LC, particularly when closed-source LLMs are used as the prediction
model, as the cost of processing long-context inputs is extremely high.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0
15

K
0.0

20
K

0.0
25

K
0.0

30
K

0.0
35

K
0.0

40
K

Training + Inference GPU Hours

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pe
rfo

rm
an

ce

Open-source LLMs · 10K Inferences

0.1
00

K
0.1

50
K

0.2
00

K
0.2

50
K

0.3
00

K
0.3

50
K

0.4
00

K

Training + Inference GPU Hours

Open-source LLMs · 100K Inferences

0.5
00

K
0.7

50
K

1.0
00

K
1.2

50
K

1.5
00

K
1.7

50
K

2.0
00

K

Training + Inference GPU Hours

Open-source LLMs · 500K Inferences
LDAR
LC
CAG

0.0
24

K
0.0

26
K

0.0
28

K
0.0

30
K

0.0
32

K
0.0

34
K

Training + Inference GPU Hours

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Pe
rfo

rm
an

ce

Closed-source LLMs · 10K Inferences

0.2
24

K
0.2

26
K

0.2
28

K
0.2

30
K

0.2
32

K
0.2

34
K

Training + Inference GPU Hours

Closed-source LLMs · 100K Inferences

1.1
15

K
1.1

20
K

1.1
25

K
1.1

30
K

Training + Inference GPU Hours

Closed-source LLMs · 500K Inferences

LDAR
LC

Figure 9: Average performance plotted against the total cumulative computational cost (GPU hours)
for both training and inference. Each figure shows total cost incurred when using the LDAR retriever
at different training epochs and running certain number of inference calls (10K, 100K, and 500K).
The top row presents results using open-source LLMs, while the bottom row presents results using
closed-source LLMs.

$0
.0K

$0
.0K

$0
.1K

$0
.1K

$0
.1K

Training + Inference Cost (USD)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pe
rfo

rm
an

ce

Open-source LLMs · 10K Inferences

$0
.2K

$0
.3K

$0
.4K

$0
.5K

Training + Inference Cost (USD)

Open-source LLMs · 100K Inferences

$1
.0K

$1
.5K

$2
.0K

$2
.5K

Training + Inference Cost (USD)

Open-source LLMs · 500K Inferences
LDAR
LC
CAG

$0
.8K

$0
.9K

$1
.0K

$1
.1K

$1
.2K

$1
.3K

$1
.4K

Training + Inference Cost (USD)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Pe
rfo

rm
an

ce

Closed-source LLMs · 10K Inferences

$7
.0K

$8
.0K

$9
.0K

$1
0.0

K
$1

1.0
K

$1
2.0

K
$1

3.0
K

$1
4.0

K

Training + Inference Cost (USD)

Closed-source LLMs · 100K Inferences

$3
5.0

K
$4

0.0
K

$4
5.0

K
$5

0.0
K

$5
5.0

K
$6

0.0
K

$6
5.0

K
$7

0.0
K

Training + Inference Cost (USD)

Closed-source LLMs · 500K Inferences

LDAR
LC

Figure 10: Average performance plotted against the total cumulative computational cost (USD) for
both training and inference. We converted GPU hours into USD based on the pricng of cloud com-
puting service we used, and API costs are computed according to the official pricing of OpenAI and
Google. Each figure shows total cost incurred when using the LDAR retriever at different training
epochs and running certain number of inference calls (10K, 100K, and 500K). The top row presents
results using open-source LLMs, while the bottom row presents results using closed-source LLMs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.4 CROSS-EMBEDDER GENERALIZATION

For an LDAR strategy trained with one embedding model to generalize to another, we found that a
certain degree of scale alignment and rank alignment between the two embedders is necessary.

To illustrate this, Figure 11 (left) compares the mean cosine-similarity values produced by bge-
large-en-v1.5 (Xiao et al., 2024) and gte-large-en-v1.5 (Zhang et al., 2024b) over 100 randomly
sampled query–passage pairs from the Location task. Figure 11 (right) further shows how passages
ranked by the bge-large-en-v1.5 map to their corresponding ranks in the gte-large-en-v1.5. These
plots demonstrate that the two embedding models exhibit some amount of scale alignment (their
similarity ranges are comparable) and rank alignment (higher-ranked passages in one model tend to
remain relatively high-ranked in the other. Correlation: 0.7715). Because of this alignment, LDAR
strategy trained with bge-large-en-v1.5 can generalize to gte-large-en-v1.5 to a reasonable extent,
and vice versa, as shown in Table 7.

0.00.20.40.60.81.0
Rank quantile (high low)

0.4

0.5

0.6

0.7

0.8

Co
sin

e
sim

ila
rit

y

Cosine Similarity Distribution
bge-large-en-v1.5
gte-large-en-v1.5

020406080100
Rank of bge-large-en-v1.5

0

20

40

60

80

100Ra
nk

 o
f g

te
-la

rg
e-

en
-v

1.
5

Rank Agreement

Perfect Agreement

Figure 11: Comparison of cosine-similarity and rank agreement between bge-large-en-v1.5 and gte-
large-en-v1.5 on the LaRA Location task. (Left) Average sorted cosine-similarity curve with stan-
dard deviation across all examples. (Right) Passage ranks under bge-large-en-v1.5 plotted against
their ranks under gte-large-en-v1.5; the dashed line indicates perfect rank agreement between the
two embedding models.

Table 7: Performance comparison across Location, Reasoning, Comparison, and Hallucination tasks.

(a) Location

Embedding Model LC RAG LDAR

bge-large-en-v1.5 69.3 (1.0) 72.4 (0.03) 77.6 (0.22)
gte-large-en-v1.5 69.3 (1.0) 70.4 (0.02) 74.4 (0.44)
bge→ gte-large-en-v1.5 69.3 (1.0) 70.4 (0.02) 74.4 (0.30)
gte→ bge-large-en-v1.5 69.3 (1.0) 72.4 (0.03) 75.5 (0.34)

(b) Reasoning

Embedding Model LC RAG LDAR

bge-large-en-v1.5 50.6 (1.0) 45.4 (0.02) 59.6 (0.36)
gte-large-en-v1.5 50.6 (1.0) 51.9 (0.02) 57.1 (0.31)
bge→ gte-large-en-v1.5 50.6 (1.0) 51.9 (0.02) 58.4 (0.25)
gte→ bge-large-en-v1.5 50.6 (1.0) 45.4 (0.02) 54.5 (0.39)

(c) Comparison

Embedding Model LC RAG LDAR

bge-large-en-v1.5 34.1 (1.0) 19.5 (0.03) 41.5 (0.50)
gte-large-en-v1.5 34.1 (1.0) 24.3 (0.02) 39.0 (0.54)
bge→ gte-large-en-v1.5 34.1 (1.0) 24.3 (0.02) 26.8 (0.62)
gte→ bge-large-en-v1.5 34.1 (1.0) 19.5 (0.03) 24.9 (0.47)

(d) Hallucination

Embedding Model LC RAG LDAR

bge-large-en-v1.5 58.4 (1.0) 78.3 (0.03) 73.3 (0.22)
gte-large-en-v1.5 58.4 (1.0) 77.9 (0.02) 70.1 (0.44)
bge→ gte-large-en-v1.5 58.4 (1.0) 77.9 (0.02) 71.4 (0.31)
gte→ bge-large-en-v1.5 58.4 (1.0) 78.3 (0.03) 68.8 (0.36)

(e) Average

Embedding Model LC RAG LDAR

bge-large-en-v1.5 53.1 (1.0) 53.9 (0.03) 63.0 (0.32)
gte-large-en-v1.5 53.1 (1.0) 56.1 (0.02) 60.1 (0.43)
bge→ gte-large-en-v1.5 53.1 (1.0) 56.1 (0.02) 57.7 (0.37)
gte→ bge-large-en-v1.5 53.1 (1.0) 53.9 (0.03) 55.9 (0.39)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.5 TRAINING LDAR WITH COST-REGULARIZED OBJECTIVE

Figure 12 shows the optimization of LDAR if we included a penalty term proportional to the number
of retrieved tokens during training. Introducing such a cost term caused the optimization to collapse
into a local optimum, where the LDAR strategy retrieved too few passages and suffered a drop in
accuracy.

