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ABSTRACT

We address the problem of cross-market index tracking, replicating the performance
of a foreign benchmark using only domestic assets, a task particularly relevant for
markets with limited access to international investments. We propose a novel opti-
mization framework that incorporates a topology-informed regularization term to
extract persistent structural patterns from time-series price data. Our method lever-
ages topological alignment between markets to construct robust index-mimicking
portfolios without requiring constituent-level information. We further introduce a
cost-aware formulation that accounts for transaction costs and their compounding
effects. Empirical results on real-world data show notable gains over traditional
tracking methods in both accuracy and robustness. Our approach holds broader
potential for general time-series decomposition and synthesis.

1 INTRODUCTION

1.1 FINANCIAL INDEX TRACKING PROBLEM

Constructing efficient index-tracking portfolios, which aims to replicate the performance of a bench-
mark index without knowledge of its constituent assets, is a fundamental yet challenging problem
in quantitative finance. Even when the constituent assets are known, full replication by holding all
components of an index is often impractical due to substantial transaction costs, liquidity constraints,
and portfolio management complexity. Furthermore, selecting an optimal subset of assets to minimize
tracking error is inherently challenging, as it represents an NP-hard problem, rendering exact solutions
computationally prohibitive in large asset universes.

Two distinct lines of research have emerged in addressing this problem. The first focuses on the
development of heuristic or evolutionary algorithms to directly solve the constrained optimization
formulations of index-tracking portfolios (e.g., Beasley et al., 2003; Chang et al., 2000; Canakgoz
& Beasley, 2009). These methods offer practical near-optimal solutions and better scalability than
exact methods, especially when facing large universes and complex constraints like cardinality and
transaction costs. Second, another stream emphasizes matching the factor-level exposures of the
index through factor models or related techniques (e.g., Lamont, 2001; Roll & Srivastava, 2018;
Corielli & Marcellino, 2006b; Jiang & Perez, 2021). These approaches construct factor-mimicking
portfolios by aligning portfolio exposures with the underlying risk factors of the benchmark, rather
than its return, effectively replicating index performance with fewer assets and reduced variance
(Fama & French, 1993; Roll & Srivastava, 2018).

There is a growing demand for novel methodologies that effectively address high dimensionality,
redundancy, and the compounding effects of transaction costs in constructing robust index-tracking
portfolios under limited information. Conventional approaches have yet to successfully tackle these
challenges in a unified and principled manner. Recent studies have integrated machine learning and
deep learning frameworks to enhance predictive accuracy and robustness in index-tracking problems
(e.g., Shu et al., 2020; Dai & Li, 2024). Such approaches can incorporate alternative risk metrics
and more general models, aiming to overcome the limitations of classical methods in quantitative
finance. However, they still rely on various assumptions and may not fully capture the complex
structure and dependencies within large-scale financial datasets. Importantly, replicating a non-
standard financial index composed of non-tradable assets requires a fundamental understanding of its
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underlying dynamics to achieve robust tracking performance, which standard methods consistently
fail to accomplish.

1.2 TOPOLOGICAL DATA ANALYSIS FOR TIME-SERIES FEATURIZATION

A key innovation in our approach is the integration of Topological Data Analysis (TDA) to manage
structural complexities inherent in the underlying dynamics of the target index. TDA, a rapidly
developing area within data science and machine learning, leverages topological and geometric tools,
particularly persistent homology, to identify meaningful structures in complex datasets. Recent
studies have highlighted its unique strength in extracting salient features from highly dynamic time
series data, where traditional correlation-based methods typically underperform (see, e.g., Gholizadeh
& Zadrozny, 2018; Ravishanker & Chen, 2019; El-Yaagoubi et al., 2023; Chaudhari & Singh,
2023, for reviews). In the finance domain specifically, TDA has been effectively used in market
regime detection, asset clustering, and systemic risk assessment, consistently demonstrating superior
sensitivity and robustness to structural changes relative to conventional statistical methodologies
(Gidea & Katz, 2017; 2018; Goel et al., 2020; Ruiz-Ortiz et al., 2022).

Despite growing interest in the application of TDA in financial analysis, its potential in the context of
index tracking remains largely unexplored. A notable exception is the approach by Goel et al. (2020),
which employs TDA as a preliminary filtering step to reduce the asset universe prior to applying
conventional optimization techniques in a subsequent stage. However, direct integration of TDA tools
into the index tracking problem has not been formally addressed in the literature, leaving a critical
gap in methodologies for handling structural complexity in portfolio construction.

