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ABSTRACT

Neural Networks (NN) outperform humans in multiple domains. Yet they suffer
from a lack of transparency and interpretability, which hinders intuitive and effec-
tive human interactions with them. Especially when NN makes mistakes, humans
can hardly locate the reason for the error, and correcting it is even harder. While
recent advances in explainable AI have substantially improved the explainability
of NNs, effective knowledge exchange between humans and NNs is still under-
explored. To fill this gap, we propose Human-NN-Interface (HNI), a framework
using a structural representation of visual concepts as a “language” for humans and
NN to communicate, interact, and exchange knowledge. Take image classification
as an example, HNI visualizes the reasoning logic of a NN with class-specific
Structural Concept Graphs (c-SCG), which are human-interpretable. On the other
hand, humans can effectively provide feedback and guidance to the NN by mod-
ifying the c-SCG, and transferring the knowledge back to NN through HNI. We
demonstrate the efficacy of HNI with image classification tasks and 3 different
types of interactions: (1) Explaining the reasoning logic of NNs so humans can
intuitively identify and locate errors of NN; (2) human users can correct the er-
rors and improve NN’s performance by modifying the c-SCG and distilling the
knowledge back to the original NN; (3) human users can intuitively guide NN and
provide a new solution for zero-shot learning.

1 INTRODUCTION

From medicine (Shen et al., 2017) to self-driving cars (Buczak & Guven, 2015), machine learning
(ML) systems are increasingly ubiquitous and outperform humans in multiple tasks. Given the breadth
and importance of ML applications, it is critical for humans to use modern machine learning (ML)
models, such as neural networks (NN), safely and trustfully, and to avoid unpredictable mistakes
(Zerilli et al., 2019). This requires that humans should be involved in the ML loop. Thus, an
interface between human and NN is needed, where NN and human can easily understand, interact,
and influence each other. Especially when NN makes mistakes, human prior and domain expertise
knowledge with causal inference ability and common sense may help NN achieve better performance.
However, the lack of an effective interface makes it hard for a human to locate the reason for NN’s
error, not to mention correct the error. There are two main challenges for the interaction between
humans and NN: (1) Interpretability, for humans, i.e., how to understand the reasoning logic of NN
and how to correctly locate the reason of errors. (2) Changing NN’s logic and decision, once humans
locate the error of NN, i.e., how to correct it and improve NN’s performance (Fig. 1).

To interpret a NN, current pixel-level interpretation methods (Zhou et al., 2016; Selvaraju et al.,
2017) are limited to low-level relationships. Even recent human-intuitive concept-level explanations
(Ghorbani et al., 2019a; Kim et al., 2018) do not reveal the reasoning logic of NN. Visual reasoning
explanation (Ge et al., 2021) mimics the reasoning logic of original NN and provide logical, easy-to-
understand explanations for final decisions, but cannot directly influence NN’s performance to achieve
closed-loop interaction. To interact with NN, current Human-In-the-Loop ML and Interacting ML
are ML-centered methods that revolve around a pipeline of re-training a model using human-curated
data instead of interacting with their reasoning logic (Dellermann et al., 2021).
To solve these problems, we propose Human-NN-Interface (HNI) for knowledge exchange, with
the following key contributions: (1) HNI use high-level class-specific visual concepts and their
relationships to build class-specific structural concepts graph (c-SCG) for each class of interest. The
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Figure 1: Human-NN Interface helps human locate and correct NN’s errors by modifying NN’s logic.

c-SCG is a description of the key parts (concepts; graph nodes) of an object class and their spatial
relationships (graph edges). HNI allows human and NN to understand each other with c-SCG as a
“language” to communicate, interact and exchange knowledge. (2) Through the NN-to-Human path,
NN can use c-SCG to show their reasoning logic in a way that is intuitive to human understanding.
(3) Through the Human-to-NN path, a human can analyze the reasoning logic (c-SCG) of NN and
directly modify it with human prior knowledge in a very shot time (around 13s to modify each class).
Then, HNI can use Graph reasoning Network and partial knowledge distillation to transfer knowledge
from human back to NN, such that the NN obtains new knowledge from humans. (4) By creating
new c-SCGs or modifying existing c-SCGs, humans can “teach” NN about new objects they have
never seen before, which provides a new pipeline to achieve zero-shot learning.

2 RELATED WORK

We review research areas that share similarities with our work, to position our contributions.
Human-AI Interaction for Machine Learning (ML) applications aims to best combine human
domain expertise and computational power of ML. To satisfy this need, Human-In-the-Loop ML
(HILML) (Dellermann et al., 2021) and Interactive Machine Learning (IML) (Ware et al., 2002) have
recently emerged. However, both are ML-centered methods which let humans play a “server” role
around the ML process, from data production, ML modeling, to model evaluation and refinement
(Maadi et al., 2021). This limits human involvement and domain expert performance. “Tell me where
to look” (Li et al., 2018) uses an explainable attention map to correct segmentation errors of NN,
which is thus limited to low-level relationships. User interaction was also introduced in the image
generation task, Interactive Image Generation (Mittal et al., 2019) can repeatedly modify images
based on modifications to the scene graph while keeping the contents generated over previous steps.
In our work, we take a step toward an interface with which human users and NN can more efficiently
communicate, interact and exchange knowledge between each other, with no dependency on a given
list of attributes.
Interpreting neural networks. Research on interpretability methods for neural networks (NNs) has
received more and more attention. Some try to explain NN by visualizing the correlation between
each pixel of the input image and the final outputs. For instance, CAM (Zhou et al., 2016) and
Grad-CAM (Selvaraju et al., 2017) can generate class-specific attention maps. Differently, several
recent works focus on more human-intuitive concept-level explanations. ACE and TCAV (Ghorbani
et al., 2019a; Kim et al., 2018) proposed algorithms to extract meaningful concepts from images and
then produce an understandable explanation. VRX (Ge et al., 2021) uses visual concepts to explain an
NN’s reasoning logic. Based on this work, our HNI goes beyond this and we treat logic explanation
as a foundation, allowing humans to directly modify NN’s logic. Then HNI can transfer human’s
knowledge back to the original NN to achieve a closed-loop interaction between humans and NN.
Graph Neural Networks (GNN) are deep learning methods that operate on graph domains, which
learn to represent graph nodes, edges, or subgraphs by low-dimensional vectors (Zhou et al., 2021).
Considering the trackable information-communication properties of GNNs, many reasoning tasks
have adopted GNNs as a tool, such as VQA (Teney et al., 2017; Norcliffe-Brown et al., 2018), scene
understanding (Li et al., 2017a), and semantic explanations (Ge et al., 2021). In this work, we use a
GNN-based Graph Reasoning Network (GRN) as the bridge between NNs and humans. It takes SCG
as input and transfers knowledge with NN through knowledge distillation.
Knowledge distillation can effectively learn a small student model from a large ensembled teacher
model using soft targets (Hinton et al., 2015). Knowledge distillation has been widely used in
privileged learning (Lopez-Paz et al., 2015), adversarial defense (Papernot et al., 2016), learning
with noisy data (Li et al., 2017b). In this work, we use knowledge distillation to transfer knowledge