Including a cost term would have been necessary if performance increases monotonically with the
number of retrieved passages. However, both prior work (e.g., the inverted-U findings in (Jin et al.,
2024; Leng et al., 2024)) and our own experiments show that performance peaks at an intermediate
retrieval size and then decreases, forming an inverted-U relationship due to distraction from addi-
tional passages. Because the objective is not a linear trade-off but rather identifying the peak of this
inverted-U, we found penalizing token usage during training often pushes the model away from the
optimal region.

Therefore, instead of imposing an explicit cost term, we focused on letting LDAR learn to retrieve
passages near the performance peak of the inverted-U. Notably, even without a cost term, LDAR
naturally avoids the high-distraction region and achieves both higher accuracy and lower token usage
compared to the long-context baseline (Table 1).

0 10 20 30 40 50
Gradient Step

0.0

0.2

0.4

0.6

Sc
or

e

Performance

LDAR
Cost-Regularized

0 10 20 30 40 50
Gradient Step

0.1

0.2

0.3
Ra

tio

Passage Usage

Figure 12: Performance and passage-usage ratio of LDAR with and without the cost-regularization
term, evaluated on the LaRA Reasoning task using Qwen-2.5-7B.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.6 VISUALIZATION OF LDAR’S LEARNED RETRIEVAL STRATEGY IN CLUSTERS

To better understand LDAR’s retrieval behavior, we performed a clustering analysis over LDAR’s
retrieval on both an open-source model (Qwen-2.5-7B) and a closed-source model (Gemini-2.5-
pro) (Figure 13 and 14). We collected 100 similarity distributions and clustered them based on
LDAR’s retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). The figure
summarizes the mean similarity distribution for each cluster along with LDAR’s average retrieval
band (qL, qU).

The visualization demonstrates that when the similarity distribution contains a relatively high-
similarity region, LDAR concentrates its retrieval on that narrow interval (Cluster 0). Conversely,
when similarity values are relatively low, LDAR expands the retrieval range to increase informa-
tion coverage (Cluster 1). To specifically examine cases where LDAR avoids the top interval, we
additionally isolated all instances where the learned upper quantile satisfies qU < 1.0. These cases
typically fall within Cluster 1, but we regrouped them separately to analyze this behavior in finer
detail. As illustrated in the third plot, these distributions exhibit the lowest overall similarity values.

0.000.250.500.751.00
Rank quantile (high low)

0.4

0.5

0.6

0.7

Co
sin

e
sim

ila
rit

y

max=0.727

min=0.444

q1=0.535
q2=0.565

q3=0.597

Cluster 0 (n=53)
qU 1.00, qL 0.75

0.000.250.500.751.00
Rank quantile (high low)

max=0.714

min=0.429

q1=0.525
q2=0.556

q3=0.589

Cluster 1 (n=47)
qU 0.97, qL 0.37

0.000.250.500.751.00
Rank quantile (high low)

max=0.681

min=0.413

q1=0.502
q2=0.530

q3=0.555

Group: qU < 1.0 (n=6)
qU 0.78, qL 0.23

Figure 13: Visualization of clustering analysis over LDAR’s retrieval behavior on Qwen-2.5-7B
in Location task. We collected 100 similarity distributions and clustered them based on LDAR’s
retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). We additionally
isolated all instances where the learned upper quantile satisfies qU < 1.0. The figure shows the
mean similarity distribution for each cluster along with LDAR’s average retrieval band (qL, qU). n
indicates the number of samples in each cluster and group.

0.000.250.500.751.00
Rank quantile (high low)

0.5

0.6

0.7

Co
sin

e
sim

ila
rit

y

max=0.730

min=0.449

q1=0.550
q2=0.580

q3=0.611

Cluster 0 (n=37)
qU 1.00, qL 0.52

0.000.250.500.751.00
Rank quantile (high low)

max=0.710

min=0.429

q1=0.520
q2=0.552

q3=0.588

Cluster 1 (n=63)
qU 1.00, qL 0.26

Figure 14: Visualization of clustering analysis over LDAR’s retrieval behavior on Gemini-2.5-pro
in Location task. We collected 100 similarity distributions and clustered them based on LDAR’s
retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). In this case, there is
no instance where the learned upper quantile satisfies qU < 1.0. The figure shows the mean similar-
ity distribution for each cluster along with LDAR’s average retrieval band (qL, qU). n indicates the
number of samples in each cluster and group.

To better understand why LDAR band shifts downward in such cases, we performed a fixed-
width sliding-window experiment (Figure 18). For each cluster, we sweep windows of size w ∈
{20, 50, 100} across the similarity-ranked passages and measured accuracy using each window as
the retrieved set. The sliding-window experiment demonstrates that when the similarity distribu-
tion contains a relatively high-similarity region (Cluster 0), narrower interval (w = 20, 50) shows
a better performance peak than wider interval (w = 100). Conversely, when similarity values are
relatively low (Cluster 1), wider interval (w = 100) shows a better performance peak. This behavior

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

aligns with LDAR’s learned retrieval bands. Interestingly, for Cluster 1 we observe a secondary per-
formance peak when a wide window (w = 100) covers the mid-quantile region. This suggests that,
in low-similarity scenarios, informative passages are often dispersed across the middle ranks rather
than concentrated at the very top. We believe such occasional peaks in the mid-quantile region made
LDAR to occasionally shifts its retrieval band downward to select mid-similarity passages when the
overall similarity scale is low. The sliding-window experiment for the group qU < 1.0 (Figure 18
(bottom)) further shows that the highest-ranked passage can sometimes act as a distractor when the
overall similarity scale is low.

