

000 001 002 003 004 005 A SHARP KL CONVERGENCE ANALYSIS FOR DIFFU- 006 SION MODELS UNDER MINIMAL ASSUMPTIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Diffusion-based generative models have emerged as highly effective methods for
033 synthesizing high-quality samples. Recent works have focused on analyzing the
034 convergence of their generation process with minimal assumptions, either through
035 reverse SDEs or probability flow ODEs. The best known guarantees, without any
036 smoothness assumptions, for the KL divergence so far achieve a linear dependence
037 on the data dimension d and an inverse quadratic dependence on accuracy level ε .
038 In this work, we present a refined analysis for the standard Exponential Integrator
039 discretization that improves the dependence on ε , at the same time maintaining
040 the linear dependence on d . Following recent works on higher order/randomized
041 midpoint discretizations, we model the generation process as a composition of
042 two steps: a reverse ODE step followed by a smaller noising step, which leads to
043 better dependence on step size. We then provide a novel analysis which achieves
044 linear dependence on d for the ODE discretization error without any smoothness
045 assumptions. Specifically, we introduce a general ODE-based counterpart of the
046 stochastic localization argument from Benton et al. (2023) and develop new proof
047 techniques to bound second-order spatial derivatives of the score function – terms
048 that do not arise in previous diffusion analyses and cannot be handled by existing
049 techniques. Leveraging this framework, we prove that $\tilde{O}\left(\frac{d \log^{3/2}(1/\delta)}{\varepsilon}\right)$ steps suf-
050 fice to approximate the target distribution—corrupted by Gaussian noise of vari-
051 ance δ —to within $O(\varepsilon^2)$ in KL divergence, improving upon the previous best
052 result requiring $\tilde{O}\left(\frac{d \log^2(1/\delta)}{\varepsilon^2}\right)$ steps.
053

1 INTRODUCTION

034 Recently, diffusion based models have picked up momentum for various use-cases involving
035 generative modelling. They are widely used for image generation (Song & Ermon, 2019; Croitoru
036 et al., 2023; Song et al., 2020a; Nichol et al., 2021; Song et al., 2021; Ho et al., 2020), video
037 generation (Epstein et al., 2023; Chen et al., 2023d), semantic editing (Lugmayr et al., 2022),
038 generating text (Li et al., 2022) or audio signals (Liu et al., 2023), protein design (Gruver et al.,
039 2023; Guo et al., 2024), and many other areas. The success of these diffusion models largely stems
040 from their ability to generate high-quality samples using a denoising mechanism. This is achieved
041 by defining a forward noising process that gradually perturbs data from the target distribution,
042 and learning a *score* function using these noisy observations. New samples are then generated
043 by iteratively simulating the reverse of this process, guided by the learned score function. The
044 forward process can be modelled as a stochastic differential equation (SDE) (Song et al., 2020b),
045 and consequently the generation can be carried out by simulating its reverse-time SDE through
046 discretization. Corresponding to this reverse-time SDE, there also exists a probability flow ordinary
047 differential equation (ODE) Song et al. (2020b), which shares the same marginal distributions at
048 all times. Consequently, two main approaches have emerged for sample generation: simulating
049 the reverse SDE (Song et al., 2020b; Chen et al., 2023c) and simulating this probability flow ODE
050 (Chen et al., 2023b; Lu et al., 2022).
051

052 Several works (Chen et al., 2023c;a; Lee et al., 2022; Benton et al., 2024; Li & Yan, 2024) have
053 targeted the theoretical underpinnings behind the working of these diffusion models, under various

assumptions. These studies established polynomial convergence rates with respect to the data dimension d , assuming accurate score estimation together with regularity conditions such as smoothness of the score function or bounded support of the data distribution. More recent efforts (Chen et al., 2023a; Li & Yan, 2024; Benton et al., 2024) aim to minimize such assumptions and obtain guarantees just using accuracy assumption for the estimated score. The best existing result (Li & Yan, 2024) shows $O(d/T)$ convergence rate in the total variation (TV) distance for the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020). A recent work (Benton et al., 2024) also achieved linear dependence on the data dimension for convergence in KL divergence, requiring $\tilde{O}(\frac{d}{\varepsilon^2})$ steps to achieve KL divergence within ε^2 with respect to Gaussian perturbation of the true data distribution. Since TV is bounded by square root of the KL divergence, it is an important issue to investigate whether a better convergence rate is achievable in the KL-divergence. While the linear dependence on d seems satisfactory, the quadratic dependence on $\frac{1}{\varepsilon}$ may not be optimal. In this work, we are interested in investigating the following question:

Can we improve the dependence of the KL-divergence on ε while maintaining linear dependence on the dimension, thereby establishing stronger convergence guarantees for diffusion models?

To achieve this goal, we explore the line of works (Chen et al., 2023b; Gao & Zhu, 2025; Li et al., 2024b;a) which investigate the probability flow ODE for generation. This perspective is motivated by the observation that we can have better discretization dependence for each interval when analyzing the Wasserstein type error directly using the ODEs (Chen et al., 2023b). However, aggregating and bounding the error across all the intervals just based on this ODE requires additional assumptions either related to the error in divergence (Li et al., 2024b) or the Jacobian (Li & Yan, 2024) of the approximated score. Therefore, Chen et al. (2023b) instead considers smoothness of true and approximate score function at all times to bound the Wasserstein error in each interval using the reverse ODE and adds a noising step utilizing Langevin dynamics to then convert the Wasserstein error to TV. However, this noising via Langevin finally results in a suboptimal dependency on ε . Given the improved dependence on step size the probability flow ODE can offer, we also consider using it but instead of additional assumptions or the Langevin dynamics, we just consider taking a smaller step in the forward (noising) direction. This way we are able to consider the error due to discretization on the reverse ODE and then convert it into KL error via the noise addition with a better dependence on step size for each interval, which can then be aggregated across all the intervals. The combination of the ODE step and a smaller noise step can be interpreted as an alternative simulation of the reverse SDE based generation process. This idea of noise addition along the forward process to convert the Wasserstein type error achieved via ODE-based deterministic step to KL has been used in works targeting second order discretization (Li & Cai, 2024), randomized midpoint analysis under smoothness (Li & Jiao, 2024) and also for convergence analysis for the ODE-based consistency model framework (Jain et al., 2025).

Unlike Chen et al. (2023b), we work in the minimal assumptions scenario similar to Chen et al. (2023a); Benton et al. (2024) and just consider the accurate score estimation assumption. A straightforward way then is to consider the analysis of Li & Cai (2024) and adapt it to the standard DDPM sampler. This improves the dependence on ε but worsens d -dependence leading to a complexity of $\tilde{O}(\frac{d^{3/2}}{\varepsilon})$. This is discussed further in section 4.1. Therefore, achieving the desired linear convergence rate for the KL-divergence based on these prior works is non-trivial.

To achieve the linear dependence on d in this setup for our considered ODE step followed by noising path, we take inspiration from Benton et al. (2024) (which considers the reverse SDE and by establishing equivalence to stochastic localization directly picks up a known result from the literature) and investigate additional relations between the score function and its derivative. As discussed in the paper, our analysis along this ODE based path introduces additional challenges: it involves terms containing Laplacian of the score function along with the terms containing both score function and its Jacobian, making it more complicated than the SDE counterpart. By establishing the required novel relations between the score function and its higher order gradient terms, we are able to achieve the linear dependence on data dimension d for the ODE, matching the result of Benton et al. (2024). Due to our improved dependence on discretization step size, this translates into a new

108 *state-of-the-art* guarantee for the KL convergence: requiring $\tilde{O}(d/\varepsilon)$ iterations to achieve ε^2 –KL
 109 divergence improving up the previous best result of $\tilde{O}(\frac{d}{\varepsilon^2})$ (Benton et al., 2024). Also, since the TV
 110 distance is upper bounded by the square root of KL-divergence, this becomes the *state-of-the-art*
 111 convergence guarantee for diffusion models as against the TV convergence guarantee provided in Li
 112 & Yan (2024).

113

114 1.1 RELATED WORK

116 Here, we provide a review of the recent works targetting diffusion based generation broadly catego-
 117 rized into whether they consider the reverse SDE or the probability flow ODE.

118

119 **SDE-Based generation.** The effectiveness of this forward noising and the corresponding de-
 120 noising process for generation was first majorly advocated by the Diffusion Probabilistic Models
 121 (DDPM) framework introduced by Ho et al. (2020), which utilized Gaussian transition kernels for
 122 noising and estimated the parameters of the corresponding Gaussian denoising kernels using denois-
 123 ing score matching during training. Going further it was shown that this forward noising in DDPMs
 124 can be seen as an SDE (Song et al., 2020b) and the generation process then corresponds to the re-
 125 verse SDE. Since then there have been various works (Chen et al., 2023c; Li et al., 2023; 2025; Lee
 126 et al., 2022) targetting the convergence of this generation process. To advocate for the usability in
 127 the real world, some recent works (Chen et al., 2023a; Benton et al., 2024; Li & Yan, 2024) have
 128 also targeted setups for the SDE based generation methods requiring minimal assumptions (just the
 129 bound on score estimation during training via denoising score matching) and have achieved state-
 130 of-the-art convergence guarantees. Specifically, Benton et al. (2024) shows only $O(d/\varepsilon^2)$ steps are
 131 required to be ε^2 -close in KL w.r.t a Gaussian perturbation of the target distribution. On the other
 132 hand, Li & Yan (2024) considers the TV-distance and shows $O(d/\varepsilon)$ steps are required to achieve
 133 ε -close TV of the perturbed data distribution.

134

135 **ODE based generation.** Song et al. (2020b) highlighted that corresponding to the forward noising
 136 process for this diffusion model setup, there also exists a probability flow ODE along side the reverse
 137 SDE which shares the same marginal distribution at all times. It also advocated that this Probability
 138 Flow ODE can lead to faster sampling using the ODE solvers. Taking inspiration, Song et al. (2020a)
 139 then proposed a deterministic counterpart of the DDPM sampler and since then various works have
 140 attempted to investigate the convergence of these deterministic samplers (Li et al., 2024a; Gao &
 141 Zhu, 2025; Huang et al., 2025; Li et al., 2023; 2024b) under various additional assumptions. The
 142 current best result (Li et al., 2024a) achieves a TV distance of ε (w.r.t. perturbation of the true data
 143 distribution) in $O(\frac{d}{\varepsilon})$ steps under score estimation and an additional assumption on the Jacobian of
 144 the estimated score. Another work (Li et al., 2024b) requires a weaker assumption on the divergence
 145 of the estimated score but achieves sub-optimal results. These works have also argued that under just
 146 the score estimation assumption, the TV-distance for these deterministic samplers is lower bounded
 147 unlike SDE and thus, such additional assumptions are required. Another line of work is based on the
 148 predictor-corrector sampling (Song et al., 2020b; Chen et al., 2023b) which uses an ODE step and
 149 addition of small noise using Langevin dynamics for smoothening the trajectory to avoid the error
 150 blow-up due to ODE. For this scenario, the convergence can be achieved (Chen et al., 2023b) under
 151 standard assumptions on score estimation and the smoothness of the true score as well as the approx-
 152 imated score function, which can be further improved using the randomized midpoint discretization
 153 in the predictor step (Gupta et al., 2025). Instead of this langevin step, some recent works (Li & Cai,
 154 2024; Li & Jiao, 2024) have considered the ODE step with second order or randomized midpoint
 155 (under smoothness) discretizations and then directly adding noise along the forward process, thereby
 156 improving the dependence on ε . In this work, we also take a similar route but for the DDPM sampler
 157 and achieve state-of-the-art KL convergence rate under just the score estimation assumption.

158

159 2 PRELIMINARIES AND SETUP

160 We now discuss the formulation behind diffusion models in detail, including both ODE and SDE-
 161 based generation. Following this, we discuss the assumptions used to achieve the results provided
 in the next section.

162 **SDE considered and its discretization.** As discussed previously, diffusion models are based on a
 163 forward noising process and the corresponding reverse generation process. The forward process for
 164 d -dimensional setup can be seen as taking the given samples and gradually corrupting them using
 165 the SDE of the following form (Song et al., 2020b):

$$166 \quad dx(t) = -\mu(x(t), t)dt + g(t)dw_t$$

168 where $x(0) = y \sim p_{data}$, $x(t) \in \mathbb{R}^d$, μ and g correspond to the drift and diffusion coefficients, w_t is
 169 the d -dimensional Brownian motion. Following the popular choice of the OU process, we consider
 170 the following SDE:

$$171 \quad dx(t) = -x(t)dt + \sqrt{2}dw_t$$

172 The corresponding OU process would be:

$$173 \quad x(t) = e^{-t}y + \sqrt{1 - e^{-2t}} \cdot \epsilon(t), \quad \epsilon(t) \sim \mathcal{N}(0, I_d) \quad (1)$$

175 where p_t denotes the law at time t , $x(t) \sim p_t$ and $y \sim p_{data}$. Also, the joint distribution of the
 176 random variables generated via this process at time-stamps corresponding to a sequence $\{t_1, \dots, t_K\}$:
 177 $(x_{t_1}, \dots, x_{t_K})$ is denoted as p_{t_1, \dots, t_K} . The resulting reverse SDE (Song et al., 2020b) for generation
 178 will be:

$$179 \quad dx(t) = -x(t)dt - 2\nabla \ln p_t(x(t))dt + \sqrt{2}d\bar{w}_t \quad (2)$$

180 where $\nabla \ln p_t(x(t))$ is referred to as the *score* function and \bar{w}_t is again the Brownian motion. If the
 181 forward process is run from time T then initializing from p_T and going along this reverse process
 182 for a time $T - t$ will result in the marginal p_t . For the corresponding probability flow ODE (Song
 183 et al., 2020b), we have the following equation:

$$184 \quad dx(t) = -x(t)dt - s(t, x(t))dt \quad (3)$$

186 where we denote $s(t, \cdot) = \nabla \log p_t(\cdot)$. Using the Exponential Integrator discretization (Chen et al.,
 187 2023a) where we divide the overall generation time into small intervals and fix the input to the
 188 score function for each interval to be the value at the start (from the reverse direction), leads to the
 189 following ODE for the interval $[t_{k-1}, t_k]$:

$$190 \quad dx(t) = -x(t)dt - s(t_k, x_k)dt$$

192 **Empirical Counterpart.** Practically, we **do not** have the true score function $s(t, \cdot)$ and instead
 193 during training it is approximated via *denoising score matching* (Song et al., 2020a). Denoting that
 194 approximated score function as $\hat{s}(t, \cdot)$, we have the following empirical version (discretized and
 195 using the approximate score) of the true ODE:

$$196 \quad d\hat{x}(t) = -\hat{x}(t)dt - \hat{s}(t_k, \hat{x}_k)dt \quad (4)$$

198 where we denote the law of this empirical process at time t as \hat{p}_t . For any particular discretization
 199 $\{t_k\}_{k=1}^N$ of the reverse process, **this process is usually initialized using a normal distribution**
 200 $\hat{x}_{t_k} \sim \mathcal{N}(0, I_d)$ and **we denote** the joint distribution for the true $(x_{t_1}, \dots, x_{t_N})$, reverse $(\hat{x}_{t_1}, \dots, \hat{x}_{t_N})$
 201 processes as p_{t_1, \dots, t_N} , $\hat{p}_{t_1, \dots, t_N}$. Also the conditional distribution at t_{k-1} **conditioned on** t_k is
 202 **denoted as** $p_{t_{k-1}|t_k}$, $\hat{p}_{t_{k-1}|t_k}$ for the true and empirical processes respectively. We now discuss the
 203 assumptions used in our theoretical framework.

205 **Assumptions.** As discussed in the introduction, for our theoretical analysis, we take inspiration
 206 from the line of works operating under minimal assumptions (Benton et al., 2024; Chen et al.,
 207 2023a; Li & Yan, 2024), and just use the following standard assumptions:

208 **Assumption 2.1.** *For the discretization sequence $\{t_k\}_{k=1}^{K+1}$ discussed in the next section (and used
 209 in the Inference Algorithm 1), the score function estimate $\{\hat{s}(t, \cdot)\}_{1 \leq t \leq T}$ satisfies:*

$$211 \quad \frac{1}{T} \sum_{k=1}^{K+1} h_k \mathbb{E}_{x \sim p_{t_k}} [\|\hat{s}(t_k, x) - s(t_k, x)\|^2] \leq \varepsilon_{score}^2. \quad (5)$$

213 where $h_k = t_k - t_{k-1}$ corresponds to the step size of the discretization.

215 **Assumption 2.2.** The data distribution p_{data} has finite second order moment $\mathbb{E}_{x_0 \sim p_{data}} [\|x_0\|_2^2] = m_2 < \infty$.

