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ABSTRACT

Diffusion-based generative models have emerged as highly effective methods for
synthesizing high-quality samples. Recent works have focused on analyzing the
convergence of their generation process with minimal assumptions, either through
reverse SDEs or probability flow ODEs. The best known guarantees, without any
smoothness assumptions, for the KL divergence so far achieve a linear dependence
on the data dimension d and an inverse quadratic dependence on accuracy level e.
In this work, we present a refined analysis for the standard Exponential Integrator
discretization that improves the dependence on ¢, at the same time maintaining
the linear dependence on d. Following recent works on higher order/randomized
midpoint discretizations, we model the generation process as a composition of
two steps: a reverse ODE step followed by a smaller noising step, which leads to
better dependence on step size. We then provide a novel analysis which achieves
linear dependence on d for the ODE discretization error without any smoothness
assumptions. Specifically, we introduce a general ODE-based counterpart of the
stochastic localization argument from Benton et al. (2023) and develop new proof
techniques to bound second-order spatial derivatives of the score function — terms
that do not arise in previous diffusion analyses and cannot be handled by existing

. . . ~ 3/2(1/5 .
techniques. Leveraging this framework, we prove that O (M) steps suf-
fice to approximate the target distribution—corrupted by Gaussian noise of vari-

ance d—to within O(g?) in KL divergence, improving upon the previous best

result requiring 0 <#> steps.

1 INTRODUCTION

Recently, diffusion based models have picked up momentum for various use-cases involving
generative modelling. They are widely used for image generation (Song & Ermon, 2019; Croitoru
et al., 2023; Song et al., 2020a; Nichol et al., 2021; Song et al., 2021; Ho et al., 2020), video
generation (Epstein et al., 2023; Chen et al., 2023d), semantic editing (Lugmayr et al., 2022),
generating text (Li et al., 2022) or audio signals (Liu et al., 2023), protein design (Gruver et al.,
2023; Guo et al., 2024), and many other areas. The success of these diffusion models largely stems
from their ability to generate high-quality samples using a denoising mechanism. This is achieved
by defining a forward noising process that gradually perturbs data from the target distribution,
and learning a score function using these noisy observations. New samples are then generated
by iteratively simulating the reverse of this process, guided by the learned score function. The
forward process can be modelled as a stochastic differential equation (SDE) (Song et al., 2020b),
and consequently the generation can be carried out by simulating its reverse-time SDE through
discretization. Corresponding to this reverse-time SDE, there also exists a probability flow ordinary
differential equation (ODE) Song et al. (2020b), which shares the same marginal distributions at
all times. Consequently, two main approaches have emerged for sample generation: simulating
the reverse SDE (Song et al., 2020b; Chen et al., 2023c) and simulating this probability flow ODE
(Chen et al., 2023b; Lu et al., 2022).

Several works (Chen et al., 2023c;a; Lee et al., 2022; Benton et al., 2024; Li & Yan, 2024) have
targeted the theoretical underpinnings behind the working of these diffusion models, under various
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assumptions.These studies established polynomial convergence rates with respect to the data dimen-
sion d, assuming accurate score estimation together with regularity conditions such as smoothness
of the score function or bounded support of the data distribution. More recent efforts (Chen et al.,
2023a; Li & Yan, 2024; Benton et al., 2024) aim to minimize such assumptions and obtain guar-
antees just using accuracy assumption for the estimated score. The best existing result (Li & Yan,
2024) shows O(d/T) convergence rate in the total varation (TV) distance for the Denoising Dif-
fusion Probabilistic Model (DDPM) (Ho et al., 2020). A recent work (Benton et al., 2024) also
achieved linear dependence on the data dimension for convergence in KL divergence, requiring
O(E%) steps to achieve KL divergence within 2 with respect to Gaussian perturbation of the true
data distribution. Since TV is bounded by square root of the KL divergence, it is an important issue
to investigate whether a better convergence rate is achievable in the KL-divergence. While the linear
dependence on d seems satisfactory, the quadratic dependence on é may not be optimal. In this
work, we are interested in investigating the following question:

Can we improve the dependence of the KL-divergence on € while maintaining
linear dependence on the dimension, thereby establishing stronger convergence
guarantees for diffusion models?

To achieve this goal, we explore the line of works (Chen et al., 2023b; Gao & Zhu, 2025; Li
et al., 2024b;a) which investigate the probability flow ODE for generation. This perspective is
motivated by the observation that we can have better discretization dependence for each interval
when analyzing the Wasserstein type error directly using the ODEs (Chen et al., 2023b). However,
aggregating and bounding the error across all the intervals just based on this ODE requires
additional assumptions either related to the error in divergence (Li et al., 2024b) or the Jacobian
(Li & Yan, 2024) of the approximated score. Therefore, Chen et al. (2023b) instead considers
smoothness of true and approximate score function at all times to bound the Wasserstein error
in each interval using the reverse ODE and adds a noising step utilizing Langevin dynamics to
then convert the Wasserstein error to TV. However, this noising via Langevin finally results in a
suboptimal dependency on . Given the improved dependence on step size the probability flow
ODE can offer, we also consider using it but instead of additional assumptions or the Langevin
dynamics, we just consider taking a smaller step in the forward (noising) direction. This way we
are able to consider the error due to discretization on the reverse ODE and then convert it into KL
error via the noise addition with a better dependence on step size for each interval, which can then
be aggregated across all the intervals. The combination of the ODE step and a smaller noise step
can be interpreted as an alternative simulation of the reverse SDE based generation process. This
idea of noise addition along the forward process to convert the Wasserstein type error achieved via
ODE-based deterministic step to KL has been used in works targetting second order discretization
(Li & Cai, 2024), randomized midpoint analysis under smoothness (Li & Jiao, 2024) and also for
convergence analysis for the ODE-based consistency model framework (Jain et al., 2025).

Unlike Chen et al. (2023b), we work in the minimal assumptions scenario similar to Chen et al.
(2023a); Benton et al. (2024) and just consider the accurate score estimation assumption. A
straightforward way then is to consider the analysis of Li & Cai (2024) and adapt it to the standard
DDPM sampler. This improves the dependence on £ but worsens d—dependence leading to a
complexity of O (g) This is discussed further in section 4.1. Therefore, achieving the desired

linear convergence rate for the KL-divergence based on these prior works is non-trivial.

To achieve the linear dependence on d in this setup for our considered ODE step followed by nois-
ing path, we take inspiration from Benton et al. (2024) (which considers the reverse SDE and by
establishing equivalence to stochastic localization directly picks up a known result from the litera-
ture) and investigate additional relations between the score function and its derivative. As discussed
in the paper, our analysis along this ODE based path introduces additional challenges: it involves
terms containing Laplacian of the score function along with the terms containing both score func-
tion and its Jacobian, making it more complicated than the SDE counterpart. By establishing the
required novel relations between the score function and its higher order gradient terms, we are able
to achieve the linear dependence on data dimension d for the ODE, matching the result of Benton
et al. (2024). Due to our improved dependence on discretization step size, this translates into a new
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state-of-the-art guarantee for the KL convergence: requiring O(d/¢) iterations to achieve £2—KL
divergence improving up the previous best result of O( 6%) (Benton et al., 2024). Also, since the TV
distance is upper bounded by the square root of KL-divergence, this becomes the state-of-the-art

convergence guarantee for diffusion models as against the TV convergence guarantee provided in Li
& Yan (2024).

1.1 RELATED WORK

Here, we provide a review of the recent works targetting diffusion based generation broadly catego-
rized into whether they consider the reverse SDE or the probability flow ODE.

SDE-Based generation. The effectiveness of this forward noising and the corresponding de-
noising process for generation was first majorly advocated by the Diffusion Probabilistic Models
(DDPM) framework introduced by Ho et al. (2020), which utilized Gaussian transition kernels for
noising and estimated the parameters of the corresponding Gaussian denoising kernels using denois-
ing score matching during training. Going further it was shown that this forward noising in DDPMs
can be seen as an SDE (Song et al., 2020b) and the generation process then corresponds to the re-
verse SDE. Since then there have been various works (Chen et al., 2023c¢; Li et al., 2023; 2025; Lee
et al., 2022) targetting the convergence of this generation process. To advocate for the usability in
the real world, some recent works (Chen et al., 2023a; Benton et al., 2024; Li & Yan, 2024) have
also targeted setups for the SDE based generation methods requiring minimal assumptions (just the
bound on score estimation during training via denoising score matching) and have achieved state-
of-the-art convergence guarantees. Specifically, Benton et al. (2024) shows only O(d/c?) steps are
required to be e2-close in KL w.r.t a Gaussian perturbation of the target distribution. On the other
hand, Li & Yan (2024) considers the TV-distance and shows O(d/e) steps are required to achieve
e—close TV of the perturbed data distribution.

ODE based generation. Song et al. (2020b) highlighted that corresponding to the forward noising
process for this diffusion model setup, there also exists a probability flow ODE along side the reverse
SDE which shares the same marginal distribution at all times. It also advocated that this Probability
Flow ODE can lead to faster sampling using the ODE solvers. Taking inspiration, Song et al. (2020a)
then proposed a deterministic counterpart of the DDPM sampler and since then various works have
attempted to investigate the convergence of these deterministic samplers (Li et al., 2024a; Gao &
Zhu, 2025; Huang et al., 2025; Li et al., 2023; 2024b) under various additional assumptions. The
current best result (Li et al., 2024a) achieves a TV distance of € (w.r.t. perturbation of the true data
distribution) in O(g) steps under score estimation and an additional assumption on the Jacobian of
the estimated score. Another work (Li et al., 2024b) requires a weaker assumption on the divergence
of the estimated score but achieves sub-optimal results. These works have also argued that under just
the score estimation assumption, the TV-distance for these deterministic samplers is lower bounded
unlike SDE and thus, such additional assumptions are required. Another line of work is based on the
predictor-corrector sampling (Song et al., 2020b; Chen et al., 2023b) which uses an ODE step and
addition of small noise using Langevin dynamics for smoothening the trajectory to avoid the error
blow-up due to ODE. For this scenario, the convergence can be achieved (Chen et al., 2023b) under
standard assumptions on score estimation and the smoothness of the true score as well as the approx-
imated score function, which can be further improved using the randomized midpoint discretization
in the predictor step (Gupta et al., 2025). Instead of this langevin step, some recent works (Li & Cai,
2024; Li & Jiao, 2024) have considered the ODE step with second order or randomized midpoint
(under smoothness) discretizations and then directly adding noise along the forward process, thereby
improving the dependence on €. In this work, we also take a similar route but for the DDPM sampler
and achieve state-of-the-art KL convergence rate under just the score estimation assumption.