1.3 OUTLINE AND CONTRIBUTION

We specifically address a novel and challenging application scenario: tracking foreign market indices
using only domestic stocks. This is particularly important for developing countries, where financial
markets are relatively immature. Such cross-market indexing task is inherently complex as the
domestic market may not fully span the risk factors underlying the foreign benchmark, requiring
nuanced selection of proxy assets. Moreover, direct investment in the foreign market may be restricted
or prohibitively expensive, further underscoring the importance of effective domestic replication
strategies. Existing literature on the cross-market index replication primarily uses linear factor models
or heuristic optimization methods, aiming to approximate foreign benchmarks using domestically
available assets (e.g., Lamont, 2001; Roll & Srivastava, 2018; Errunza et al., 1999; Corielli &
Marcellino, 2006a; Chavez-Bedoya & Birge, 2014; Hanschel et al., 2014). However, these methods
predominantly rely on parametric factor models and often fail to account for structural differences
and partial factor overlap between domestic and foreign markets, resulting in suboptimal tracking
performance. Moreover, they fail to accurately account for the compounding effects of transaction
costs in portfolio construction.

In contrast, we propose a comprehensive optimization-based framework that integrates topological
data analysis (TDA) directly into the objective function as a regularization term. While traditional
replication methods focus on minimizing local tracking errors, our TDA-based penalty captures
persistent, macro-level structural patterns using features derived from persistent homology. Notably,
our approach relies solely on price data to uncover latent topological correspondences between
markets. By prioritizing domestic stocks that exhibit topological alignment with the movement of
the foreign index, we construct robust index-mimicking portfolios capable of effectively tracking the
target benchmark. Our key contributions are summarized as follows:

1. Novel TDA-based Methodology for Time-Series Analysis: We introduce a novel TDA-based
framework for index tracking that captures complex interdependencies among assets by identi-
fying persistent structural patterns in time-series dynamics. This enables the construction of
robust index-mimicking portfolios, particularly effective in detecting transient correlations and
regime shifts, features often missed by traditional methods. Importantly, beyond index tracking,
our approach holds broader potential for general time-series decomposition and synthesis.

2. Cost-aware Index Replication: We propose a flexible optimization framework that explicitly
incorporates transaction costs and their compounding effects into cross-market index replication,
and demonstrate its effectiveness using real-world data. This significantly broadens the scope
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of indexing strategies by extending conventional single-market approaches to more complex
cross-market settings with critical trading constraints.

2 PRELIMINARIES

2.1 PERSISTENCE DIAGRAM AND LANDSCAPE

In this section, we introduce the fundamental notations and key concepts from TDA that will be used
throughout the paper. For further details and formal definitions, we refer the reader to Hatcher (2002);
Edelsbrunner & Harer (2010); Chazal et al. (2016b) as well as Appendix A.

When inferring topological properties of a metric space (X, d) (usually a subset of a Euclidean space)
from a finite collection X of observed points from it, we rely on the notion of simplicial complex,
which can be seen as a high dimensional generalization of a graph. Given a set V , an (abstract)
simplicial complex is a set K of finite subsets of V such that α ∈ K and β ⊂ α implies β ∈ K.
Each set α ∈ K is called its simplex. The dimension of a simplex α is dimα = cardα − 1, and
the dimension of the simplicial complex is the maximum dimension of any of its simplices. Note
that a simplicial complex of dimension 1 corresponds to a graph. Common constructions include the
Vietoris–Rips (or Rips) complex and the Čech complex (see Definitions A.5 and A.6 in Appendix A.2
for formal definitions).

A filtration F = {Fa}a∈R is a collection of subsets of X such that a ≤ b implies that Fa ⊂ Fb.
Given a filtration F and for each k ∈ N0 = N ∪ {0}, we write Dgmk(F) to denote the persistence
diagram corresponding to the k-th homological feature. Given two filtrations F and G, the bottleneck
distance between their associated persistence diagrams Dgmk(F) and Dgmk(G) is defined as

dB(Dgmk(F), Dgmk(G)) = inf
γ∈Γ

sup
p∈Dgmk(F)

∥p− γ(p)∥∞,

where Γ denotes the set of all bijections γ : Dgmk(F) ∪Diag → Dgmk(G) ∪Diag, and Diag
represents the diagonal subset {(x, x) : x ∈ R} ⊂ R2 with infinite multiplicity.