2



Under review as a conference paper at ICLR 2022

Human 
Intelligence

Human-NN Interface

NN Shows Reasoning Logic to Human

Human changes NN’s reasoning logic

Graph 
Reasoning 
Network

Visual 
Concept 
Extractor

Human Change c-SCG with 
common sense, 
causal inference ability 
and prior knowledge

Class-specific Structural Concept Graph (c-SCG)

Human Modified c-SCG

Graph 
Reasoning 
Network

Partial
Knowledge
Distillation

Human Reasoning logic

School bus

Neural 
Network

Concept 1

Concept 2

Concept 3

Concept 4

Figure 2: Pipeline for Human-AI Interface. Red arrow represents NN-to-human path, which shows
the reasoning logic of original NN to human with structural concept graph (SCG). It consists of
Visual Concept Extractor (discover visual concepts) and Graph reasoning Network (GRN). Green
arrow represents the Human-to-NN path, which changes NN’s decision making with human’s prior
knowledge. It consists of three steps: (1) human change SCG, (2) train GRN with human logic, and
(3) transfer human knowledge to NN by partial knowledge distillation.

between a NN and a GNN-based graph reasoning network (GRN) which encodes human’s prior
knowledge to achieve human-NN knowledge exchange.
Zero-shot learning aims to train a classifier that can classify testing instances that belong to classes
that are never seen before. Existing works include using the one-vs-rest solution (Verma & Rai,
2017), synthesizing pseudo instances of the unseen class (Guo et al., 2017), projecting feature space
instances and semantic space prototypes into a common space (Palatucci et al., 2009), and using
similar seen class as the positive instance of the unseen class (Gan et al., 2016). Huynh & Elhamifar
(2020) conduct compositional zero-shot learning by using a feature composition framework to extract
and combine features of attributes to construct fine-grained attributes for unseen classes. Jia et al.
(2021) use active zero-shot learning which promotes human-AI teaming by actively modifying the
class-attribute matrix. However such attribute labels may not be always available in real-world
scenarios. Here, we propose a new pipeline with HNI, which makes no assumption on the availability
of attribute label, humans help build the understanding of the new class using learned visual concepts
and structure. Then HNI transfers the knowledge of unseen class back to NN.

3 HUMAN-NN INTERFACE

Our proposed Human-NN Interface (HNI) to bridge the interaction between human and neural
networks is visually summarized in Fig. 2. There are two main path.

3.1 NN-TO-HUMAN

NN-to-human path explains the NN’s reasoning logic for each decision (instance-level explanation,
see Appendix Sec. A.1) and more importantly, the understanding of NN for each class, represented as
class-specific Structural Concept Graph (c-SCG). Each c-SCG is bound to one class (Fig. 2 shows
the c-SCG of school bus), where the nodes represent the important visual concepts that original
NN considered most important in identifying the class of interest, and edges represent the pairwise
structural relationships (dependencies) between concepts. As shown in Fig. 2 (top), given a trained
NN, there are two main steps in order to explain the reasoning logic of NN to human users:
(1) Using Visual Concept Extractor (VCE) to discover representative visual concepts for each
class of interest. The detailed procedure follows Appendix Fig. 8(a) of (Ge et al., 2021): To discover
concepts for each class, we collect 50 to 100 images of the class. We first use top-down gradient
attention (Grad-Cam (Selvaraju et al., 2017)) to constrain the relevant regions for concept proposals
to the foreground segments, thereby ruling out irrelevant background patterns for this class. Then we
follow the same workflow as the ACE paper (Ghorbani et al., 2019b): multi-resolution segmentation,
feature extraction, clustering patches in latent space to obtain the concept candidates, and sorting
these concept candidates based on importance score, similar to (Kim et al., 2018). After that
we obtain the concept pool (each concept is represented by one mean feature vector, sorted by
importance score) for each class, which will serve as a source of concept candidates when human
users modify concepts (nodes) for c-SCG. To build c-SCG that reveals the reasoning logic for each
class of interest of the original NN, we select the top k (k=4 in our experiments) important concepts
and their mean feature vectors as nodes. Each directed edge in an SCG edgeji = (vj , vi) has two
attributes: 1) representation of the spatial structural relationship between nodes; 2) dependency eji (a
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Figure 3: Examples of human modification of class-specific Structural Concept Graph (c-SCG).Each
class has only one c-SCG, we use one instance to visualize the states before and after human users
modifying c-SCG of the corresponding class. (a) Node (concept) modification: human user find that
the NN’s original concept 2 (in green, building window) to be non-causal inference and concept 3 (in
red, wheel) is not discriminative and representative for this particular type of vehicle. So the human
user chooses two new concepts from concept pool and replace them on the c-SCG. (b) Edge (concept
relationship) modification: human user finds that the spatial relationship between concept 2 (in green,
legs) and 4 (in pink, tail) to be unstable and the two concepts have minimal dependency on each other,
hence deleted the edge between them on the c-SCG.

trainable scalar) between concepts vi, vj . The edge features can reveal the underlying causal logic
of interactions between visual concepts which is crucial for the final decision. c-SCG extract such
relationship between visual concepts during training and incorporate them as edge features in c-SCG.
By showing c-SCG for each class of interest, NN-to-human path provides easy-to-understand insights
for human users on the reasoning process of NN, which is also a foundation for the Human-to-NN
path. The edges (structural relationship and dependency) are fully connected at the beginning and
then, using the learning in the following step 2, we select and only keep the important edges.

(2) Using Graph Reasoning Network (GRN) to mimic the decision-making process of original NN
with knowledge distillation. As a GNN-based network, GRN takes a graph as input. To train GRN
based on the built c-SCGs (one for each of n classes of interest), we need to establish connections
between training images and the c-SCGs. To this end, we create, for each training image I , a set
of up to n image-level structural concept graphs (I-SCGs). Each I-SCG is computed from both
the training image I and one of the n c-SCGs: Given the input image I , we use multi-resolution
segmentation SLIC (Achanta et al., 2012) to break the image into patches, which become the concept
candidates (similar as Fig. 4 step 1). In the concept matching step (similar as Fig. 4 step 2), for each
class of interest c, we match features of the segmented patches to the stored anchor representation
(i.e., mean feature vectors) of top k concepts deemed important for c using a similarity metric (e.g.
Euclidean distance). When at least one of the top k concepts of class c is detected in image I , an
I-SCG for class c will be constructed based on the template from the c-SCG of class c. Here I-SCG
uses patch features instead of the concept anchor features as node features and calculate the edge
features based on spatial relationship between detected concepts in image I . This way we can have
up to n I-SCGs generated for the input image I considering all n classes of interest (More details in
Appendix Sec. B.2). GRN takes the I-SCGs as input and we use knowledge distillation to transfer
the decision-making logics of the original NN to GRN (similar to Appendix Fig. 8 (b) (Ge et al.,
2021)). Using SCG to effectively reveal the reasoning logic of original NN has been validated with
extensive experiments in (Ge et al., 2021), in which the authors evaluated the logical consistency and
faithfulness between SCG explanation and original NN. (More discussion in Appendix Sec. A.2.2).