2 PRELIMINARIES AND SETUP

We now discuss the formulation behind diffusion models in detail, including both ODE and SDE-
based generation. Following this, we discuss the assumptions used to achieve the results provided
in the next section.
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SDE considered and its discretization. As discussed previously, diffusion models are based on a
forward noising process and the corresponding reverse generation process. The forward process for
d—dimensional setup can be seen as taking the given samples and gradually corrupting them using
the SDE of the following form (Song et al., 2020b):

dz(t) = —p(x(t), t)dt + g(t)dw;

where 2(0) = ¥ ~ Pdata> ©(t) € R?, 1 and g correspond to the drift and diffusion coefficients, wy is
the d—dimensional Brownian motion. Following the popular choice of the OU process, we consider
the following SDE:

dz(t) = —z(t)dt + V2dw,
The corresponding OU process would be:

z(t) =ety+ V1 —e 2t e(t), e(t) ~ N(0, 1) (1)

where p; denotes the law at time ¢, (t) ~ p; and y ~ Pgata. Also, the joint distribution of the
random variables generated via this process at time-stamps corresponding to a sequence {t1, .., tx }:
(@4, ..., Ty ) 18 denoted as py, . ¢, . The resulting reverse SDE (Song et al., 2020b) for generation
will be:

dz(t) = —x(t)dt — 2V In py((t))dt + V2dw, )

where V Inp;(x(t)) is referred to as the score function and 0, is again the Brownian motion. If the
forward process is run from time 7" then initializing from pr and going along this reverse process
for a time T' — t will result in the marginal p;. For the corresponding probability flow ODE (Song
et al., 2020b), we have the following equation:

dz(t) = —z(t)dt — s(t, z(t))dt 3)

where we denote s(t,-) = V log p:(-). Using the Exponential Integrator discretization (Chen et al.,
2023a) where we divide the overall generation time into small intervals and fix the input to the
score function for each interval to be the value at the start (from the reverse direction), leads to the
following ODE for the interval [t;_1, tg]:

dz(t) = —z(t)dt — s(tg, zx)dt

Empirical Counterpart. Practically, we do not have the true score function s(t,-) and instead
during training it is approximated via denoising score matching (Song et al., 2020a). Denoting that
approximated score function as 5(t, ), we have the following empirical version (discretized and
using the approximate score) of the true ODE:

di(t) = —(t)dt — §(ty, &) dt (4)

where we denote the law of this empirical process at time ¢ as p,. For any particular discretiza-
tion {tk}fcvzl of the reverse process, this process is usually initialized using a normal distribution
Ty, ~ N (0, I;) and we denote the joint distribution for the true (¢, , ..., Ty ), TEVETSE (T, oonvy Ty y)
processes as Py, ... tns Dt1,...tn- Also the conditional distribution at ¢;,_; conditioned on ?;, is
denoted as py, ;> Dt,,_, ¢, for the true and empirical processes respectively. We now discuss the
assumptions used in our theoretical framework.

Assumptions. As discussed in the introduction, for our theoretical analysis, we take inspiration
from the line of works operating under minimal assumptions (Benton et al., 2024; Chen et al.,
2023a; Li & Yan, 2024), and just use the following standard assumptions:

Assumption 2.1. For the discretization sequence {tk}fjll discussed in the next section (and used
in the Inference Algorithm 1), the score function estimate {5(t, ) }1<i<7 satisfies:

1 K+1
T D kB, [13(th: ) = s(te, @)|IP] < e2ore- (5)
k=1

where hj, = t; — t—1 corresponds to the step size of the discretization.

Assumption 2.2. The data distribution pg,¢, has finite second order moment E, ... [||at0||§] =
mo < 00.
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2.1 NOTATIONS

As discussed above, y corresponds to the data distribution pg4tq, 2:(t) (with its law denoted by p; and
score function as s(+)) corresponds to the forward OU process and z(t) (with its law denoted by ¢;
and score function as s,.(+)) is the variance exploding counterpart of the forward process discussed
in Appendix. Z(t) corresponds to the discretized version of the true reverse process. & denotes
the sequence of random variables generated by our algorithm for a discretization sequence {t; } and
their law is denoted by p;, . The step size ¢, — tx_1 is denoted as hy. xj, corresponds to the ran-
dom variables generated by the forward process for this time sequence. Ty_1, £;—1 corresponds to
random variables generated by running our proposed scheme (with true, empirical probability flow
ODE respectively) for a single interval [t;_1, ] starting from xy, at tg. Zx_o.5, £x—0.5 corresponds
to the random variable generated by taking two steps along the discretized (Empirical, True respec-
tively) probability flow ODE in reverse direction starting from x. x)_¢.5 denotes two steps of true
probability flow ODE from z;. Vs(t,z) denotes the Jacobian of the score and J; corresponds to
the partial derivative w.r.t. time ¢. We further define 0; as the partial derivative w.r.t. i*" coordinate
of the spatial variable x (or z discussed in appendix). It can also be interpreted as 9,, /0.,. We also

define Laplacian operator A = 2?21 0;0;. The i*" element of the score vector s(-) is denoted by
s(+)s. N(0, I;) denotes the d-dimensional standard Normal distribution. For two terms P,Q P < Q
means there exist an absolute constant C'; such that P < C; Q).

3 MAIN RESULTS

As discussed above, using previous works (Chen et al., 2023b) on the probability flow ODE, we
can directly analyze the Wasserstein-type error under smoothness conditions by using the Young’s
and Gronwall’s inequality. However, the aggregation leads to blow-up in the error and thus, noise
is added via Langevin dynamics based corrector after a small ODE step to instead convert the error
into TV distance, which can then be aggregated. Here, we instead take a more simplistic perspective
for the diffusion use-case where we consider first taking a step along the reverse ODE to bound
the Wasserstein-type error (without any smoothness conditions) and then taking a partial step in
the noising (forward) direction to convert this error to KL. As discussed in the introduction, this
is inspired from recent works (Jain et al., 2025; Li & Jiao, 2024; Li & Cai, 2024) which target the
consistency model setup or randomized midpoint/second order discretization schemes.

We first define a discretization sequence 0 < § = tp < t; < to < ... < tg < tgy1 =T
for the generation process, where 7" denotes the total time, initializing it from the standard normal
distribution N(0, I4). Denoting hy = t; — t;_1, we provide the inference procedure in Algorithm
1. It is based on the Exponential Integrator discretization of the empirical probability flow ODE
(Eq. 4) in the step 4 followed by noise addition along the forward process (Eq. 1) in step 6. The
step along the ODE can be used to control the Wasserstein-type error and then the noise addition
can convert this into KL. This is discussed further in the next section and in detail (along with
the technical lemmas) in Appendix A.1. We denote the generated sequence from our algorithm by
random variables &}, (corresponding to time ¢;) and their law by p,, and the joint distribution for
the complete sequence as Py, ... ¢y ¢, - Similarly, corresponding to the sequence generated by the
forward process along these time-stamps, we will have the joint distribution as py, ... ¢t - Figure
1 shows this algorithm/generation process.

Algorithm 1 Inference Algorithm for Diffusion Models

1: Given: Discretizing sequence {to,t1,..,tx,tx 11}, by = tp — tk—1, Di,, as the normal dis-
tribution (0, 1)

2: Sample @ | ~ Pry.,

3 fork=K+1,K,...,2do

4 B = e theong o (ehetheor — 1)3(4, 35)
5: Sample ng ~ N (0, I4)

6: &)= e‘h"'*lfﬁﬁcfo.s +V1—e2-1qy

7: end for

8: Output 7
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Do A Pdata N() N() pr = N(0,14)
. 2 » 2 > Time
t1 (7)) tr—1 ty ti—2 trx—1 K+1
5(+) 5(-)

Figure 1: Demonstrating the two updates: (a) along the generation process using 3(-) and (b) the
forward noising process (N(-)), of our proposed scheme.

We now provide the guarantee for the distribution generated by Algorithm 1 in terms of KL diver-
gence w.r.t. perturbation of the true data distribution (law of the forward process at ¢1): p;,. This
corresponds to early stopping (with t; > ¢ > 0), similar Benton et al. (2024); Chen et al. (2023a),
as we also avoid smoothness assumptions on the data distribution.

Theorem 3.1. For T > 1 and K > d(log(}) + T), under Assumptions 2.1 and 2.2, consider the
generation process in Algorithm 1 with discretization times 0 < 6 =ty < t; < -+ <tgy1 =T
defined by the step size rule hy, = t;, — ty—1 = cmin{l,tx} for some constant ¢ > 0. Then,
denoting py, as the marginal distribution at ty, for this algorithm and p; as the distribution of the
forward process (Eq. 1) at time 1, we have:

KL (pt1 H[)h) 5 (d + Tn?)eiT + dZCgl\, + Tgicm'e (6)
where x < y means there exists an absolute constant C' such that x < Cl.

We provide the proof of this theorem in the Appendix (A.5) and discuss a sketch of the complete
proof in the next section. The first term corresponds to the error due to initializing the algorithm from
N(0, I), second term corresponds to the error due to discretization and the third term is due to error
in score estimation (Assumption 2.1). From the definition of ¢, it can be observed that (discussed in

1 3
the proof as well) ¢ should be O (%

a logarithmic dependence on d and thus, the second term corresponding to the discretization error

). Also we can observe that 7' is required to just have

will be O (%) . We formalize this in the following corollary discussing the iteration complexity.