216
217

2.1 NOTATIONS

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

As discussed above, y corresponds to the data distribution p_{data} , $x(t)$ (with its law denoted by p_t and score function as $s(\cdot)$) corresponds to the forward OU process and $z(t)$ (with its law denoted by q_t and score function as $s_r(\cdot)$) is the **variance exploding counterpart** of the forward process discussed in Appendix. $\tilde{x}(t)$ corresponds to the discretized version of the true reverse process. \hat{x}'_k denotes the sequence of random variables generated by our algorithm for a discretization sequence $\{t_k\}$ and their law is denoted by \hat{p}_{t_k} . The step size $t_k - t_{k-1}$ is denoted as h_k . x_k corresponds to the random variables generated by the forward process for this time sequence. $\tilde{x}_{k-1}, \hat{x}_{k-1}$ corresponds to random variables generated by running our proposed scheme (with true, empirical probability flow ODE respectively) for a single interval $[t_{k-1}, t_k]$ starting from x_k at t_k . $\tilde{x}_{k-0.5}, \hat{x}_{k-0.5}$ corresponds to the random variable generated by taking two steps along the discretized (Empirical, True respectively) probability flow ODE in reverse direction starting from x_k . $x_{k-0.5}$ denotes two steps of true probability flow ODE from x_k . $\nabla s(t, x)$ denotes the Jacobian of the score and ∂_t corresponds to the partial derivative w.r.t. time t . We further define ∂_i as the partial derivative w.r.t. i^{th} coordinate of the spatial variable x (or z discussed in appendix). It can also be interpreted as $\partial_{x_i}/\partial_{z_i}$. We also define Laplacian operator $\Delta = \sum_{i=1}^d \partial_i \partial_i$. The i^{th} element of the score vector $s(\cdot)$ is denoted by $s(\cdot)_i$. $\mathcal{N}(0, I_d)$ denotes the d -dimensional standard Normal distribution. For two terms P, Q $P \lesssim Q$ means there exist an absolute constant C_1 such that $P \leq C_1 Q$.

237
238
239
240
241
242
243
244
245
246
247

3 MAIN RESULTS

248
249
250
251
252
253
254
255
256
257
258
259

As discussed above, using previous works (Chen et al., 2023b) on the probability flow ODE, we can directly analyze the Wasserstein-type error under smoothness conditions by using the Young's and Grönwall's inequality. However, the aggregation leads to blow-up in the error and thus, noise is added via Langevin dynamics based corrector after a small ODE step to instead convert the error into TV distance, which can then be aggregated. Here, we instead take a more simplistic perspective for the diffusion use-case where we consider first taking a step along the reverse ODE to bound the Wasserstein-type error (without any smoothness conditions) and then taking a partial step in the noising (forward) direction to convert this error to KL. As discussed in the introduction, this is inspired from recent works (Jain et al., 2025; Li & Jiao, 2024; Li & Cai, 2024) which target the consistency model setup or randomized midpoint/second order discretization schemes.

260
261
262
263
264
265
266
267
268
269

We first define a discretization sequence $0 < \delta = t_0 < t_1 < t_2 < \dots < t_K < t_{K+1} = T$ for the generation process, where T denotes the total time, initializing it from the standard normal distribution $\mathcal{N}(0, I_d)$. Denoting $h_k = t_k - t_{k-1}$, we provide the inference procedure in Algorithm 1. It is based on the Exponential Integrator discretization of the empirical probability flow ODE (Eq. 4) in the step 4 followed by noise addition along the forward process (Eq. 1) in step 6. The step along the ODE can be used to control the Wasserstein-type error and then the noise addition can convert this into KL. This is discussed further in the next section and in detail (along with the technical lemmas) in Appendix A.1. We denote the generated sequence from our algorithm by random variables \hat{x}'_k (corresponding to time t_k) and their law by \hat{p}_{t_k} and the joint distribution for the complete sequence as $\hat{p}_{t_1, \dots, t_K, t_{K+1}}$. Similarly, corresponding to the sequence generated by the forward process along these time-stamps, we will have the joint distribution as $p_{t_1, \dots, t_K, t_{K+1}}$. Figure 1 shows this algorithm/generation process.

Algorithm 1 Inference Algorithm for Diffusion Models

1: **Given:** Discretizing sequence $\{t_0, t_1, \dots, t_K, t_{K+1}\}$, $h_k = t_k - t_{k-1}$, $\hat{p}_{t_{K+1}}$ as the normal distribution $\mathcal{N}(0, I_d)$
 2: Sample $\hat{x}'_{K+1} \sim \hat{p}_{t_{K+1}}$
 3: **for** $k = K+1, K, \dots, 2$ **do**
 4: $\hat{x}'_{k-0.5} = e^{h_k + h_{k-1}} \hat{x}'_k + (e^{h_k + h_{k-1}} - 1) \hat{s}(t_k, \hat{x}'_k)$
 5: Sample $\eta_k \sim \mathcal{N}(0, I_d)$
 6: $\hat{x}'_{k-1} = e^{-h_{k-1}} \hat{x}'_{k-0.5} + \sqrt{1 - e^{-2h_{k-1}}} \eta_k$
 7: **end for**
 8: **Output** \hat{x}'_1

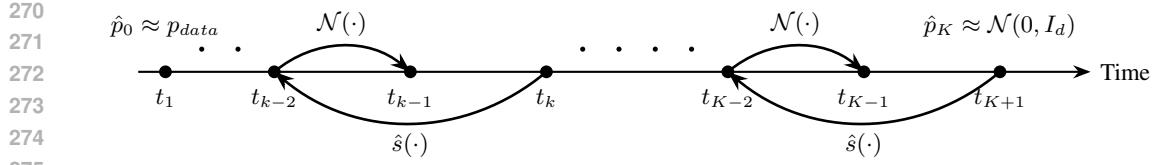


Figure 1: Demonstrating the two updates: (a) along the generation process using $\hat{s}(\cdot)$ and (b) the forward noising process $(\mathcal{N}(\cdot))$, of our proposed scheme.

We now provide the guarantee for the distribution generated by Algorithm 1 in terms of KL divergence w.r.t. perturbation of the true data distribution (law of the forward process at t_1): p_{t_1} . This corresponds to early stopping (with $t_1 > \delta > 0$), similar Benton et al. (2024); Chen et al. (2023a), as we also avoid smoothness assumptions on the data distribution.

Theorem 3.1. *For $T \geq 1$ and $K > d(\log(\frac{1}{\delta}) + T)$, under Assumptions 2.1 and 2.2, consider the generation process in Algorithm 1 with discretization times $0 < \delta = t_0 < t_1 < \dots < t_{K+1} = T$ defined by the step size rule $h_k = t_k - t_{k-1} = c \min\{1, t_k\}$ for some constant $c > 0$. Then, denoting \hat{p}_{t_k} as the marginal distribution at t_k for this algorithm and p_t as the distribution of the forward process (Eq. 1) at time t , we have:*

$$\text{KL}(p_{t_1} \parallel \hat{p}_{t_1}) \lesssim (d + m_2)e^{-T} + d^2 c^3 K + T \varepsilon_{\text{score}}^2 \quad (6)$$

where $x \lesssim y$ means there exists an absolute constant C such that $x \leq Cy$.

We provide the proof of this theorem in the Appendix (A.5) and discuss a sketch of the complete proof in the next section. The first term corresponds to the error due to initializing the algorithm from $\mathcal{N}(0, I_d)$, second term corresponds to the error due to discretization and the third term is due to error in score estimation (Assumption 2.1). From the definition of c , it can be observed that (discussed in the proof as well) c^3 should be $O\left(\frac{(\log \frac{1}{\delta} + T)^3}{K^3}\right)$. Also we can observe that T is required to just have a logarithmic dependence on d and thus, the second term corresponding to the discretization error will be $\tilde{O}\left(\frac{d^2}{K^2}\right)$. We formalize this in the following corollary discussing the iteration complexity.

Corollary 3.2. *Under assumptions 2.1, 2.2 running Algorithm 1 for the SDE based generation via diffusion models for a total time $T = \log\left(\frac{d+m_2}{\varepsilon_{\text{score}}}\right)$ with an exponentially decaying step size sequence $h_k = t_k - t_{k-1} = c \min\{t_k, 1\}$ where $c = \Theta\left(\frac{\log(\frac{1}{\delta}) + T}{K}\right)$ achieves a KL-divergence error of $\tilde{O}(\varepsilon_{\text{score}}^2)$ with an iteration complexity $K = \Theta\left(\frac{d(\log(\frac{1}{\delta})^{3/2})}{\varepsilon_{\text{score}}}\right)$, improving upon the previous best complexity of $\Theta\left(\frac{d \log^2(\frac{1}{\delta})}{\varepsilon_{\text{score}}^2}\right)$ (Benton et al., 2024).*

4 PROOF SKETCH

We now provide a brief sketch of the proof for Theorem 3.1 and the complete details are provided in the Appendix. We begin by first discussing the decomposition of KL divergence into the Wasserstein-type error aggregated in each interval. Since the ODE can result in a better dependence on the discretization step size (Chen et al., 2023b), this serves as the main motivation of our Algorithm 1. Then, we discuss bounding the discretization error along this ODE path in the non-smooth scenario. Finally, we discuss on how the optimal dependence on d can be achieved for this non-smooth setup, leading to state of the art convergence guarantee for the KL divergence.

KL control for diffusion via Wasserstein-type error. We can first decompose the KL between the generation process and the forward process at t_1 : $\text{KL}(p_{t_1} \parallel \hat{p}_{t_1})$ using the data process-

324 ing inequality and chain rule as follows (Lemma A.2):
 325

$$326 \quad \text{KL}(p_{t_1} \| \hat{p}_{t_1}) \leq \text{KL}(p_{t_{K+1}} \| \hat{p}_{t_{K+1}}) + \mathbb{E}_{p_{t_1}, \dots, t_{K+1}} \left[\sum_{k=2}^{K+1} \text{KL}(p_{t_{k-1}|t_k}(\cdot|x_k) \| \hat{p}_{t_{k-1}|t_k}(\cdot|x_k)) \right]$$

329 where $p_{t_{k-1}|t_k}$ denotes the conditional distribution of the true process at t_{k-1} given x_k at t_k and
 330 similarly $\hat{p}_{t_{k-1}|t_k}$ for the generation process. The first term on the RHS is just the initialization error
 331 (the error by using the standard normal distribution for initialization as against the distribution of the
 332 forward process after time T) and can be bounded following previous works (Chen et al., 2023c;a)
 333 as $(d+m_2)e^{-T}$. The second term denotes the summation of the KL error aggregated in each interval
 334 $[t_{k-1}, t_k]$ when the true and the generation process start from the same point (x_k). Now, to calculate
 335 this term, we will consider the following update for the interval $[t_{k-1}, t_k]$ starting from x_k using the
 336 empirical ODE (Eq. 4) and noise:
 337

$$\hat{x}_{k-0.5} = e^{h_k+h_{k-1}} x_k + (e^{h_k+h_{k-1}} - 1) \hat{s}(t_k, x_k) \quad (7)$$

$$338 \quad \hat{x}_{k-1} = e^{-h_{k-1}} \hat{x}_{k-0.5} + \sqrt{1 - e^{-2h_{k-1}}} \epsilon_k, \quad \epsilon_k \sim N(0, I). \quad (8)$$

339 Based on this, the $\text{KL}(p_{t_{k-1}|t_k}(\cdot|x_k) \| \hat{p}_{t_{k-1}|t_k}(\cdot|x_k))$ term can be written as (Lemma A.1):
 340

$$341 \quad \text{KL}(p_{t_{k-1}|t_k}(\cdot|x_k) \| \hat{p}_{t_{k-1}|t_k}(\cdot|x_k)) = e^{-2h_{k-1}} \frac{\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2}{2(1 - e^{-2h_{k-1}})}$$

344 where $x_{k-0.5}$ denotes the true reverse process at time $t_k - h_k - h_{k-1}$. This Wasserstein-type error
 345 to KL conversion and then aggregation is inspired from the recent works (Jain et al., 2025; Li &
 346 Cai, 2024; Li & Jiao, 2024). We now discuss on how the expected value of the $\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2$
 347 term in the RHS of the last equation can be bounded to finally bound the expression obtained after
 348 applying the chain rule.
 349

350 4.1 BOUNDING $\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|^2]$

351 For error control of this term, we define an additional process for the interval $[t_{k-1}, t_k]$ (starting
 352 from x_k and governed by Exponential Integrator discretization of the true probability flow ODE in
 353 Eq. 3): \tilde{x}_k :

$$354 \quad \tilde{x}_{k-0.5} = e^{h_k+h_{k-1}} x_k + (e^{h_k+h_{k-1}} - 1) s(t_k, x_k) \quad (9)$$

$$356 \quad \tilde{x}_{k-1} = e^{-h_{k-1}} \tilde{x}_{k-0.5} + \sqrt{1 - e^{-2h_{k-1}}} \epsilon_k, \quad \epsilon_k \sim N(0, I). \quad (10)$$

357 Now, we decompose the target term corresponding to our scheme $\mathbb{E}\|\hat{x}_{k-0.5} - x_{k-0.5}\|_2^2$ for each
 358 interval as follows:
 359

$$360 \quad \sqrt{\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]} \leq \underbrace{\sqrt{\mathbb{E}[\|x_{k-0.5} - \tilde{x}_{k-0.5}\|_2^2]}}_{\mathbf{T}_d} + \underbrace{\sqrt{\mathbb{E}[\|\tilde{x}_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]}}_{\mathbf{T}_s} \quad (11)$$

363 where \mathbf{T}_s is the error due to using the approximate score function \hat{s} and \mathbf{T}_d is the error
 364 due to the discretization of true process. The score estimation error term can be written as
 365 $(e^{h_k+h_{k-1}} - 1)^2 \mathbb{E}[\|s(t_k, x_k) - \hat{s}(t_k, x_k)\|_2^2]$ (Lemma A.3) and aggregated across all the intervals
 366 can be bounded as $O(h_k \varepsilon_{score}^2)$ using Assumption 2.1 (further discussed in the proof of Theorem
 367 3.1 in Section A.5).
 368

369 To bound the discretization error, we first define a rescaled version of the original process as
 370 $z(t) = e^t x(t)$ (Section A.3) with the law at time denoted by q_t , score function denoted as $s_r(t, z(t))$.
 371 This is done to simplify the calculations in the analysis. Now, using the ODE path of Eq. 14 and the
 372 Integral Remainder form of the Taylor Expansion, we bound this discretization error (Lemma A.4):
 373

$$374 \quad \mathbb{E}[\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2] \leq \frac{1}{2} (h_k + h_{k-1})^3 \int_{t_{k-2}}^{t_k} e^{4t} \mathbb{E}[\|s'_r(t, z(t))\|_2^2] dt$$

376 where the derivative of the score $s'_r(t, z(t))$ can be calculated as $s'_r(t, z(t)) = \frac{d}{dt} s_r(t, z(t)) =$
 377 $\frac{\partial s_r(t, z)}{\partial t} + \frac{\partial s_r(t, z)}{\partial z} \frac{dz(t)}{dt} \Big|_{z=z(t)}$. This is different from previous works (Benton et al., 2024; Chen et al.,

378 2023a) which instead consider the reverse SDE in Eq. 2 and thereby incur the discretization error
 379 contribution for each interval in the overall KL divergence as: $\int_{t_{k-1}}^{t_k} \mathbb{E} [\|s(t_k, x_k) - s(t, x(t))\|^2] dt$,
 380 bounded using the Jacobian of the score. This results in a sub-optimal dependence on h_k ($O(h_k^2)$).
 381 Specifically, the best bound is achieved in Benton et al. (2024) which directly expresses the derivative
 382 of $\mathbb{E} [\|s(t_k, x_k) - s(t, x(t))\|^2]$ term w.r.t. t in terms of $\mathbb{E}_{p_t} [\|\nabla s(t, x)\|_F^2]$ and then integrates
 383 the bound on this, resulting in the optimal linear dependence on d and a sub-optimal $O(h_k^2)$ dependence
 384 on the step size.
 385