3.2 HUMAN-TO-NN

Human-to-NN path transfers human’s knowledge to NN, in order to improve original NN’s perfor-
mance and generalizability. There are three main steps: (1) User modifies c-SCG: after understanding
the NN’s reasoning logic with NN-to-human path, users can verify whether the decision logic is
reasonable or consistent with their understandings. If not, human users are able to actively correct
the decision logic by updating the c-SCG (e.g., deleting a visual concept and changing the structural
relationship between concepts) efficiently (about 13s for each class in our experiments). (2) To
represent human-modified logic, we use the modified c-SCG as template to automatically rebuild
I-SCGs for images and train a new Graph Reasoning Network (GRN), with ground truth image labels.
(3) To let the original NN learn human-modified logic, we propose partial knowledge distillation to
transfer the logic of GRN, which has incorporated the knowledge and prior from human users, back
to the original NN. We describe the three steps in details in the following subsections.
3.2.1 HUMAN MODIFY C-SCG
NN’s understanding of any specific class can be shown as a single c-SCG: the nodes (visual concepts)
represent the crucial visual evidence or clue for NN to identify this class; the edges encode the
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Figure 4: Pipeline of training Graph Reasoning Network with Human modified c-SCG. Given input
I , we conduct multi-resolution segmentation and concept match step. In concept matching step,
yellow circle represent the matched concepts for each class-of-interest (black dummy nodes denotes
undetected concepts).(More details in Sec. 3.2.2)

structure relationships and dependency between concepts. After understanding the meaning of
c-SCG, human users can then intuitively make modifications to c-SCGs (e.g., removing the incorrect
nodes/edges) based on their knowledge or other priors, in order to improve the NN’s performance.
There are two main types of modification: nodes and edges, corresponding to changing the visual
concepts and the relationships between concepts respectively.

Node (concept) modification: human users can easily identify non-casual concepts in c-SCG.
Fig. 3(a) shows an example of node modification. In some cases, nodes may be irrelevant to the class-
of-interest (e.g., a background objects always appear together with object of interest; e.g., see building
window and fire truck), or not representative/unique (e.g., an object part that is common among
many classes; see wheel and red dot). To substitute these two concepts with more representative
and discriminative ones, human users can go back to the concept pool extracted by the VCE in the
NN-to-human path and select better visual concepts to improve the c-SCG (Fig. 3(a)).

Edge (concept relationship) modification: Edges shown by c-SCG are the important dependencies
selected based on the values of eji. Humans can modify them to remove non-stable or independent
relationships between concepts. This may happen when substantial biases exist in training, when
NN may discover stable and dependent relationships between concepts which in fact do not always
hold in real-world scenarios (e.g., relative position of a tiger’s leg and tail in Fig. 3(b)). Human users
can simply remove this edge on the c-SCG to correct the bias. In practice, modifications of nodes
and edges can happen simultaneously to handle more complex situations. Note that to modify the
decision reasoning logic for one class, human users only need to modify the corresponding
c-SCG once: e.g., they can substitute one concept with another by changing the mean vector, or
add/delete edges. They do not need to modify image-level I-SCG for each training image. After
updating the c-SCG, our framework automatically applies this modification to all image-level I-
SCGs. Based on our human study with 11 human subjects, the average time to finish one class logic
modification is 13s. Human modification of c-SCGs is the first step in the human-to-NN path, where
our framework provides an intuitive way for human users convert their knowledge, common sense
and priors into a description in the same language that our framework uses. Next we will show how
the knowledge of human users can be transferred back to NN in the following subsections.

3.2.2 TRAINING GRAPH REASONING NETWORK (GRN) WITH HUMAN’S LOGIC

Typically, the set SI of classes that require human intervention is a subset of the set of all S classes
(SI ⊂ S). This setting is flexible and efficient: no matter how many classes the original NN can
predict (e.g., 1000 classes in ImageNet), user may only want to modify the logic of a small subset of
classes in question (e.g., some vehicles are easily confused with each other). In this case, we build a
GRN that targets the logics of these classes only, which is more efficient to users. For each class of
interest c ∈ SI , NN-to-human path reveals its reasoning logic c-SCGc

NN . After human’s analysis
and modification, some class may have updated c-SCGs, c-SCGc

H after incorporating human user’s
knowledge. c-SCG as a class representation cannot produce final decisions by itsel hence we reuse
the GRN from NN-to-Human path to infer a prediction.

Fig. 4 shows the pipeline of training GRN with the c-SCG updated by human users. Given an input
image I , the first two steps of the processing(i.e. Multi-resolution segmentation and Concept match
to build I-SCG) are same as the GRN training in NN-to-human path while the objective is different.
Here our goal is to obtain better performance by incorporating human user knowledge. the matched
I-SCGs go through the graph convolution backbone and MLP in GRN and finally predict the image
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label with cross-entropy loss as the objective function. The trained GRN can then produce decisions
based on human-corrected reasoning logic because the input I-SCGs are derived from c-SCGc

H . (See
Appendix Sec. B.5 for more implementation details).

3.2.3 TRANSFERRING REASONING LOGIC TO NN WITH PARTIAL KNOWLEDGE DISTILLATION

The last step to is to transfer the user-updated reasoning logic and knowledge in GRN back to the
original NN. To avoid catastrophic forgetting and negative impact on the classification performance
of other classes, we proposed partial knowledge distillation as knowledge transfer method.
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Figure 5: The pipeline of Partial
Knowledge Distillation. Different
from traditional knowledge distil-
lation, partial knowledge distilla-
tion adopts two teachers with dif-
ferent expertise: GRN (teacher
1) focuses on class of interest (6
classes in this example), and fixed
original NN (teacher 2) will fo-
cuses on the rest of classes (the
classes we don’t want to change,
14 classes in this example). After
distillation with different temper-
atures and concatenation, we can
use both soft labels and hard labels
to train the student model.