By comparing LDAR’s behavior across open-source and closed-source LLMs (Figure 13 and 14),
LDAR generally uses wider quantile bands when interacting with closed-source models, reflecting
the fact that these models possess stronger long-context processing capabilities. Additionally, the
frequency of non–top-interval retrieval (i.e., cases where qU < 1.0) decreases notably for closed-
source models. This indicates that closed-source LLMs are inherently more resilient to noisy or
misleading passages, reducing the need for LDAR to shift its retrieval band downward to avoid
distraction. Together, these observations highlight that LDAR internalizes and adapts to the long-
context characteristics of the underlying LLM, producing retrieval behaviors that are both model-
aware and capability-aligned.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.7 VISUALIZATION OF LDAR’S ZERO-SHOT RETRIEVAL ON HELMET AND ADA-LEVAL

0.000.250.500.751.00
Rank quantile (high low)

0.4

0.5

0.6

0.7

0.8

Co
sin

e
sim

ila
rit

y

max=0.800

min=0.329

q1=0.450

q2=0.520
q3=0.586

Cluster 0 (n=100)
qU 1.00, qL 0.62

Figure 15: Visualization of clustering analysis of LDAR’s zero-shot retrieval behavior on GPT-4o-
mini for the BestAnswer task in the Ada-LEval benchmark (Wang et al., 2024a). We used the LDAR
checkpoint pretrained with the Location task for zero-shot evaluation. We collected 100 similarity
distributions and clustered them based on LDAR’s retrieval band value, In this setting, the analysis
yields a single coherent cluster, indicating that LDAR consistently applies a similar retrieval strategy
across examples.

0.000.250.500.751.00
Rank quantile (high low)

0.4

0.5

0.6

0.7

Co
sin

e
sim

ila
rit

y

max=0.716

min=0.384

q1=0.516
q2=0.557

q3=0.593

Cluster 0 (n=54)
qU 1.00, qL 0.53

0.000.250.500.751.00
Rank quantile (high low)

max=0.713

min=0.367

q1=0.498
q2=0.537

q3=0.577

Cluster 1 (n=46)
qU 1.00, qL 0.22

0.000.250.500.751.00
Rank quantile (high low)

max=0.697

min=0.348

q1=0.534
q2=0.562

q3=0.593

Group: qU < 1.0 (n=1)
qU 0.98, qL 0.17

Figure 16: Visualization of clustering analysis of LDAR’s zero-shot retrieval behavior on GPT-
4o-mini for the HotpotQA task. We used the LDAR checkpoint pretrained with the Comparison
task for zero-shot evaluation. We collected 100 similarity distributions and clustered them based
on LDAR’s retrieval band value, resulting in two primary clusters (Cluster 0 and Cluster 1). We
additionally isolated all instances where the learned upper quantile satisfies qU < 1.0. The figure
shows the mean similarity distribution for each cluster along with LDAR’s average retrieval band
(qL, qU). n indicates the number of samples in each cluster and group.

0.000.250.500.751.00
Rank quantile (high low)

0.5

0.6

0.7

Co
sin

e
sim

ila
rit

y

max=0.771

min=0.523

q1=0.642
q2=0.673

q3=0.703

Cluster 0 (n=57)
qU 1.00, qL 0.71

0.000.250.500.751.00
Rank quantile (high low)

max=0.764

min=0.483

q1=0.617
q2=0.649

q3=0.681

Cluster 1 (n=43)
qU 1.00, qL 0.44

0.000.250.500.751.00
Rank quantile (high low)

max=0.754

min=0.591

q1=0.655
q2=0.678

q3=0.699

Group: qU < 1.0 (n=1)
qU 0.99, qL 0.41

Figure 17: Visualization of clustering analysis of LDAR’s zero-shot retrieval behavior on GPT-4o-
mini for the NQ task. We used the LDAR checkpoint pretrained with the Location task for zero-shot
evaluation. We collected 100 similarity distributions and clustered them based on LDAR’s retrieval
band value, resulting in two primary clusters (Cluster 0 and Cluster 1). We additionally isolated all
instances where the learned upper quantile satisfies qU < 1.0. The figure shows the mean similarity
distribution for each cluster along with LDAR’s average retrieval band (qL, qU). n indicates the
number of samples in each cluster and group.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

To show that LDAR’s learned retrieval behavior is not just corpus-specific distributional quirks,
we additionally conducted a zero-shot evaluation on a long-context benchmark constructed from
StackOverflow. In this task, each question is paired with many candidate answers, and the LLM
must identify the single answer originally marked as the most helpful (Wang et al., 2024a).

LDAR can zero-shot generalize to tasks with other corpus (i.e., exhibit semantic robustness) as long
as the overall similarity distribution is similar in scale. Figure 13 - 17 show that similarity distribu-
tion of tasks with different semantics (LaRA (novel, paper, finance), Ada-LEval (StackOverflow),
and HELMET (Wikipedia)) are in similar scale, and LDAR succeeds in showing similar behaviors.
This also leads to meaningful zero-shot performance on tasks with different semantics (Table 2 and
Table 8). Thus, as long as the embedder provides a stable and comparable similarity scale between
queries and passages across different corpus, the learned LDAR strategy can zero-shot generalize to
corpus with different semantics.

Table 8: Zero-shot evaluation on a long-context benchmark constructed from StackOverflow ques-
tions paired with many candidate answers, where the LLM must identify the single answer originally
marked as the most helpful (Wang et al., 2024a).

Ada-LEval LC RAG LDAR
Qwen-2.5-7B 24.0 (1.0) 63.0 (0.016) 65.0 (0.273)
Gemini-2.5-pro 87.5 (1.0) 80.0 (0.016) 89.5 (0.669)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.8 ANALYZING LDAR’S LEARNED RETRIEVAL STRATEGY VIA SLIDING WINDOW
EXPERIMENTS

0.000.250.500.751.00
Rank quantile (high low)

0.4

0.5

0.6

0.7

Co
sin

e
sim

ila
rit

y

max=0.727

min=0.444

q1=0.535
q2=0.565

q3=0.597

Cluster 0 (n=53)
qU 1.00, qL 0.75

0.000.250.500.751.00
Rank quantile (high low)

max=0.714

min=0.429

q1=0.525
q2=0.556

q3=0.589

Cluster 1 (n=47)
qU 0.97, qL 0.37

0.000.250.500.751.00
Rank quantile (high low)

max=0.681

min=0.413

q1=0.502
q2=0.530

q3=0.555

Group: qU < 1.0 (n=6)
qU 0.78, qL 0.23

0.000.250.500.751.00
Rank quantile (high low)

0.0

0.2

0.4

0.6

0.8

M
ea

n
Pe

rfo
rm

an
ce

Cluster 0: w=20
w=20
w=50
w=100

0.000.250.500.751.00
Rank quantile (high low)

Cluster 0: w=50

0.000.250.500.751.00
Rank quantile (high low)

Cluster 0: w=100

0.000.250.500.751.00
Rank quantile (high low)

0.0

0.2

0.4

0.6

M
ea

n
Pe

rfo
rm

an
ce

Cluster 1: w=20
w=20
w=50
w=100

0.000.250.500.751.00
Rank quantile (high low)

Cluster 1: w=50

0.000.250.500.751.00
Rank quantile (high low)

Cluster 1: w=100

0 1 2 3 4 5 6 7 8 9 10
Window shift index

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Pe

rfo
rm

an
ce

Group: qU < 1.0: w=20

w=20
w=50
w=100

0 1 2 3 4 5 6 7 8 9 10
Window shift index

Group: qU < 1.0: w=50

0 1 2 3 4 5 6 7 8 9 10
Window shift index

Group: qU < 1.0: w=100

Figure 18: Visualization of clustering analysis over LDAR’s retrieval behavior on Qwen-2.5-7B
in Location task, along with the corresponding sliding-window experiments for each cluster. We
collected 100 similarity distributions and clustered them based on LDAR’s retrieval band value, re-
sulting in two primary clusters (Cluster 0 and Cluster 1). We additionally isolated all instances where
the learned upper quantile satisfies qU < 1.0. The figure shows the mean similarity distribution for
each cluster along with LDAR’s average retrieval band (qL, qU). n indicates the number of samples
in each cluster and group.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.9 ABLATION STUDIES ON ARCHITECTURAL CHOICES

As the number of passages associated with each query varies (Section 4.1), it produces similarity
vectors of different lengths. We used Transformer encoder as it can handle variable-length sequences
and is able to model relationships within the similarity distribution. To demonstrate the effectiveness
of our architectural design choices, we performed an ablation study with different design variants
of LDAR. For our MLP variant, we followed the common practice by summarizing each similarity
vector into a fixed-size representation using simple pooling (i.e., taking the mean over similarity
scores across passages), and feed this pooled representation into a stack of MLP layers (Zaheer
et al., 2017). Table 9 shows that LDAR with the transformer encoder shows significantly better
performance compared to LDAR with MLP.