Corollary 3.2. Under assumptions 2.1, 2.2 running Algorithm 1 for the SDE based generation via

diffusion models for a total time T' = log (ZH'&) with an exponentially decaying step size sequence
1
hi = tgy — tr—1 = cmin{ty, 1} where ¢ = © (%) achieves a KL-divergence error of
~ d(1 1y3/2
O(e? with an iteration complexity K = © d(1og(3)°”) , improving upon the previous best
score £

complexity of © (%) (Benton et al., 2024) .

score

4 PROOF SKETCH

We now provide a brief sketch of the proof for Theorem 3.1 and the complete details are pro-
vided in the Appendix. We begin by first discussing the decomposition of KL divergence into the
Wasserstein-type error aggregated in each interval. Since the ODE can result in a better depen-
dence on the discretization step size (Chen et al., 2023b), this serves as the main motivation of our
Algorithm 1. Then, we discuss bounding the discretization error along this ODE path in the non-
smooth scenario. Finally, we discuss on how the optimal dependence on d can be achieved for this
non-smooth setup, leading to state of the art convergence guarantee for the KL divergence.

KL control for diffusion via Wasserstein-type error. We can first decompose the KL between
between the generation process and the forward process at £1: KL (pt1 || [)tl) using the data process-
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ing inequality and chain rule as follows (Lemma A.2):
K+1

KL (ptl Hﬁtl) <KL (ptK+1 H]‘atK+1> + Eptl,..,tKJrl Z KL (ptk—ﬂtk (.‘xk)Hﬁtk—lltk (|.’L‘]€))
k=2

where p;, |, denotes the conditional distribution of the true process at ¢_1 given xy at ¢) and
similarly p;, _, ¢, for the generation process. The first term on the RHS is just the initialization error
(the error by using the standard normal distribution for initialization as against the distribution of the
forward process after time 7") and can be bounded following previous works (Chen et al., 2023c;a)
as (d+mgz)e~T. The second term denotes the summation of the KL error aggregated in each interval
[tk—1, tx] when the true and the generation process start from the same point (). Now, to calculate
this term, we will consider the following update for the interval [t;_1, 5] starting from xj, using the
empirical ODE (Eq. 4) and noise:

Bp_o5 =€y 4 (MR — 1) 3(ty, ) (7)
Tro1 =e MG o5+ V1 —e2hoie, e ~ N(0,1). (8)
Based on this, the KL (ps, ¢, (-|zk) ||ty .12, (-|x)) term can be written as (Lemma A.1):

~ —2h_ ||£Uk70.5 - 531#0.5”%
KL (Pt jor Clow) [Py (i) = 720 2(1 — e—2hr—1)

where z;_( 5 denotes the true reverse process at time ¢, — hy — hi_1. This Wasserstein-type error
to KL conversion and then aggregation is inspired from the recent works (Jain et al., 2025; Li &
Cai, 2024; Li & Jiao, 2024). We now discuss on how the expected value of the || _o.5 — 21 _0.5//3
term in the RHS of the last equation can be bounded to finally bound the expression obtained after
applying the chain rule.

4.1 BOUNDING E[||zx_0.5 — x_0.5]%]

For error control of this term, we define an additional process for the interval [t;_1, ] (starting
from z;, and governed by Exponential Integrator discretization of the true probability flow ODE in
Eq. 3): @k

Fr_op =1 4 (6hk+hk_l — D)s(tx, zx) 9)

Bpo1 =€ g o5+ V1 — e Meote, e~ N(0,T). (10)

Now, we decompose the target term corresponding to our scheme E||&x_o.5 — o_0.5]|3 for each
interval as follows:

VEllze-o05 — x-0513] < \/Ellwn-o5 — Fx—osl3]+ \Ellze-05 — 3x0sl3 (D)

Ta Ts

where T, is the error due to using the approximate score function § and T, is the error
due to the discretization of true process. The score estimation error term can be written as
(eMetPe—1 — 1)2E[||s(ty, vx) — 8(tr, 21)||3] (Lemma A.3) and aggregated across all the intervals
can be bounded as O(hye2,,,.) using Assumption 2.1 (further discussed in the proof of Theorem
3.1 in Section A.5).

To bound the discretization error, we first define a rescaled version of the original process as

z(t) = e'z(t) (Section A.3) with the law at time denoted by ¢;, score function denoted as s,.(, z(t)).
This is done to simplify the calculations in the analysis. Now, using the ODE path of Eq. 14 and the
Integral Remainder form of the Taylor Expansion, we bound this discretization error (Lemma A.4):

. 1 A
B [ax-05 — aslf] < 50+ hon)® [ VB[l e 03] e

tp—2
where the derivative of the score s.(t, 2(t)) can be calculated as s..(t,z(t)) = 4s,(t,2(t) =
% + 88’5(; 2) dz(tt) o This is different from previous works (Benton et al., 2024; Chen et al.,
z==z(t




Under review as a conference paper at ICLR 2026

2023a) which instead consider the reverse SDE in Eq. 2 and thereby incur the discretization error
contribution for each interval in the overall KL divergence as: |, tt:,l E [[|s(tr, zx) — s(t, z(t))[?] dt,

bounded using the Jacobian of the score. This results in a sub-optimal dependence on hy, (O(h32)).
Specifically, the best bound is achieved in Benton et al. (2024) which directly expresses the deriva-
tive of E [[|s(tx, zx) — s(t, z(t))||?] term w.r.t. ¢ in terms of E,,, [||Vs(t, )[|%] and then integrates

the bound on this, resulting in the optimal linear dependence on d and a sub-optimal O(h?) depen-
dence on the step size.

Now, we discuss in detail on how to bound ftt:,z E [||s’r(t7 z(t))Hg} dt following Eq 14. Using the
trick proposed in Chen et al. (2023a), we can write z(¢) as a Gaussian perturbation in y ~ Pgata,
thereby rewriting score function at time t: s,.(t,2) as E, |, [11’6%} (Lemma A.5). A straightfor-
ward option is to then calculate the Jacobian (Vs,(t, z), partial derivative w.r.t. time (9:s,(t, 2))
and then substitute in the expression of s.(¢,2(t)) to get an expression for E || s (¢, z(t))||§]

This can then be upper bounded using the fact that \/% ~ N(0,1;) (Chen et al., 2023a) (also

discussed in Lemma A.8). This is just the adaptation of the calculations proposed in Li & Cai
(2024) for the considered DDPM sampler and leads to a better dependence on &, than Benton et al.

(2024) but will lead to d* dependence of our target term ( g [Hs' (t, :c(t))Hg} dt) and thus,

th—2
a d3/2 dependence for KL (pt1 || f)tl), which is worse than the d-dependence achieved for KL in
Benton et al. (2024).

4.1.1 ACHIEVING THE OPTIMAL d-DEPENDENCE FOR ODE

Lemma A.8 shows that E [||sr(t, z)||2} can be bounded as O(=z) as against O(%) for

E {\\Vsr(t, z) HH Therefore to have the linear d—dependence, we take inspiration from Benton

et al. (2024) which first establishes the equivalence of reverse SDE based to Stochastic Localization
and then exploits a well known result from the Stochastic Localization literature (Lemma 1 in the
paper). Since we are considering the ODE path, instead of directly utilising such result, we begin by
first establishing LK, [[|s (¢, 2)[|?] = —2e*E,,[|Vs,(t,2)]|%] in Lemma A.11. Given our target

term for the discretization error ( ﬁi’“ﬂ E,, [|| sh(t, 2(t)) ||§} dt) depends on the integral (w.r.t. time)

of the Jacobian term, using %E,, [||s, (¢, 2)||?] can improve the d* contribution from this term to d.
This serves as the motivation for the remaining sketch.

As discussed above, since Benton et al. (2024) involves the reverse SDE, it just requires bounding
E,, [[[Vs,(t, 2)||%] term. However for our considered probability flow ODE path we need to bound

2
I

the overall derivative term: E [||5; (t, 2) } which includes partial derivative w.r.t. time 0;s,(t, z)

making the analysis much more complicated which is discussed next.

We first convert the time-derivative to spatial derivatives using the the Fokker-Planck equation coun-
terpart for the score function (Lemma A.9):

Ops,(t,2) = €' As,(t,2) + 2e* Vs,.(t, z)TsT(t, 2)

where recall from Section 2.1 that A denotes the Laplacian of the score s,.. This, results in the overall
derivative term being represented only in terms of spatial derivative as follows (Lemma A.10):

Ege [llst(t, 2] = By, |88, (1 )13 + [ Vs, (t,2) s, 2)]5]
+ Eg, [(Asr(t, z))T (Vs,n (t, Z)Tsr(t, Z))} (12)

Since this overall derivative involves a term containing both score, its Jacobian and a term contain-
ing the Laplacian of the score, bounding this involves more complex analysis as compared to the
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SDE scenario in Benton et al. (2024). Now, based on the motivation discussed above to achieve
optimal d dependence by expressing L Eq, [[[s, (¢, 2)[|?] = —2e*'Ey, [| Vs, (t, 2)||%], we further es-
tablish similar relations of the RHS terms in Eq. 12. For the term comprising both s, and Vs, in
Eq. 12, we provide the generalized version of Lemma A.11 which considers general power m in

4R, [|s-(t, 2)]|5'] and a term of the form E [||s (¢, 2)[|5*%||Vs,(t, 2)||%] (Lemma A.12):

o d m m—
e LR [l (8 5] = —mEy s (1 232Vt ) 3]
m(m — 2 . 2

- =g, st Al ([Tl I3)]E]

We then utilise this equation to first write the second term in the RHS of our main Eq. 12 in
terms of %, [||s,(t,2)||3"]. To target the first term, we establish another novel relation by start-

ing with the term LK, [[Vs, (¢, 2)||3] and expressing it in terms of [ Aq(2)||Vs,(t,z)|%dt,
Eq, [[[As,(t, 2)||? and Ey,[||V||s,(¢, 2)||3]|3. Then, we rearrange and express E,, [||As, (¢, 2)||%]
in terms of [ Aqi(2)||Vs,(t,2)||%dt, Eq, [ Vsr(t,2)|I3]13] and LE,, [|[Vs,(¢,2)]/?] (Lemma
A.16). We bound the term [ Aq(2)||Vs,(¢,2)||%.dt as follows (Lemma A.15, Cy present in the
lemma statement is O(1) since Cy < 12 for d > 10):
d? e %d d
2 2

/Aqt(Z)HVST(t,Z)Hth 5 (ezt — 1)3 - (egt — 1) %]E%[Hsr(tﬂz)” ]

leading to an overall bound on the E,, [||As, (¢, 2)||%] as (Lemma A.16):

d? de 2t ( 9
(€2t _ 1)3 - (ezt — 1) %th[”sr(tvz)” ]

o (d d
—€ 2 (thQt [HVs,r(t,Z)HQF] + @Et}t [||Sr(t7z)|§})

Finally, this leads to the following bound on E,, [||s..(¢, z)||3] (Lemma A.17):
d264t e2td d
(€2t —1)3  (e2t—1)dt

d d
S (th (1950 (t,2)13] + ththISr@vZ)“])

Integrating this and summing up across all the intervals, choosing h;, = cmin{ty, 1} following
the previous works (Chen et al., 2023a; Benton et al., 2024) and scaling back to Z(t) along with
accounting for the score estimation error and the initialization error leads to the following final
expression for KL (pt1 || ﬁtl) (section A.5, refer to the analysis there for more details):

KL (py, Hﬁtl) <(d+mp)e T + d*APK + Te?

score

log($)+T
K

Eth [”AST(ta Z)”g] S

Eq [lls7(t, 2)lI3) < Eq, [lls-(t 2)[%]

where due to the exponentially decaying step size ¢ < which results in K =

dlog®/*(% . ~ .
e (ng(é)) to achieve O(e2) KL (py, ||, ) error.