Fig. 5 illustrates the process of partial knowledge distillation transferring human user’s knowledge
from GRN back to the original NN. As described in Sec. 3.2.2, modified classes SI is a subset of all
class set S. For unmodified classes set SU = S \ SI , we want to maintain their reasoning logic while
we update those of of SI in original NN. Hence two teacher models provide soft labels together. GRN
NetT1 provides the probabilities of modified classes, the original NN NetT2 with fixed parameters
provide the probabilities of unmodified classes. Student model NetS shares the same architecture of
the original NN and is initialized with the weights of original NN. Formally, the overall loss during
partial knowledge distillation is as follows:

L = αLsoft + βLhard (1)
where α and β are the weighting of the two terms during distillation. For the soft label term:

Lsoft = −
N∑
i

p̂TT
c log(qTS

c ); qTS
i =

exp(zi/TS)∑N
k exp(zk/TS)

(2)

where p̂TT
c denotes the probability value of class c in the combined soft label with temperature TT

from two teacher models. qTS
c denotes the probability value of class c in the student prediction

vector with temperature TS . N = |S| denotes the number of classes in the original NN. For qTS
c ,

zc denotes the logits of NetS , which is the unnormalised predictions. The combined soft label p̂TT

is the combination of two soft labels pTT1 and pTT2 from two teacher models NetT1 and NetT2.
pTT2 is a vector with length N , pTT2 ∈ RN , while pTT1 is a vector with length n, pTT1 ∈ Rn, where
n = |SI | denotes the number of classes in the GRN, which is also the number of modified classes, v1c
and v2c denote the logits of the teacher models NetT1 and NetT2 respectively:

p̂TT
c =

{
pTT1
c Pr, {c ∈ SI}
pTT2
c , {c ∈ S \ SI}

s.t. pTT1
c =

exp(v1c/TT1)∑n
k exp(v

1
k/TT1)

pTT2
c =

exp(v2c/TT2)∑N
k exp(v2k/TT2)

(3)

in which Pr ∈ (0, 1]. To obtain the combined soft label p̂cTT , we first compute the sum of the
probability of all classes of interest in pTT2 . Pr =

∑
pTT2
c for all {c ∈ SI}, which represents the

probability proportion of the n modified classes w.r.t. all classes N in the original NN NetT2. We
then replace the value of class of interest in pTT2 with the scaled value in pTT1 to form the combined
soft label. The prediction of teachers can be erroneous, and we use ground-truth labels as hard labels
to provide stronger constraint to NetS correcting these errors from teacher models.

Lhard = −
N∑
c=1

gclog(q
1
c ) (4)
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Table 1: ImageNet 20 class classification performance with node modification via HNI

Category Beach
wagon

Ambu
lance

School
bus Jeep Fire

engine
Recrea
vehicle Horse Side

winder
Irish
setter

Harte
beest

Original NN Accuracy 0.54 0.69 0.80 0.53 0.73 0.68 0.93 0.64 0.73 0.67
Modified NN Accuracy 0.67 0.75 0.88 0.65 0.79 0.79 0.92 0.66 0.72 0.70

Category Bassinet Face
powder

Green
house

Manhole
cover Plane Shield Toilet

tissue Ram Water
buffalo Zebra

Original NN Accuracy 0.64 0.55 0.76 0.77 0.54 0.43 0.53 0.60 0.54 0.78
Modified NN Accuracy 0.62 0.58 0.75 0.79 0.52 0.41 0.55 0.59 0.57 0.80

where gc denotes the ground truth label for class c, q1c is the probability value of class c in the student
prediction vector under temperature 1. Eq. 1 transfers knowledge from GRN back to the original NN
(see Appendix for more implementation details).

To summarize, we use Graph Reasoning Network (GRN) in both the NN-to-Human path and Human-
to-NN path respectively (Fig. 2) with the same structure. In the NN-to-Human path, GRN simulates
the reasoning logic of the original NN with knowledge distillation (detailed workflow see Appendix
Fig. 8 (b)(Ge et al., 2021)). In the Human-to-NN path, after human users modifying the c-SCG for
classes of interest, GRN uses the modified c-SCG to automatically derive I-SCGs for each image
which will be used to train the GRN using ground truth labels (Fig. 4). Once the training of GRN is
done, we transfer the knowledge of GRN back to the original NN, fow which we proposed partial
knowledge distillation, where the newly-trained GRN becomes the teacher model to train the original
NN using GRN’s outputs as soft labels (Fig. 5). We summarize the input/output details of HNI
pipeline and each module/process in Appendix Table. 4.

4 EXPERIMENTS ON HUMAN-NN INTERFACE APPLICATIONS
HNI can be used as a generic interface for knowledge exchange between human users and NN. We
conduct experiments to demonstrate several applications of HNI: (1) Human users improving NN’s
performance by updating the logic of important concepts (Sec. 4.1.1) and relationships between them
(Sec. 4.1.2), (2) Human users guiding NN in Zero-shot Learning(Sec. 4.2).

4.1 HUMAN IMPROVE NN’S PERFORMANCE WITH HNI

Through the Human-to-NN path (Sec. 3.2), humans can modify c-SCGs with their knowledge and
then transfer the knowledge back to original NN. This process can improve NN’s performance when
NN can not learn generalizable and robust logic during training. This is quite common especially
when training data is scarce or biased. Scarce data can cause distribution mismatch between the
training and test set, preventing the NN from really ’understanding’ the classes-of-interest. Bias in
training data can misled the learner to focus on the “wrong” patterns irrelevant to task objectives. We
will show how human users can use the human-to-NN path to improve original NN’s performance.

4.1.1 NODES (CONCEPTS) MODIFICATION.
We use a subset of the ILSVRC2012 (ImageNet) (Deng et al., 2009) to train an 20-class classifier
with ResNet-18 (Test performance see Table 1), each category consists of 200 images for training
and 200 images for testing. Because the accuracy of the first six vehicles (bold) is low, we ask human
users to help improving their performance with our framework. We first use the NN-to-Human path
of HNI to visualize the reasoning logic of the original NN. A human user can modify the concepts
in question. Appendix Fig. 11 shows the c-SCG comparison before and after modification. We
then train GRN with the updated c-SCG (Sec. 3.2.2). To transfer human logic back to the original
NN, we use partial knowledge distillation (Sec. 3.2.3). The test results of modified NN is shown in
Table. 1. The results suggest that by incorporating human user inputs, the original NN becomes more
robust and generalizes better on the test set. We also conducted a larger experiments of node and
edge modification with 120 ImageNet classes (Appendix Sec. D). While the performance on the six
vehicles classes improved, the performance of other classes is almost not impacted, which shows
HNI can precisely modify the reasoning logic of the target classes while preserving the reasoning

Table 2: Baseline methods accuracy on modified classes in ImageNet 20 class classification

Beach wagon Ambulance School bus Jeep Fire engine Recreational vehicle

Original NN 0.54 0.69 0.80 0.53 0.73 0.68
Baseline 1 Without Human
modifying c-SCG 0.53 0.66 0.82 0.53 0.74 0.64

Baseline 2: add 30 images / class 0.55 0.71 0.81 0.55 0.73 0.69
Ours: With Human
modifying c-SCG 0.67 0.75 0.88 0.65 0.79 0.79
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Figure 6: Example of edges (concepts relationship) modification. (a) biased iLab dataset. (b)
Human user can remove incorrect edges to guide the model to ignore irrelevant concept relationships
introduced by dataset bias. (c) iLab-20M three class classifier performance.

logic of others. This makes HNI more flexible and efficient (Sec. 3.2.2). (more details in Appendix).
Baseline methods. We design the following methods as our baselines: (1) To evaluate how much
human intervention boosts the NN performance, we conduct partial knowledge distillation without
human intervention by directly supplying unmodified c-SCG to the human-to-NN path. (2) based
on the time it takes for human users to modify class-specific SCG (13s/class), we asked volunteers
to annotate additional images with similar effort (30 additional labeled images for each of the 5
classes) and evaluate the performance. All baseline results are shown in Table. 2 (we only compare
the modified 6 vehicle class; unmodified class have similar results before and after the modification).