Also, we used periodic embeddings because they are highly effective for capturing fine-grained
variation in continuous inputs Gorishniy et al. (2022). As shown in Table 9, LDAR with periodic
embeddings achieves significantly better performance than LDAR using a standard learnable em-
bedding.

LLM Architecture Location Reasoning Comp Hallu Average
Llama-3.1-8B Transformer with periodic embedding (LDAR) 77.6 (0.216) 59.6 (0.361) 41.5 (0.501) 73.3 (0.217) 63.0 (0.324)
Llama-3.1-8B Transformer with learnable embedding 77.5 (0.359) 55.8 (0.158) 36.5 (0.353) 67.5 (0.359) 59.3 (0.307)
Llama-3.1-8B MLP 71.4 (0.319) 54.5 (0.286) 34.1 (0.424) 70.1 (0.323) 57.5 (0.338)

GPT-4o-mini Transformer with periodic embedding (LDAR) 88.8 (0.397) 80.5 (0.254) 63.4 (0.613) 51.8 (0.397) 71.1 (0.415)
GPT-4o-mini Transformer with learnable embedding 86.7 (0.520) 79.2 (0.285) 58.5 (0.600) 35.0 (0.521) 64.9 (0.481)
GPT-4o-mini MLP 84.6 (0.332) 77.9 (0.307) 56.0 (0.497) 29.8 (0.335) 63.3 (0.367)

Table 9: Ablation of architecture choices for LDAR.

D.10 ABLATION STUDY ON TASK ALIGNMENT

Most tasks in LaRA (such as Location) are single-hop QA tasks, where the answer can be derived
from a single relevant passage. In contrast, the Comparison task in LaRA and HotpotQA in HEL-
MET both require multi-hop reasoning, where multiple passages must be retrieved and combined to
produce the correct answer (Section 5.1).

Our analysis in Section 5.3 shows that for multi-hop tasks, LDAR optimizes to retrieve a larger
number of passages compared to other single-hop tasks (e.g., Location task). Based on this observed
behavior, we want to highlight that our zero-shot mapping is structurally motivated.

To further validate that the positive zero-shot results are not coincidental, we conducted an additional
misaligned transfer experiment. Specifically, we evaluate (1) Location-trained LDAR (single-hop)
transferred to HotpotQA (multi-hop), and (2) Comparison-trained LDAR (multi-hop) transferred to
NQ (single-hop). As shown in Table 10, misaligned transfers lead to degraded performance: Loca-
tion → HotpotQA retrieves too few passages to support multi-hop reasoning, while Comparison →
NQ retrieves too many passages, introducing additional distraction that harms performance. These
results demonstrate that LDAR’s zero-shot transfer benefits arise from alignment between task struc-
ture, rather than coincidence.

Table 10: Ablation study on task alignment. The top table shows the aligned task setting (Compari-
son → HotpotAQ, Location → NQ). The bottom table shows the misaligned task setting (Location
→ HotpotAQ, Comparison → NQ).

Task aligned HotpotQA NQ
LC RAG LDAR LC RAG LDAR

Qwen-3-4B 0.56 (1.0) 0.51 (0.019) 0.62 (0.536) 0.51 (1.0) 0.41 (0.021) 0.53 (0.486)
GPT-4o-mini 0.64 (1.0) 0.65 (0.019) 0.76 (0.629) 0.59 (1.0) 0.52 (0.021) 0.59 (0.374)

Task misaligned HotpotQA NQ
LC RAG LDAR LC RAG LDAR

Qwen-3-4B 0.56 (1.0) 0.51 (0.019) 0.60 (0.417) 0.51 (1.0) 0.41 (0.021) 0.50 (0.575)
GPT-4o-mini 0.64 (1.0) 0.65 (0.019) 0.74 (0.493) 0.59 (1.0) 0.52 (0.021) 0.58 (0.424)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.11 FULL COMPARISON RESULTS OF RETRIEVAL STRATEGIES

In this subsection, we provide more detailed result of Table 1 by showing the performance table
for each LLM. Table 11-19 compares the performance of retrieval strategies across context lengths
and tasks for each LLM. In this subsection, the columns are grouped by context length. Within
each group, Loc, Reas, Comp, and Hallu denote the Location, Reasoning, Comparison, and
Hallucination tasks in LaRA benchmark, respectively.

Table 11: Comparison of retrieval strategies under context length settings of 32k and 128k for
LLaMA-3.1-8B. Each cell reports accuracy, with the value in parentheses denoting the token-usage
ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Method Context Length 32k Context Length 128k
Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall

Top-1 51.7
(0.019)

17.0
(0.019)

19.3
(0.018)

87.3
(0.019)

43.8
(0.019)

33.6
(0.005)

18.1
(0.004)

2.4
(0.005)

88.8
(0.005)

35.7
(0.005)

Top-5 64.2
(0.095)

40.4
(0.097)

45.1
(0.091)

84.3
(0.095)

58.5
(0.095)

64.2
(0.026)

41.5
(0.024)

24.3
(0.025)

77.7
(0.026)

51.9
(0.025)

Top-10 71.4
(0.190)

34.0
(0.194)

61.2
(0.182)

83.0
(0.190)

62.4
(0.189)

68.3
(0.053)

50.6
(0.049)

24.3
(0.050)

76.7
(0.052)

55.0
(0.051)

Top-25 76.7
(0.474)

42.5
(0.486)

58.0
(0.457)

76.0
(0.476)

63.3
(0.473)

68.3
(0.133)

54.5
(0.124)

24.3
(0.126)

75.9
(0.131)

55.8
(0.129)

Top-50 82.1
(0.866)

27.6
(0.897)

51.6
(0.853)

79.5
(0.862)

60.2
(0.869)

67.3
(0.267)

55.8
(0.249)

31.7
(0.252)

72.4
(0.262)

56.8
(0.258)

LC 82.1
(1.000)

40.4
(1.000)

51.6
(1.000)

78.8
(1.000)

63.2
(1.000)

69.3
(1.000)

50.6
(1.000)

34.1
(1.000)

58.4
(1.000)

53.1
(1.000)

RAG 80.3
(0.095)

46.8
(0.097)

58.0
(0.091)

83.7
(0.095)

67.2
(0.095)

72.4
(0.026)

45.4
(0.024)

19.5
(0.025)

78.3
(0.026)

53.9
(0.025)