5 CONCLUSION

In this work we provided an improved analysis for generation process of the diffusion models under
just the L2-accurate score estimation and finite second moment of the data distribution assump-
tion. We showed that by modelling the SDE based generation process as an ODE step followed by
noising and thereby targetting the discretization error along this ODE path can lead to better depen-
dence on the step size. We also introduced a novel analysis framework for this ODE path which
expresses the overall derivative of the score function in terms of spatial derivatives and establishes
relations between the score and its first, second order spatial derivatives. This resulted in achieving
linear dependence on d for the considered ODE path, leading to a new state-of-the-art convergence
guarantee for KL divergence. Since KL upper bounds the square of the TV-distance by Pinsker’s
inequality, our result also provides a stronger guarantee than the best existing rate for the TV con-
vergence achieved in Li & Yan (2024). An interesting future direction can be to investigate if the
dependence on the step size can be improved further when considering this ODE step followed by
noising framework, thereby enhancing the dependence on ¢ and achieving faster convergence.
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A PROOF OF THEOREM 3.1

A.1 BOUNDING KL (py, ||pt,) AS AGGREGATION OF E[[|2x—0.5 — £x—0.5//3] FOR EACH
INTERVAL

We now discuss two lemmas: a) The first one converts Wasserstein type error between the empirical
and true process to KL for each interval and the second one aggregates the KL across all the intervals.

Lemma A.1. Denoting py, 1, be the conditional probability of Ty_1 given Ty, and let py, _ |4, be
the conditional probability of x_1 given x, using two steps of ODE and one step of noise similar
to our algorithm. Then, for the updates in Eq. 7, Eq. 8 (the updates of our Algorithm 1 for each
interval given the same starting point for both is the true process at ty: x), we have:

- —ahey k=05 — Zr—0.5]13
KL (pr,_ joy, Clei) [Py o, (lzn)) = €720 2(1 — e—2hr—1)

where we recall that hy, = t;, — tip_1 denotes the step size, T _g.5 corresponds to two steps of
Probability Flow ODE from xy, and thus, the law is same as of the forward process at time ty, — hy, —
hi_1.

Proof. For this, we know that from Algorithm 1 that the conditional p, _, ¢, (-|x) for the generation
process is the following Gaussian:

ﬁtk_lltk('|xk) ~ N (e_hkilik—0.57 (1 - 6_2hk71) Id)
where I; is the d-dimensional identity matrix. Similarly, for the true process we can just write:
Pyt (lon) ~ N (et g5, (1 — e 2"1) 1)

Now, since the covariance matrices are same for both, we can just use the following formulae for
calculating KL between two Gaussians with different means but same variance:

N 1 _
KL (pe, _y e (o) Be_y 10 (L)) = 5 (= pi2) 'S (i — o)

where pi1, o corresponds to the mean of the two distributions and X corresponds to their covariance.
For this case, we have:
—hi_1~
p1 =€ "Ik o5
—h—
po=e "*Tlrp_o5
= (1—e 1)y

Merely substituting these values in the KL formulae will lead to the desired term.

For KL-aggregation, we have the following lemma:

Lemma A.2. For the discretization sequence t1,...,tx 11 and the law corresponding to the gen-
eration process in Algorithm 1, we will have (where py, denotes the law of true process at time

tk):

KL (ptl Hﬁtl) <KL (ptl,tz,A..,tK,tKJFl Hﬁtl,tz,..i,tK,tKﬂ)
K+1

=KL (ptK+1 HﬁtK+1) + Eptl,..,tK,tK+1 Z KL (ptk—1|tk('|x7€)Hﬁtk—1|tk('|‘rk))
k=2

Proof. The first inequality is just the data processing inequality and second equation is the chain
rule for KL. O

12
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A.2  ANALYSING E[||lzx_0.5 — x_0.5/|3]

We begin by first decomposing the term into a discretization error component and the error due to
using the estimated score instead of true score.

Lemma A.3. For the sequence &j,_g 5 generated by Eq. 7, we have:

Ellze-o0.5 — Zr-05l3] < 2E[|lor—0.5 — Tu-o.5l[3] + 2(e™ "= — 1)°E[l|s(tx, &) — 3(tx, x0) 3]

where we recall xi_q. 5 corresponds to two steps of true probability flow ODE from xy, and Z_o 5
corresponds to the discretized true process update defined in Eq. 9. The first term in the RHS
corresponds to the discretization error (T,;) and the second term is the score estimation error (Ts).

Proof. We can just bound the LHS as follows:

VEllzo5 = #x-05l3] < Ellex—05 — 15131+ /Ellio5 — #5033

Tis Test

where, as discussed in the lemma, Zj_¢ 5 is defined in Eq. 9. Squaring both sides and using
2ab < a? + b2, we will have:

Elllzk—0.5 — Ex—0.5013] < 2E[||zr—0.5 — Fx—05/13] + 2E[|Zx—0.5 — Zx—0.5//3]

Bounding T, . Now, utilizing the Eq. 7, Eq. 9, we have:

Ell|Zk-0.5 — Zx-0.5/13] = Ell(" "1 — 1) (s(tr, 2x) — 8(tx, zx)) II3

= (M — 1)?E[||s(tk, mr) — 8t 21)]|3]

O

We discuss the analysis (and eventually bounding it) of the discretization error term T, in the sub-
sequent subsections.

A.3 ANALYSING THE DISCRETIZATION ERROR ALONG THE ODE PATH

Considering a rescaled process. We consider a rescaled version of the original OU process (Eq.
1) as 2(t) = e‘z(t), leading to:

Z2(t) =y + Ve —1-n; n ~N(0,1I4) (13)

where y corresponds to the data distribution: zg = x¢g = y ~ Pgate With the corresponding forward
SDE being:
dz(t) = z(t)de’ + e'dx(t) = x(t)e'dt + €' (—x(t)dt + \/idwt) =2etdw,

We denote the law of this process at time ¢ by ¢;(-) where ¢, is just a pushforward of p;(-). Also
we denote the score function of this rescaled process as s, (¢, -) where we will have s,.(¢, z(t)) =
e~ ts(t,e"tz(t)). The probability flow ODE becomes:

dz(t) = —e*s,.(t, 2(t))dt (14)

Using the Exponential Integrator discretization for a given interval [t;_1,t], here also, we define
Zk—o.5 for this interval when starting from zy, :

1
%05 = 2k + 562tk_2(62(hk+hk_1) _ 1)5r(tk72k) (15)

where t;_o = 1t — hx — hx—1. Now, we have the following lemma for bounding
E [||zk—0.5 — Zx—0.5/|3] where zj_q.5 is two steps of true probability flow ODE Eq. 14 from z.

13
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Lemma A.4. For the Zj,_g.5 defined in Eq. 15, we have:

23
(ot n)® [ e [l 2013 ae

- 1
E [||zk—0.5 — Zk—0.5]l3] < 3
tp—2

where s..(t, z(t)) is the derivative of s,.(t, z(t)) w.r.t. t and can be calculated using:

S;.(t, 2(t)) = 857“8(? z) + 8Sra(i7 z) dzit)

z=2(t)

Proof. Since, we have used the Exponential Integrator discretization, the ODEs for the interval
[tk—2, tr] corresponding to z, Zx, (given Z = zy) are:

dz(t) = —e*s,.(t, 2(t))dt dz(t) = —e*s,(ty, 21, )dt

Therefore, we have:

Fe0.5 — Zh0.5 = / TG — 2(1) = / T (5 (b o) — st 2(0))

tr tr

tk tk

Taylor’s Integral Remainder

where in the last step we have just used the Taylor’s Integral Remainder form for the score function.

Using this, we will have:
ti—2o t 2
/ dt/ e*s! (u, 2(u))du
tr tk 2

t
/ e®s! (u, z(u))du
23

E[||Zk—0.5 — zk—05/l3] = E ‘

th—2

<E (hk—Fhk_l)/tk dt‘ ‘|
sE<m+hhn/w<m—ﬂ/kw%éwwmeMM]

tp—2

= (hy + hi_1) /tti (t) — t)dt /ttk E [HeQ“S’T(u,z(u))Hﬂ du

_ (hk—l—hk_l)/tk e |1 (2 () |2] du/ (b — 1)t

th—2 P2
h B 3 tr
- (k+2k1)/t M |15 (u, 2(w) 3] du
k—2

O

We now calculate and bound the spatial gradient since the partial gradient w.r.t. time can be written
in terms of the spatial gradient using the Fokker Planck Equation (FPE).