4.1.2 EDGES (CONCEPTS RELATIONSHIP) MODIFICATION.
We conduct an edges (concept relationships) modification experiment on the iLab-20M (Borji et al.,
2016) dataset, which has a controllable pose to introduce bias on concept relationships. iLab-20M
contains images of toy vehicles placed on a turntable using 11 cameras at different viewpoints. We
tailor a subset of iLab-20M to train a three-class vehicle classifier with ResNet-18: bus, military, and
tank. In the training set, each class has 400 images. We manually introduce biases in pose of each
class: all buses are with pose 1, all military vehicles are with pose 2 and all tanks are with pose 3
(Fig. 6 (a)). We construct an unbiased test set where each kind of vehicle has all the 3 poses.

After training, we use the NN-to-human path to reveal the reasoning logic of original NN to humans
by visualizing the c-SCG and explaining the reasoning logic on misclassified images using I-SCG
(see Appendix Sec. A.1 for instance-wise explanation)). Human users found that important concepts
in c-SCG are mostly in the foreground and are consistent with huamen user’s own understanding
of the class of interest. Explanation of incorrectly predicted images also shows similar results that
most of the detected visual concepts had a positive contribution to the correct class. Thus, no node
modification was needed. However, the structural relationship between concepts contributed mostly
negatively, which caused incorrect predictions (Fig. 6 (b)). To eliminate the unstable/independent
concept relationship, we delete all edges in SCG and train a GRN with the new c-SCG. The new
GRN focus only on the existence of visual concepts during decision making, while it does not pay
attention to the relationship between them. Although in general deleting all edges may be too extreme,
in this case it is one reasonable way to correct the problem as most errors come from pose bias in
the training set, and edge features in SCG relies heavily on the pose of target objects in this case.
After the modification, we use partial knowledge distillation to modify the decision logic of NN.
The final performance of the modified NN shows improvement compared with the original NN
(Fig. 6(c)), demonstrating that HNI can help human to improve original NN’s performance with an
intuitive interface and effective mechanism in modifying the concept relationship and exchanging
knowledge. (More details in Appendix). In other applications, humans may modify nodes and
edges simultaneously to improve the performance of NN. To evaluate the user feedback of HNI. We
conducted a human user study (in Appx. Sec. F) with responses from ML practitioners and students.

4.2 ZERO-SHOT LEARNING: HUMAN TEACH NN TO LEARN NEW OBJECT THROUGH HNI
Zero-shot learning (Xian et al., 2018) is a popular and challenging task, where, at test time, a learner
needs to classify samples from classes not seen during training. We introduce a novel zero-shot
learning pipeline with the proposed Human-NN-Interface (HNI). The high-level idea is that the
understanding of a new object can be represented as class-specific c-SCG, which consists of visual
concepts (nodes) and concept relationships (edges). Our HNI allow humans to design new c-SCG
for new object category, with existing primitive visual concepts (nodes) or relationships (edges)
discovered from other classes. The new SCG can then be distilled back to the original NN, thereby
guiding the original NN to encode new object category (i.e. zero-shot learning. While learning to
recognize new class, the original NN will not “forget” the old classes. In our experiment, each learned
8 objects A, B, C, D, E, F, G and H has 300 training images and 216 testing images, while the new
object I, J, K has only 216 testing images. Please refer to Fig. 7 for the detailed workflow:
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Figure 7: Zero-shot learning: Human users teach NN to learn to encode new objects with HNI.
Sec. 4.2 provide explanation for each step.
Table 3: Performance of Zero-shot learning with HNI. Original NN ResNet-18 (pretrain on ImageNet)
trained with images of seen objects can not identify new objects I, J, K in the test set. Human teach
ResNet-18 to encode and recognize new objects I, J, K wih HNI.

Category A B C D E F G H I J K

Original NN 0.8 0.79 0.9 0.74 0.87 0.78 0.9 0.9 0 0 0
Modified NN 0.78 0.78 0.86 0.72 0.85 0.8 0.87 0.89 0.78 0.9 0.76

Step 1: NN-to-Human: We train a classifier for 8 objects A to H. We use VCE to discover the visual
concepts and find the shared concepts. We match the shared visual concepts from training images
and form image-level SCGs (I-SCG) for all training images of objects A to H.
Step 2: Human-to-NN: Building new c-SCG for new object E and train new GRN: It is
straightforward for Human to learn about a new class as they can relate the patterns and components
on the new class to those they have seen in the past. We try to implement a similar mechanism here in
describing the new class with SCG to GRN. We construct novel I-SCG training instances with visual
concepts and relationship from learned classes, in an automated fashion. For instance, to form a
I-SCG for new object I, we know some of its components are overlapping with object A to H. Hence
we randomly sample one I-SCG from object A and use its concept 1 as the node of concept 1 in E’s
I-SCG. Similarly, we obtain I’s nodes of concept 2 and 3 by randomly sampling I-SCGs of objects E
and C. To construct I-SCG edges for E, we sample I-SCGs of D and form the edges of I based on
their similar structures. Building I-SCG for new objects J and K are similar. We form a new I-SCG
training set by adding the novel I-SCGs of I,J,K into the original training set and then train a GRN
that can classify objects A to H and I, J, K.
Step 3: Transfer knowledge from GRN back to original NN: we use knowledge distillation to
transfer the knowledge about new object E from GRN back to the original NN. In this process, we
only use the images of A to H as training set, and only use the soft label form GRN without any hard
label to avoid bias toward old classes.
Step 4: NN learn the knowledge to encode new objects without forgetting the knowledge about old
classes. Table. 3 shows the performance of zero-shot learning with our HNI (see Appx. for more
details). We made the OBJECT dataset which we created and used here public. (Appx. Sec. C).