Self-Route 78.5
(0.271)

44.6
(0.385)

48.3
(0.327)

75.2
(0.976)

61.7
(0.490)

67.3
(0.205)

53.2
(0.265)

24.3
(0.501)

63.2
(0.933)

52.0
(0.476)

Adaptive-k 58.9
(0.395)

31.9
(0.362)

41.9
(0.385)

84.3
(0.479)

54.2
(0.405)

56.1
(0.398)

37.6
(0.405)

19.5
(0.675)

69.8
(0.502)

45.8
(0.495)

BGM 78.6
(0.047)

46.8
(0.085)

54.8
(0.071)

77.4
(0.056)

64.4
(0.065)

69.4
(0.023)

49.4
(0.018)

21.9
(0.020)

77.8
(0.017)

54.6
(0.019)

RankZephyr 73.2
(0.095)

42.5
(0.097)

51.6
(0.091)

81.3
(0.095)

62.2
(0.095)

57.1
(0.026)

48.0
(0.024)

9.7
(0.025)

76.7
(0.026)

47.9
(0.025)

LDAR 91.0
(0.474)

55.3
(0.545)

67.7
(0.624)

82.6
(0.671)

74.2
(0.579)

77.6
(0.216)

59.6
(0.361)

41.5
(0.501)

73.3
(0.217)

63.0
(0.324)

Table 12: Comparison of retrieval strategies under context length settings of 32k and 128k for
LLaMA-3.2-3B. Each cell reports accuracy, with the value in parentheses denoting the token-usage
ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 53.5

(0.019)
14.8
(0.019)

19.3
(0.018)

86.5
(0.019)

43.5
(0.019)

27.5
(0.005)

23.3
(0.004)

2.4
(0.005)

88.0
(0.005)

35.3
(0.005)

Top-5 66.0
(0.095)

23.4
(0.097)

35.4
(0.091)

83.0
(0.095)

51.9
(0.095)

56.1
(0.026)

38.9
(0.024)

14.6
(0.025)

77.2
(0.026)

46.7
(0.025)

Top-10 71.4
(0.19)

31.9
(0.194)

29.0
(0.182)

83.0
(0.190)

44.1
(0.189)

65.3
(0.053)

42.8
(0.049)

19.5
(0.05)

78.5
(0.052)

51.5
(0.051)

Top-25 78.5
(0.474)

27.6
(0.486)

45.1
(0.457)

83.4
(0.476)

58.7
(0.473)

66.3
(0.133)

41.5
(0.124)

17.0
(0.126)

71.9
(0.131)

49.2
(0.129)

Top-50 76.7
(0.866)

31.9
(0.897)

38.7
(0.853)

80.8
(0.862)

57.0
(0.869)

66.3
(0.267)

42.8
(0.249)

21.9
(0.252)

63.7
(0.262)

48.7
(0.258)

LC 80.3
(1.000)

25.5
(1.000)

32.2
(1.000)

65.1
(1.000)

50.8
(1.000)

68.3
(1.000)

33.7
(1.000)

19.5
(1.000)

52.0
(1.000)

43.4
(1.000)

RAG 78.5
(0.095)

31.9
(0.097)

22.5
(0.091)

79.7
(0.095)

53.2
(0.095)

70.4
(0.026)

41.5
(0.024)

14.6
(0.025)

69.4
(0.026)

49.0
(0.025)

Self-Route 78.5
(0.225)

21.2
(0.116)

32.2
(0.151)

68.2
(0.889)

50.0
(0.345)

63.2
(0.086)

35.0
(0.05)

24.3
(0.263)

56.0
(0.765)

44.6
(0.291)

Adaptive-k 58.9
(0.395)

14.8
(0.362)

32.2
(0.385)

78.6
(0.479)

46.1
(0.405)

47.9
(0.398)

24.6
(0.405)

12.1
(0.675)

67.4
(0.502)

38.0
(0.495)

BGM 78.4
(0.058)

31.2
(0.063)

45.2
(0.083)

74.8
(0.037)

57.4
(0.06)

66.3
(0.013)

48.9
(0.008)

17.0
(0.011)

75.4
(0.012)

51.9
(0.011)

RankZephyr 69.6
(0.095)

19.1
(0.097)

35.4
(0.091)

84.7
(0.095)

52.2
(0.095)

50.0
(0.026)

48.0
(0.024)

12.1
(0.025)

76.4
(0.026)

46.6
(0.025)

LDAR 85.7
(0.649)

34.0
(0.407)

58.0
(0.776)

76.5
(0.513)

63.6
(0.586)

73.5
(0.15)

55.5
(0.185)

34.2
(0.211)

69.1
(0.15)

58.1
(0.174)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 13: Comparison of retrieval strategies under context length settings of 32k and 128k for Qwen-
2.5-7B. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio
relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 53.5

(0.019)
31.9
(0.019)

19.3
(0.018)

88.2
(0.019)

48.2
(0.019)

30.6
(0.005)

24.6
(0.004)

2.4
(0.005)

85.7
(0.005)

35.8
(0.005)

Top-5 71.4
(0.095)

31.9
(0.097)

48.3
(0.091)

83.0
(0.095)

58.7
(0.095)

58.1
(0.026)

45.4
(0.024)

21.9
(0.025)

75.6
(0.026)

50.2
(0.025)

Top-10 78.5
(0.19)

42.5
(0.194)

58.0
(0.182)

83.0
(0.190)

59.7
(0.189)

66.3
(0.053)

58.4
(0.049)

19.5
(0.05)

71.6
(0.052)

53.9
(0.051)

Top-25 85.7
(0.474)

46.8
(0.486)

58.0
(0.457)

81.3
(0.476)

68.0
(0.473)

74.4
(0.133)

58.4
(0.124)

29.2
(0.126)

72.2
(0.131)

58.5
(0.129)

Top-50 82.1
(0.866)

46.8
(0.897)

54.8
(0.853)

80.8
(0.862)

66.1
(0.869)

74.4
(0.267)

53.2
(0.249)

34.1
(0.252)

64.8
(0.262)

56.6
(0.258)

LC 83.9
(1.000)

46.8
(1.000)

54.8
(1.000)

76.4
(1.000)

65.5
(1.000)

35.7
(1.000)

41.5
(1.000)

12.2
(1.000)

42.5
(1.000)

33.0
(1.000)

RAG 78.5
(0.095)

44.6
(0.097)

45.1
(0.091)

84.3
(0.095)

63.1
(0.095)

71.4
(0.026)

59.7
(0.024)

24.9
(0.025)

71.0
(0.026)

56.8
(0.025)

Self-Route 85.7
(0.272)

42.5
(0.366)

41.9
(0.268)

78.6
(0.972)

62.2
(0.47)

61.2
(0.285)

53.2
(0.227)

24.3
(0.239)

67.7
(0.912)

51.6
(0.416)

Adaptive-k 64.2
(0.395)

23.4
(0.362)

48.3
(0.385)

83.4
(0.479)

54.8
(0.405)

37.7
(0.398)

23.3
(0.405)

17.0
(0.675)

70.8
(0.502)

37.2
(0.495)

BGM 77.0
(0.043)

49.2
(0.065)

48.4
(0.066)

77.4
(0.048)

63.0
(0.055)

72.4
(0.011)

62.3
(0.013)