386 Now, we discuss in detail on how to bound $\int_{t_{k-2}}^{t_k} \mathbb{E} [\|s'_r(t, z(t))\|_2^2] dt$ following Eq 14. Using the
 387 trick proposed in Chen et al. (2023a), we can write $z(t)$ as a Gaussian perturbation in $y \sim p_{data}$,
 388 thereby rewriting score function at time t : $s_r(t, z)$ as $\mathbb{E}_{y|z} \left[\frac{y-z}{1-e^{2t}} \right]$ (Lemma A.5). A straightfor-
 389 ward option is to then calculate the Jacobian ($\nabla s_r(t, z)$), partial derivative w.r.t. time ($\partial_t s_r(t, z)$)
 390 and then substitute in the expression of $s'_r(t, z(t))$ to get an expression for $\mathbb{E} [\|s'_r(t, z(t))\|_2^2]$.
 391 This can then be upper bounded using the fact that $\frac{y-z}{\sqrt{e^{2t}-1}} \sim \mathcal{N}(0, I_d)$ (Chen et al., 2023a) (also
 392 discussed in Lemma A.8). This is just the adaptation of the calculations proposed in Li & Cai
 393 (2024) for the considered DDPM sampler and leads to a better dependence on h_k than Benton et al.
 394 (2024) but will lead to d^3 dependence of our target term $\left(\int_{t_{k-2}}^{t_k} \mathbb{E} [\|s'(t, x(t))\|_2^2] dt \right)$ and thus,
 395 a $d^{3/2}$ dependence for $\text{KL}(p_{t_1} \| \hat{p}_{t_1})$, which is worse than the d -dependence achieved for KL in
 396 Benton et al. (2024).
 397

4.1.1 ACHIEVING THE OPTIMAL d -DEPENDENCE FOR ODE

400 Lemma A.8 shows that $\mathbb{E} [\|s_r(t, z)\|^2]$ can be bounded as $O(\frac{d}{e^{2t}-1})$ as against $O(\frac{d^2}{(e^{2t}-1)^2})$ for
 401 $\mathbb{E} [\|\nabla s_r(t, z)\|_F^2]$. Therefore to have the linear d -dependence, we take inspiration from Benton
 402 et al. (2024) which first establishes the equivalence of reverse SDE based to Stochastic Localization
 403 and then exploits a well known result from the Stochastic Localization literature (Lemma 1 in the
 404 paper). Since we are considering the ODE path, instead of directly utilising such result, we begin by
 405 first establishing $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] = -2e^{2t} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$ in Lemma A.11. Given our target
 406 term for the discretization error $\left(\int_{t_{k-2}}^{t_k} \mathbb{E}_{q_t} [\|s'_r(t, z(t))\|_2^2] dt \right)$ depends on the integral (w.r.t. time)
 407 of the Jacobian term, using $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$ can improve the d^2 contribution from this term to d .
 408 This serves as the motivation for the remaining sketch.
 409

410 As discussed above, since Benton et al. (2024) involves the reverse SDE, it just requires bounding
 411 $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$ term. However for our considered probability flow ODE path we need to bound
 412 the overall derivative term: $\mathbb{E} [\|s'_r(t, z)\|^2]$ which includes partial derivative w.r.t. time $\partial_t s_r(t, z)$
 413 making the analysis much more complicated which is discussed next.
 414

415 We first convert the time-derivative to spatial derivatives using the the Fokker-Planck equation coun-
 416 terpart for the score function (Lemma A.9):
 417

$$\partial_t s_r(t, z) = e^{2t} \Delta s_r(t, z) + 2e^{2t} \nabla s_r(t, z)^\top s_r(t, z)$$

418 where recall from Section 2.1 that Δ denotes the Laplacian of the score s_r . This, results in the overall
 419 derivative term being represented only in terms of spatial derivative as follows (Lemma A.10):
 420

$$\begin{aligned} \mathbb{E}_{q_t} [\|s'_r(t, z)\|^2] &= e^{4t} \mathbb{E}_{q_t} \left[\|\Delta s_r(t, z)\|_2^2 + \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 \right] \\ &\quad + \mathbb{E}_{q_t} [(\Delta s_r(t, z))^\top (\nabla s_r(t, z)^\top s_r(t, z))] \end{aligned} \quad (12)$$

421 Since this overall derivative involves a term containing both score, its Jacobian and a term contain-
 422 ing the Laplacian of the score, bounding this involves more complex analysis as compared to the
 423

432 SDE scenario in [Benton et al. \(2024\)](#). Now, based on the motivation discussed above to achieve
 433 optimal d dependence by expressing $\frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|^2] = -2e^{2t}\mathbb{E}_{q_t}[\|\nabla s_r(t, z)\|_F^2]$, we further es-
 434 tablish similar relations of the RHS terms in Eq. 12. For the term comprising both s_r and ∇s_r in
 435 Eq. 12, we provide the generalized version of Lemma A.11 which considers general power m in
 436 $\frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|_2^m]$ and a term of the form $\mathbb{E}[\|s_r(t, z)\|_2^{m-2}\|\nabla s_r(t, z)\|_F^2]$ (Lemma A.12):
 437

$$e^{-2t}\frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|_2^m] = -m\mathbb{E}_{q_t}[\|s_r(t, z)\|_2^{m-2}\|\nabla s_r(t, z)\|_F^2] \\ - \frac{m(m-2)}{4}\mathbb{E}_{q_t}\left[\|s_r(t, z)\|_2^{m-4}\|(\nabla\|s_r(t, z)\|_2^2)\|_2^2\right]$$

441 We then utilise this equation to first write the second term in the RHS of our main Eq. 12 in
 442 terms of $\frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|_2^m]$. To target the first term, we establish another novel relation by start-
 443 ing with the term $\frac{d}{dt}\mathbb{E}_{q_t}[\|\nabla s_r(t, z)\|_2^2]$ and expressing it in terms of $\int \Delta q_t(z)\|\nabla s_r(t, z)\|_F^2 dt$,
 444 $\mathbb{E}_{q_t}[\|\Delta s_r(t, z)\|^2]$ and $\mathbb{E}_{q_t}[\|\nabla\|s_r(t, z)\|_2^2\|_2^2]$. Then, we rearrange and express $\mathbb{E}_{q_t}[\|\Delta s_r(t, z)\|^2]$
 445 in terms of $\int \Delta q_t(z)\|\nabla s_r(t, z)\|_F^2 dt$, $\mathbb{E}_{q_t}[\|\nabla\|s_r(t, z)\|_2^2\|_2^2]$ and $\frac{d}{dt}\mathbb{E}_{q_t}[\|\nabla s_r(t, z)\|_2^2]$ (Lemma
 446 A.16). We bound the term $\int \Delta q_t(z)\|\nabla s_r(t, z)\|_F^2 dt$ as follows (Lemma A.15, C_d present in the
 447 lemma statement is $O(1)$ since $C_d \leq 12$ for $d \geq 10$):
 448

$$\int \Delta q_t(z)\|\nabla s_r(t, z)\|_F^2 dt \lesssim \frac{d^2}{(e^{2t}-1)^3} - \frac{e^{-2t}d}{(e^{2t}-1)} \frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|^2]$$

451 leading to an overall bound on the $\mathbb{E}_{q_t}[\|\Delta s_r(t, z)\|^2]$ as (Lemma A.16):
 452

$$\mathbb{E}_{q_t}[\|\Delta s_r(t, z)\|_2^2] \lesssim \frac{d^2}{(e^{2t}-1)^3} - \frac{de^{-2t}}{(e^{2t}-1)} \frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|^2] \\ - e^{-2t} \left(\frac{d}{dt}\mathbb{E}_{q_t}[\|\nabla s_r(t, z)\|_F^2] + \frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|_2^4] \right)$$

457 Finally, this leads to the following bound on $\mathbb{E}_{q_t}[\|s'_r(t, z)\|_2^2]$ (Lemma A.17):
 458

$$\mathbb{E}_{q_t}[\|s'_r(t, z)\|_2^2] \lesssim \frac{d^2 e^{4t}}{(e^{2t}-1)^3} - \frac{e^{2t}d}{(e^{2t}-1)} \frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|^2] \\ - e^{2t} \left(\frac{d}{dt}\mathbb{E}_{q_t}[\|\nabla s_r(t, z)\|_F^2] + \frac{d}{dt}\mathbb{E}_{q_t}[\|s_r(t, z)\|_2^4] \right)$$

463 Integrating this and summing up across all the intervals, choosing $h_k = c \min\{t_k, 1\}$ following
 464 the previous works ([Chen et al., 2023a; Benton et al., 2024](#)) and scaling back to $\tilde{x}(t)$ along with
 465 accounting for the score estimation error and the initialization error leads to the following final
 466 expression for $\text{KL}(p_{t_1} \|\hat{p}_{t_1})$ (section A.5, refer to the analysis there for more details):
 467

$$\text{KL}(p_{t_1} \|\hat{p}_{t_1}) \lesssim (d + m_2)e^{-T} + d^2 c^3 K + T\varepsilon_{\text{score}}^2$$

468 where due to the exponentially decaying step size $c \lesssim \frac{\log(\frac{1}{\delta})+T}{K}$ which results in $K =$
 469 $\Theta\left(\frac{d \log^{3/2}(\frac{T}{\delta})}{\varepsilon}\right)$ to achieve $\tilde{O}(\varepsilon^2) \text{KL}(p_{t_1} \|\hat{p}_{t_1})$ error.
 470

472 5 CONCLUSION

474 In this work we provided an improved analysis for generation process of the diffusion models under
 475 just the L^2 -accurate score estimation and finite second moment of the data distribution assump-
 476 tion. We showed that by modelling the SDE based generation process as an ODE step followed by
 477 noising and thereby targetting the discretization error along this ODE path can lead to better depen-
 478 dence on the step size. We also introduced a novel analysis framework for this ODE path which
 479 expresses the overall derivative of the score function in terms of spatial derivatives and establishes
 480 relations between the score and its first, second order spatial derivatives. This resulted in achieving
 481 linear dependence on d for the considered ODE path, leading to a new *state-of-the-art* convergence
 482 guarantee for KL divergence. Since KL upper bounds the square of the TV-distance by Pinsker's
 483 inequality, our result also provides a stronger guarantee than the best existing rate for the TV con-
 484 vergence achieved in [Li & Yan \(2024\)](#). An interesting future direction can be to investigate if the
 485 dependence on the step size can be improved further when considering this ODE step followed by
 486 noising framework, thereby enhancing the dependence on ε and achieving faster convergence.

486 REFERENCES
487

488 Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d -linear convergence
489 bounds for diffusion models via stochastic localization. *arXiv preprint arXiv:2308.03686*,
490 2023.

491 Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d -linear convergence
492 bounds for diffusion models via stochastic localization. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=r5njV3BsuD>.

493

494 Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
495 User-friendly bounds under minimal smoothness assumptions. In *International Conference on Machine Learning*, pp. 4735–4763. PMLR, 2023a.

496

497 Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
498 flow ode is provably fast. *Advances in Neural Information Processing Systems*, 36:68552–68575,
499 2023b.

500

501 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
502 as learning the score: theory for diffusion models with minimal data assumptions. In *International Conference on Learning Representations*, 2023c.

503

504 Weifeng Chen, Yatai Ji, Jie Wu, Hefeng Wu, Pan Xie, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang
505 Lin. Control-a-video: Controllable text-to-video generation with diffusion models. *arXiv e-prints*,
506 pp. arXiv–2305, 2023d.

507

508 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
509 in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
510 10850–10869, 2023.

511

512 Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and Aleksander Holynski. Diffusion self-
513 guidance for controllable image generation. *Advances in Neural Information Processing Systems*,
514 36:16222–16239, 2023.

515

516 Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow odes of diffu-
517 sion models in wasserstein distances. In *International Conference on Artificial Intelligence and Statistics*, pp. 1009–1017. PMLR, 2025.

518

519 Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanassee,
520 Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
521 diffusion. *Advances in neural information processing systems*, 36:12489–12517, 2023.

522

523 Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
524 Diffusion models in bioinformatics and computational biology. *Nature reviews bioengineering*, 2
525 (2):136–154, 2024.

526

527 Shivam Gupta, Linda Cai, and Sitan Chen. Faster diffusion sampling with randomized midpoints:
528 Sequential and parallel. In *The Thirteenth International Conference on Learning Representations*,
529 2025. URL <https://openreview.net/forum?id=MT3aOfXIbY>.

530

531 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
532 neural information processing systems*, 33:6840–6851, 2020.

533

534 Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of probability
535 flow ode for score-based generative models. *IEEE Transactions on Information Theory*, 2025.

536

537 Nishant Jain, Xunpeng Huang, Yian Ma, and Tong Zhang. Multi-step consistency models: Fast
538 generation with theoretical guarantees. *arXiv preprint arXiv:2505.01049*, 2025.

539

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
540 polynomial complexity. *Advances in Neural Information Processing Systems*, 35:22870–22882,
541 2022.

540 Gen Li and Changxiao Cai. Provable acceleration for diffusion models under minimal assumptions.
 541 *arXiv preprint arXiv:2410.23285*, 2024.

542

543 Gen Li and Yuchen Jiao. Improved convergence rate for diffusion probabilistic models. In *The*
 544 *Thirteenth International Conference on Learning Representations*, 2024.

545 Gen Li and Yuling Yan. O (d/t) convergence theory for diffusion probabilistic models under minimal
 546 assumptions. *arXiv preprint arXiv:2409.18959*, 2024.

547

548 Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for
 549 diffusion-based generative models. In *The Twelfth International Conference on Learning Rep-*
 550 *resentations*, 2023.

551 Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. A sharp convergence theory for the probability
 552 flow odes of diffusion models. *arXiv preprint arXiv:2408.02320*, 2024a.

553

554 Gen Li, Zhihan Huang, and Yuting Wei. Towards a mathematical theory for consistency training
 555 in diffusion models. In *International Conference on Artificial Intelligence and Statistics*, pp.
 556 1621–1629. PMLR, 2025.

557 Runjia Li, Qiwei Di, and Quanquan Gu. Unified convergence analysis for score-based diffusion
 558 models with deterministic samplers. *arXiv preprint arXiv:2410.14237*, 2024b.

559

560 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
 561 lm improves controllable text generation. *Advances in neural information processing systems*, 35:
 562 4328–4343, 2022.

563 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
 564 Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. *arXiv*
 565 *preprint arXiv:2301.12503*, 2023.

566

567 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 568 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
 569 *Information Processing Systems*, 35:5775–5787, 2022.

570 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 571 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 572 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

573

574 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 575 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 576 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

577

578 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 579 *preprint arXiv:2010.02502*, 2020a.

580

581 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 582 *Advances in neural information processing systems*, 32, 2019.

583

584 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 585 Poole. Score-based generative modeling through stochastic differential equations. In *Interna-*
 586 *tional Conference on Learning Representations*, 2020b.

587

588 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
 589 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–
 590 1428, 2021.