Comparing with mainstream zero-shot learning settings (Geng et al. (2020); Fu et al. (2018); Xian
et al. (2018)), where attribute descriptions for the images are given (e.g., stripes, horse-like shape,
big four-leg animal), our method considers a more general settings and we make no assumption on
the availability of attribute labels. Instead, we rely on the unsupervised mining of primitive concepts
from the training dataset (without any attribute or concept labels). With different combinations of
any subset of these learned primitive concepts and different structural relationships between them,
we can use GCN to represent novel classes and eventually guide the NN to learn to encode them by
HNI. Our method has its limitations especially when the new class can not be easily represented by
the learned primitive visual concepts. However, our method is flexible in the sense that it can define
new structural/spatial relationships based on learned relationships. We argue that this is an important
strength of our method as it is more extensible and capable of encoding novel objects with fewer
assumptions, i.e., not limited by the given list of attributes in describing relationships/structures of
components/parts of novel objects.
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APPENDIX

A FURTHER DISCUSSION AND EXPLORATION OF VISUAL REASONING
EXPLANATION (VRX) FRAMEWORK (GE ET AL., 2021)

A.1 INTRODUCTION

Visual Reasoning Explaination (VRX) (Ge et al., 2021), which for the first time uses GNN to mimic
the reasoning logic of original NN and demonstrate the effectiveness of using Structural concept graph
(SCG) to provide logical, easy-to-understand explanations for final decisions. Our NN-to-human path
is based on two important module of VRX: Visual Concept Extractor (VCE) and Graph Reasoning
Network (GRN). We recap some important figures (Fig. 8, Fig. 9, Fig. 10) in this section which may
help understand the details of VRX framework (Ge et al., 2021).
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Figure 8: Image source: (Ge et al., 2021) Pipeline for Visual Reasoning Explanation framework. (a)
The Visual Concept Extractor (VCE) discovers the class-specific important visual concepts. (b) In
original NN, the representation of the top N concepts is distributed throughout the network (colored
discs and rectangles). (c) Using Visual Concept Graphs that are specific to each image class, our
VRX learns the respective contributions from visual concepts and from their spatial relationships,
through distillation, to explain the network’s decision. (d) In this example, the concept graphs colored
according to contributions from concepts and relations towards each class explain why the network
decides that this input is a Jeep and not others.

For instance-wise explanation, with an important module Visual Decision Interpreter (VDI), VRX
can meaningfully answer “why” and “why not” questions about the prediction, providing easy-to-
understand insights about the reasoning process. Fig. 8 (d) and Fig. 9 give more detailed explanation.

A.2 FURTHER DISCUSSION

A.2.1 UNDERSTANDING OF REASONING LOGIC

In Visual Reasoning Explaination (VRX) paper (Ge et al., 2021), they define the Reasoning logic as
using the structured visual concept as tools/languages to answer the question of why and why not
(e.g., why the input image is an ambulance? why not fire engine?), which is a human-friendly way to
understand the decision clue and logic of original NN. Thus, here we use the term “reasoning” to
refer to the correlations between primitive patterns and specific classes of interest learned/encoded by
the original neural network.
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Figure 9: Image source: (Ge et al., 2021) An example result with the proposed VRX. To explain
the prediction (i.e., fire engine and not alternatives like ambulance), VRX provides both visual and
structural clues. Colors of visual concepts (numbered circles) and structural relationships (arrows)
represent the positive or negative contribution computed by VRX to the final decision (see color
scale inset). (a): The four detected concepts (1-engine grill, 2-bumper, 3-wheel, 4-ladder) and their
relationships provide a positive contribution (blue) for fire engine prediction. (b, c): Unlike (a), the
top 4 concepts, and their relationships, for ambulance/school bus are not well matched and contribute
negatively to the decision (green/yellow/red colors).

A.2.2 FIDELITY OF SCG EXPLANATION

In terms of the fidelity of using Structural Concept Graph (SCG) to explain the reasoning logic of
original NN, here are more details: While we agree that our current pipeline does not provide a
guarantee that SCG will be 100% faithful to the original NN’s reasoning logic, we would like to point
out a few considerations in our design:

(1) The faithfulness of our SCG to the original NN depends on several factors, including the concept
selection, the number of concepts used to construct the SCG, the sampling of data used in distillation
from the original NN to SCG. Since the focus of this paper is more of a feasibility study, rather than a
ready-to-deploy system, each component inevitably has errors to a certain extent.

(2) We use top-down attention (e.g. Grad-CAM) to identify regions in the input image which
contributed most to the prediction of each class-of-interest, which can limit the region in which
we conduct concepts discovery. By doing this, we can filter irrelevant concepts and focus on those
considered important in the original NN’s reasoning/inference.

(3) In concept selection, we use concept activation vectors (TCAV) (Kim et al., 2018) to compute the
importance score of each concept w.r.t. the prediction of a specific class-of-interest. With sufficient
sampling of data, this gradient-based method can faithfully reflect the overall correlation between
each visual concept and each class-of-interest in the original NN.

(4) Knowledge distillation is widely used in transferring knowledge (encapsulating the reasoning
logics) between neural networks. In other words, it is transferring the input-output mapping from
one neural network to another. In our framework, we adapted knowledge distillation to imitate such
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Figure 10: Image source: (Ge et al., 2021) Class-specific importance weights eji highlight the
important concept relationships for different classes, eji (shown as tables for each class) reveals
the information transformation between concepts, which shows the dependency between concepts:
concept 1 and 2 contribute most information to other concepts, which makes them the 2 most
discriminating concepts for a fire engine.

mapping (instead of mapping from the input image to output logits, we learn the mapping between
the visual concepts and the output logits). We also add perturbation during distillation by randomly
masking out one of the detected visual concepts in the input image while making sure GRN and
original NN produce the same outputs. Given enough training data, GRN is expected to faithfully
mimic the original NN and reveal the reasoning logics.

(5) Experimental validation. The faithfulness of using Structural Concept Graph (SCG) to explain the
original NN is one key contribution of Visual Reasoning Explanation (VRX) ref [2], and in the paper,
the authors conducted several experiments to prove the fidelity of SCG explanation, such as logical
consistency between the explanation using SCG and the original NN. To briefly recap:
1) In Sec.4.2 of VRX paper (Ge et al., 2021), they qualitatively and quantitatively verified the logical
consistency between explanation using SCG and original NN by showing that VRX can correctly
locate the reason that causes the original model’s wrong prediction and successfully correct the
errors with the guidance of the explanation (Table 1 of VRX paper (Ge et al., 2021) shows 114/119
errors were successfully corrected). The logical consistency verification experiment shows that the
explanation with SCG is faithful to the original NN.
2) Explanation sensitivity of visual and structural perturbations. The authors also conducted two
experiments with the control variate method to verify the explanations of VRX are faithfully and
sensitive to visual perturbation and structural perturbation respectively (Sec.4.3 and Figure 7 of VRX
paper (Ge et al., 2021) ).

Based on the above-mentioned designs and experimental validations on the fidelity of SCG explana-
tions, we argue that the explanation with SCG can be faithful to the original NN, in ideal scenarios
(assuming every component’s error is minimized). As part of future work, we plan to investigate
the performance influence of the non-perfect fidelity of SCG. However with our current pipeline,
the users can rely on the knowledge distillation loss, which can serve as a good indication of the
faithfulness of the SCG to the original NN, to gain a better understanding of whether the SCG needs
further improvement (e.g. with more data used in knowledge distillation, more visual concepts should
be selected, etc.)
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B IMPLEMENTATION DETAIL

B.1 PIPELINE SUMMARIZATION

Table. 4 is the input and output summarization of the whole Human-NN Interface pipeline and each
module/process.