Calculating the Jacobian Vs, (¢, z(t)) for this rescaled process: We can now observe the fol-
lowing for this rescaled process:

2
llz—yll

qt(Z)z/Qt(ZIy)pdam(y)dyM e 2D paaa(y)dy (16)

which takes us to the following formulation of the score function:

14

ti—2 t
/ e | s (th, 2x) — sr(tk,zk)+/ ' (u, zy) du

dt
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Lemma A.5. For the rescaled process in Eq. 13, we have:
y—z
se(t,z) =By, [(e%—l)}

Proof. As discussed in Eq. 16, we can just write the score function as:

o
9= Vi) = V) Ve T S paly)dy Hp(y)dy
[e z<e2t—1>pdata(y)dy Je 2D paara(y)dy
- / p(ym%d@,
meP@|y_Tgﬁﬁgmdpwﬁ):ad@ﬂ;mmaw. 0

Lemma A.6. Jacobian of score. We have the following expression for the Jacobian of the score
Vs, (t, z) for the rescaled process z(t):

y—=z 1q
Vs, (t,2) = Var,, Lgt — 1] ST

where Var denotes the covariance matrix.

Proof. We begin by calculating (the gradient of P is w.r.t. second variable z in this Lemma),
VP(y,z)- | P(y,z)dy — P(y,2) - | VP(y, 2)dy

(f Pz y)dy)*
From the calculations in last Lemma (A.5), we have:

VP(ylz) =

Yy—z
VP(y,z) = ﬁp(%z)
and therefore:
y—=z P(y,Z) P(y,Z) f eg:zl ( )dy

Plyle) = Sr— - [P(y,z)dy [ P(y,2)dy [ Py, 2)dy

y—=z y—=z
= P(ylz) (ezf_l — By [ezf_lb

Thus, we can calculate the Vs, (¢, z) as follows:

—Z
Vs (t,z) Z/eyzflvp(yld

Y
e2t _
Yy—2z Yy—z y—z T I
:/P(ylz)th—l <62t—1 ~By- L%—l]> ay e?t —1

-

_E y—z (¥=2 g y—=z 14

Tl |2t Ty \ et — 1 vlz | g2t et —1
y—z Iy

= Vary; th _ 1] T2t g

O

Bounding E,, [||s(t,2)|”], Eq, [[|[Vs-(t,2)||*] and other spatial gradient terms. Since, we

know that % = ¢ ~ N(0,1;), we first provide a helper lemma to bound the moment of the

multivariate Gaussian distribution. Then using that and the formulae for score function, Jacobian
provided in Lemma A.5, we bound E [||s(t, 2)|P], E [|| Vs, (t, 2)||%.] for a general p.

15
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Lemma A.7. Gaussian Moment. We have the following result for the Gaussian random variable
n ~ N(0, Iy):

E [l 15) = E[Iml3?] < (d+2p)”

Proof. We will have:
lnn 1% = Tr ((n )T mm ™)) =Tr (o™ om™) =0 nTr(m ") = (n"n)*

Thus, we have |77 |2 = (n7n)? = ||n||5F. Since 5 ~ N(0, I) and thus, the vector 7 has i.i.d.
normal entries, thereby:

Inl3 = Zn? ~xXd) = Ellnl3"] = E(X)?] where X ~ x*(d)

where x?(d) denotes the chi-squared distribution with d degrees of freedom. Now, we can just use
the formulae for moments of x?(d), leading us to:

L(p+ %) (a)
d

E [Ill*] = B{x7) =27 - S (Ge0) =@y

2

where I" denotes the gamma function and for inequality (a), we have just used the gamma function
bound. O

Lemma A.8. We have:

p/2
Eq, [IIs:(t, ()] < 62%1; Ey, [|lsn(, 2(£))]|7] < (f;;erl))p/2
2
B (19500E] < G

Proof. Similar to the Chen et al. (2023a), here we also utilize the fact that \}’f_zei(f)zt is Gaussian.
Using Lemma A.5 we have:

1 Yy—z 2 1 y—z 2
o 1 Y-z 1 Y-z
Eu [t ] = e B[ 5 | ] G [H e
1
= (@ o (117
d
“a T

For a general p > 2, it becomes:

T

By, [|Is-(t, 2(1))]|P] = (th_IDI)/Q]eq [

y—=z
]Ey\z(t) [ <€2t — 1)]

< ! __E.E y—= 1|
= (ezt — 1)z el ||| e

1
= (@ 1y N 1) [lnll”]

(d+p)*/?

16



Under review as a conference paper at ICLR 2026

Going similarly, a naive bound on Eq, [||[Vs,(t, 2)||%] will be:

2
y—=z Iq
Eong [IVsr(t,2)17] = Ezng, ‘Vary|z [62t — J T F] (Lemma A.6)
T2
y—z Yy—z 2d
o o 222 222 ]
T2
y—z y—z 2d
= B ‘ [th— J [e?t— 1} e e
1 .\ 2d
= 2(627t — 1)2]E17NN(071d) [lnll*] + @ =1
24?4 6d
- (e2t —1)2
O

A.3.1 EXPRESSING THE E,, [||s'(t,(t))||*] IN TERMS OF SPATIAL DERIVATIVES

Since we also need to bound ;s (¢, z) to bound the s/.(¢, z), we will utilise the Fokker Plank equa-
tion associated with the forward/reverse processes which relates the partial derivative w.r.t. t with
the spatial derivative. The Fokker-Plank equation corresponding to the rescaled process z(t) (Eq.13)
would be:

d
g (2) = — Z@i (—ethqt(z)) =¥ Aq(2) (17)

i=1

Since score function is just ;f ()
cess to relate the J; s, (¢, z) with spatial derivative in the lemma below:

, we provide the corresponding score-fpe for the rescaled pro-

Lemma A.9. We have the following counterpart of the Fokker-Planck equation for the score function
of the rescaled process defined in Eq. 13:

Opsp(t,z) = €2 As,(t,2) + €2V |5, (t, 2)||> = €2 As,.(t, 2) + 2% Vs, (t,2) s (t,2)  (18)

Proof. To arrive at the equation for the score function, we first derive an equation for 9; log ¢; by
considering the following term:

d
30 g e 3o, (D)) s (T D7)

i=1 i=1 ¢(2)
— o (”‘“ ) - eviozal?
1

1=

which results in:
d

d
Orlog qu(z) = a;fé? > (af?ﬁ’) = 300 (Vioga(2) + eV logar(2)|

Now, again taking a spatial gradient:

d
Vorloggi(z) = €Y V0, (Vioggi(2)) + *' V||V log :(2)

i=1

17
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Interchanging the operators result in the score Fokker-Planck equation for the forward process (on
the reverse it would be negative):

Osr(t, z) = thAs,,(t7 z) + thVHsr(t, z)||2 = e2tAsr(t7 z) + Qethsr(t, z)Tsr(t7 2)

O

Now based on this lemma, we express the overall derivative in terms of spatial derivative in the
following lemma.

Lemma A.10. We have the following relation for the overall score derivative s..(t, z) and Vs, (t, z)
for the rescaled process following the reverse ODE (Eq. 14):

Equ 55t 2) 2] = By, [ Asp(t, 2)[13 + €[ Ts,(t, ) st 2)]]
+E,, [2e4t(Asr(t,z)) (Vs,«(t,z) sp(t,2))] (19)

where (recall from Section 2.1) A denotes the Laplacian of a vector.

Proof. Now, utilising the Fokker-Planck equation (FPE) for the score function, we will have:

Eq.[llsr.(t 2(0)[1%]
= Eq[57(t,2) " s,(t, 2)]

Lk (@ST(M) Vs ()T (CCZ))T (atsr(t,z) + Vs(t,2)" (Cﬁ))]

= E,, {(8155,«(75, 2) — e®Vs,(t,2) " s,(t, Z))T (3tsr(t, z) — e®Vs,.(t,2) " s, (t, z))]

=E,, -H(‘)tsr(t 2)|5 + €*|| Vs (2, 2)s(t, 2 H2 — 2205, (t,2) (Vsr(t,z)Tsr(t,z))}

= By, | €% As,(t, 2) + 2e*s,(t,2) ' Vs, (t,2)|5 + || Vs, (t, 2) s, (t, 2 H2

— 262 (et As,(t, 2) + 2€%ts,.(t,2) " Vs, (t,2)) T (Vs (t, 2) s, (t, z))}

=E,, [ Y Asp(t,2)13 4+ || Vs (t, 2) s, (t, 2 H2 + 2e* (As, (8, 2)) " (Vsr(t,z)TsT(t,z))}

where in (a) we have used reverse ODE Eq. 14 and in (b) we have used the FPE for score from
Lemma A.9. O

A.4 BOUNDING THE REQUIRED SPATIAL DERIVATIVE TERMS

Now to bound the terms E, [[|As,(t,2)3]. E [||s,(t,2)Vs,(t,2)||3] appearing in Eq. 19, we
analyze the relationship of these spatial gradient terms with £E,, [||s, (¢, 2)||?]. Since the naive
bound on Ey, [[|s, (¢, 2)|[?] is proportional to d as against d? in case of Eq, [||Vs,(¢,2)[%],
this can lead to improved d—dependence of the discretization error upon integrating this for a
given time interval. We first discuss two lemmas: the first one establishes relation between
LR, [||s-(t,2)]|?] and Eq,[||[Vs, (¢, 2)||%]. Then extending this lemma for general power m in

4, [||s-(t,z)||™] leads to the terms comprising both Vs, and s, from which we can bound the
term E [|s,(, 2) Vs, (t, z)||3]. Then, utilising these lemmas and bounding terms comprising dg; and

Vs, in terms of £E, [||s,(t,2)|?], we finally bound E,, [||As,(¢,z)|3] by applying Integration
By Parts.