Persistence diagrams, as multisets of topological features, are challenging to analyze statistically
due to their non-Euclidean structure, lack of differentiability, and sensitivity to noise. To overcome
these limitations, recent work has introduced vectorized representations suitable for statistical and
machine learning tasks. Among them, the persistence landscape (Bubenik, 2015; 2020) is a widely
used, computationally efficient functional embedding into a separable Hilbert space.

Persistence Landscape. Given Dgmk(F), ∀k, we define a set of functions l ∈ R 7→ Λp(l) for each
birth-death pair p = (b, d) in Dgmk(F) as follows:

Λp(l) = max{0,min{l − b, d− l}}. (1)

For each birth-death pair p, Λp(·) is piecewise linear. Then the j-th order persistence landscape
λj : N× R→ [0, Lmax] of Dgmk(F) is defined as

λj(l) = jmax
p∈Dgmk(F)

{Λp(l)}, j ∈ N, l ∈ [0, Lmax], (2)

where jmax denotes the j-th largest value in the set.

2.2 STATE SPACE RECONSTRUCTION VIA TIME-DELAY EMBEDDING

We focus on time-series data, where the relevant topological structure is not directly observable
in its raw form. A widely adopted and theoretically grounded approach to address this is time-
delay embedding, motivated by Takens’ embedding theorem (Takens, 1981). Originally developed
for analyzing quasi-attractors in reconstructed state spaces, this method enables the recovery of
underlying dynamical structures. For further details, we refer the reader to Garland et al. (2016).

As in many prior studies (e.g., Pereira & de Mello, 2015; Perea & Harer, 2015), we construct a
time-delayed sliding window to extract geometric and topological features from temporal data. For
simplicity, we focus on one-dimensional time-series observations. Let f be a continuous function
defined on the non-negative real line, R+0. Since featurization is performed over a finite time horizon,
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Figure 1: Time series samples generated from a Brownian bridge and a combination of sinusoidal
functions (left). Corresponding point clouds obtained via time-delay embedding (middle). Persistence
landscapes illustrating the distinct topological features of each process (right).

it suffices to consider f(t) restricted to a compact interval t ∈ [0, T ], where T ∈ (0,∞). Then we
define sliding window operator SWm,τf : R→ Rm by

SWm,τf(t) :=
[
f (t− (m− 1)τ) , ..., f(t− τ), f(t)

]⊤
.

In other words, for a fixed function f the map SWm,τf generates the m most recent samples up to
time t through an equi-interval sampling process with a predefined gap τ ∈ N. Thus, τ and m can be
interpreted as the delay parameter and the embedding dimension, respectively. Given τ , m, and N ,
we construct the trajectory matrix Xf

m,τ,N ∈ R{N−(m−1)τ+1}×m as follows:

Xf
m,τ,N =


SWm,τf ((m− 1)τ)⊤

SWm,τf (1 + (m− 1)τ)⊤

...
SWm,τf (T )⊤

 =


x0 xτ . . . x(m−1)τ

x1 x1+τ . . . x1+(m−1)τ

...
...

. . .
...

xN−(m−1)τ xN−(m−2)τ . . . xN ,

 (3)

where we set x0 = f(0), . . . , xj = f(jT/N), . . . , xN = f(T ). We also write Xf
m,τ if we only

emphasize m and τ . The m-dimensional Euclidean space created by equation 3 is the sampled
reconstructed state space induced by f , and the quasi-attractor of interest is then the topological
pattern traced out by X in Rm. By Takens’ embedding theorem, there always exists a pair (τ,m)
such that the vectors generated via equation 3 are on a manifold topologically equivalent to the
attractor of the original dynamical system for f (Torku, 2016). Takens’ embedding theorem allows
one to assess the geometric structure of the attractor associated with an underlying dynamical system
via the time-delay representation in equation 3. This reconstruction captures essential features of the
quasi-attractor, which has proven particularly effective for characterizing signal periodicity in various
applications (Robinson, 2014; Perea & Harer, 2015; Robinson, 2016). We refer interested readers to
Appendix B for further details. The selection of delay-embedding parameters (m, τ) is discussed in
Section 3.

2.3 MOTIVATING ILLUSTRATION

To motivate our approach, we illustrate how TDA effectively captures structural differences between
time series generated by distinct stochastic processes: (i) a Brownian bridge, and (ii) a combination of
sinusoidal functions with added low-amplitude noise. As shown in Figure 1, although quantitatively
characterizing the differences between the two time series is nontrivial, their time-delay embeddings
exhibit distinct topological structures that are clearly captured in the corresponding persistence
landscapes, without the need for any learning procedures.