591

592

593

594 A PROOF OF THEOREM 3.1
595596 A.1 BOUNDING $\text{KL}(p_{t_1} \parallel \hat{p}_{t_1})$ AS AGGREGATION OF $\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]$ FOR EACH
597 INTERVAL
598599 We now discuss two lemmas: a) The first one converts Wasserstein type error between the empirical
600 and true process to KL for each interval and the second one aggregates the KL across all the intervals.
601602 **Lemma A.1.** Denoting $\hat{p}_{t_{k-1}|t_k}$ be the conditional probability of \hat{x}_{k-1} given \hat{x}_k , and let $p_{t_{k-1}|t_k}$ be
603 the conditional probability of x_{k-1} given x_k using two steps of ODE and one step of noise similar
604 to our algorithm. Then, for the updates in Eq. 7, Eq. 8 (the updates of our Algorithm 1 for each
605 interval given the same starting point for both is the true process at t_k : x_k), we have:
606

607
$$\text{KL}(p_{t_{k-1}|t_k}(\cdot|x_k) \parallel \hat{p}_{t_{k-1}|t_k}(\cdot|x_k)) = e^{-2h_{k-1}} \frac{\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2}{2(1 - e^{-2h_{k-1}})}$$

608

609 where we recall that $h_k = t_k - t_{k-1}$ denotes the step size, $x_{k-0.5}$ corresponds to two steps of
610 Probability Flow ODE from x_k and thus, the law is same as of the forward process at time $t_k - h_k -$
611 h_{k-1} .
612613 *Proof.* For this, we know that from Algorithm 1 that the conditional $\hat{p}_{t_{k-1}|t_k}(\cdot|x_k)$ for the generation
614 process is the following Gaussian:
615

616
$$\hat{p}_{t_{k-1}|t_k}(\cdot|x_k) \sim \mathcal{N}(e^{-h_{k-1}} \hat{x}_{k-0.5}, (1 - e^{-2h_{k-1}}) I_d)$$

617

618 where I_d is the d-dimensional identity matrix. Similarly, for the true process we can just write:
619

620
$$p_{t_{k-1}|t_k}(\cdot|x_k) \sim \mathcal{N}(e^{-h_{k-1}} x_{k-0.5}, (1 - e^{-2h_{k-1}}) I_d)$$

621 Now, since the covariance matrices are same for both, we can just use the following formulae for
622 calculating KL between two Gaussians with different means but same variance:
623

624
$$\text{KL}(p_{t_{k-1}|t_k}(\cdot|x_k) \parallel \hat{p}_{t_{k-1}|t_k}(\cdot|x_k)) = \frac{1}{2}(\mu_1 - \mu_2)^\top \Sigma^{-1}(\mu_1 - \mu_2)$$

625

626 where μ_1, μ_2 corresponds to the mean of the two distributions and Σ corresponds to their covariance.
627 For this case, we have:
628

629
$$\begin{aligned} \mu_1 &= e^{-h_{k-1}} \hat{x}_{k-0.5} \\ 630 \mu_2 &= e^{-h_{k-1}} x_{k-0.5} \\ 631 \Sigma &= (1 - e^{-2h_{k-1}}) I_d \end{aligned}$$

632

633 Merely substituting these values in the KL formulae will lead to the desired term. □
634636 For KL-aggregation, we have the following lemma:
637638 **Lemma A.2.** For the discretization sequence t_1, \dots, t_{K+1} and the law corresponding to the generation
639 process in Algorithm 1, we will have (where p_{t_k} denotes the law of true process at time
640 t_k):
641

642
$$\begin{aligned} \text{KL}(p_{t_1} \parallel \hat{p}_{t_1}) &\leq \text{KL}(p_{t_1, t_2, \dots, t_K, t_{K+1}} \parallel \hat{p}_{t_1, t_2, \dots, t_K, t_{K+1}}) \\ 643 &= \text{KL}(p_{t_{K+1}} \parallel \hat{p}_{t_{K+1}}) + \mathbb{E}_{p_{t_1, \dots, t_K, t_{K+1}}} \left[\sum_{k=2}^{K+1} \text{KL}(p_{t_{k-1}|t_k}(\cdot|x_k) \parallel \hat{p}_{t_{k-1}|t_k}(\cdot|x_k)) \right] \end{aligned}$$

644

646 *Proof.* The first inequality is just the data processing inequality and second equation is the chain
647 rule for KL. □

648 A.2 ANALYSING $\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]$
649650 We begin by first decomposing the term into a discretization error component and the error due to
651 using the estimated score instead of true score.652 **Lemma A.3.** *For the sequence $\hat{x}_{k-0.5}$ generated by Eq. 7, we have:*
653

654
$$\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2] \leq 2\mathbb{E}[\|x_{k-0.5} - \tilde{x}_{k-0.5}\|_2^2] + 2(e^{h_k+h_{k-1}} - 1)^2 \mathbb{E}[\|s(t_k, x_k) - \hat{s}(t_k, x_k)\|_2^2]$$

655

656 where we recall $x_{k-0.5}$ corresponds to two steps of true probability flow ODE from x_k and $\tilde{x}_{k-0.5}$
657 corresponds to the discretized true process update defined in Eq. 9. The first term in the RHS
658 corresponds to the discretization error (T_d) and the second term is the score estimation error (T_s).
659660 *Proof.* We can just bound the LHS as follows:
661

662
$$\sqrt{\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]} \leq \underbrace{\sqrt{\mathbb{E}[\|x_{k-0.5} - \tilde{x}_{k-0.5}\|_2^2]}}_{T_{\text{dis}}} + \underbrace{\sqrt{\mathbb{E}[\|\tilde{x}_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]}}_{T_{\text{est}}}$$

663

664 where, as discussed in the lemma, $\tilde{x}_{k-0.5}$ is defined in Eq. 9. Squaring both sides and using
665 $2ab \leq a^2 + b^2$, we will have:
666

667
$$\mathbb{E}[\|x_{k-0.5} - \hat{x}_{k-0.5}\|_2^2] \leq 2\mathbb{E}[\|x_{k-0.5} - \tilde{x}_{k-0.5}\|_2^2] + 2\mathbb{E}[\|\tilde{x}_{k-0.5} - \hat{x}_{k-0.5}\|_2^2]$$

668

669 **Bounding T_{est} .** Now, utilizing the Eq. 7, Eq. 9, we have:
670

671
$$\begin{aligned} \mathbb{E}[\|\tilde{x}_{k-0.5} - \hat{x}_{k-0.5}\|_2^2] &= \mathbb{E}\|(e^{h_k+h_{k-1}} - 1)(s(t_k, x_k) - \hat{s}(t_k, x_k))\|_2^2 \\ &= (e^{h_k+h_{k-1}} - 1)^2 \mathbb{E}[\|s(t_k, x_k) - \hat{s}(t_k, x_k)\|_2^2] \end{aligned}$$

672

673 \square 674 We discuss the analysis (and eventually bounding it) of the discretization error term T_d in the sub-
675 sequent subsections.
676677 A.3 ANALYSING THE DISCRETIZATION ERROR ALONG THE ODE PATH
678679 **Considering a rescaled process.** We consider a rescaled version of the original OU process (Eq.
680 1) as $z(t) = e^t x(t)$, leading to:
681

682
$$z(t) = y + \sqrt{e^{2t} - 1} \cdot \eta; \quad \eta \sim \mathcal{N}(0, I_d) \quad (13)$$

683

684 where y corresponds to the data distribution: $z_0 = x_0 = y \sim p_{\text{data}}$ with the corresponding forward
685 SDE being:
686

687
$$dz(t) = x(t)de^t + e^t dx(t) = x(t)e^t dt + e^t \left(-x(t)dt + \sqrt{2}d\mathbf{w}_t \right) = \sqrt{2}e^t d\mathbf{w}_t$$

688

689 We denote the law of this process at time t by $q_t(\cdot)$ where q_t is just a pushforward of $p_t(\cdot)$. Also,
690 we denote the score function of this rescaled process as $s_r(t, \cdot)$ where we will have $s_r(t, z(t)) =$
691 $e^{-t}s(t, e^{-t}z(t))$. The probability flow ODE becomes:
692

693
$$dz(t) = -e^{2t} s_r(t, z(t)) dt \quad (14)$$

694

695 Using the Exponential Integrator discretization for a given interval $[t_{k-1}, t_k]$, here also, we define
696 $\tilde{z}_{k-0.5}$ for this interval when starting from z_k :
697

698
$$\tilde{z}_{k-0.5} = z_k + \frac{1}{2} e^{2t_{k-2}} (e^{2(h_k+h_{k-1})} - 1) s_r(t_k, z_k) \quad (15)$$

699

700 where $t_{k-2} = t_k - h_k - h_{k-1}$. Now, we have the following lemma for bounding
701 $\mathbb{E}[\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2]$ where $z_{k-0.5}$ is two steps of true probability flow ODE Eq. 14 from z_k .
702

702 **Lemma A.4.** For the $\tilde{z}_{k-0.5}$ defined in Eq. 15, we have:

$$704 \quad \mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2] \leq \frac{1}{2} (h_k + h_{k-1})^3 \int_{t_{k-2}}^{t_k} e^{4t} \mathbb{E} [\|s'_r(t, z(t))\|_2^2] dt$$

706 where $s'_r(t, z(t))$ is the derivative of $s_r(t, z(t))$ w.r.t. t and can be calculated using:

$$708 \quad s'_r(t, z(t)) = \frac{\partial s_r(t, z)}{\partial t} + \frac{\partial s_r(t, z)}{\partial z} \frac{dz(t)}{dt} \Big|_{z=z(t)}$$

711 *Proof.* Since, we have used the Exponential Integrator discretization, the ODEs for the interval
712 $[t_{k-2}, t_k]$ corresponding to z_k, \tilde{z}_k (given $\tilde{z}_k = z_k$) are:

$$714 \quad dz(t) = -e^{2t} s_r(t, z(t)) dt \quad d\tilde{z}(t) = -e^{2t} s_r(t_k, z_k) dt$$

716 Therefore, we have:

$$718 \quad \tilde{z}_{k-0.5} - z_{k-0.5} = \int_{t_k}^{t_{k-2}} d(\tilde{z}(t) - z(t)) = \int_{t_k}^{t_{k-2}} e^{2t} (s_r(t_k, z_k) - s_r(t, z(t))) dt$$

$$719 \quad = \int_{t_k}^{t_{k-2}} e^{2t} \left(s_r(t_k, z_k) - \underbrace{\left(s_r(t_k, z_k) + \int_{t_k}^t s'_r(u, z_u) du \right)}_{\text{Taylor's Integral Remainder}} \right) dt$$

726 where in the last step we have just used the Taylor's Integral Remainder form for the score function.
727 Using this, we will have:

$$728 \quad \mathbb{E} [\|\tilde{z}_{k-0.5} - z_{k-0.5}\|_2^2] = \mathbb{E} \left[\left\| \int_{t_k}^{t_{k-2}} dt \int_{t_k}^t e^{2u} s'_r(u, z(u)) du \right\|_2^2 \right]$$

$$729 \quad \leq \mathbb{E} \left[(h_k + h_{k-1}) \int_{t_{k-2}}^{t_k} dt \left\| \int_{t_k}^t e^{2u} s'_r(u, z(u)) du \right\|_2^2 \right]$$

$$730 \quad \leq \mathbb{E} \left[(h_k + h_{k-1}) \int_{t_{k-2}}^{t_k} (t_k - t) \int_t^{t_k} \|e^{2u} s'_r(u, z(u))\|_2^2 du dt \right]$$

$$731 \quad = (h_k + h_{k-1}) \int_{t_{k-2}}^{t_k} (t_k - t) dt \int_t^{t_k} \mathbb{E} [\|e^{2u} s'_r(u, z(u))\|_2^2] du$$

$$732 \quad = (h_k + h_{k-1}) \int_{t_{k-2}}^{t_k} e^{4u} \mathbb{E} [\|s'_r(u, z(u))\|_2^2] du \int_{t_{k-2}}^u (t_k - t) dt$$

$$733 \quad \leq \frac{(h_k + h_{k-1})^3}{2} \int_{t_{k-2}}^{t_k} e^{4u} \mathbb{E} [\|s'_r(u, z(u))\|_2^2] du$$

746 \square

747 We now calculate and bound the spatial gradient since the partial gradient w.r.t. time can be written
748 in terms of the spatial gradient using the Fokker Planck Equation (FPE).

750 **Calculating the Jacobian $\nabla s_r(t, z(t))$ for this rescaled process:** We can now observe the fol-
751 lowing for this rescaled process:

$$753 \quad q_t(z) = \int q_t(z|y) p_{data}(y) dy \propto \int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy \quad (16)$$

755 which takes us to the following formulation of the score function:

756 **Lemma A.5.** *For the rescaled process in Eq. 13, we have:*

$$757 \quad 758 \quad 759 \quad s_r(t, z) = \mathbb{E}_{y|z} \left[\frac{y - z}{(e^{2t} - 1)} \right]$$

760 *Proof.* As discussed in Eq. 16, we can just write the score function as:

$$761 \quad 762 \quad 763 \quad 764 \quad 765 \quad 766 \quad 767 \quad 768 \quad 769 \quad s_r(t, z) = \nabla \log q_t(z) = \frac{\nabla q_t(z)}{q_t(z)} = \frac{\nabla \int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy}{\int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy} = \frac{\int \frac{y-z}{(e^{2t}-1)} e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy}{\int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy} \\ = \int P(y|z) \frac{y-z}{(e^{2t}-1)} dy \\ = \mathbb{E}_{y|z} \frac{y-z}{(e^{2t}-1)}$$

770 where $P(y|z) = \frac{P(y,z)}{\int P(y,z) dy}$ and $P(y,z) = e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y)$. \square

771 **Lemma A.6. Jacobian of score.** *We have the following expression for the Jacobian of the score*
 772 *$\nabla s_r(t, z)$ for the rescaled process $z(t)$:*

$$773 \quad 774 \quad 775 \quad \nabla s_r(t, z) = \text{Var}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] - \frac{I_d}{e^{2t}-1}$$

776 where Var denotes the covariance matrix.

777 *Proof.* We begin by calculating (the gradient of P is w.r.t. second variable z in this Lemma),

$$778 \quad 779 \quad 780 \quad \nabla P(y|z) = \frac{\nabla P(y,z) \cdot \int P(y,z) dy - P(y,z) \cdot \int \nabla P(y,z) dy}{(\int P(y,z) dy)^2}$$

781 From the calculations in last Lemma (A.5), we have:

$$782 \quad 783 \quad \nabla P(y,z) = \frac{y-z}{e^{2t}-1} P(y,z)$$

784 and therefore:

$$785 \quad 786 \quad 787 \quad \nabla P(y|z) = \frac{y-z}{e^{2t}-1} \cdot \frac{P(y,z)}{\int P(y,z) dy} - \frac{P(y,z)}{\int P(y,z) dy} \cdot \frac{\int \frac{y-z}{e^{2t}-1} P(y,z) dy}{\int P(y,z) dy} \\ = P(y|z) \left(\frac{y-z}{e^{2t}-1} - \mathbb{E}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] \right)$$

788 Thus, we can calculate the $\nabla s_r(t, z)$ as follows:

$$789 \quad 790 \quad 791 \quad 792 \quad 793 \quad 794 \quad 795 \quad 796 \quad 797 \quad 798 \quad 799 \quad 800 \quad 801 \quad 802 \quad 803 \quad 804 \quad \nabla s_r(t, z) = \int \frac{y-z}{e^{2t}-1} \nabla P(y|z)^\top dy - \frac{I_d}{e^{2t}-1} \int P(y|z) dy \\ = \int P(y|z) \frac{y-z}{e^{2t}-1} \left(\frac{y-z}{e^{2t}-1} - \mathbb{E}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] \right)^\top dy - \frac{I_d}{e^{2t}-1} \\ = \mathbb{E}_{y|z} \left[\frac{y-z}{e^{2t}-1} \left(\frac{y-z}{e^{2t}-1} - \mathbb{E}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] \right)^\top \right] - \frac{I_d}{e^{2t}-1} \\ = \text{Var}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] - \frac{I_d}{e^{2t}-1}$$

\square

805 **Bounding $\mathbb{E}_{q_t} [\|s_r(t, z)\|^p]$, $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|^2]$ and other spatial gradient terms.** Since, we
 806 know that $\frac{y-z(t)}{\sqrt{e^{2t}-1}} = \epsilon \sim \mathcal{N}(0, I_d)$, we first provide a helper lemma to bound the moment of the
 807 multivariate Gaussian distribution. Then using that and the formulae for score function, Jacobian
 808 provided in Lemma A.5, we bound $\mathbb{E} [\|s_r(t, z)\|^p]$, $\mathbb{E} [\|\nabla s_r(t, z)\|_F^2]$ for a general p .