Table 4: Input and output summarization of the whole HNI pipeline and each module/process

Module / Process/ Pipeline Input / collaborator Output

Human NN Interface (HNI) Pipeline Original NN Modified NN
1 NN-to-Human path Original NN c-SCG, Reasoning logic explanation
1.1 Visual Concept Extractor (VCE) Original NN, 50 to 100 images for each class Important visual concepts for each class
1.2 Image-level SCG (I-SCG) building Original NN, images, visual concepts I-SCG
1.3 Graph Reasoning Network (GRN) Original NN, Image-level SCG (I-SCG) GRN (mimic original NN), c-SCG
2 Human-to-NN path Original NN, class-specific SCG (c-SCG) Modified NN
2.1 Human involved logic modification c-SCGs human-modified c-SCG
2.2 GRN independent training I-SCG built with human-modified c-SCG GRN with human reasoning logic

2.3 Partial knowledge distillation Original NN (NetS ), GRN (NetT1),
Original NN (fix)(NetT2), training images Modified NN

B.2 CONCEPT MATCHING

In multi-resolution segmentation step, to extract features for each patch resulting from image multi-
resolution segmentation, we resize the patch and use the original NN to compute features after a
specific layer, e.g. “layer4.1.conv2” layer of ResNet-18. For each discovered concept, we store the
mean vector of all patches belonging to this concept as an anchor for future concept matching given
any image.

In the concept match step (same as Fig. 4 step 2), for each class of interest c, we match candidate
features to the stored anchors (mean concept vectors) of top k concepts in the concept pool, and
we construct an I-SCG for image I and class c, based on similarity (Euclidean distance) between
image patch feature and concept anchor feature. Specifically, if the nearest image patch regards the
euclidean distance between the concept anchor feature and the image patch feature is smaller than a
threshold t, then we will identify this patch as a detected concept. Otherwise, we will use dummy
nodes (all feature values equal to a small constant ϵ) to represent that undetected concept.

We empirically choose the threshold t from observation when matching concepts mean vector to
patches segmented from images and form image-level SCG (I-SCG). Specifically, the distance in
the positive match and negative match have different orders of magnitudes in latent space, and the
performance is not sensitive to the selection of t. We plan to explore more in this direction as to
future work.

B.3 NODE (CONCEPT) MODIFICATION

Fig. 11(a) visualize the class-specific SCG (c-SCG) of three example classes of interest. A human
can modify the anti-causality and anti-common sense concepts by new concepts extracted by VCE.
The new c-SCG, which merged human’s reasoning logic, are shown in Fig. 11(b).

B.4 PARTIAL KNOWLEDGE DISTILLATION

For the all partial knowledge distillation experiments in the Human-to-NN path, we use SGD with
initial learning rate = 0.1, and it will multiply 0.1 every 30 epoch. Batch size = 4, the coefficient
of Lsoft, α = 2.5, the coefficient of Lhard, β= 1. For Nodes (concepts) modification experiment
(4.1.1 in the main paper), we use Ts = 1, TT1 = 1.5, TT2 = 1, For edges (concepts relationship)
modification (4.1.2 in the main paper), we use Ts = 2, TT1 = 2. For zero-shot learning experiments
(4.2 in the main paper), we use Ts = 1.5, TT1 = 1.5. We use knowledge distillation to train original
model for 100 epochs.

For the performance influence on unmodified classes in Table. 1. We agree that if we cannot find the
best partial knowledge distillation temperature hyperparameter, a slight performance fluctuation of
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(a)

(b)

Original Ambulance c-SCG

New Ambulance c-SCG

Human              modify

Original Fire engine c-SCG

New Fire engine c-SCG

Human              modify

Original School bus c-SCG

New School bus c-SCG

Human              modify

Figure 11: Results of node (concepts) modification: for the ambulance structural concept graph
(c-SCG), human find NN’s original concept 3 (in green frame, ground) and concept 4 (in pink frame,
building roof) is anti-causal inference, due to the fact that many ambulance training images were in
city backgrounds, so we choose two new concepts, side of the car (in orange frame) and car headlight
(in purple frame) from discovered concept pool and substitute them. The rest examples are similar.

unmodified classes in Table. 1 may occur. We call it fluctuation because we also find some unmodified
classes slightly improved after distillation. We will conduct more experiments on this direction.

B.5 GRAPH REASONING NETWORK

Network Structure The network architectures of Graph Reasoning Network (GRN ) are shown in
Table. 5. GRN consists of two parts, Graph Neural Network G and Embedding Network E. G takes
n hypotheses h = {h1, h2, ...hn}, (each hypothesis hi is in the form of Structural Concept Graph
(SCG), and each SCG has mn nodes as well as me edges) as input, and output n feature vectors
(G(hi)) which concatenate all updated node and edge features of hi. In G, we use class-specific
ecji for different hypotheses in each GraphConv layer. E concatenates all n feature vectors from
all the hypotheses into a long vector and maps it into n dimensional vector (1 × n) with a 4 layer
MLP, where n is the number of classes of interest. ”node” denotes node feature, ”edge” denotes edge
feature, ”GraphConv” is graph convolutional layer, ”ReLU” denotes ReLU activation function, ”BN”
denotes batch normalization, and ”FC” denotes fully connected layer.

Part Input → Output Shape Layer Information

G node:(l → 64); edge:(4 → 5) GraphConv-(ecji), ReLU, BN
node:(64 → 32); edge:(5 → 5) GraphConv-(ecji), ReLU, BN
node:(32 → 32); edge:(5 → 5) GraphConv-(ecji), ReLU, BN
node:(32 → 32); edge:(5 → 5) GraphConv-(ecji), ReLU, BN
node:(32 → 32); edge:(5 → 5) GraphConv-(ecji), ReLU, BN

E ((32 ×mn + 5 ×me) ×n)→(128) FC-((32 ×mn + 5 ×me) ×n, 128)
(128)→(64) FC-(128, 64)
(64)→(32) FC-(64, 32)
(32)→(n) FC-(32, n)

Table 5: Network architectures of Graph Reasoning Network GRN . (l is the length of node feature,
mn is the number of nodes in each SCG, me is the number of edges in each SCG, and n is the number
of classes of interest)

Training details We train GRN in an end-to-end manner. Below are the details: we use Adam with
β1=0.9 and β2=0.999, batch size 32, learning rate 0.01 for the first 25 epochs and use a decay rate of
0.8 for every 25 epochs. We train GRN for 100 epochs.
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B.6 COMPUTE RESOURCES

We use 2 RTX-2080 and 2 Telsa V100. We train knowledge distillation on RTX-2080, which costs
around 2 hours for 100 epochs on RTX-2080, and we train GRN on Telsa V100, which costs 1 hour
for 100 epochs.