3 TOPOLOGICAL FEATURE EXTRACTION

In this section, we describe a procedure for extracting robust topological features from time-series
data, which serve as informative representations of the intrinsic structure of the underlying process.
Specifically, we obtain point cloud representations via time-delay embedding equation 3, and subse-
quently compute persistence landscapes equation 2 to capture topological features of the underlying
dynamical system. This procedure can be summarized as the following three-step sequence.
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Algorithm 1: Topological Time-series Feature Extraction
Input: Time series sequence {x0, x1, ..., xN}

1. Construct the point cloud X ⊂ Rm via the trajectory matrix equation 3 with m, τ

2. Compute the persistence diagrams {Dgmk(X)}k (for either the Rips or the Čech filtration)
3. From each Dgmk(X), compute persistence landscapes λj

Output: The vectors {λj(iκ)}k,i for 1 ≤ k ≤ Kmax, 1 ≤ j ≤ Jmax, and 0 ≤ i ≤ ⌊Lmax/κ⌋.

Namely, the output is a vectorized representation of λj(·), discretely evaluated at resolution κ. Several
variants of Algorithm 1 are also possible. For example, we may use alternative filtrations, such
as Alpha complexes (for a formal definition, see Definition A.7 in Appendix A), and persistence
landscapes can be replaced with other 1-Lipschitz vectorizations of persistence diagrams. The
values of Kmax and Jmax are often user-specified, but in practice, they can be determined from data
by increasing them until no additional significant patterns are observed. The performance of the
algorithm is generally stable with respect to the choice of Lmax and κ, as long as Lmax is large
enough to cover all persistence landscapes and κ is sufficiently small to represent the shape of each
landscape function.

To date, no consensus exists on selecting the embedding dimension m and time delay τ ; existing
heuristics remain nuanced and often subjective (Garland et al., 2016). A widely adopted approach for
selecting m is the false nearest neighbors (FNN) algorithm (Kennel et al., 1992), which we employ
as the default method in this study, implemented via the tseriesChaos R package. Selecting an
appropriate time delay τ is typically more subjective and often depends on expert judgment. Here,
we adopt a hybrid of grid and random search for τ in a similar spirit to Kim et al. (2020). However,
a range of established heuristics from the literature could also be used (see Garland et al. (2016);
Bradley & Kantz (2015) for a comprehensive discussion). A detailed investigation is deferred to
future work.

The computational bottleneck of Algorithm 1 lies in Step 3. For homology up to dimen-
sion l − 1, computing persistent homology using Rips or Čech complexes has time complexity
O(n2l log3 n log log n). Using Alpha complexes reduces this to O(n2⌈l/2⌉ log3 n log log n) in the
worst case, and to O(n2 log3 n log log n) under small random perturbations (Chen & Kerber, 2013;
Boissonnat et al., 2018). Thus, Alpha complexes are often preferred due to their computational
efficiency.

We now show how Algorithm 1 enables access to the topological features of the underlying signal
process. Consider a true signal function f : [0, T ] → R from Section 2.2. We assume that the
signal f is corrupted by an additive signal noise ζ, yielding the observed trajectory matrix Xf+ζ

m,τ .
We are concerned with the topological features of the true, noise-free signal f . Thus, we analyze
the robustness of the proposed topological featurization procedure to both noise and sampling, with
the goal of recovering the intrinsic topological structure of f . The following lemma shows that
the persistence diagram computed via Algorithm 1 remains close to the target persistence diagram
Dgmk(f), and does not diverge arbitrarily under signal perturbations. Here, Dgmk(f) is the
persistence diagram of the entire point cloud of the signal {SWm,τf(t) : t ∈ [0, T ]}.
Lemma 3.1. Let f : [0, T ]→ R be a Lipschitz function with Lipschitz constant Lf , and assume that
∥ζ∥∞ <∞. Then, we have that

dB(Dgmk(X
f+ζ
m,τ ), Dgmk(f)) ≤

√
m

(
∥ζ∥∞ +

LfT

N

)
, (4)

where the persistence diagrams are computed using Rips or Čech filtration.