18
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A.4.1 ESTABLISHING RELATION BETWEEN SCORE AND ITS FIRST ORDER SPATIAL
GRADIENT TERMS

We first analyze the term %, [||s,(t,2)||?] and manipulate it to relate it with Eq, [||Vs,.(¢,2)|%]
leading to the following lemma.
Lemma A.11. We have:

d
ZrBalllsr(t, 2)IP) = —2¢*Eq, [|[ Vs, (t, 2)IIF]

Proof. We begin by analysing the LHS term, taking the derivative inside the integral and utilise
Fokker-Planck equation (FPE) (for ¢; and s, (Eq. 17, Eq. 18) for the rescaled process to convert it
to spatial derivative and finally utilise Integration By Parts (IBP):

d
T Ballls (8, 2)]7]
d
== | @)l (t2)]%dz

= /tht(z)Hsr(t,z)||2dz + 2/qt(z)sr(t,z)Tatsr(taZ)dz

“ / €2 Aqu(2) st 2)||dz + 2 / 0u(2)s:(t,2)" (¥ Dsi(t,2) + €V |si (£ 2)[%) d
Qe [Ga)- Vlselt, 2Pz 267 [ 25,07 (s 0,2) + Vi (t.2) ) d:
© €2t/VCIt(Z) Vs (t, 2)|2dz + Qezt/Qt(z)Sr(taz)T (Asi(t,2)) dz

_ o / Vau(2) - Vs (t, 2) 2z + 262 / 6(2)As,(1,2) " 5 (1,2)d2
N——

jointly for IBP

D o2 / Var(z) - Vlse(t, 2)[2dz — 26 / Vai(z) - Vsr(t,2) s, (t, 2)dz
—Qth/qt(z)HVST(t,z)H%dz

Q26 [ @@)|Vsi(t.2) [z

where in (a) we have used FPE Eq. 17, 18, in (b) we just use IBP, in (¢) we use ¢:(2)s.(t,z) =
Vqi(2), in (d) we again use IBP and in (e) we use V/||s,(¢,2)[|?> = 2(Vs,(t,2)) " s.(t, 2) so the
first and second terms cancel out. O

We now generalize this lemma by establishing relation between %E, [||s,(t, 2)||™] for a gen-

eral m > 2 and E,,[||Vs,(t, 2)||%]. For m > 2, the RHS should have terms comprising both
Vs, (t, 2), sr(t, z) and thus the result can be used to bound the second part of the RHS in Eq. 19.

Lemma A.12. We have the following general result for the score function s, (t, z;) of the rescaled
process z; defined in Eq. 13, holding for any m > 2:

_ d m ne
e =g lllsr(t2)[13') = —mEq s, (¢, 2)[15 Vs (2, 2)II3

=D T, 2l (Ve D]

Proof. Here also, we start with analyzing the LHS similar to previous lemma (as discussed in Sec-
tion 2.1, §; corresponds to partial derivative w.r.t. i'" coordinate of z, A = ; 0;0; is the Laplacian,
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d
le

s,(+); corresponds to i*" element of s, which implies ||s,(, 2)[|? = Y., s2(t, 2);) (all the vari-

ables under ) range from 1 to d if not mentioned):

o d .
e 2t%eq[”ST(t,Z)”2}

“ / T2 0,q4(2) |5, (1, 2) 15" dz +m / (llsr (t 215250 (t, 2) T s (£, 2)d

b
0 5~ [ o0t lss e 9z
=1

d

+m / (st F2 [ S0 50t 2); (Oidhsi(t,2); + 0,52, 2)) | d

ij=1

= Z /&qt s (t, 2)|1520;s2(t, 2);d

,j=1
+m Z /qt st )15 250 (t, 2); (8:0i8,(t, 2) —&—&-sf(t,z)j) dz
4,j=1
@ m /qt(z)HsT(t,z)||m_25T(t,z)isT(t,z)i&sr(t,z)jdz
4,J
—|—m2/ et 2) 1720 (t, 2); Dsdsy (¢, 2);dz

I

(©) mz/qt(z)Hs,«(t,Z)Hmds,.(t,z)is,«(t,z)iais,.(t,z)jdz
4,

S [ N2 ,2),005 1, 2)
4,J

S [ el 62 5 (02),0150,2),
4,7

—mZ/pt s (t, 2)]15" —2 - 05y (t, 2);0isr(t, 2)dz

—~

D —m(m —2) Z pe(2) - 1sr(, 2)||5% - 80 (t, 2)k0ise (b, 2)kse(t, 2) 5 - Dise(t, 2)d2
igk

—mZ/ ) - llse (b 2)lI5' 2 - (Disi (2, 2);)° d=

m(m — 2
= =D Ty, 2 | (Vs 6 2IDE] - mEy, [, )52 1 2
where in (a) we have used J¢|s. (¢, z)||2 = ml|s,(t,2)||7 2s,(t, 2) TOss,.(, 2), (b) implies the
use of FPEs Eq. 17, Lemma A.9 , (c) is the application of Integration By Parts on the first term,
(d) uses 0;q:(z) = q(2)s,(t,2); then subtract it from the second part of the second term and
use 9;52(t, 2); = 2s,(t,2);0;5-(t,2);, () implies again using Integration By Parts on the second
term where one term is jointly considered as I; and the other remaining. (f) is derived using

d1q = q¢(2)s,(t, z) on second term, cancelling the first two terms and writing ;|5 (t, 2)||5* 2 =
(m = 2) st 2) |5 Spey 80t 2)iDisy (t, )i O

Now, as discussed before, a consequence lemma of this lemma is that we can bound the second term
comprising both s, and Vs, in our main Eq. 19 (since the RHS contains these terms for a general
m). This is stated as a lemma below.
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Lemma A.13. Defining X,, = [q2)|s-(t,2)|" 2| Vs (t,2)|%dz, X, =
J a:(2)||s:(t, 2) ™|V ]|sr(t, 2)||3]|3dz we can bound it as follows for any m > 2:
1, d . 4 _,d -
Xm < _Ee ZtaE%[”ST(Lz)H ]a X;n < _me Qt%eq[||3r(t, Z)||2 ]
Proof. For this, considering the Lemma A.12, we have:
-1 _od m m—
—e 2 By, [0 (t, 23] = Eq [llsr (£ 2) 151 Vse(t, 2) 7]
Xm
(m-2) .
+ 2R, [l 25 ([ (Vs (2 2) 13)]1]

X/

When m > 2, we will have X,,,, X! > 0, thus, X,,, < —Lte 24 SiEq llls(t, 2)[|™] and

m m

D =) *Qt‘ieqHlsr(f,Z)llm]- -

m(m—2)

A.4.2 BOUNDING THE SECOND ORDER SPATIAL GRADIENT OF SCORE TERM

For this, we first provide two lemmas to bound terms comprising second order spatial derivative of
the law ¢, and first order spatial derivative of the score s,.

Lemma A.14. For the rescaled process z(t) in Eq. 13, we have:

Agi(z) _  —d ly — =I5
w() @ - [( 1)2}

Proof. Here also similar to the score function calculation in Lemma A.5, we have:

llz=yll?

(2) _ V-Va(2) @ VS @ > Paataly)dy

t
> = P - _ ll=—yli?
qt( ) qt( ) f e 2(e?t-1) pdata(y)dy

_ l==yll? _l==yl? _,
f (v . ﬁ) e 2(e2t—l)pdata(y)dy+ f (Ve 2(e2t1)pdatu(y)) (egfi—l)dy

lz—yll?

fe_ 2(82t71>pdata(y)dy
g —deowi? A=yl vz \ |
B f -1 (e _1)pdata( dy+f6 2(e 1)pdata( )<(€2t 1)) (Pzt 1)dy
o Il=—yl|2

f 6_ (e 1) pdata(y)dy

_ (thfl) + /P(yIZ) <(e‘gt_21))T (ez;;—zl)dy
. by

~ e [

where in (a) we have taken the expression also used in Lemma A.5 and as discussed before y ~
Pdata- O
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Lemma A.15. For the rescaled process z(t), defined in Eq. 13, we have the following bound for the
term involving the Laplacian of margin and Jacobian of score:

Cyd? e ?tde d

/Aqt(z)HVsr(t,z)H%dz < s 20T loéd)(e% ) &eq[”sr(t’z)H?]

. (1+2lo§d+%)logd+3
where Cy = B (e v m—

Proof. We start by writing Laplacian as ) . 0;0; and decomposing the term as follows:
[ 8@ Vst 2lrdz = [ 30010 |Vsi e,z
= [ S 00 @Vs. 0,2z

— @I ITs . 2rds — o, (195691

- / 0(2) () e Vst )| H - el Vso(t, 2) |3 ™ dz

d
— o —E [Vt 23]
® ¢! 1 2 Cm 2
< L@@ RNVt 2 Fdz + 2 [ (@) Vst 2)][fdz

d

— B [Vt 23]

where J (z) = ‘zi?gt(z) + ——, L and m are constants where [ > 1,1/l +1/m = 1 and in (b),

we have just used ab < Fa' + Lb™ with a = Jy(2)c;,!, b = ¢, Now, we utilise Lemma A.6 for

2
the spatial gradient of score, Lemma A.14 to write J;(z) = — ﬁ +E,y.. {(‘L'Zf _Zl‘lfz} . Also, for the
second term, we can just use Lemma A.11, leading to :
y—=z Iy
-

el ly — =13 7'
= e (za [ ) v [55) - 5

e 2t [cm d d 9
-G (B - ) SRl

2

dz
F

ot ly =213 7' ly 213 7\ d
< m MY = <llz
=7 Eq, <Eyz |:(62t —_ 1)2}) (Eyz |:(e2t _ 1)2]) + (€2t —1)2
e~ [em d d
_ m o —E t,2)|?
(- ) gEalls el
ot ly — =13 7\ d ol ly = 2l3 T\’
S TeqEgAz [<|:(€2t _ 1)2:|> + (€2t _ 1)2 l ]ELIt]EZI‘Z <|:(62t _ 1)2:|)
e"2t [em d d 9 , .
- (;n” ~ 1) %eq[nsr(t,z)n ] (Jensen’s Inequality)

where in the last step we first multiplied the terms in the first part and then used Jensen’s inequality

for each. Now, utilising the fact that \/% ~ N(0,1;) and using the Gaussian moment bound
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from Lemma A.7, the last term can be further rewritten and bounded as:

e 2l+4 ol e [em d d )
= mEn~N(o,m) {||77||2 +d||77||2} o (m T 1) %eq[ﬂsr(t,z)n ]
—l —2t m
Cm 142 € Crm, d d 9
S m(d+2l+4) - 2 (m_ €2t—1) %eq[ﬂsr(t,z)n }

(W) l 142 e—2t (W)m d d )
= e (d+20+4)7° = — - — 7 | g Ballsr(t 2]

(m = W)
A2 (1420/d+4/d)!+2 2 am d d
= 2t 1+2—1/m o 2t _ 1) 2t _ *eq[HSr(t’Z)”Q]
I(e?t —1) / 9 m(e ) e 1) a
G Ut e S gtk 4 Lg, (s 2,2
_ ) B - d s
(e2t —1)3 (1+logd) 2 \(1+ @)(e% “1) e —1)ar
Ca
Cad? e~ ?tde d N
- N —E t[”sT(tvz)”z} (dlogd — 6)
(€2t — 1)3 2(1 i 1o§;d)(62t _ 1) dt ¢

where we have used ¢, = W Il =14+1logd, m =1+ loéd which results in Cy =
(1+2%+%)logd+3

(1+logd)

A.4.3 BOUND THE LAPLACIAN OF THE SCORE

Now, using the previous two lemmas and the Lemma A.13, we bound the second order spatial
derivative term of the score function in the following lemma.