810
 811 **Lemma A.7. Gaussian Moment.** We have the following result for the Gaussian random variable
 812 $\eta \sim \mathcal{N}(0, I_d)$:

813
$$\mathbb{E} [\|\eta\eta^\top\|_F^p] = \mathbb{E} [\|\eta\|_2^{2p}] \leq (d + 2p)^p$$

 814

815 *Proof.* We will have:

816
$$\|\eta\eta^\top\|_F^2 = \text{Tr}((\eta\eta^\top)^\top(\eta\eta^\top)) = \text{Tr}(\eta\eta^\top\eta\eta^\top) = \eta^\top\eta\text{Tr}(\eta\eta^\top) = (\eta^\top\eta)^2$$

817 Thus, we have $\|\eta\eta^\top\|_F^p = (\eta^\top\eta)^p = \|\eta\|_2^{2p}$. Since $\eta \sim \mathcal{N}(0, I_d)$ and thus, the vector η has *i.i.d.*
 818 normal entries, thereby:

819
$$\|\eta\|_2^2 = \sum_i \eta_i^2 \sim \chi^2(d) \implies \mathbb{E}[\|\eta\|_2^{2p}] = \mathbb{E}[(X)^p] \text{ where } X \sim \chi^2(d)$$

 820

821 where $\chi^2(d)$ denotes the chi-squared distribution with d degrees of freedom. Now, we can just use
 822 the formulae for moments of $\chi^2(d)$, leading us to:

823
$$\mathbb{E} [\|\eta\|^{2p}] = \mathbb{E}[X^p] = 2^p \cdot \frac{\Gamma(p + \frac{d}{2})}{\Gamma(\frac{d}{2})} \stackrel{(a)}{\leq} 2^p \left(\frac{d}{2} + p\right)^p = (d + 2p)^p$$

 824

825 where Γ denotes the gamma function and for inequality (a), we have just used the gamma function
 826 bound. \square

827 **Lemma A.8.** We have:

828
$$\mathbb{E}_{q_t} [\|s_r(t, z(t))\|^2] \leq \frac{d}{e^{2t} - 1}; \quad \mathbb{E}_{q_t} [\|s_r(t, z(t))\|^p] \leq \frac{(d + p)^{p/2}}{(e^{2t} - 1)^{p/2}}$$

 829
 830
$$\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \leq \frac{2d^2 + 6d}{(e^{2t} - 1)^2}$$

831 *Proof.* Similar to the [Chen et al. \(2023a\)](#), here we also utilize the fact that $\frac{y-z(t)}{\sqrt{1-e^{-2t}}}$ is Gaussian.
 832 Using Lemma A.5 we have:

833
$$\mathbb{E}_{q_t} [\|s_r(t, z)\|^2] = \frac{1}{(e^{2t} - 1)} \mathbb{E}_{z \sim q_t} \left[\left\| \mathbb{E}_{y|z} \left[\frac{y-z}{\sqrt{e^{2t} - 1}} \right] \right\|^2 \right] \leq \frac{1}{(e^{2t} - 1)} \mathbb{E}_{q_t} \mathbb{E}_{y|z} \left[\left\| \left[\frac{y-z}{\sqrt{e^{2t} - 1}} \right] \right\|^2 \right]$$

 834
 835
$$= \frac{1}{(e^{2t} - 1)} \mathbb{E}_{\eta \sim \mathcal{N}(0, I_d)} [\|\eta\|^2]$$

 836
 837
$$= \frac{d}{e^{2t} - 1}$$

838 For a general $p \geq 2$, it becomes:

839
$$\mathbb{E}_{q_t} [\|s_r(t, z(t))\|^p] = \frac{1}{(e^{2t} - 1)^{p/2}} \mathbb{E}_{q_t} \left[\left\| \mathbb{E}_{y|z(t)} \left[\frac{y-z}{\sqrt{(e^{2t} - 1)}} \right] \right\|^p \right]$$

 840
 841
$$\leq \frac{1}{(e^{2t} - 1)^{p/2}} \mathbb{E}_{q_t} \mathbb{E}_{y|z(t)} \left[\left\| \left[\frac{y-z}{\sqrt{e^{2t} - 1}} \right] \right\|^p \right]$$

 842
 843
$$= \frac{1}{(e^{2t} - 1)^{p/2}} \mathbb{E}_{\eta \sim \mathcal{N}(0, I_d)} [\|\eta\|^p]$$

 844
 845
$$\leq \frac{(d + p)^{p/2}}{(e^{2t} - 1)^{p/2}} \tag{Lemma A.7}$$

864 Going similarly, a *naive* bound on $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$ will be:
 865

$$\begin{aligned}
 866 \mathbb{E}_{z \sim q_t} [\|\nabla s_r(t, z)\|_F^2] &= \mathbb{E}_{z \sim q_t} \left[\left\| \text{Var}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] - \frac{I_d}{e^{2t}-1} \right\|_F^2 \right] && \text{(Lemma A.6)} \\
 867 &\leq 2\mathbb{E}_{z \sim q_t} \left[\left\| \mathbb{E}_{y|z} \left[\frac{y-z}{e^{2t}-1} \right] \left[\frac{y-z}{e^{2t}-1} \right]^\top \right\|_F^2 \right] + \frac{2d}{(e^{2t}-1)^2} \\
 868 &\leq 2\mathbb{E}_{z \sim p_t} \mathbb{E}_{y|z} \left[\left\| \left[\frac{y-z}{e^{2t}-1} \right] \left[\frac{y-z}{e^{2t}-1} \right]^\top \right\|_F^2 \right] + \frac{2d}{(e^{2t}-1)^2} \\
 869 &= 2 \frac{1}{(e^{2t}-1)^2} \mathbb{E}_{\eta \sim \mathcal{N}(0, I_d)} [\|\eta\|^4] + \frac{2d}{(e^{2t}-1)^2} \\
 870 &= \frac{2d^2 + 6d}{(e^{2t}-1)^2}
 \end{aligned}$$

□

882 A.3.1 EXPRESSING THE $\mathbb{E}_{p_t} [\|s'(t, x(t))\|^2]$ IN TERMS OF SPATIAL DERIVATIVES

883 Since we also need to bound $\partial_t s_r(t, z)$ to bound the $s'_r(t, z)$, we will utilise the Fokker-Plank equation
 884 associated with the forward/reverse processes which relates the partial derivative w.r.t. t with
 885 the spatial derivative. The Fokker-Plank equation corresponding to the rescaled process $z(t)$ (Eq. 13)
 886 would be:
 887

$$888 \partial_t q_t(z) = - \sum_{i=1}^d \partial_i (-e^{2t} \nabla q_t(z)) = e^{2t} \Delta q_t(z) \quad (17)$$

889 Since score function is just $\frac{\nabla q_t(z(t))}{q_t}$, we provide the corresponding *score-fpe* for the rescaled process
 890 to relate the $\partial_t s_r(t, z)$ with spatial derivative in the lemma below:
 891

892 **Lemma A.9.** *We have the following counterpart of the Fokker-Planck equation for the score function
 893 of the rescaled process defined in Eq. 13:*

$$894 \partial_t s_r(t, z) = e^{2t} \Delta s_r(t, z) + e^{2t} \nabla \|s_r(t, z)\|^2 = e^{2t} \Delta s_r(t, z) + 2e^{2t} \nabla s_r(t, z)^\top s_r(t, z) \quad (18)$$

895 *Proof.* To arrive at the equation for the score function, we first derive an equation for $\partial_t \log q_t$ by
 896 considering the following term:
 897

$$\begin{aligned}
 900 e^{2t} \sum_{i=1}^d \partial_i (\nabla \log q_t(z)) &= e^{2t} \sum_{i=1}^d \partial_i \left(\frac{\nabla q_t(z)}{q_t(z)} \right) = e^{2t} \sum_{i=1}^d \left(\frac{q_t(z) \partial_i \nabla q_t(z) - \partial_i q_t(z) \nabla q_t(z)}{q_t^2(z)} \right) \\
 901 &= e^{2t} \sum_{i=1}^d \left(\frac{\partial_i \nabla q_t(z)}{q_t(z)} \right) - e^{2t} \|\nabla \log q_t(z)\|^2
 \end{aligned}$$

902 which results in:
 903

$$904 \partial_t \log q_t(z) = \frac{\partial_t q_t(z)}{q_t(z)} = e^{2t} \sum_{i=1}^d \left(\frac{\partial_i \nabla q_t(z)}{q_t(z)} \right) = e^{2t} \sum_{i=1}^d \partial_i (\nabla \log q_t(z)) + e^{2t} \|\nabla \log q_t(z)\|^2$$

905 Now, again taking a spatial gradient:
 906

$$907 \nabla \partial_t \log q_t(z) = e^{2t} \sum_{i=1}^d \nabla \partial_i (\nabla \log q_t(z)) + e^{2t} \nabla \|\nabla \log q_t(z)\|^2$$

918 Interchanging the operators result in the score Fokker-Planck equation for the forward process (on
919 the reverse it would be negative):
920

$$921 \quad \partial_t s_r(t, z) = e^{2t} \Delta s_r(t, z) + e^{2t} \nabla \|s_r(t, z)\|^2 = e^{2t} \Delta s_r(t, z) + 2e^{2t} \nabla s_r(t, z)^\top s_r(t, z)$$

□

925 Now based on this lemma, we express the overall derivative in terms of spatial derivative in the
926 following lemma.
927

928 **Lemma A.10.** *We have the following relation for the overall score derivative $s'_r(t, z)$ and $\nabla s_r(t, z)$ for the rescaled process following the reverse ODE (Eq. 14):*

$$931 \quad \mathbb{E}_{q_t} [\|s'_r(t, z)\|^2] = \mathbb{E}_{q_t} \left[e^{4t} \|\Delta s_r(t, z)\|_2^2 + e^{4t} \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 \right] \\ 932 \quad + \mathbb{E}_{q_t} [2e^{4t} (\Delta s_r(t, z))^\top (\nabla s_r(t, z)^\top s_r(t, z))] \quad (19)$$

934 where (recall from Section 2.1) Δ denotes the Laplacian of a vector.
935

937 *Proof.* Now, utilising the Fokker-Planck equation (FPE) for the score function, we will have:
938

$$939 \quad \mathbb{E}_{q_t} [\|s'_r(t, z(t))\|^2] \\ 940 \quad = \mathbb{E}_{q_t} [s'_r(t, z)^\top s'_r(t, z)] \\ 941 \quad = \mathbb{E}_{q_t} \left[\left(\partial_t s_r(t, z) + \nabla s_r(t, z)^\top \left(\frac{dz}{dt} \right) \right)^\top \left(\partial_t s_r(t, z) + \nabla s_r(t, z)^\top \left(\frac{dz}{dt} \right) \right) \right] \\ 942 \quad \stackrel{(a)}{=} \mathbb{E}_{q_t} \left[(\partial_t s_r(t, z) - e^{2t} \nabla s_r(t, z)^\top s_r(t, z))^\top (\partial_t s_r(t, z) - e^{2t} \nabla s_r(t, z)^\top s_r(t, z)) \right] \\ 943 \quad = \mathbb{E}_{q_t} \left[\|\partial_t s_r(t, z)\|_2^2 + e^{4t} \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 - 2e^{2t} \partial_t s_r(t, z)^\top (\nabla s_r(t, z)^\top s_r(t, z)) \right] \\ 944 \quad \stackrel{(b)}{=} \mathbb{E}_{q_t} \left[\|e^{2t} \Delta s_r(t, z) + 2e^{2t} s_r(t, z)^\top \nabla s_r(t, z)\|_2^2 + e^{4t} \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 \right. \\ 945 \quad \quad \quad \left. - 2e^{2t} (e^{2t} \Delta s_r(t, z) + 2e^{2t} s_r(t, z)^\top \nabla s_r(t, z))^\top (\nabla s_r(t, z)^\top s_r(t, z)) \right] \\ 946 \quad = \mathbb{E}_{q_t} \left[e^{4t} \|\Delta s_r(t, z)\|_2^2 + e^{4t} \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 + 2e^{4t} (\Delta s_r(t, z))^\top (\nabla s_r(t, z)^\top s_r(t, z)) \right]$$

947 where in (a) we have used reverse ODE Eq. 14 and in (b) we have used the FPE for score from
948 Lemma A.9. □
949

950 A.4 BOUNDING THE REQUIRED SPATIAL DERIVATIVE TERMS

951 Now to bound the terms $\mathbb{E}_{q_t} [\|\Delta s_r(t, z)\|_2^2]$, $\mathbb{E} [\|s_r(t, z) \nabla s_r(t, z)\|_2^2]$ appearing in Eq. 19, we
952 analyze the relationship of these spatial gradient terms with $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$. Since the naive
953 bound on $\mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$ is proportional to d as against d^2 in case of $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$,
954 this can lead to improved d -dependence of the discretization error upon integrating this for a
955 given time interval. We first discuss two lemmas: the first one establishes relation between
956 $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$ and $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$. Then extending this lemma for general power m in
957 $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^m]$ leads to the terms comprising both ∇s_r and s_r from which we can bound the
958 term $\mathbb{E} [\|s_r(t, z) \nabla s_r(t, z)\|_2^2]$. Then, utilising these lemmas and bounding terms comprising δ_{q_t} and
959 ∇s_r in terms of $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$, we finally bound $\mathbb{E}_{q_t} [\|\Delta s_r(t, z)\|_2^2]$ by applying Integration
960 By Parts.
961

972 A.4.1 ESTABLISHING RELATION BETWEEN SCORE AND ITS FIRST ORDER SPATIAL
 973 GRADIENT TERMS
 974

975 We first analyze the term $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$ and manipulate it to relate it with $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$
 976 leading to the following lemma.

977 **Lemma A.11.** *We have:*

$$979 \quad \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] = -2e^{2t} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$$

981 *Proof.* We begin by analysing the LHS term, taking the derivative inside the integral and utilise
 982 Fokker-Planck equation (FPE) (for q_t and s_r (Eq. 17, Eq. 18) for the rescaled process to convert it
 983 to spatial derivative and finally utilise Integration By Parts (IBP):

$$\begin{aligned} 985 \quad & \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\ 986 \quad &= \frac{d}{dt} \int q_t(z) \|s_r(t, z)\|^2 dz \\ 987 \quad &= \int \partial_t q_t(z) \|s_r(t, z)\|^2 dz + 2 \int q_t(z) s_r(t, z)^\top \partial_t s_r(t, z) dz \\ 988 \quad &\stackrel{(a)}{=} \int e^{2t} \Delta q_t(z) \|s_r(t, z)\|^2 dz + 2 \int q_t(z) s_r(t, z)^\top (e^{2t} \Delta s_r(t, z) + e^{2t} \nabla \|s_r(t, z)\|^2) dz \\ 989 \quad &\stackrel{(b)}{=} -e^{2t} \int \nabla q_t(z) \cdot \nabla \|s_r(t, z)\|^2 dz + 2e^{2t} \int q_t(z) s_r(t, z)^\top (\Delta s_r(t, z) + \nabla \|s_r(t, z)\|^2) dz \\ 990 \quad &\stackrel{(c)}{=} e^{2t} \int \nabla q_t(z) \cdot \nabla \|s_r(t, z)\|^2 dz + 2e^{2t} \int q_t(z) s_r(t, z)^\top (\Delta s_r(t, z)) dz \\ 991 \quad &= e^{2t} \int \nabla q_t(z) \cdot \nabla \|s_r(t, z)\|^2 dz + 2e^{2t} \int \underbrace{q_t(z) \Delta s_r(t, z)^\top}_{\text{jointly for IBP}} s_r(t, z) dz \\ 992 \quad &\stackrel{(d)}{=} e^{2t} \int \nabla q_t(z) \cdot \nabla \|s_r(t, z)\|^2 dz - 2e^{2t} \int \nabla q_t(z) \cdot \nabla s_r(t, z)^\top s_r(t, z) dz \\ 993 \quad &\quad - 2e^{2t} \int q_t(z) \|\nabla s_r(t, z)\|_F^2 dz \\ 994 \quad &\stackrel{(e)}{=} -2e^{2t} \int q_t(z) \|\nabla s_r(t, z)\|_F^2 dz \end{aligned}$$

1009 where in (a) we have used FPE Eq. 17, 18, in (b) we just use IBP, in (c) we use $q_t(z) s_r(t, z) =$
 1010 $\nabla q_t(z)$, in (d) we again use IBP and in (e) we use $\nabla \|s_r(t, z)\|^2 = 2(\nabla s_r(t, z))^\top s_r(t, z)$ so the
 1011 first and second terms cancel out. \square

1012 We now generalize this lemma by establishing relation between $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^m]$ for a general $m \geq 2$ and $\mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$. For $m > 2$, the RHS should have terms comprising both $\nabla s_r(t, z), s_r(t, z)$ and thus the result can be used to bound the second part of the RHS in Eq. 19.