The above result leads to the following stability result due to Bubenik & Dłotko (2017).
Theorem 3.2. Let λj,Xf+ζ

m,τ
and λj,f be the j-th order landscape functions from Dgmk(X

f+ζ
m,τ ) and

Dgmk(f), respectively. Then,

∥λj,Xf+ζ
m,τ
− λj,f∥∞ ≤

√
m

(
∥ζ∥∞ +

LfT

N

)
. (5)
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The bound in Theorem 3.2 arises from the discretization of observations in time and is inversely
proportional to the number of observations N , with an additional contribution from the signal noise
ζ. Consequently, the result implies that for sufficiently large N and small ζ, the proposed method
reliably approximates the topological structure of the underlying signal.

Lemma 3.1 and Theorem 3.2 rely on minimal assumptions, but they do not guarantee consistency
due to the presence of ∥ζ∥∞. In the following, we impose an additional regularity condition, namely,
that ζ is Lipschitz continuous, which ensures parameter stability and establishes the consistency of
Dgmk(Xf+ζ

m,τ,N ) as N →∞, and still much weaker than assuming zero noise, i.e., ζ = 0.

Lemma 3.3. Let f, ζ : [0, T ]→ R be a Lipschitz function with Lipschitz constant Lf and Lζ , and
suppose that the persistence diagrams are computed using Rips or Čech filtration. Then, we have that

dB(Dgmk(X
f+ζ
m,τ,N1

), Dgmk(X
f+ζ
m,τ,N2

)) ≤
√
m(Lf + Lζ)T

min{N1, N2}
,

dB(Dgmk(X
f+ζ
m,τ,N ), Dgmk(f + ζ)) ≤

√
m(Lf + Lζ)T

N
.

An analogous result holds for the landscape λj,Xf+ζ
m,τ,N

as well, as established in the following theorem.

Theorem 3.4. Let λj,Xf+ζ
m,τ,N

and λj,f be the j-th order landscape functions from Dgmk(X
f+ζ
m,τ,N )

and Dgmk(f), respectively. Then, we have that

∥λj,Xf+ζ
m,τ,N1

− λj,Xf+ζ
m,τ,N2

∥∞ ≤
√
m(Lf + Lζ)T

min{N1, N2}
,

∥λj,Xf+ζ
m,τ,N

− λj,f+ζ∥∞ ≤
√
m(Lf + Lζ)T

N
.

Lemma 3.3 and Theorem 3.4 demonstrate that consistent robustness can be achieved: i.e.,
∥λj,Xf+ζ

m,τ,N
− λj,f+ζ∥∞ → 0 as N →∞ and ∥λj,Xf+ζ

m,τ,N
− λj,f+ζ∥∞ → 0 as N →∞.

4 TOPOLOGY-INFORMED INDEX TRACKING

4.1 SETUP

We assume access to the price data of N basis assets used to track the target index over T + 1
time points, t = 0, 1, . . . , T . For each asset, j = 1, . . . , N , the log returns are computed as
rjt = ln

(
Pj,t

Pj,t−1

)
, t = 1, . . . , T , where Pj,t and Pj,t−1 denote the closing prices of the j-th asset on

days t and t− 1, respectively. We define the T ×N matrix R = [r1, . . . , rN ] to represent the return
information of all basis assets, where each column vector rj = [rj1, . . . , rjT ]

⊤ denotes the return
series of the j-th asset over the time horizon. We denote by y ∈ RT the return series of the target
index over the same time horizon. Starting from t = 0, our objective is to dynamically update, or
rebalance, the portfolio weights w = [w1, . . . , wN ]⊤ assigned to the basis assets in order to closely
track y, the performance of the target index.

Loss Function. Frequent rebalancing of portfolio weights may incur substantial transaction costs
due to repeated buying and selling of assets. These costs can significantly impact the overall tracking
error, particularly depending on the liquidity and trading characteristics of our basis assets. We let
fb, fs ∈ [0, 1]N denote the vectors containing the fractional costs associated with buying and selling
one unit of each asset, respectively. We incorporate transaction costs into our tracking procedure to
account for their cumulative impact on portfolio performance over time, i.e., compounding effects. Let
Ct and Gt denote the net asset value of the tracking portfolio and the total transaction cost incurred at
time t, respectively. Given the portfolio weights prior to rebalancing, wprev ∈ [0, 1]N , and letting b =
1(w > wprev) ∈ {0, 1}N denote the indicator vector identifying assets purchased during rebalancing,
the transaction cost at time t is given by Gt = Ct

[
{fb ⊙ b− fs ⊙ (1− b)}⊤(w − wprev)

]
, where

⊙ denotes the Hadamard (elementwise) product.