39.0
(0.017)

75.9
(0.012)

62.4
(0.013)

RankZephyr 75.0
(0.095)

40.4
(0.097)

51.6
(0.091)

82.6
(0.095)

62.4
(0.095)

62.2
(0.026)

55.8
(0.024)

26.8
(0.025)

73.2
(0.026)

54.5
(0.025)

LDAR 91.0
(0.474)

59.5
(0.39)

61.2
(0.404)

83.4
(0.489)

73.8
(0.439)

76.5
(0.129)

64.9
(0.273)

46.3
(0.307)

69.1
(0.129)

64.2
(0.21)

Table 14: Comparison of retrieval strategies under context length settings of 32k and 128k for Qwen-
3-4B. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio rela-
tive to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 53.5

(0.019)
25.5
(0.019)

29.0
(0.018)

93.4
(0.019)

50.4
(0.019)

30.6
(0.005)

31.1
(0.004)

7.3
(0.005)

94.1
(0.005)

40.8
(0.005)

Top-5 66.0
(0.095)

48.9
(0.097)

51.6
(0.091)

91.7
(0.095)

64.5
(0.095)

61.2
(0.026)

57.1
(0.024)

31.7
(0.025)

90.4
(0.026)

60.1
(0.025)

Top-10 78.5
(0.19)

53.1
(0.194)

51.6
(0.182)

91.3
(0.19)

68.6
(0.189)

68.3
(0.053)

64.9
(0.049)

39.0
(0.05)

87.5
(0.052)

64.9
(0.051)

Top-25 82.1
(0.474)

48.9
(0.486)

64.5
(0.457)

90.4
(0.476)

71.5
(0.473)

80.6
(0.133)

68.8
(0.124)

29.2
(0.126)

87.0
(0.131)

66.4
(0.129)

Top-50 82.1
(0.866)

46.8
(0.897)

61.2
(0.853)

89.5
(0.862)

69.9
(0.869)

77.5
(0.267)

64.9
(0.249)

43.9
(0.252)

88.0
(0.262)

68.6
(0.258)

LC 82.1
(1.000)

42.5
(1.000)

61.2
(1.000)

88.6
(1.000)

68.6
(1.000)

79.5
(1.000)

67.3
(1.000)

41.4
(1.000)

82.0
(1.000)

67.5
(1.000)

RAG 71.4
(0.095)

44.6
(0.097)

54.8
(0.091)

91.3
(0.095)

65.5
(0.095)

76.5
(0.026)

57.1
(0.024)

36.5
(0.025)

87.6
(0.026)

64.4
(0.025)

Self-Route 83.9
(0.239)

51.0
(0.174)

58.0
(0.267)

88.2
(0.945)

70.3
(0.406)

75.5
(0.166)

63.6
(0.151)

31.7
(0.453)

81.2
(0.917)

63.0
(0.422)

Adaptive-k 67.8
(0.395)

38.2
(0.362)

45.1
(0.385)

90.4
(0.479)

60.4
(0.405)

60.2
(0.398)

53.2
(0.405)

29.2
(0.675)

88.0
(0.502)

57.6
(0.495)

BGM 82.3
(0.054)

49.8
(0.082)

49.2
(0.072)

88.7
(0.067)

67.5
(0.069)

72.4
(0.023)

63.6
(0.019)

41.7
(0.02)

86.5
(0.022)

66.0
(0.021)

RankZephyr 69.4
(0.095)

46.8
(0.097)

51.6
(0.091)

90.0
(0.095)

64.5
(0.095)

58.1
(0.026)

66.2
(0.024)

21.9
(0.025)

88.6
(0.026)

58.7
(0.025)

LDAR 87.5
(0.559)

57.4
(0.486)

70.9
(0.544)

90.0
(0.493)

76.4
(0.52)

85.7
(0.488)

68.8
(0.493)

46.3
(0.537)

86.0
(0.448)

71.7
(0.491)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 15: Comparison of retrieval strategies under context length settings of 32k and 128k for
Mistral-Nemo-12B. Each cell reports accuracy, with the value in parentheses denoting the token-
usage ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 51.7

(0.019)
27.6
(0.019)

16.1
(0.018)

74.7
(0.019)

42.5
(0.019)

33.6
(0.005)

33.7
(0.004)

9.7
(0.005)

67.9
(0.005)

36.2
(0.005)

Top-5 66.0
(0.095)

46.8
(0.097)

45.1
(0.091)

70.8
(0.095)

57.2
(0.095)

61.2
(0.026)

54.5
(0.024)

29.2
(0.025)

50.0
(0.026)

48.7
(0.025)

Top-10 76.7
(0.19)

46.8
(0.194)

58.0
(0.182)

55.6
(0.19)

59.3
(0.189)

66.3
(0.053)

51.9
(0.049)

43.9
(0.05)

37.5
(0.052)

49.9
(0.051)

Top-25 67.8
(0.474)

34.0
(0.486)

25.8
(0.457)

41.3
(0.476)

42.2
(0.473)

67.3
(0.133)

48.0
(0.124)

24.3
(0.126)

18.5
(0.131)

39.5
(0.129)

Top-50 67.8
(0.866)

34.0
(0.897)

41.9
(0.853)

30.0
(0.862)

43.4
(0.869)

54.0
(0.267)

45.4
(0.249)

36.5
(0.252)

17.4
(0.262)

38.3
(0.258)

LC 73.2
(1.000)

29.7
(1.000)

38.7
(1.000)

39.5
(1.000)

45.3
(1.000)

28.6
(1.000)

32.5
(1.000)

12.2
(1.000)

12.7
(1.000)

21.5
(1.000)

RAG 73.2
(0.095)

51.0
(0.097)

54.8
(0.091)

68.6
(0.095)

61.9
(0.095)

67.3
(0.026)

45.4
(0.024)

36.5
(0.025)

48.4
(0.026)

49.4
(0.025)

Self-Route 76.7
(0.271)

42.5
(0.252)

54.8
(0.208)

39.5
(0.964)

53.4
(0.424)

62.2
(0.195)

51.9
(0.214)

21.9
(0.453)

14.0
(0.917)

37.5
(0.445)

Adaptive-k 55.3
(0.395)

19.1
(0.362)

48.3
(0.385)

50.0
(0.479)

43.2
(0.405)

36.7
(0.398)

22.0
(0.405)

14.6
(0.675)

34.1
(0.502)

26.9
(0.495)

BGM 78.5
(0.037)

54.6
(0.042)

51.9
(0.04)

59.1
(0.038)

61.0
(0.039)

64.3
(0.017)

58.4
(0.006)

31.7
(0.006)

50.0
(0.015)

51.1
(0.011)

RankZephyr 75.0
(0.095)

36.1
(0.097)

32.2
(0.091)

63.9
(0.095)

51.8
(0.095)

53.0
(0.026)

54.5
(0.024)

34.1
(0.025)

51.8
(0.026)

73.3
(0.025)

LDAR 83.9
(0.236)

57.4
(0.172)

58.0
(0.245)

50.0
(0.208)

62.3
(0.215)

73.5
(0.102)

59.7
(0.048)

46.3
(0.006)

24.1
(0.102)

50.9
(0.065)

Table 16: Comparison of retrieval strategies under context length settings of 32k and 128k for GPT-
4o. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio relative
to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 58.9