Lemma A.16. We have the following bound for the second order score derivative term in Eq. 19:

_ 8l

By [lsn(t, I - gge >

32C,;d? de 2 d
2
Eq, [HAST(LZ)HJ < 13(e2t —1)3 - (e2t — 1) dt

206_2t d 4

Eq, [IVs:(t, 2)|E]

where Cy is defined in Lemma A.15.

Proof. The proof is just a careful utilization of the integration by parts, Fokker-Planck equa-
tion (FPE) and the reverse ODE Eq. 14. The proof starts with manipulating the term:
4, [Vs(t, 2)||%] to break it down in the target term and remaining terms from the previous
two lemmas and Lemma A.13. Then the target term term is expressed via this term and the remain-
ing terms where we replace the bounds for the remaining terms from the mentioned lemmas. It is
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as follows (again we use ; for the derivative w.r.t. i coordinate and the Laplacian by >, 9;9;):

d

5 [ a@Is . lEd

= [0Vt )tz + [ 203 0i5i0 21

4,J

,j=1

d d
:/thZ@iaiqt(z)HVsr(t,z)||%dz+/qt(z) 2> 055,(t,2)i0;0i5,(t, 2); | dz
=1

(Eq. 17 for first term)

Q / e " 0i0hau ()| Vs (t, ) 32
+2€2t/ Za sp(t, 2); (Z OOk s, (t, 2); Za (taz)k> dz
k

I

/ 2tZaazqt ||VS7(t Z)HFdZ QtZ/ath 8 37(t z) (8k8k37(t Z) +68 (t Z) )d

1,5,k

2tZ/Qt )0;0;8,(t,2); (Bkaksr(t 2)i + 038> “(t, 2)k )d

1,5,k

©, (/Z@@,qt W Vsr(t, 2)||%dz
—22/% Zsrtz 8srtzjz &ﬁksrtz —|—8isf(t,z)k)dz
k

—9 Z / q1(2) Z 0;0;8,(t, 2); Z (OxOsr(t, )i + O;s2(t, 2)k) dz)
i j k

where (a) implies use of Lemma A.9 for the second term, (b) implies using Integration By Parts
for the second term where we consider the term I; as one part and the remaining as other, (c¢)
implies using 0;¢:(z) = q:(2)s,(t, z); and then 0; sr (t,2); = 0;sr(t, ), in the second term. Now,
we consider the terms except first, treating > 8 s2(t,z); = 2 > 8r(t,2)0isr(t,2); = b; and
>_;0j0;8:(t, 2); = a; these terms can be written as:

—Z =b; - (a; + b;) — 2a;(a; + b;) Z 2a —b2 3a;b; <Z 2a —b2+ a —i—6b2

which leads us to:

o2t & d [||V8r t,z) /Zaaqt NVse(t, 2) ||Fdz——Z/qt Zajajsr(t,z)i
J

dt ‘h

dz

To T (target term)
2

+QOZ/%(2’) Zsr(t,z)jﬁjsT(t,z)i dz

T>
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Denoting the first term in the RHS as 7}, second or the target term as 7' and third term as T5, we
have the following expression for our target term 7} (rewriting > , 0;0; as Laplacian operator):

13
d

< Ty + 20T — e — By, [[|Vsr(t, 2)17]

_or d ..
= Ty + 5By, [I¥lss(t,2)I313] - e LB, 195, (¢,2) ]3] (rewriting )
(@) 442 e 2de d 5 d
< - —E, [|ls-(t,2)]|)] — Se 2 —FE At 2)||4
- (62t _ 1)3 2(1+ @)(62t o 1) dt qt[Hs ( 72)” ] 26 dt qt [||S ( ’Z)HQ]

—Qti

BT

E,, [Hvsr(t»Z)H%?]

where in step (a) we have just used Lemma A.15 for Tj term and the observation that the third term
(obtained by rewriting %) is just the X [1 in Lemma A.13 for ¢ = 4 which we bound using the Lemma

A.13. Now since d > 1, we have approximated the value 13(1% < 1 (since %eq [ls(t, 2)]|?]
log d
is negative, can be seen from Lemma A.13) leading to the final bound. O

A.4.4 BOUNDING THE DISCRETIZATION ERROR FOR EACH INTERVAL

Utilising the lemmas discussed above for bounding the spatial derivaitve terms in Eq. 19, we now
provide a lemma which using these bounds provides a final aggregated bound for E,, [||s.(¢, 2)3].

Lemma A.17. For the rescaled function, we have the following bound for E,, [||s).(t, 2)|13):

40C d?e 5e2tde d 10 5, d
E '(t,2)]3] < - n -5
Qt[”S’I( 23] < 13(e2t —1)3  4(e2t — 1) dt 13e dt

d
= 3¢* 2 Bq[llsr (¢, 2)II]

where Cy is taken from Lemma A.15.

Eq, [llsr (¢, 2)|°]

Eq, [[IVs:(t, 2) %]

Proof.
Eq.[lls7.(t, 2)]1%]
=E,, [€4tHAST(t7 Z)Hg + e‘l’fHVST(t7 Z)Tsr(t, z)“i + 2e4t(AsT(t, z))T (Vsr(t, z)TST(t, z))]

)
<E, [4e4t|Asr(t, )13+ 56| Vs, (t,2) sty 2)||o| 2a-b < LB 4 4)jp|12 for a,b € RY

5 5
16 Ea, [18s:(t 2)[13] + 7€ Eq, [[IV]]s (£, 2) 3113]

5 5 d 4
< 16“1[‘3% [1As,(t, 2)[3] - gemaeq[HSr(t’Z)ll ]
40C d?ett 5e2td  d o7 10 5, d 5
= — —E r(ts — —e“—E ~(t,
= 13(62t— 1)3 4(6215_1) dt Qt[HS (t, 2)|] ] 136 dr [HVS ( Z)HF]
265 o, d 4
1046 thQt[HST(t’Z)” ]

where the first equality uses Lemma A.10, the second last inequality uses X/, (m = 4) bound
from Lemma A.13 and the last inequality uses Lemma A.16 for the first term. Now since
265

4, [||s-(t, z)]|*] will be negative from Lemma A.13, then here we can use 252 < 3 leading to

the final bound. O

Now, we have the following Lemma for bounding the discretization error z(¢):
E [||zk—0.5 — Zx—0.5113]-
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Lemma A.18. The discretization error for each interval E [sz,o,g, — Zr_05 H%} discussed Lemma
A.3 can be bounded as (where hj, = hy, + hi—1 and recall tj,_o = tj, — hiy — hi—1):

_ . 20, + 10)d® + 24d) (h},)%eM: (" — 1
e E [llzk—0.5 — 2k70.5||%] < <( : (1- 6_2)“55))3 | |

3, A
- OBE o oo (B, (1950 0020 E] + 38 st 21 )

tp—2

5(h))3eed
- 50—y [ Eallsr @I,
Proof. Using Lemma A.4 and Lemma A.17, it can be bounded as
e 22 [sz_o 5 — Zk—0. 5”%}
tr
< e 2th-2 (hk+hk 1)? / e4tE[Hs;(t,z(t))||§] dt
th_2
hi, + hyo_ i
< Meh’ﬁ'hk*l/ €2teq [||sr(t,z(t))H§} dt
2 tp—2
hie + hi_1)? (400, a2 Y d
S Mehlﬁrhk_l/ OCd : o i 7E‘1f[||57’(t72)H2] i
2 Bt ey at

(hi +he—1)* 4, ine /tk 10 d 27, d 4
_ AT k=L hkthya — R, Bl )
2 e - et B Vst 2)IE] + g Bacllsr (&, 27T | ) dt

(C 20Cdd2(hk+hk 1)3 hi+hi— 1( hi+hir_1 _1)
13( — e~ 2tk— 2)3

5(hk + hg_ )Sethrhk_ld t b
e ([ Bl P~ [ 2Bl e 2P
te—2

i + hy—1)® 10
Ot B s e (W, (10,0, 38, s, )]

ty
+ (hk; + hk_1)3ehk+hk,1 / 2e4t

tp—2

10
(g5 (195,21 + 3B lls, (82 )

@ 20Cqd? (g, + h—1)3 (e Hhe=1 — 1) 10(hy + hg_1)3elethe- 1d/
tp—2

13(1 — e—2tk—2)3 8(1 — e—2tk—2) eZt 1 dt
b 20(2d% + 6d)  6d> +12d
h hi_ 3 hk“’hk—l/ 4t dt
+ (hi + hi—1)"e - e 13(e2t — 1)2 (€2t —1)2
(hy, + hk—1)3 he_s 10 tk
— g e | 3B (Vs ] 3B s, (1,2
th—2
5(hk + hk_l)Sethrhk—ld
8(1 — e—2tr-2) [ Qtqu[”Sr(t z)| Htk .
d T+ + &+ hp_q1)3etethe—1(ghethe—1 _
< 2Cy + 10)d? + 24d) (hy + h 3ehwth hi+h 1
- (1 — e*2tk—2)3
(h + hi—1)? 10 b
-y e e 5B (I (8 )IE] + 3Bq [l (¢ 2)]]
tp—2
5(hg + hk_l)gethrh"’—ld 9
N 8(1 — e—2tk2) [e*Eq.[lls+(t, 2)l| Htk ,
where (c) uses [ (62(:6_t1)3 dt < "‘fitf;z . fk ] em 1dt fk ) e2t = 1log (egf;iz—_ll) log(1 +

x) < x for the first term and implies applying the Integration By Parts to the second and third terms,
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where in the second term, we have considered 2 £E,, [||s,(t, z)||%] as one term and use the max

value of the remaining term since we know from Lemma A.11 that e* £ E, [||s,(¢,2)[?] < 0, in
step (d)we recollect the integral terms and since they have a positive contribution, just replace the

term inside the integral with the upper bound from Lemma A.8. In the last step, similar to step (c )
2t —2

. 2ty | _
we have used j;i" 62, ldt = ;log (e;kf,z_ll), for f;’i 7@21 rdt < ey ftk . 62, -d
and finally log(1 + z) < z .