After rebalancing, the net asset value of the tracking portfolio is reduced by the transaction cost Gt.
To offset this loss and ensure that the final net asset value over the prediction window aligns with
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the hypothetical value that would have been achieved without transaction costs, one may consider
deliberately overestimating the target index y during tracking. Let Tpred denote the length of the
prediction window, i.e., the time horizon until the next portfolio rebalancing. The transaction cost
compensation then can be formulated by introducing an adjustment factor α such that the net asset
value at the end of the prediction window matches what would have been achieved in the absence of
transaction costs. Specifically, we require

Ct ·
t+Tpred∏

i=t

exp(yi) = (Ct −Gt)

t+Tpred∏
i=t

{α exp(yi)}

which yields the closed-form solution: α = ( Ct

Ct−Gt
)1/Tpred . Consequently, the adjustment factor

can be expressed as α = ( Ct

Ct−Gt
)1/Tpred = ( 1

1−{fb⊙b−fs⊙(1−b)}⊤(w−wprev)
)1/Tpred , which is fully

determined by the portfolio weights w, given that all relevant quantities fb, fs, and wprev are known,
and the indicator vector b is a deterministic function of w. Hence, we define the loss function as

L(w) :=

∣∣∣∣∣
∣∣∣∣∣y + ln

{(
1

1− {fb ⊙ b− fs ⊙ (1− b)}⊤(w − wprev)

)1/Tpred
}
−Rw

∣∣∣∣∣
∣∣∣∣∣
2

2

. (6)

Topological Regularization. It has been shown that accurately tracking return movements based on
recent historical data does not necessarily guarantee accurate tracking performance in the future (e.g.,
Corielli & Marcellino, 2006a; Roll & Srivastava, 2018). In contrast to previous approaches that rely
on factor exposure matching, as discussed in Section 1.2, we address this issue by introducing a topo-
logical regularization framework. Specifically, building on the topological time-series featurization
methods introduced in Section 3, we aim to minimize the topological discrepancy between the target
index y and the tracking portfolio Rw by incorporating the following regularization term:

Rtop(y,Rw) =

Kmax∑
k=0

Jmax∑
j=1

||λk
j,y − λk

j,Rw||22, (7)

where λk
j,y and λk

j,Rw denote the jth-order persistence landscapes of homological dimension k
computed from y and Rw, respectively. While such topological regularization has proven effective
for robust feature representation (Chen et al., 2019; Moor et al., 2020), it has not been formally
explored in the context of time-series analysis, let alone in index tracking.

4.2 OPTIMIZATION

At each rebalancing step, we aim to solve the following optimization problem.:

minimize
w∈RN

L(w) + γRtop(y,Rw)

subject to 0 ≤ w ≤ wmax, 1⊤w = 1,

b = 1(w > wprev),

Ct

[
{fb ⊙ b− fs ⊙ (1− b)}⊤(w − wprev)

]
≤ δ.

(P)

Here, γ ≥ 0 is a hyperparameter that governs the strength of the topological regularization term, while
wmax ≤ 1 specifies an upper bound on each individual asset weight; by default, we set wmax = 1.
The parameter δ is introduced to limit the total transaction cost incurred at each rebalancing step.

We now describe the gradient descent algorithm for solving equation P. Let wl denote the portfolio
weights at iteration l = 0, . . . , niter. The initial weights w0 are set uniformly across basis assets with
complete data, while assets with missing values, typically due to listing or delisting, are assigned
−∞. A softmax transformation is then applied to each wl to enforce the constraints 0 ≤ wi ≤ wmax,
and

∑N
i=1 wi = 1. This transformation also effectively excludes assets with weights set to −∞, as

their softmax values become zero. Next, we compute the gradient ∇wl

(
L(wl) + γRtop(y,Rwl)

)
,

which exists almost everywhere as shown in the following proposition.
Proposition 4.1. L(w) + γRtop(y,Rw) from P is differentiable almost everywhere.
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Algorithm 2: Gradient Descent Algorithm for Cost-aware Topological Index Tracking
1 Known parameters: fb, fs, wprev

2 Hyperparameters: m, τ , Tpred,Kmax, Jmax, γ, ρ
3 Input: Log return of basis assets and target index: R = [r1, . . . , rN ] ∈ RT×N , y ∈ RT

4 Initialize w0 ∈ RN

5 for l = 0, . . . , niter − 1 do
6 Normalize weights: wl ← softmax(wl)

7 ComputeRtop(y,Rwl;Kmax, Jmax) from Algorithm 1
8 l(wl) := L(wl; fb, fs, wprev, Tpred) + γRtop(y,Rwl;Kmax, Jmax)

9 Gradient update with projection: wl+1 ← proxρıC
(
wl − ρ∇wl l(wl)

)
10 Output: Optimized weights: wniter ∈ RN .