(0.019)
42.5
(0.019)

35.4
(0.018)

90.4
(0.019)

56.8
(0.019)

33.6
(0.005)

32.4
(0.004)

17.0
(0.005)

87.8
(0.005)

42.7
(0.005)

Top-5 78.5
(0.095)

70.2
(0.097)

58.0
(0.091)

83.0
(0.095)

72.4
(0.095)

65.3
(0.026)

70.1
(0.024)

31.7
(0.25)

74.8
(0.026)

60.5
(0.025)

Top-10 83.9
(0.19)

63.8
(0.194)

67.7
(0.182)

78.6
(0.19)

73.5
(0.189)

73.4
(0.053)

74.0
(0.049)

43.9
(0.05)

66.1
(0.052)

64.3
(0.051)

Top-25 91.0
(0.474)

61.7
(0.486)

77.4
(0.457)

75.2
(0.476)

76.3
(0.473)

82.6
(0.133)

79.2
(0.124)

51.2
(0.126)

63.4
(0.131)

69.1
(0.129)

Top-50 92.8
(0.866)

70.2
(0.897)

77.4
(0.854)

72.1
(0.862)

78.1
(0.87)

79.5
(0.267)

77.9
(0.249)

65.8
(0.252)

61.9
(0.262)

71.3
(0.258)

LC 87.5
(1.000)

70.2
(1.000)

80.6
(1.000)

72.3
(1.000)

77.6
(1.000)

90.8
(1.000)

80.5
(1.000)

65.8
(1.000)

56.3
(1.000)

73.4
(1.000)

RAG 83.9
(0.095)

55.3
(0.097)

67.7
(0.091)

78.3
(0.095)

71.3
(0.095)

80.6
(0.026)

63.6
(0.024)

46.3
(0.25)

67.3
(0.026)

64.5
(0.082)

Self-Route 91.0
(0.302)

70.2
(0.271)

70.9
(0.327)

75.6
(0.984)

76.9
(0.471)

80.6
(0.295)

80.5
(0.316)

63.4
(0.762)

60.5
(0.956)

71.2
(0.582)

Adaptive-k 75.0
(0.395)

59.5
(0.362)

64.5
(0.385)

81.3
(0.479)

70.1
(0.405)

64.2
(0.398)

57.1
(0.405)

48.7
(0.675)

67.4
(0.502)

59.4
(0.495)

BGM 80.4
(0.045)

61.7
(0.081)

61.3
(0.058)

73.9
(0.038)

69.3
(0.056)

75.5
(0.017)

66.2
(0.02)

31.7
(0.018)

70.4
(0.012)

60.9
(0.017)

RankZephyr 83.9
(0.095)

61.7
(0.097)

64.5
(0.091)

82.1
(0.095)

73.1
(0.095)

64.2
(0.026)

75.3
(0.024)

36.5
(0.025)

71.9
(0.026)

62.0
(0.025)

LDAR 94.6
(0.597)

72.3
(0.73)

87.0
(0.514)

76.9
(0.598)

82.7
(0.61)

91.8
(0.376)

84.4
(0.35)

68.3
(0.58)

60.3
(0.376)

76.2
(0.42)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 17: Comparison of retrieval strategies under context length settings of 32k and 128k for GPT-
4o-mini. Each cell reports accuracy, with the value in parentheses denoting the token-usage ratio
relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 55.3

(0.019)
36.1
(0.019)

41.9
(0.018)

81.3
(0.019)

53.6
(0.019)

32.6
(0.005)

40.2
(0.004)

21.9
(0.005)

76.4
(0.005)

42.8
(0.005)

Top-5 78.5
(0.095)

48.9
(0.097)

74.1
(0.091)

75.6
(0.095)

69.3
(0.095)

63.2
(0.026)

66.2
(0.024)

41.4
(0.025)

62.6
(0.026)

58.4
(0.025)

Top-10 80.3
(0.19)

51.0
(0.194)

74.1
(0.182)

70.0
(0.19)

68.9
(0.189)

69.3
(0.053)

67.5
(0.049)

51.2
(0.05)

53.1
(0.052)

60.3
(0.051)

Top-25 85.7
(0.474)

61.7
(0.486)

77.4
(0.457)

64.3
(0.476)

72.3
(0.473)

77.5
(0.133)

75.3
(0.124)

43.9
(0.126)

45.2
(0.131)

60.5
(0.129)

Top-50 89.2
(0.866)

57.4
(0.897)

77.4
(0.853)

62.1
(0.862)

71.5
(0.869)

79.5
(0.267)

74.0
(0.249)

48.7
(0.252)

40.7
(0.262)

60.7
(0.258)

LC 87.5
(1.000)

55.3
(1.000)

77.4
(1.000)

52.8
(1.000)

68.2
(1.000)

81.6
(1.000)

71.4
(1.000)

58.3
(1.000)

32.0
(1.000)

60.8
(1.000)

RAG 82.1
(0.095)

59.5
(0.097)

70.9
(0.091)

67.1
(0.095)

69.9
(0.095)

70.4
(0.026)

72.7
(0.024)

46.3
(0.025)

59.3
(0.026)

62.2
(0.025)

Self-Route 87.5
(0.336)

51.0
(0.213)

74.1
(0.268)

61.7
(0.968)

68.6
(0.446)

71.4
(0.195)

72.7
(0.151)

43.9
(0.524)

29.3
(0.946)

54.3
(0.454)

Adaptive-k 75.0
(0.395)

55.3
(0.362)

64.5
(0.385)

70.4
(0.479)

66.3
(0.405)

59.1
(0.398)

50.6
(0.405)

41.4
(0.675)

49.4
(0.502)

50.1
(0.495)

BGM 82.1
(0.052)

57.4
(0.063)

80.3
(0.082)

64.3
(0.056)

71.0
(0.063)

78.6
(0.016)

67.3
(0.01)

36.6
(0.02)

57.9
(0.012)

60.1
(0.014)

RankZephyr 83.9
(0.095)

53.1
(0.097)

74.1
(0.091)

70.0
(0.095)

70.3
(0.095)

62.2
(0.026)

66.2
(0.024)

31.7
(0.025)

58.9
(0.026)

54.8
(0.025)

LDAR 89.2
(0.666)

70.2
(0.433)

80.6
(0.741)

60.4
(0.684)

75.1
(0.631)

88.8
(0.397)

80.5
(0.254)

63.4
(0.613)

51.8
(0.397)

71.1
(0.415)

Table 18: Comparison of retrieval strategies under context length settings of 32k and 128k for
Gemini-2.5-pro. Each cell reports accuracy, with the value in parentheses denoting the token-usage
ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 57.1

(0.019)
31.9
(0.019)

29.0
(0.018)

93.4
(0.019)

52.8
(0.019)

29.5
(0.005)

33.7
(0.004)

4.8
(0.005)

93.3
(0.005)

40.3
(0.005)

Top-5 76.7
(0.095)

59.5
(0.097)

58.0
(0.091)

90.8
(0.095)

71.2
(0.095)

61.2
(0.026)

58.4
(0.024)

29.2
(0.025)

85.4
(0.026)

58.6
(0.025)

Top-10 83.9
(0.19)

63.8
(0.194)

58.0
(0.182)

89.5
(0.19)

73.8
(0.189)