1017 **Lemma A.12.** *We have the following general result for the score function $s_r(t, z_t)$ of the rescaled
 1018 process z_t defined in Eq. 13, holding for any $m > 2$:*

$$\begin{aligned} 1020 \quad & e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^m] = -m \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^{m-2} \|\nabla s_r(t, z)\|_F^2] \\ 1021 \quad & \quad - \frac{m(m-2)}{4} \mathbb{E}_{q_t} \left[\|s_r(t, z)\|_2^{m-4} \|(\nabla \|s_r(t, z)\|_2^2)\|_2^2 \right] \end{aligned}$$

1024 *Proof.* Here also, we start with analyzing the LHS similar to previous lemma (as discussed in Section 2.1, ∂_i corresponds to partial derivative w.r.t. i^{th} coordinate of z , $\Delta = \sum_i \partial_i \partial_i$ is the Laplacian,

1026 $s_r(\cdot)_i$ corresponds to i^{th} element of s_r which implies $\|s_r(t, z)\|^2 = \sum_{i=1}^d s_r^2(t, z)_i$ (all the vari-
 1027 ables under \sum range from 1 to d if not mentioned):
 1028

$$\begin{aligned}
 1029 & e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^m] \\
 1030 & \stackrel{(a)}{=} \int e^{-2t} \partial_t q_t(z) \|s_r(t, z)\|_2^m dz + m \int e^{-2t} q_t(z) \|s_r(t, z)\|_2^{m-2} s_r(t, z)^\top \partial_t s_r(t, z) dz \\
 1031 & \stackrel{(b)}{=} \sum_{i=1}^d \int \partial_i \partial_i q_t(z) \|s_r(t, z)\|_2^m dz \\
 1032 & \quad + m \int q_t(z) \|s_r(t, z)\|_2^{m-2} \left(\sum_{i,j=1}^d s_r(t, z)_j (\partial_i \partial_i s_r(t, z)_j + \partial_i s_r^2(t, z)_j) \right) dz \\
 1033 & \stackrel{(c)}{=} -\frac{m}{2} \sum_{i,j=1}^d \int \partial_i q_t(z) \|s_r(t, z)\|_2^{m-2} \partial_i s_r^2(t, z)_j dz \\
 1034 & \quad + m \sum_{i,j=1}^d \int q_t(z) \|s_r(t, z)\|_2^{m-2} s_r(t, z)_j (\partial_i \partial_i s_r(t, z)_j + \partial_i s_r^2(t, z)_j) dz \\
 1035 & \stackrel{(d)}{=} m \sum_{i,j} \int q_t(z) \|s_r(t, z)\|_2^{m-2} s_r(t, z)_i s_r(t, z)_i \partial_i s_r(t, z)_j dz \\
 1036 & \quad + m \sum_{i,j} \int \underbrace{q_t(z) \|s_r(t, z)\|_2^{m-2} s_r(t, z)_j}_{I_1} \partial_i \partial_i s_r(t, z)_j dz \\
 1037 & \stackrel{(e)}{=} m \sum_{i,j} \int q_t(z) \|s_r(t, z)\|_2^{m-2} s_r(t, z)_i s_r(t, z)_i \partial_i s_r(t, z)_j dz \\
 1038 & \quad - m \sum_{i,j} \int \partial_i q_t(z) \cdot \|s_r(t, z)\|_2^{m-2} s_r(t, z)_j \partial_i s_r(t, z)_j dz \\
 1039 & \quad - m \sum_{i,j} \int q_t(z) \cdot \partial_i \|s_r(t, z)\|_2^{m-2} \cdot s_r(t, z)_j \partial_i s_r(t, z)_j dz \\
 1040 & \quad - m \sum_{i,j} \int p_t(z) \cdot \|s_r(t, z)\|_2^{m-2} \cdot \partial_i s_r(t, z)_j \partial_i s_r(t, z)_j dz \\
 1041 & \stackrel{(f)}{=} -m(m-2) \sum_{i,j,k} \int p_t(z) \cdot \|s_r(t, z)\|_2^{m-4} \cdot s_r(t, z)_k \partial_i s_r(t, z)_k s_r(t, z)_j \partial_i s_r(t, z)_j dz \\
 1042 & \quad - m \sum_{i,j} \int q_t(z) \cdot \|s_r(t, z)\|_2^{m-2} \cdot (\partial_i s_r(t, z)_j)^2 dz \\
 1043 & = -\frac{m(m-2)}{4} \mathbb{E}_{q_t} \left[\|s_r(t, z)\|_2^{m-4} \|(\nabla \|s_r(t, z)\|_2^2)\|_2^2 \right] - m \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^{m-2} \|\nabla s_r(t, z)\|_F^2]
 \end{aligned}$$

1044 where in (a) we have used $\partial_t \|s_r(t, z)\|_2^m = m \|s_r(t, z)\|_2^{m-2} s_r(t, z)^\top \partial_t s_r(t, z)$, (b) implies the
 1045 use of FPEs Eq. 17, Lemma A.9, (c) is the application of Integration By Parts on the first term,
 1046 (d) uses $\partial_i q_t(z) = q_t(z) s_r(t, z)_i$ then subtract it from the second part of the second term and
 1047 use $\partial_i s_r^2(t, z)_j = 2s_r(t, z)_j \partial_i s_r(t, z)_j$, (e) implies again using Integration By Parts on the second
 1048 term where one term is jointly considered as I_1 and the other remaining. (f) is derived using
 1049 $\partial_t q = q_t(z) s_r(t, z)$ on second term, cancelling the first two terms and writing $\partial_i \|s_r(t, z)\|_2^{m-2} =$
 1050 $(m-2) \|s_r(t, z)\|_2^{m-4} \sum_{k=1}^d s_r(t, z)_k \partial_i s_r(t, z)_k$. \square

1051 Now, as discussed before, a consequence lemma of this lemma is that we can bound the second term
 1052 comprising both s_r and ∇s_r in our main Eq. 19 (since the RHS contains these terms for a general
 1053 m). This is stated as a lemma below.

1080 **Lemma A.13.** Defining $X_m = \int q_t(z) \|s_r(t, z)\|^{m-2} \|\nabla s_r(t, z)\|_F^2 dz$, $X'_m = \int q_t(z) \|s_r(t, z)\|^{m-4} \|\nabla\|s_r(t, z)\|_2^2\|_2^2 dz$ we can bound it as follows for any $m > 2$:

1083
$$X_m \leq -\frac{1}{m} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^m], \quad X'_m \leq -\frac{4}{m(m-2)} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^m]$$

1085

1086 *Proof.* For this, considering the Lemma A.12, we have:

1087
$$\begin{aligned} \frac{-1}{m} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^m] &= \underbrace{\mathbb{E}_{q_t} [\|s_r(t, z)\|_2^{m-2} \|\nabla s_r(t, z)\|_F^2]}_{X_m} \\ &\quad + \underbrace{\frac{(m-2)}{4} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^{m-4} \|\nabla\|s_r(t, z)\|_2^2\|_2^2]}_{X'_m} \end{aligned}$$

1094 When $m > 2$, we will have $X_m, X'_m \geq 0$, thus, $X_m \leq -\frac{1}{m} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^m]$ and
1095 $X'_m \leq -\frac{4}{m(m-2)} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^m]$. □

1097

1098

1099 A.4.2 BOUNDING THE SECOND ORDER SPATIAL GRADIENT OF SCORE TERM

1100 For this, we first provide two lemmas to bound terms comprising second order spatial derivative of
1101 the law q_t and first order spatial derivative of the score s_r .

1103 **Lemma A.14.** For the rescaled process $z(t)$ in Eq. 13, we have:

1104
$$\frac{\Delta q_t(z)}{q_t(z)} = \frac{-d}{(e^{2t} - 1)} + \mathbb{E}_{y|z} \left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right]$$

1107

1108 *Proof.* Here also similar to the score function calculation in Lemma A.5, we have:

1109
$$\begin{aligned} \frac{\Delta q_t(z)}{q_t(z)} &= \frac{\nabla \cdot \nabla q_t(z)}{q_t(z)} \stackrel{(a)}{=} \frac{\nabla \cdot \int \frac{y-z}{(e^{2t}-1)} e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy}{\int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy} \\ &= \frac{\int \left(\nabla \cdot \frac{y-z}{(e^{2t}-1)} \right) e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy + \int \left(\nabla e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) \right) \frac{y-z}{(e^{2t}-1)} dy}{\int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy} \\ &= \frac{\int \frac{-d}{(e^{2t}-1)} e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy + \int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) \left(\frac{y-z}{(e^{2t}-1)} \right)^\top \frac{y-z}{(e^{2t}-1)} dy}{\int e^{-\frac{\|z-y\|^2}{2(e^{2t}-1)}} p_{data}(y) dy} \\ &= \frac{-d}{(e^{2t}-1)} + \int P(y|z) \left(\frac{y-z}{(e^{2t}-1)} \right)^\top \frac{y-z}{(e^{2t}-1)} dy \\ &= \frac{-d}{(e^{2t}-1)} + \mathbb{E}_{y|z} \left[\frac{\|y-z\|_2^2}{(e^{2t}-1)^2} \right] \end{aligned}$$

1126

1127 where in (a) we have taken the expression also used in Lemma A.5 and as discussed before $y \sim$
1128 p_{data} . □

1129

1130

1131

1132

1133

1134 **Lemma A.15.** For the rescaled process $z(t)$, defined in Eq. 13, we have the following bound for the
 1135 term involving the Laplacian of margin and Jacobian of score:

1136

$$1137 \int \Delta q_t(z) \|\nabla s_r(t, z)\|_F^2 dz \leq \frac{C_d d^2}{(e^{2t} - 1)^3} - \frac{e^{-2t} de}{2(1 + \frac{1}{\log d})(e^{2t} - 1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$$

1138

1139

$$1140 \text{where } C_d = \frac{(1+2\frac{\log d}{d} + \frac{6}{d})\log d + 3}{(1+\log d)}.$$

1141

1142

1143

1144

1145 *Proof.* We start by writing Laplacian as $\sum_i \partial_i \partial_i$ and decomposing the term as follows:

1146

$$1147 \int \Delta q_t(z) \|\nabla s_r(t, z)\|_F^2 dz = \int \sum_i \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz$$

1148

$$1149 = \int \sum_i \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz$$

1150

$$1151 = \int q_t(z) J_t(z) \|\nabla s_r(t, z)\|_F^2 dz - \frac{d}{e^{2t} - 1} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$$

1152

$$1153 = \int q_t(z) J_t(z) c_m^{-1} \|\nabla s_r(t, z)\|_F^{2/l} \cdot c_m \|\nabla s_r(t, z)\|_F^{2/m} dz$$

1154

$$1155 - \frac{d}{e^{2t} - 1} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$$

1156

$$1157 \stackrel{(b)}{\leq} \frac{c_m^{-l}}{l} \int q_t(z) J_t^l(z) \|\nabla s_r(t, z)\|_F^2 dz + \frac{c_m^m}{m} \int q_t(z) \|\nabla s_r(t, z)\|_F^2 dz$$

1158

$$1159 - \frac{d}{e^{2t} - 1} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$$

1160

1161

1162

1163 where $J_t(z) = \frac{\sum_i \partial_i \partial_i q_t(z)}{q_t(z)} + \frac{d}{e^{2t} - 1}$, l and m are constants where $l > 1$, $1/l + 1/m = 1$ and in (b),
 1164 we have just used $ab \leq \frac{1}{l}a^l + \frac{1}{m}b^m$ with $a = J_t(z)c_m^{-1}$, $b = c_m$. Now, we utilise Lemma A.6 for
 1165 the spatial gradient of score, Lemma A.14 to write $J_t(z) = -\frac{d}{e^{2t} - 1} + \mathbb{E}_{y|z} \left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right]$. Also, for the
 1166 second term, we can just use Lemma A.11, leading to :

1167

$$1168 \begin{aligned} &= \frac{c_m^{-l}}{l} \int q_t(z) \left(\mathbb{E}_{y|z} \left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right] \right)^l \left\| \text{Var}_{y|z} \left[\frac{y - z}{e^{2t} - 1} \right] - \frac{I_d}{e^{2t} - 1} \right\|_F^2 dz \\ &\quad - \frac{e^{-2t}}{2} \left(\frac{c_m^m}{m} - \frac{d}{e^{2t} - 1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\ &\leq \frac{c_m^{-l}}{l} \mathbb{E}_{q_t} \left[\left(\mathbb{E}_{y|z} \left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right] \right)^l \left(\left(\mathbb{E}_{y|z} \left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right] \right)^2 + \frac{d}{(e^{2t} - 1)^2} \right) \right] \\ &\quad - \frac{e^{-2t}}{2} \left(\frac{c_m^m}{m} - \frac{d}{e^{2t} - 1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\ &\leq \frac{c_m^{-l}}{l} \mathbb{E}_{q_t} \mathbb{E}_{y|z} \left[\left(\left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right] \right)^{l+2} \right] + \frac{d}{(e^{2t} - 1)^2} \frac{c_m^{-l}}{l} \mathbb{E}_{q_t} \mathbb{E}_{y|z} \left[\left(\left[\frac{\|y - z\|_2^2}{(e^{2t} - 1)^2} \right] \right)^l \right] \\ &\quad - \frac{e^{-2t}}{2} \left(\frac{c_m^m}{m} - \frac{d}{e^{2t} - 1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \end{aligned}$$

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

<p

1188 from Lemma A.7, the last term can be further rewritten and bounded as:
1189

$$\begin{aligned}
1190 &= \frac{c_m^{-l}}{l(e^{2t}-1)^{l+2}} \mathbb{E}_{\eta \sim \mathcal{N}(0, I_d)} [\|\eta\|_2^{2l+4} + d\|\eta\|_2^{2l}] - \frac{e^{-2t}}{2} \left(\frac{c_m^m}{m} - \frac{d}{e^{2t}-1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
1191 &\leq \frac{c_m^{-l}}{l(e^{2t}-1)^{l+2}} \cdot (d+2l+4)^{l+2} - \frac{e^{-2t}}{2} \left(\frac{c_m^m}{m} - \frac{d}{e^{2t}-1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
1192 &= \frac{\left(\frac{d}{(e^{2t}-1)^{1/m}} \right)^{-l}}{l(e^{2t}-1)^{l+2}} \cdot (d+2l+4)^{l+2} - \frac{e^{-2t}}{2} \left(\frac{\left(\frac{d}{(e^{2t}-1)^{1/m}} \right)^m}{m} - \frac{d}{e^{2t}-1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
1193 &\quad (c_m = \frac{d}{(e^{2t}-1)^{1/m}}) \\
1194 &= \frac{d^2 \cdot (1+2l/d+4/d)^{l+2}}{l(e^{2t}-1)^{l+2-l/m}} - \frac{e^{-2t}}{2} \left(\frac{d^m}{m(e^{2t}-1)} - \frac{d}{e^{2t}-1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
1195 &= \frac{d^2}{(e^{2t}-1)^3} \cdot \underbrace{\frac{(1+2\frac{\log d}{d} + \frac{6}{d})\log d + 3}{(1+\log d)}}_{C_d} - \frac{e^{-2t}}{2} \left(\frac{d^{1+\frac{1}{\log d}}}{(1+\frac{1}{\log d})(e^{2t}-1)} - \frac{d}{e^{2t}-1} \right) \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
1196 &\quad (l = 1 + \log d, m = 1 + \frac{1}{\log d}) \\
1197 &\leq \frac{C_d d^2}{(e^{2t}-1)^3} - \frac{e^{-2t} d e}{2(1+\frac{1}{\log d})(e^{2t}-1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
1198 &\quad (d^{\frac{1}{\log d}} = e) \\
1199 &\quad \square
\end{aligned}$$

1210
1211
1212
1213 where we have used $c_m = \frac{d}{(e^{2t}-1)^{1/m}}$, $l = 1 + \log d$, $m = 1 + \frac{1}{\log d}$ which results in $C_d =$
1214 $\frac{(1+2\frac{\log d}{d} + \frac{6}{d})\log d + 3}{(1+\log d)}$. \square
1215

A.4.3 BOUND THE LAPLACIAN OF THE SCORE

1216 Now, using the previous two lemmas and the Lemma A.13, we bound the second order spatial
1217 derivative term of the score function in the following lemma.
1218

1219 **Lemma A.16.** *We have the following bound for the second order score derivative term in Eq. 19:*
1220

$$\begin{aligned}
1221 \mathbb{E}_{q_t} [\|\Delta s_r(t, z)\|_2^2] &\leq \frac{32C_d d^2}{13(e^{2t}-1)^3} - \frac{d e^{-2t}}{(e^{2t}-1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] - \frac{8}{13} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \\
1222 &\quad - \frac{20e^{-2t}}{13} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^4]
\end{aligned}$$

1223 where C_d is defined in Lemma A.15.
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238 *Proof.* The proof is just a careful utilization of the integration by parts, Fokker-Planck equa-
1239 tion (FPE) and the reverse ODE Eq. 14. The proof starts with manipulating the term:
1240 $\frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2]$ to break it down in the target term and remaining terms from the previous
1241 two lemmas and Lemma A.13. Then the target term term is expressed via this term and the remain-
ing terms where we replace the bounds for the remaining terms from the mentioned lemmas. It is

as follows (again we use ∂_i for the derivative w.r.t. i^{th} coordinate and the Laplacian by $\sum_i \partial_i \partial_i$):

$$\begin{aligned}
& \frac{d}{dt} \int q_t(z) \|\nabla s_r(t, z)\|_F^2 dz \\
&= \int \partial_t q_t(z) \|\nabla s_r(t, z)\|_F^2 dz + \int q_t(z) \partial_t \sum_{i,j} \partial_j s_r^2(t, z)_i dz \\
&= \int e^{2t} \sum_{i=1}^d \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz + \int q_t(z) \left(2 \sum_{i,j=1}^d \partial_j s_r(t, z)_i \partial_j \partial_t s_r(t, z)_i \right) dz \\
&\quad \text{(Eq. 17 for first term)} \\
&\stackrel{(a)}{=} \int e^{2t} \sum_i \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz \\
&\quad + 2e^{2t} \underbrace{\int q_t(z) \sum_{i,j} \partial_j s_r(t, z)_i \partial_j \left(\sum_k \partial_k \partial_k s_r(t, z)_i + \sum_k \partial_i s_r^2(t, z)_k \right) dz}_{I_1} \\
&\stackrel{(b)}{=} \int e^{2t} \sum_i \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz - 2e^{2t} \sum_{i,j,k} \int \partial_j q_t(z) \partial_j s_r(t, z)_i (\partial_k \partial_k s_r(t, z)_i + \partial_i s_r^2(t, z)_k) dz \\
&\quad - 2e^{2t} \sum_{i,j,k} \int q_t(z) \partial_j \partial_j s_r(t, z)_i (\partial_k \partial_k s_r(t, z)_i + \partial_i s_r^2(t, z)_k) dz \\
&\stackrel{(c)}{=} e^{2t} \left(\int \sum_i \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz \right. \\
&\quad \left. - 2 \sum_i \int q_t(z) \sum_j s_r(t, z)_j \partial_i s_r(t, z)_j \sum_k (\partial_k \partial_k s_r(t, z)_i + \partial_i s_r^2(t, z)_k) dz \right. \\
&\quad \left. - 2 \sum_i \int q_t(z) \sum_j \partial_j \partial_j s_r(t, z)_i \sum_k (\partial_k \partial_k s_r(t, z)_i + \partial_i s_r^2(t, z)_k) dz \right)
\end{aligned}$$

where (a) implies use of Lemma A.9 for the second term, (b) implies using Integration By Parts for the second term where we consider the term I_1 as one part and the remaining as other, (c) implies using $\partial_j q_t(z) = q_t(z) s_r(t, z)_j$ and then $\partial_j s_r(t, z)_i = \partial_i s_r(t, z)_j$ in the second term. Now, we consider the terms except first, treating $\sum_j \partial_i s_r^2(t, z)_j = 2 \sum_j s_r(t, z)_j \partial_i s_r(t, z)_j = b_i$ and $\sum_j \partial_j \partial_j s_r(t, z)_i = a_i$ these terms can be written as:

$$= \sum_i -b_i \cdot (a_i + b_i) - 2a_i(a_i + b_i) = \sum_i -2a_i^2 - b_i^2 - 3a_i b_i \leq \sum_i -2a_i^2 - b_i^2 + \frac{3}{8} a_i^2 + 6b_i^2$$

which leads us to:

$$\begin{aligned}
e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] &\leq \underbrace{\int \sum_i \partial_i \partial_i q_t(z) \|\nabla s_r(t, z)\|_F^2 dz}_{T_0} - \frac{13}{8} \underbrace{\sum_i \int q_t(z) \left(\sum_j \partial_j \partial_j s_r(t, z)_i \right)^2 dz}_{T_1 \text{(target term)}} \\
&\quad + 20 \underbrace{\sum_i \int q_t(z) \left(\sum_j s_r(t, z)_j \partial_j s_r(t, z)_i \right)^2 dz}_{T_2}
\end{aligned}$$