A.5 PROVING THEOREM 3.1

We first discuss a lemma based on standard calculus which would be utilized in the theorem proof.

Lemma A.19. For some fixed c € (0, %) and denoting a = 2(1 —¢), b := 2 — c. Forz € (0,1)
define
2 — )3 a3 et 2 — ) adet®
Qoo er M) > 9(@)= 2-o) =
et — (eam _ 1) (1 _ 67%93)
Then f and g are increasing on (0,1) and there exist absolute constants Cy,Cyq > 0 (independent
of ¢ and x) such that for all x € (0, 1),

f(z) =

0< f(z) — f((l — C)Qx) < Cy cx?, 0<g(z)— g((l — C)QLL') <Cy 702(170)2 22
l—e "< 7
Proof. Using % log(e®* — 1) = %
2
3 ae’® 3 ae’® e
l ! = — b — 1 ! = — b — — 2c
(og fY(2) = b= g (logg)/(e) = b g -
For ¢t > 0 we have the elementary bound , T < t ; hence
2
ae®® 1 5o 1
; <a+— —=— < —.
e — 1 T edzr 1 T

Therefore, for z € (0,1),

3 1y 2 2
! _ —_ —_ = - _
(log f)'(z) = —+b <a+x) “+e> = >0,

and ; , ) ) 1
(ogg)(z) > Z+b—(a+-)——=—4c> - >0
€ x x x x
Hence f and g are increasing on (0,1). Using €% — 1 > ax and (2 — ¢)® < 8, b < 2, we get for
€ (0,1)
)33 b 3 2
flay = Eowet (BUC e

ear _ | ax

Consequently,

f(x) < 8e? aczr

From above, we have:

F(@) = f(@) (log f) (z) < f(x)(g 1) < 8% (% +2) < d0c%.
Similarly,
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Now fory := (1 —¢)?z € (0,2), 2 —y = (1 — (1 —¢)?)z = (2c — ¢*)x < 2cz. By the mean value
theorem, for some ¢ € (y,z) C (0,1),

Flx) = f(y) = f'(€) (z — y) < 40e% € (2cx) < 80€? ca?,

which yields f(z) — f((1 — ¢)?z) < Cy cx? where Cy = 80e? is an absolute constant. Likewise,
for some 1 € (y, x),

9(@) = g(y) = ' () (x — ) < 406 ——— (2cx) < 80¢* ——— 4

_ a2
1— ,77 1—e 27

m‘@
N

since t — 1 — e~ ? is increasing and 1 < x. This gives

C
.%'2

9(@) — g((1 = 0)%2) < C) ——

—e -

where Cy = 80¢? is an absolute constant.

Proof of Theorem 3.1. Now, using the Lemmas discussed above, we provide the proof for Theo-
rem 3.1.

Proof. We first bound the discretization error term for the rescaled process in Lemma A.18 aggre-
gated across all the intervals. For this, using k), = hj + hi_1, we bound it as following:

K+1 672tk_2 )
Z o re— 1E [2k—0.5 — Zk—0.5]3]
k=2

Kf ((2C4 + 10)d? + 24d) (hj,)3e" (e — 1)

62hk 1 — 1)(1 — 6—2tk,2)3

K+1 3 10 to_o
-3 S [o (g 9t 8 2l .91 ) |
k
K+1 th—
h/ 3 hk 5d62t ) k—2
+ Z 2h;C 1 |:4<1 _ e*th—Q)]eq [”ST(taz)H ]:|t
k
R ((2Cq +10)d? + 24d) (b, )3t (e — 1) (hh)3eh? -
= Z (e2hi—1 —1)(1 — e—2tr—2)3 e2h1 _ 1 (to)
(hé)3eh3 (hy)3e (hj)%e"s
3~ R(t Ry(t Ry(t
T =1 )+ G g Z ey 10+ Gy — ey ()

K-1 h! ’ / 3
(Ryo)Pelire (hj,)3ems (P 41) (W )?
"2 ( e — 1 (e2he-r — 1) Rlt) - (e2hre — Rlte) = Gy =1 Blte)

k=2 1) E—
K-1 y o
; S A VO
P (e2hiet — 1)(1 — e=2tr)  (e2he—1 — 1)(1 — e—2tn—2)
(h/K-~-1)3‘3h}“r1 (h’K)Seh/K

- (e2hx —1)(1 — e~2tx-1) Ri(tr+1) — (21 —1)(1 — e—2tx—2) R(tx)

where R(t) = g€ (53Eq, [[IVse(t,2)[IF] +3Eq (s (£, 2)[Y]) = 0. Ri(t) =
2t
5By [llsr(t,2)]%) 2 0.
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Selecting the step size. Now for the mentioned choice of the step size hy, = tx — tp—1 =
cmin{1,t;}, we will have t,_1 = (1 — ¢)tg, hg—1 = (1 — ¢)h when t;, < 1 and hy, = c for
remaining. Since ty = §, we will have:

§=1—-cM; T-1=c¢K+1-M)

) ) log( )
for some M < K + 2 with t); = 1. Thus, we will have ¢ < M and will have a very small
value for the mentioned condition K > d( + T'). Also, for the coefficients of terms containing R,
fort; < 1wewillhave tx_1 = (1 — ¢)ty, hp—1 = (1 — ¢)hg, hx_2 = (1 — ¢)?hy, and thus, we will
have:
(hk+2+hk+1)3€hk+2+hk+l _ (hk+hk71)3€hk+hk71 _ (2—c)3hi+2e(2*°>hk+2 B (2_6)3}126(2,0)%

2hei1_q k1 _1 20— hy o 2(—c)hy

for

k when t;42 < 1 and O for the rest. This can be written as f(hx42) — f(hg) where f(z) =
% would be an increasing function w.r.t.  for x < 1 in the small ¢ region (c < 0.5).

For this, we will also have f(z) — f((1 — ¢)?x) < cx? (Lemma A.19). Similarly for the Ry, we
3.8 2—c)x
have to consider: g(z) = (2=)’z%c7)

and it will also be increasing on (0, 1) for

(62(1_@“”—1)(1—57M
small ¢ (¢ < 0.5) and g(z) — g((1 — ¢)?x) < ﬁx from Lemma A.19. Since hy(;0) is
an increasing sequence, we can use the upper bound for R( ), R1(t) using Lemma A.8 as:

4d® +11d 5d?
Rt) < ———; Ri(t) L ———r
( ) = (1 _e,Qt)Q ’ 1( ) —= 8(1 _ 672,5)
. (142%02d | 6ylogd+3

Also, the term C; from Lemma A.15 is Cy = W < 12 for d > 10 and

thus we will have Cy as O(1). Since R(t), R1(t) > 0, the negative terms corresponding to
R(tk), R(tk+1), R1(tx), R1(tx 1) can be dropped and we will finally have:

K+1 e_Ztk'—Z

> =i —E [lzk-05 — Ze-0sll}]

k=2

. (204 + 10)d2 + 24d) (h},)3es (e — 1)
Z thk 1 1)(1 _ €—2tk,2)3

(h’2)36h2 (hg)Seh:’S (h’Q)Sehlz
wah —1 Blto) + g —7 R(t) + (@ — 1){1 — o—2h) Ri(to)
f = 3ehi 3_h,
(hé)gehs (h;@+2) e "k+2 (h;ﬂ) el
" (€2h2 = 1)(1 —e72) Ralta) + Z e2hir — 1 (€2hk71 -1 R(ty)
k=2
K-1 , ,
h/ )3 P (h;c)i’)ehk
B te
+§<§M“U@%%Q(WM—MMeMQJMU
K+1 2,3
d°hy, 2 R (to) Ri(t)
22 1—e— 2tk2 +h (R( )+T +h3 R( )+m
K—-1 E
Rl(tk) CSRl (tk)
+ Zchi-q-z R(ty)+ — )4 Y S
1—e¢ (1 . )
k=2 T
M K+1
Eety d*c? 13 242
S Z m + Z (1 - 6—21‘,;@72)3 + (1 _ e—2to)2 + (1 — e—2t1)2
k=2 WA
K+1
S d*c?
k=2

where t;, < 1for k < M. Now using Lemma A.2, Lemma A.1, Lemma A.3 and the scaling back the
above bound on the aggregated error for the rescaled process z, we will have (using u < e*—1 < 2u
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foruw € (0,1)):
KL (pe,|2,)

K+1
< KL (P [Bescn) + By oy | D0 KL (Brasgon Claw) [P e (L))
k=2
K+1 672hk*1 )
=KL (ptml ||ptx+1) + Z mEka_o.s) — Tr-osl2
k=2
e s 12 : 2
R C = DE[[|s(tk, zk) — S(tk, k]
K+1 K+1
5 KL (ptK+1 Hﬁtx+1) + Z d*c? + Z hk]E[||s(tk7xk) - ‘§(tk>xk”2]
k=2 k=2

The last term can be just bounded using Assumption 2.1 and the first term is the initialization error
discussed below.

Initialization Error. The term KL (pt,., ||Ptx.,) is the error due to initializing the generation
using the Normal distribution and can be bounded via convergence of the forward OU process after
the total time 7" (Chen et al., 2023c¢):

KL (ptK+1 HﬁtKJrl) S (d + mQ)e_T
where my = E[||x0]|?]. Thus, we have the final expression as:

KL (ptl Hﬁtl) S.z (d + mQ)e_T + dQC3K + T&—?core
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