We then apply the proximal gradient method to solve equation P. Define the set C := {w |
b = 1(w > wprev), Ct

[
{fb ⊙ b− fs ⊙ (1− b)}⊤(w − wprev)

]
≤ δ}. This leads to the core up-

date step of wl+1 ← proxρıC
{
wl − ρ∇wl

(
L(wl) + γRtop(y,Rwl)

)}
, where ρ is the step size

and proxρıC (·) denotes the proximal mapping defined as proxρıC (z) = argminx∈RN (ıC(x) +

∥x− z∥22 /2ρ) , where ıC(x) is 0 if x ∈ C and ∞ if x ̸∈ C. The complete procedure is sum-
marized in Algorithm 2, which is essentially gradient descent followed by projection onto C. By the
next proposition, C is indeed convex, ensuring that the projection onto C is uniquely and well-defined.
Proposition 4.2. C is a convex set.

5 CASE STUDY: TRACKING OFFSHORE MUTUAL FUNDS

We apply the proposed method to a novel cross-market index replication problem: tracking offshore
mutual funds. Specifically, we aim to accurately replicate the performance of a U.S.-based mutual
fund with undisclosed holdings using only exchange-traded funds (ETFs) that are tradable in the
South Korean market. Despite its advanced economic status, South Korea’s financial market is often
classified at the level of an emerging or developing market (Mari, 2023). As a result, investors
often seek exposure to foreign financial products; however, direct investment in offshore markets
is frequently restricted by regulations or subject to prohibitively high costs. Consequently, there
has been growing demand for indirect investment strategies, wherein investors seek to successfully
replicate the performance of a target foreign index using highly liquid and low-cost domestic assets
tradable in the Korean market.

We selected six U.S.-based actively managed funds that received a Gold rating from the Morningstar
Medalist Rating system as of January 2024. As the basis asset pool, we consider all stock-based
ETFs listed on the Korea Exchange. We use only price data, with no information about the target
constituents, over the period from January 9, 2012 to June 24, 2024. The price data are aggregated at
the weekly level, with each data point representing the weekly log return; however, we confirmed
that using daily data yields consistent simulation results. For each rebalancing period, the model is
trained on data from the preceding 104 weeks to predict outcomes over the subsequent 12 weeks. The
training window is then shifted forward by 12 weeks, and portfolio weights are updated accordingly.
This train–predict–rebalance procedure is iteratively applied until the entire dataset horizon is covered.
In all cases, the fractional transaction cost for buying or selling one unit of each asset is fixed at 1%.
Furthermore, we limit portfolio turnover to a maximum of 50% at each rebalancing point.

We compare the performance of six methods: (i) the factor-mimicking approach (FM); (ii) a return-
based index-mimicking model without TDA regularization or transaction cost adjustment (RM); (iii)
the linear programming–based index-tracking method of Canakgoz & Beasley (2009) (LM); (iv)
the TDA-based asset-filtering approach of Goel et al. (2020) (TF); (v) a model incorporating TDA
regularization only (TR); and (vi) a model with TDA regularization and compounded transaction cost
adjustment (TT). (i) and (ii) correspond to the two conventional baselines discussed in Section 1.1.
For (i), we employ the five-factor asset pricing model (Fama & French, 2015). The optimization-
based models are trained with an initial learning rate of 0.5, which is reduced by a factor of 0.1
whenever the loss plateaus for 5 epochs. Training is terminated if no improvement is observed for
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Models GSIHX PRWAX
MSE Corr β0 β1 MSE Corr β0 β1

FM 0.030 0.830 1.489 (±0.377) 0.903 (±0.015) 0.021 0.895 1.636 (±0.389) 0.891 (±0.017)

RM 0.027 0.925 0.770 (±0.220) 0.990 (±0.009) 0.019 0.932 0.902 (±0.183) 0.988 (±0.008)

LP 0.026 0.908 0.748 (±0.211) 0.990 (±0.009) 0.019 0.925 0.879 (±0.177) 0.988 (±0.007)