1296 Denoting the first term in the RHS as T_0 , second or the target term as T_1 and third term as T_2 , we
 1297 have the following expression for our target term T_1 (rewriting $\sum_i \partial_i \partial_i$ as Laplacian operator):
 1298

$$\begin{aligned}
 1299 \quad & \frac{13}{8} \mathbb{E}_{q_t} [\|\Delta s_r(t, z)\|_2^2] \\
 1300 \quad & \leq T_0 + 20T_2 - e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \\
 1301 \quad & = T_0 + 5 \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_2^2] - e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \quad (\text{rewriting } T_2) \\
 1302 \quad & \stackrel{(a)}{\leq} \frac{4d^2}{(e^{2t} - 1)^3} - \frac{e^{-2t} de}{2(1 + \frac{1}{\log d})(e^{2t} - 1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] - \frac{5}{2} e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|_2^4] \\
 1303 \quad & \quad - e^{-2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \\
 1304 \quad & \quad \\
 1305 \quad & \quad \\
 1306 \quad & \quad \\
 1307 \quad & \quad \\
 1308 \quad & \quad \\
 1309 \quad & \quad \\
 1310 \quad & \quad \\
 1311 \quad & \text{where in step (a) we have just used Lemma A.15 for } T_0 \text{ term and the observation that the third term} \\
 1312 \quad & \text{(obtained by rewriting } T_2\text{) is just the } X'_q \text{ in Lemma A.13 for } q = 4 \text{ which we bound using the Lemma} \\
 1313 \quad & \text{A.13. Now since } d > 1, \text{ we have approximated the value } \frac{4e}{13(1 + \frac{1}{\log d})} < 1 \text{ (since } \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \\
 1314 \quad & \text{is negative, can be seen from Lemma A.13) leading to the final bound. } \square \\
 1315 \quad & \quad \\
 1316 \quad & \quad \\
 1317 \quad & \quad \\
 1318 \quad & \quad \\
 1319 \quad & \quad \\
 1320 \quad & \quad \\
 1321 \quad & \quad \\
 1322 \quad & \quad \\
 1323 \quad & \quad \\
 1324 \quad & \quad \\
 1325 \quad & \quad \\
 1326 \quad & \quad \\
 1327 \quad & \quad \\
 1328 \quad & \quad \\
 1329 \quad & \quad \\
 1330 \quad & \quad \\
 1331 \quad & \quad \\
 1332 \quad & \quad \\
 1333 \quad & \quad \\
 1334 \quad & \quad \\
 1335 \quad & \quad \\
 1336 \quad & \quad \\
 1337 \quad & \quad \\
 1338 \quad & \quad \\
 1339 \quad & \quad \\
 1340 \quad & \quad \\
 1341 \quad & \quad \\
 1342 \quad & \quad \\
 1343 \quad & \quad
 \end{aligned}$$

1311 where in step (a) we have just used Lemma A.15 for T_0 term and the observation that the third term
 1312 (obtained by rewriting T_2) is just the X'_q in Lemma A.13 for $q = 4$ which we bound using the Lemma
 1313 A.13. Now since $d > 1$, we have approximated the value $\frac{4e}{13(1 + \frac{1}{\log d})} < 1$ (since $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$
 1314 is negative, can be seen from Lemma A.13) leading to the final bound. \square
 1315

1316 A.4.4 BOUNDING THE DISCRETIZATION ERROR FOR EACH INTERVAL

1317 Utilising the lemmas discussed above for bounding the spatial derivaitve terms in Eq. 19, we now
 1318 provide a lemma which using these bounds provides a final aggregated bound for $\mathbb{E}_{q_t} [\|s'_r(t, z)\|_2^2]$.

1319 **Lemma A.17.** *For the rescaled function, we have the following bound for $\mathbb{E}_{q_t} [\|s'_r(t, z)\|_2^2]$:*

$$\begin{aligned}
 1322 \quad \mathbb{E}_{q_t} [\|s'_r(t, z)\|_2^2] & \leq \frac{40C_d d^2 e^{4t}}{13(e^{2t} - 1)^3} - \frac{5e^{2t} de}{4(e^{2t} - 1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] - \frac{10}{13} e^{2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \\
 1323 \quad & \quad \\
 1324 \quad & \quad \\
 1325 \quad & \quad
 \end{aligned}$$

1326 where C_d is taken from Lemma A.15.

1327 *Proof.*

$$\begin{aligned}
 1328 \quad & \mathbb{E}_{q_t} [\|s'_r(t, z)\|^2] \\
 1329 \quad & = \mathbb{E}_{q_t} \left[e^{4t} \|\Delta s_r(t, z)\|_2^2 + e^{4t} \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 + 2e^{4t} (\Delta s_r(t, z))^\top (\nabla s_r(t, z)^\top s_r(t, z)) \right] \\
 1330 \quad & \leq \mathbb{E}_{q_t} \left[\frac{5}{4} e^{4t} \|\Delta s_r(t, z)\|_2^2 + 5e^{4t} \|\nabla s_r(t, z)^\top s_r(t, z)\|_2^2 \right] \quad (2a \cdot b \leq \frac{\|a\|^2}{4} + 4\|b\|^2 \text{ for } a, b \in \mathbb{R}^d) \\
 1331 \quad & = \frac{5}{4} e^{4t} \mathbb{E}_{q_t} [\|\Delta s_r(t, z)\|_2^2] + \frac{5}{4} e^{4t} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_2^2] \\
 1332 \quad & \leq \frac{5}{4} e^{4t} \mathbb{E}_{q_t} [\|\Delta s_r(t, z)\|_2^2] - \frac{5}{8} e^{2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \\
 1333 \quad & \leq \frac{40C_d d^2 e^{4t}}{13(e^{2t} - 1)^3} - \frac{5e^{2t} d}{4(e^{2t} - 1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] - \frac{10}{13} e^{2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] \\
 1334 \quad & \quad \\
 1335 \quad & \quad \\
 1336 \quad & \quad \\
 1337 \quad & \quad \\
 1338 \quad & \quad \\
 1339 \quad & \quad \\
 1340 \quad & \quad \\
 1341 \quad & \quad \\
 1342 \quad & \quad \\
 1343 \quad & \quad
 \end{aligned}$$

1344 where the first equality uses Lemma A.10, the second last inequality uses X'_m ($m = 4$) bound
 1345 from Lemma A.13 and the last inequality uses Lemma A.16 for the first term. Now since
 1346 $\frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^4]$ will be negative from Lemma A.13, then here we can use $\frac{265}{104} < 3$ leading to
 1347 the final bound. \square

1348 Now, we have the following Lemma for bounding the discretization error $z(t)$:
 1349 $\mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2]$.

1350 **Lemma A.18.** *The discretization error for each interval $\mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2]$ discussed Lemma
 1351 **A.3** can be bounded as (where $h'_k = h_k + h_{k-1}$ and recall $t_{k-2} = t_k - h_k - h_{k-1}$):*

$$\begin{aligned}
 1353 \quad e^{-2t_{k-2}} \mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2] &\leq \frac{((2C_d + 10)d^2 + 24d)(h'_k)^3 e^{h'_k}(e^{h'_k} - 1)}{(1 - e^{-2t_{k-2}})^3} \\
 1354 \quad &\quad - \frac{(h'_k)^3}{2} e^{h'_k} \left[e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3 \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \right]_{t_{k-2}}^{t_k} \\
 1355 \quad &\quad - \frac{5(h'_k)^3 e^{h'_k} d}{8(1 - e^{-2t_{k-2}})} [e^{2t} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]]_{t_{k-2}}^{t_k}
 \end{aligned}$$

1361 *Proof.* Using Lemma A.4 and Lemma A.17, it can be bounded as

$$\begin{aligned}
 1362 \quad &e^{-2t_{k-2}} \mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2] \\
 1363 \quad &\leq e^{-2t_{k-2}} \frac{1}{2} (h_k + h_{k-1})^3 \int_{t_{k-2}}^{t_k} e^{4t} \mathbb{E} [\|s'_r(t, z(t))\|_2^2] dt \\
 1364 \quad &\leq \frac{(h_k + h_{k-1})^3}{2} e^{h_k + h_{k-1}} \int_{t_{k-2}}^{t_k} e^{2t} \mathbb{E}_{q_t} [\|s_r(t, z(t))\|_2^2] dt \\
 1365 \quad &\leq \frac{(h_k + h_{k-1})^3}{2} e^{h_k + h_{k-1}} \int_{t_{k-2}}^{t_k} \left(\frac{40C_d d^2 e^{6t}}{13(e^{2t} - 1)^3} - \frac{5e^{4t} d}{4(e^{2t} - 1)} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \right) dt \\
 1366 \quad &\quad - \frac{(h_k + h_{k-1})^3}{2} e^{h_k + h_{k-1}} \int_{t_{k-2}}^{t_k} \left(e^{4t} \left(\frac{10}{13} \frac{d}{dt} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \right) dt \\
 1367 \quad &\stackrel{(c)}{\leq} \frac{20C_d d^2 (h_k + h_{k-1})^3 e^{h_k + h_{k-1}} (e^{h_k + h_{k-1}} - 1)}{13(1 - e^{-2t_{k-2}})^3} \\
 1368 \quad &\quad - \frac{5(h_k + h_{k-1})^3 e^{h_k + h_{k-1}} d}{8(1 - e^{-2t_{k-2}})} \left([e^{2t} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]]_{t_{k-2}}^{t_k} - \int_{t_{k-2}}^{t_k} 2e^{2t} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] dt \right) \\
 1369 \quad &\quad - \frac{(h_k + h_{k-1})^3}{2} e^{h_k + h_{k-1}} \left[e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3 \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \right]_{t_{k-2}}^{t_k} \\
 1370 \quad &\quad + (h_k + h_{k-1})^3 e^{h_k + h_{k-1}} \int_{t_{k-2}}^{t_k} 2e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3 \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) dt \\
 1371 \quad &\stackrel{(d)}{\leq} \frac{20C_d d^2 (h_k + h_{k-1})^3 (e^{h_k + h_{k-1}} - 1)}{13(1 - e^{-2t_{k-2}})^3} + \frac{10(h_k + h_{k-1})^3 e^{h_k + h_{k-1}} d}{8(1 - e^{-2t_{k-2}})} \int_{t_{k-2}}^{t_k} e^{2t} \frac{d}{e^{2t} - 1} dt \\
 1372 \quad &\quad + (h_k + h_{k-1})^3 e^{h_k + h_{k-1}} \int_{t_{k-2}}^{t_k} e^{4t} \left(\frac{20(2d^2 + 6d)}{13(e^{2t} - 1)^2} + \frac{6d^2 + 12d}{(e^{2t} - 1)^2} \right) dt \\
 1373 \quad &\quad - \frac{(h_k + h_{k-1})^3}{2} e^{h_k + h_{k-1}} \left(\left[e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3 \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \right]_{t_{k-2}}^{t_k} \right) \\
 1374 \quad &\quad - \frac{5(h_k + h_{k-1})^3 e^{h_k + h_{k-1}} d}{8(1 - e^{-2t_{k-2}})} [e^{2t} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]]_{t_{k-2}}^{t_k} \\
 1375 \quad &\leq \frac{((2C_d + 10)d^2 + 24d)(h_k + h_{k-1})^3 e^{h_k + h_{k-1}} (e^{h_k + h_{k-1}} - 1)}{(1 - e^{-2t_{k-2}})^3} \\
 1376 \quad &\quad - \frac{(h_k + h_{k-1})^3}{2} e^{h_k + h_{k-1}} \left[e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3 \mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \right]_{t_{k-2}}^{t_k} \\
 1377 \quad &\quad - \frac{5(h_k + h_{k-1})^3 e^{h_k + h_{k-1}} d}{8(1 - e^{-2t_{k-2}})} [e^{2t} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]]_{t_{k-2}}^{t_k}
 \end{aligned}$$

1402 where (c) uses $\int \frac{e^{6t}}{(e^{2t} - 1)^3} dt \leq \frac{e^{4t_{k-2}}}{e^{4t_{k-2}} - 1} \int_{t_{k-2}}^{t_k} \frac{e^{2t}}{e^{2t} - 1} dt$, $\int_{t_{k-2}}^{t_k} \frac{e^{2t}}{e^{2t} - 1} dt = \frac{1}{2} \log \left(\frac{e^{2t_k} - 1}{e^{2t_{k-2}} - 1} \right)$, $\log(1 + x) \leq x$ for the first term and implies applying the Integration By Parts to the second and third terms,

1404 where in the second term, we have considered $e^{2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2]$ as one term and use the max
 1405 value of the remaining term since we know from Lemma A.11 that $e^{2t} \frac{d}{dt} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \leq 0$, in
 1406 step (d) we recollect the integral terms and since they have a positive contribution, just replace the
 1407 term inside the integral with the upper bound from Lemma A.8. In the last step, similar to step (c),
 1408 we have used $\int_{t_{k-2}}^{t_k} \frac{e^{2t}}{e^{2t}-1} dt = \frac{1}{2} \log \left(\frac{e^{2t_k}-1}{e^{2t_{k-2}}-1} \right)$, for $\int_{t_{k-2}}^{t_k} \frac{e^{4t}}{(e^{2t}-1)^2} dt \leq \frac{e^{2t_k}-1}{e^{2t_{k-2}}-1} \int_{t_{k-2}}^{t_k} \frac{e^{2t}}{e^{2t}-1} dt$
 1409 and finally $\log(1+x) \leq x$.
 1410

□

A.5 PROVING THEOREM 3.1

1415 We first discuss a lemma based on standard calculus which would be utilized in the theorem proof.

1416 **Lemma A.19.** *For some fixed $c \in (0, \frac{1}{2})$ and denoting $a := 2(1-c)$, $b := 2-c$. For $x \in (0, 1)$
 1417 define*

$$1418 \quad f(x) := \frac{(2-c)^3 x^3 e^{bx}}{e^{ax} - 1}, \quad g(x) := \frac{(2-c)^3 x^3 e^{bx}}{(e^{ax} - 1)(1 - e^{-\frac{a^2}{2c}x})}.$$

1421 Then f and g are increasing on $(0, 1)$ and there exist absolute constants $C_f, C_g > 0$ (independent
 1422 of c and x) such that for all $x \in (0, 1)$,

$$1424 \quad 0 \leq f(x) - f((1-c)^2 x) \leq C_f c x^2, \quad 0 \leq g(x) - g((1-c)^2 x) \leq C_g \frac{c}{1 - e^{-\frac{2(1-c)^2}{c}x}} x^2.$$