75.5
(0.053)

64.9
(0.049)

36.5
(0.05)

82.5
(0.052)

64.8
(0.051)

Top-25 85.7
(0.474)

63.8
(0.486)

64.5
(0.457)

86.5
(0.476)

75.1
(0.473)

81.6
(0.133)

76.6
(0.124)

53.6
(0.126)

78.0
(0.131)

72.4
(0.129)

Top-50 83.9
(0.866)

63.8
(0.897)

67.7
(0.853)

84.7
(0.862)

75.0
(0.869)

81.6
(0.267)

76.6
(0.249)

43.9
(0.252)

71.9
(0.262)

68.5
(0.258)

LC 89.2
(1.000)

59.5
(1.000)

62.1
(1.000)

86.5
(1.000)

74.3
(1.000)

91.8
(1.000)

80.5
(1.000)

46.3
(1.000)

76.6
(1.000)

73.8
(1.000)

RAG 82.1
(0.095)

61.7
(0.097)

61.2
(0.091)

87.3
(0.095)

73.1
(0.095)

75.5
(0.026)

64.9
(0.024)

36.5
(0.025)

84.4
(0.026)

65.3
(0.025)

Self-Route 89.2
(0.255)

63.8
(0.291)

64.5
(0.414)

86.0
(0.968)

75.9
(0.482)

86.7
(0.285)

71.4
(0.239)

43.9
(0.596)

70.1
(0.935)

68.0
(0.514)

Adaptive-k 69.6
(0.395)

44.6
(0.362)

61.2
(0.385)

90.0
(0.479)

66.3
(0.405)

70.4
(0.398)

53.2
(0.405)

41.4
(0.675)

78.3
(0.502)

60.8
(0.495)

BGM 83.9
(0.068)

61.7
(0.07)

54.8
(0.067)

80.3
(0.049)

70.2
(0.064)

68.3
(0.023)

64.9
(0.019)

29.3
(0.022)

81.3
(0.022)

60.9
(0.021)

RankZephyr 82.1
(0.095)

65.9
(0.097)

58.0
(0.091)

90.4
(0.095)

74.1
(0.095)

64.2
(0.026)

71.4
(0.024)

21.9
(0.025)

87.8
(0.026)

61.3
(0.025)

LDAR 92.8
(0.641)

68.0
(0.668)

67.7
(0.668)

86.9
(0.641)

78.8
(0.655)

91.8
(0.738)

83.1
(0.52)

63.4
(0.632)

80.7
(0.738)

79.8
(0.657)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 19: Comparison of retrieval strategies under context length settings of 32k and 128k for
Gemini-2.5-flash. Each cell reports accuracy, with the value in parentheses denoting the token-
usage ratio relative to LC. The best-performing strategy for each task is highlighted in bold.

Context Length 32k Context Length 128k
Method Loc Reas Comp Hallu Overall Loc Reas Comp Hallu Overall
Top-1 55.3

(0.019)
38.2
(0.019)

25.8
(0.018)

92.6
(0.019)

53.0
(0.019)

30.6
(0.005)

28.5
(0.004)

4.8
(0.005)

93.3
(0.005)

39.3
(0.005)

Top-5 78.5
(0.095)

68.0
(0.097)

61.2
(0.091)

87.8
(0.095)

73.9
(0.095)

57.1
(0.026)

55.8
(0.024)

34.1
(0.025)

85.4
(0.026)

58.1
(0.025)

Top-10 85.7
(0.19)

59.5
(0.194)

61.2
(0.182)

85.2
(0.19)

72.9
(0.189)

65.3
(0.053)

63.6
(0.049)

39.0
(0.05)

82.5
(0.052)

62.6
(0.051)

Top-25 87.5
(0.474)

59.5
(0.486)

64.5
(0.457)

82.1
(0.476)

73.4
(0.473)

78.5
(0.133)

70.1
(0.124)

43.9
(0.126)

78.0
(0.131)

67.6
(0.129)

Top-50 82.1
(0.866)

63.8
(0.897)

54.8
(0.853)

80.0
(0.862)

70.2
(0.869)

80.6
(0.267)

68.8
(0.249)

51.2
(0.252)

71.9
(0.262)

68.1
(0.258)

LC 85.7
(1.000)

63.8
(1.000)

74.1
(1.000)

80.4
(1.000)

76.0
(1.000)

87.8
(1.000)

75.3
(1.000)

56.1
(1.000)

68.8
(1.000)

72.0
(1.000)

RAG 82.1
(0.095)

59.5
(0.097)

45.1
(0.091)

86.5
(0.095)

68.3
(0.095)

74.5
(0.026)

62.3
(0.024)

41.4
(0.025)

85.7
(0.026)

66.0
(0.025)

Self-Route 91.0
(0.287)

65.9
(0.232)

61.2
(0.239)

80.8
(0.948)

74.7
(0.426)

81.6
(0.355)

74.0
(0.29)

58.5
(0.619)

70.1
(0.935)

71.0
(0.55)

Adaptive-k 66.0
(0.395)

46.8
(0.362)

48.3
(0.385)

87.3
(0.479)

62.1
(0.405)

64.2
(0.398)

55.8
(0.405)

46.3
(0.675)

78.3
(0.502)

61.2
(0.495)

BGM 83.9
(0.064)

55.3
(0.08)

48.4
(0.05)

84.3
(0.038)

68.0
(0.058)

66.3
(0.02)

68.8
(0.018)

39.0
(0.02)

84.1
(0.016)

64.5
(0.018)

RankZephyr 78.5
(0.095)

57.4
(0.097)

51.6
(0.091)

88.2
(0.095)

68.9
(0.095)

60.2
(0.026)

72.7
(0.024)

21.9
(0.025)

84.4
(0.026)

59.8
(0.025)

LDAR 91.0
(0.611)

70.2
(0.716)

80.6
(0.556)

83.0
(0.61)

81.2
(0.623)

89.8
(0.498)

83.1
(0.654)

68.3
(0.602)

71.1
(0.565)

78.1
(0.58)

34

	Introduction
	Related Works
	Motivation
	Main Method
	Designing the Adaptive Retriever
	Optimizing the Adaptive Retriever

	Experiments
	Tasks and Datasets
	Baselines and Experimental Settings
	Main Results
	Comparison to Baseline Methods
	Zero-shot Evaluation of LDAR
	Cost Efficiency Analysis of LDAR

	Conclusion
	The use of LLM in paper writing
	Limitations and Future Work
	Experimental Details
	Implementation Details of the Adaptive Retrieval Process
	Hyperparameter Settings
	Implementation Details of Text Chunking Procedure
	Implementation Details of Baseline Methods

	Additional Experiment Results
	Training LDAR on Hallucination Task
	Visualization of Retrieval Strategies Learned by LDAR
	Analysis of LDAR's Training / Inference Efficiency
	Cross-Embedder Generalization
	Training LDAR with Cost-Regularized Objective
	Visualization of LDAR's Learned Retrieval Strategy in Clusters
	Visualization of LDAR’s Zero-Shot Retrieval on HELMET and Ada-LEval
	Analyzing LDAR's Learned Retrieval Strategy via Sliding Window Experiments
	Ablation Studies on Architectural Choices
	Ablation Study on Task Alignment
	Full Comparison Results of Retrieval Strategies