TF 0.030 0.681 1.430 (±0.360) 0.910 (±0.016) 0.021 0.558 1.521 (±0.378) 0.897 (±0.017)

TR(ours) 0.026 0.970 0.742 (±0.218) 0.990 (±0.009) 0.019 0.968 0.873 (±0.182) 0.988 (±0.008)

TT(ours) 0.024 0.975 0.595 (±0.208) 0.991 (±0.009) 0.015 0.972 0.669 (±0.166) 0.986 (±0.007)

Models GOODX ARTKX
MSE Corr β0 β1 MSE Corr β0 β1

FM 0.113 0.850 1.975 (±0.512) 1.679 (±0.029) 0.109 0.780 1.231 (±0.458) 0.914 (±0.013)

RM 0.098 0.904 1.012 (±0.423) 0.964 (±0.019) 0.089 0.773 0.745 (±0.387) 1.088 (±0.012)

LP 0.097 0.705 0.996 (±0.415) 0.965 (±0.018) 0.089 0.559 0.737 (±0.382) 1.087 (±0.012)

TF 0.110 0.635 1.820 (±0.500) 1.620 (±0.028) 0.108 0.585 1.221 (±0.436) 0.983 (±0.023)

TR(ours) 0.096 0.958 0.991 (±0.420) 0.967 (±0.019) 0.089 0.908 0.741 (±0.386) 1.087 (±0.012)

TT(ours) 0.091 0.942 0.904 (±0.409) 0.967 (±0.018) 0.088 0.901 0.625 (±0.384) 1.086 (±0.012)

Models TRIGX GQGPX
MSE Corr β0 β1 MSE Corr β0 β1

FM 0.036 0.781 1.941 (±0.427) 0.951 (±0.021) 0.094 0.620 1.698 (±0.387) 0.962 (±0.017)

RM 0.027 0.890 1.415 (±0.215) 0.995 (±0.007) 0.083 0.728 1.159 (±0.389) 1.022 (±0.013)

LP 0.026 0.645 1.409 (±0.210) 0.996 (±0.007) 0.082 0.532 1.144 (±0.384) 1.021 (±0.012)

TF 0.035 0.585 1.822 (±0.431) 0.954 (±0.021) 0.093 0.502 1.689 (±0.385) 0.963 (±0.019)

TR(ours) 0.026 0.902 1.407 (±0.213) 0.997 (±0.007) 0.082 0.833 1.147 (±0.387) 1.021 (±0.012)

TT(ours) 0.024 0.884 1.207 (±0.204) 0.997 (±0.007) 0.081 0.855 1.041 (±0.385) 1.020 (±0.012)

Table 1: Performance on six U.S. mutual funds. ‘Corr’ reports the out-of-sample correlation between
predicted and target returns. Better models yield lower MSE and higher Corr, with ideal calibration
characterized by β0 ≈ 0 and β1 ≈ 1. Both MSE and β0 are reported in 10−3 units.

more than 15 epochs, and hyperparameters of the topological regularization term are selected through
a hybrid of grid and random search. We evaluate models using three criteria: (i) mean squared error
(MSE) between predicted and target (log) returns; (ii) calibration via regressing predictions on targets,
reporting the intercept β0 and slope β1 (optimal: β0≈0, β1≈1 (Canakgoz & Beasley, 2009)); and
(iii) out-of-sample correlation between predicted and target returns.

Results. Table 1 shows that the proposed approaches achieve superior tracking performance. In
particular, it appears that topological regularization consistently improves prediction accuracy and
produces portfolios more closely aligned with the target index, as reflected in β0 and β1. By jointly
exploiting local dynamics and the global topological structure of the time series, our methods enhance
tracking accuracy, and transaction cost adjustments further improve performance by accounting for
compounded trading losses. Figure 3 in Appendix C visualizes the tracking performance of our
methods over the evaluation period.

6 DISCUSSION

We enhance conventional index-tracking methods by introducing topological regularization to capture
persistent structures and accounting for compounding transaction costs, addressing key limitations of
existing approaches. Variants of our strategy may also trigger rebalancing based on tracking error
thresholds rather than fixed intervals. A key limitation is the computational cost associated with
calculating persistence diagrams when m is large. To address this, our forthcoming work proposes
applying PCA to X between Steps 1 and 2 in Algorithm 1, significantly reducing the computational
burden. Additional future directions include improved hyperparameter tuning, alternative TDA
descriptors (e.g., Euler curves), and broader real-world applications.
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