1426 *Proof.* Using $\frac{d}{dx} \log(e^{\alpha x} - 1) = \frac{\alpha e^{\alpha x}}{e^{\alpha x} - 1}$,

$$1429 \quad (\log f)'(x) = \frac{3}{x} + b - \frac{ae^{ax}}{e^{ax} - 1}, \quad (\log g)'(x) = \frac{3}{x} + b - \frac{ae^{ax}}{e^{ax} - 1} - \frac{\frac{a^2}{2c}}{e^{\frac{a^2}{2c}x} - 1}.$$

1432 For $t > 0$ we have the elementary bound $\frac{1}{e^t - 1} \leq \frac{1}{t}$; hence

$$1434 \quad \frac{ae^{ax}}{e^{ax} - 1} \leq a + \frac{1}{x} \quad \frac{\frac{a^2}{2c}}{e^{\frac{a^2}{2c}x} - 1} \leq \frac{1}{x}.$$

1436 Therefore, for $x \in (0, 1)$,

$$1438 \quad (\log f)'(x) \geq \frac{3}{x} + b - \left(a + \frac{1}{x} \right) = \frac{2}{x} + c \geq \frac{2}{x} > 0,$$

1440 and

$$1442 \quad (\log g)'(x) \geq \frac{3}{x} + b - \left(a + \frac{1}{x} \right) - \frac{1}{x} = \frac{1}{x} + c \geq \frac{1}{x} > 0.$$

1443 Hence f and g are increasing on $(0, 1)$. Using $e^{ax} - 1 \geq ax$ and $(2-c)^3 \leq 8$, $b \leq 2$, we get for
 1444 $x \in (0, 1)$

$$1446 \quad f(x) = \frac{(2-c)^3 x^3 e^{bx}}{e^{ax} - 1} \leq \frac{8 x^3 e^2}{ax} \leq 8e^2 x^2.$$

1448 Consequently,

$$1449 \quad g(x) = \frac{f(x)}{1 - e^{-\frac{a^2}{2c}x}} \leq \frac{8e^2 x^2}{1 - e^{-\frac{a^2}{2c}x}}$$

1451 From above, we have:

$$1453 \quad f'(x) = f(x) (\log f)'(x) \leq f(x) \left(\frac{3}{x} + b \right) \leq 8e^2 x^2 \left(\frac{3}{x} + 2 \right) \leq 40e^2 x.$$

1455 Similarly,

$$1457 \quad g'(x) = g(x) (\log g)'(x) \leq g(x) \left(\frac{3}{x} + b \right) \leq 8e^2 \frac{x^2}{1 - e^{-\frac{a^2}{2c}x}} \left(\frac{3}{x} + 2 \right) \leq 40e^2 \frac{x}{1 - e^{-\frac{a^2}{2c}x}},$$

Now for $y := (1-c)^2 x \in (0, x)$, $x - y = (1 - (1-c)^2)x = (2c - c^2)x \leq 2cx$. By the mean value theorem, for some $\xi \in (y, x) \subset (0, 1)$,

$$f(x) - f(y) = f'(\xi)(x - y) \leq 40e^2 \xi (2cx) \leq 80e^2 c x^2,$$

which yields $f(x) - f((1-c)^2 x) \leq C_f c x^2$ where $C_f = 80e^2$ is an absolute constant. Likewise, for some $\eta \in (y, x)$,

$$g(x) - g(y) = g'(\eta)(x - y) \leq 40e^2 \frac{\eta}{1 - e^{-\frac{a^2}{2c}\eta}} (2cx) \leq 80e^2 \frac{c}{1 - e^{-\frac{a^2}{2c}x}} x^2,$$

since $t \mapsto 1 - e^{-t}$ is increasing and $\eta \leq x$. This gives

$$g(x) - g((1-c)^2 x) \leq C_g \frac{c}{1 - e^{-\frac{2(1-c)^2}{c}x}} x^2$$

where $C_g = 80e^2$ is an absolute constant. \square

Proof of Theorem 3.1. Now, using the Lemmas discussed above, we provide the proof for Theorem 3.1.

Proof. We first bound the discretization error term for the rescaled process in Lemma A.18 aggregated across all the intervals. For this, using $h'_k = h_k + h_{k-1}$, we bound it as following:

$$\begin{aligned} & \sum_{k=2}^{K+1} \frac{e^{-2t_{k-2}}}{e^{2h_{k-1}} - 1} \mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2] \\ & \leq \sum_{k=2}^{K+1} \frac{((2C_d + 10)d^2 + 24d)(h'_k)^3 e^{h'_k} (e^{h'_k} - 1)}{(e^{2h_{k-1}} - 1)(1 - e^{-2t_{k-2}})^3} \\ & \quad + \sum_{k=2}^{K+1} \frac{(h'_k)^3 e^{h'_k}}{2(e^{2h_{k-1}} - 1)} \left[e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3\mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \right]_{t_k}^{t_{k-2}} \\ & \quad + \sum_{k=2}^{K+1} \frac{(h'_k)^3 e^{h'_k}}{2(e^{2h_{k-1}} - 1)} \left[\frac{5de^{2t}}{4(1 - e^{-2t_{k-2}})} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \right]_{t_k}^{t_{k-2}} \\ & = \sum_{k=2}^{K+1} \frac{((2C_d + 10)d^2 + 24d)(h'_k)^3 e^{h'_k} (e^{h'_k} - 1)}{(e^{2h_{k-1}} - 1)(1 - e^{-2t_{k-2}})^3} + \frac{(h'_2)^3 e^{h'_2}}{e^{2h_1} - 1} R(t_0) \\ & \quad + \frac{(h'_3)^3 e^{h'_3}}{e^{2h_2} - 1} R(t_1) + \frac{(h'_2)^3 e^{h'_2}}{(e^{2h_1} - 1)(1 - e^{-2t_0})} R_1(t_0) + \frac{(h'_3)^3 e^{h'_3}}{(e^{2h_2} - 1)(1 - e^{-2t_1})} R_1(t_1) \\ & \quad + \sum_{k=2}^{K-1} \left(\frac{(h'_{k+2})^3 e^{h'_{k+2}}}{e^{2h_{k+1}} - 1} - \frac{(h'_k)^3 e^{h'_k}}{(e^{2h_{k-1}} - 1)} \right) R(t_k) - \frac{(h'_{K+1})^3}{(e^{2h_K} - 1)} R(t_{K+1}) - \frac{(h'_K)^3}{e^{2h_{K-1}} - 1} R(t_K) \\ & \quad + \sum_{k=2}^{K-1} \left(\frac{(h'_{k+2})^3 e^{h'_{k+2}}}{(e^{2h_{k+1}} - 1)(1 - e^{-2t_k})} - \frac{(h'_k)^3 e^{h'_k}}{(e^{2h_{k-1}} - 1)(1 - e^{-2t_{k-2}})} \right) R_1(t_k) \\ & \quad - \frac{(h'_{K+1})^3 e^{h'_{K+1}}}{(e^{2h_K} - 1)(1 - e^{-2t_{K-1}})} R_1(t_{K+1}) - \frac{(h'_K)^3 e^{h'_K}}{(e^{2h_{K-1}} - 1)(1 - e^{-2t_{K-2}})} R_1(t_K) \end{aligned}$$

where $R(t) = \frac{1}{2} e^{4t} \left(\frac{10}{13} \mathbb{E}_{q_t} [\|\nabla s_r(t, z)\|_F^2] + 3\mathbb{E}_{q_t} [\|s_r(t, z)\|^4] \right) \geq 0$, $R_1(t) = \frac{5de^{2t}}{8} \mathbb{E}_{q_t} [\|s_r(t, z)\|^2] \geq 0$.

1512 **Selecting the step size.** Now for the mentioned choice of the step size $h_k = t_k - t_{k-1} =$
 1513 $c \min\{1, t_k\}$, we will have $t_{k-1} = (1 - c)t_k$, $h_{k-1} = (1 - c)h_k$ when $t_k \leq 1$ and $h_k = c$ for
 1514 remaining. Since $t_0 = \delta$, we will have:

$$1515 \quad \delta = (1 - c)^M; \quad T - 1 = c(K + 1 - M)$$

1517 for some $M \leq K + 2$ with $t_M = 1$. Thus, we will have $c \lesssim \frac{\log(\frac{1}{\delta}) + T}{K}$ and will have a very small
 1518 value for the mentioned condition $K \geq d(\frac{1}{\delta} + T)$. Also, for the coefficients of terms containing R ,
 1519 for $t_k \leq 1$ we will have $t_{k-1} = (1 - c)t_k$, $h_{k-1} = (1 - c)h_k$, $h_{k-2} = (1 - c)^2h_k$ and thus, we will
 1520 have:

$$1521 \quad \frac{(h_{k+2} + h_{k+1})^3 e^{h_{k+2} + h_{k+1}}}{e^{2h_{k+1}} - 1} - \frac{(h_k + h_{k-1})^3 e^{h_k + h_{k-1}}}{e^{2h_{k-1}} - 1} = \left(\frac{(2-c)^3 h_{k+2}^3 e^{(2-c)h_{k+2}}}{e^{2(1-c)h_{k+2}} - 1} - \frac{(2-c)^3 h_k^3 e^{(2-c)h_k}}{e^{2(1-c)h_k} - 1} \right) \text{ for}$$

1522 k when $t_{k+2} \leq 1$ and 0 for the rest. This can be written as $f(h_{k+2}) - f(h_k)$ where $f(x) =$
 1523 $\frac{(2-c)^3 x^3 e^{(2-c)x}}{e^{(1-c)x} - 1}$ would be an increasing function w.r.t. x for $x < 1$ in the small c region ($c < 0.5$).

1524 For this, we will also have $f(x) - f((1 - c)^2 x) \lesssim cx^2$ (Lemma A.19). Similarly for the R_1 , we
 1525 have to consider: $g(x) = \frac{(2-c)^3 x^3 e^{(2-c)x}}{(e^{2(1-c)x} - 1)(1 - e^{-\frac{2(1-c)^2 x}{c}})}$ and it will also be increasing on $(0, 1)$ for
 1526 small c ($c < 0.5$) and $g(x) - g((1 - c)^2 x) \lesssim \frac{c}{1 - e^{-\frac{2(1-c)^2 x}{c}}} x^2$ from Lemma A.19. Since $h_k(\cdot, 0)$ is
 1527 an increasing sequence, we can use the upper bound for $R(t)$, $R_1(t)$ using Lemma A.8 as:

$$1532 \quad R(t) \leq \frac{4d^2 + 11d}{(1 - e^{-2t})^2}; \quad R_1(t) \leq \frac{5d^2}{8(1 - e^{-2t})}$$

1533 Also, the term C_d from Lemma A.15 is $C_d = \frac{(1+2\frac{\log d}{d} + \frac{6}{d})^{\log d + 3}}{(1 + \log d)} \leq 12$ for $d \geq 10$ and
 1534 thus we will have C_d as $O(1)$. Since $R(t), R_1(t) \geq 0$, the negative terms corresponding to
 1535 $R(t_K), R(t_{K+1}), R_1(t_K), R_1(t_{K+1})$ can be dropped and we will finally have:

$$1536 \quad \sum_{k=2}^{K+1} \frac{e^{-2t_{k-2}}}{e^{2h_{k-1}} - 1} \mathbb{E} [\|z_{k-0.5} - \tilde{z}_{k-0.5}\|_2^2]$$

$$1537 \quad \leq \sum_{k=2}^{K+1} \frac{((2C_d + 10)d^2 + 24d)(h'_k)^3 e^{h'_k} (e^{h'_k} - 1)}{(e^{2h_{k-1}} - 1)(1 - e^{-2t_{k-2}})^3}$$

$$1538 \quad + \frac{(h'_2)^3 e^{h'_2}}{e^{2h_1} - 1} R(t_0) + \frac{(h'_3)^3 e^{h'_3}}{e^{2h_2} - 1} R(t_1) + \frac{(h'_2)^3 e^{h'_2}}{(e^{2h_1} - 1)(1 - e^{-2t_0})} R_1(t_0)$$

$$1539 \quad + \frac{(h'_3)^3 e^{h'_3}}{(e^{2h_2} - 1)(1 - e^{-2t_1})} R_1(t_1) + \sum_{k=2}^{K-1} \left(\frac{(h'_{k+2})^3 e^{h'_{k+2}}}{e^{2h_{k+1}} - 1} - \frac{(h'_k)^3 e^{h'_k}}{(e^{2h_{k-1}} - 1)} \right) R(t_k)$$

$$1540 \quad + \sum_{k=2}^{K-1} \left(\frac{(h'_{k+2})^3 e^{h'_{k+2}}}{(e^{2h_{k+1}} - 1)(1 - e^{-2t_k})} - \frac{(h'_k)^3 e^{h'_k}}{(e^{2h_{k-1}} - 1)(1 - e^{-2t_{k-2}})} \right) R_1(t_k)$$

$$1541 \quad \lesssim \sum_{k=2}^{K+1} \frac{d^2 h_k^3}{(1 - e^{-2t_{k-2}})^3} + h_2^2 \left(R(t_0) + \frac{R_1(t_0)}{1 - e^{-2t_0}} \right) + h_3^2 \left(R(t_1) + \frac{R_1(t_1)}{1 - e^{-2t_1}} \right)$$

$$1542 \quad + \sum_{k=2}^M c h_{k+2}^2 \left(R(t_k) + \frac{R_1(t_k)}{1 - e^{-2t_k}} \right) + \sum_{k=M+1}^{K-1} \frac{c^3 R_1(t_k)}{(1 - e^{-2t_{k-2}})^2}$$

$$1543 \quad \lesssim \sum_{k=2}^M \frac{d^2 c^3 t_k^3}{(1 - e^{-2t_{k-2}})^3} + \sum_{k=M+1}^{K+1} \frac{d^2 c^3}{(1 - e^{-2t_{k-2}})^3} + \frac{c^2 t_2^2}{(1 - e^{-2t_0})^2} + \frac{c^2 t_3^2}{(1 - e^{-2t_1})^2}$$

$$1544 \quad \lesssim \sum_{k=2}^{K+1} d^2 c^3$$

1545 where $t_k \leq 1$ for $k \leq M$. Now using Lemma A.2, Lemma A.1, Lemma A.3 and the scaling back the
 1546 above bound on the aggregated error for the rescaled process \tilde{z} , we will have (using $u < e^u - 1 < 2u$

1566 for $u \in (0, 1)$):

$$\begin{aligned}
 1568 \quad & \text{KL} (p_{t_1} \| \hat{p}_{t_1}) \\
 1569 \quad & \leq \text{KL} (p_{t_{K+1}} \| \hat{p}_{t_{K+1}}) + \mathbb{E}_{p_{t_1}, \dots, t_{K+1}} \left[\sum_{k=2}^{K+1} \text{KL} (p_{t_{k-1}|t_k} (\cdot|x_k) \| \hat{p}_{t_{k-1}|t_k} (\cdot|x_k)) \right] \\
 1570 \quad & = \text{KL} (p_{t_{K+1}} \| \hat{p}_{t_{K+1}}) + \sum_{k=2}^{K+1} \frac{e^{-2h_{k-1}}}{1 - e^{-2h_{k-1}}} \mathbb{E} \|x_{k-0.5} - \tilde{x}_{k-0.5}\|_2^2 \\
 1571 \quad & \quad + \frac{e^{-2h_{k-1}}}{1 - e^{-2h_{k-1}}} (e^{h_k + h_{k-1}} - 1)^2 \mathbb{E} [\|s(t_k, x_k) - \hat{s}(t_k, x_k)\|^2] \\
 1572 \quad & \lesssim \text{KL} (p_{t_{K+1}} \| \hat{p}_{t_{K+1}}) + \sum_{k=2}^{K+1} d^2 c^3 + \sum_{k=2}^{K+1} h_k \mathbb{E} [\|s(t_k, x_k) - \hat{s}(t_k, x_k)\|^2]
 \end{aligned}$$

1580 The last term can be just bounded using Assumption 2.1 and the first term is the initialization error
 1581 discussed below.

1583 **Initialization Error.** The term $\text{KL} (p_{t_{K+1}} \| \hat{p}_{t_{K+1}})$ is the error due to initializing the generation
 1584 using the Normal distribution and can be bounded via convergence of the forward OU process after
 1585 the total time T (Chen et al., 2023c):

$$1586 \quad \text{KL} (p_{t_{K+1}} \| \hat{p}_{t_{K+1}}) \leq (d + m_2) e^{-T}$$

1588 where $m_2 = \mathbb{E} [\|x_0\|^2]$. Thus, we have the final expression as:

$$1590 \quad \text{KL} (p_{t_1} \| \hat{p}_{t_1}) \lesssim (d + m_2) e^{-T} + d^2 c^3 K + T \varepsilon_{score}^2$$

1591 \square

1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619