C MORE DETAILS OF OBJECT DATASET

OBJECT is a computer-generated 3D object image dataset using Blender Community (2018) as the
rendering engine. Each image contains a 3D main object which consists of multiple basic object parts:
ball, cylinder cubic, etc. Each main object is rendered using 4 independent generating attributes:
object size, background color, rotation angle, sub-object material. The image size is 512 x 512. The
first version of the dataset contains 13 different main objects and each one has more than 400 images.
We also publicly distribute the source code, which allows one to render new data with custom main
objects. The domain of attributes and resolution depends on the needed dataset size. Fig. 12 shows
an example that also illustrates the workflow of new object images generation: User can select the
basic objects to form the main object, we will output the corresponding three-view drawing helping
people to make sure the main object configuration and parameters are correct. After the user confirms
the main object configuration, we can automatically synthesize over 400 images for user defined
main object with different rendering attributes mentioned above. The output datasets will contain all
possible combinations of the attributes. Our primary motivation for creating the OBJECT datasets is
that it allows fast testing and idea iteration, on zero-shot learning and 3D object recognition.

As there are two experiments of zero-shot learning with HNI, we upload their related datasets. There
are four folders in our dataset zip file. Folders with the ”main paper” prefix mean they are the data
for the main paper experiment, and folders with the ”appendix” prefix mean they are the data for the
appendix experiment.

You can download the dataset and its generating code from http://
anon-blind-submission, which we plan to keep up-to-date with contributions from
ourselves and the community.

Figure 12: Overview of OBJECT dataset

D LARGER EXPERIMENTS ON NODE AND EDGE MODIFICATION

We conducted a larger experiment with ImageNet dataset images. In addition to the original 20
classes, we randomly selected another 100 classes and constructed a 120 classes dataset. For each
class, we randomly selected 300 images for training and 200 images for testing. The dataset contains
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a total of 60000 images. After training, human users chose 16 classes of interest, and used the
NN-to-Human path to visualize the reasoning logic (c-SCG) of NN, while the remaining classes were
not modified. Then the human users analyzed the c-SCG and modified both nodes (visual concepts)
and edges (Concept relationships), one human intervention per class. The performance of modified
classes is shown in Table. 6 below:

Table 6: ImageNet 120 class classification performance with nodes and edges modification via HNI

Category american
egret

black
stork

spoon
bill

white
stork cheetah leopard lion tiger

Original NN Accuracy 0.51 0.31 0.70 0.88 0.48 0.85 0.33 0.50
Modified NN Accuracy 0.58 0.40 0.75 0.92 0.57 0.89 0.41 0.54

Category ambu
lance

beach
wagon cab fire

engine jeep limousine recreation
vehicle

school
bus

Original NN Accuracy 0.52 0.45 0.38 0.59 0.63 0.33 0.66 0.47
Modified NN Accuracy 0.57 0.54 0.44 0.63 0.70 0.40 0.75 0.59

For those 104 unmodified classes, their accuracy before and after distillation is consistent (with
difference <0.03), their mean accuracy are: (42.6% before distillation and 42.9% after distillation)

As shown in Fig. 13, In our larger experiments of 120 class ImageNet experiements, for the bird
“white stork” (Fig. 13(a)), we delete the edges between head and feathers because they don’t have a
very stable relationship, i.e. when the bird is in different poses: sit, stand, fly (Fig. 13(b)), its head
and feathers may have different spatial relationships (no strong structure relationship between the two
concepts). Instead, we add edges between the head and neck since it was not initially captured by the
NN and they actually share reliable structural relationships. Similarly, for the “leopard”(Fig. 13(c)(d)),
we delete the edges between the tail and legs and add the edges between head and back.

Original white stork c-SCG New white stork c-SCG Original leopard c-SCG New leopard c-SCG

Human
modify

Human
modify

(c)(a)

(b) (d)

Figure 13: Examples of human modify both nodes and edges. (a) For the bird “white stork” , we
delete the edges between head and feathers because they don’t have a very stable relationship, i.e.
(b) when the bird is in different poses: sit, stand, fly, its head and feathers may have different spatial
relationships (no strong structure relationship between the two concepts). Instead, we add edges
between the head and neck since it was not initially captured by the NN and they actually share
reliable structural relationships. (c) and (d) Similarly, for the “leopard”, we delete the edges between
the tail and legs and add the edges between head and back.

E MORE EXPERIMENTS ON ZERO-SHOT LEARNING THROUGH HNI

We conduct two zero-shot learning experiments with HNI (Fig. 15and Fig. 14), which is similar to
the Sec. 4.2 experiment of zero-shot learning in the main paper. Here, each learned object A, B, C,
and D has 192 training images and 216 testing images while the new object E (we want to learn) has
only 216 testing images. We use a ResNet-18 with no pretrain as classification model. Fig. 14 and
Table. 7 shows the first experiments.

Different from the previous experiment, in the following experiments (Fig. 15), we have 4 different
shared concepts in this experiment, and each object uses 3 of them. This setting enlarges the variance
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C
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C
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learned ABCD
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Figure 14: Zero-shot learning: Human users teach NN to learn to encode new objects with HNI.
Given images of objects A, B, C, and D (object E is a new class with no images). Step 1: train a
ResNet-18 with images of objects A, B, C, and D; then use VCE to discover the shared concepts;
we can use concept match to obtain image-level SCGs (I-SCG) for learned objects. Step 2: humans
first analyze the relationship of new object E with shared concepts and learned objects (ABCD), then
build custom I-SCG for object E by recombining the nodes and edges. Then train a GRN that can
classify both ABCD and E. Step 3, we use knowledge distillation to transfer the knowledge from
SCG back to the original NN. Step 4: The original NN obtain the ability to classify the new object E

Table 7: Performance (Confusion matrix) of Zero-shot learning with HNI. (left) GRN with custom
I-SCGs of new object E. (middle) Original NN ResNet-18 trained with images of objects A, B, C, D
can not identify object E in the test set. (right) ResNet-18 learned to encode and recognize object E
after knowledge distillation through proposed HNI.

GRN Original ResNet-18 Human modified ResNet-18

GT
Pred A B C D E A B C D E A B C D E

A 156 20 9 31 0 86 69 42 19 0 128 0 56 32 0
B 0 191 0 25 0 7 209 0 0 0 0 160 2 21 33
C 2 2 140 69 3 72 89 55 0 0 45 0 100 1 70
D 1 4 21 142 48 56 81 20 59 0 0 28 20 128 40
E 1 2 11 3 199 33 172 11 0 0 0 25 26 27 138

between main objects, which is similar to more general real-life settings that there may have large
inter-object variance. The new object E does not need to have totally the same concepts as the training
objects, such as object A, they only have two same concepts. This means that knowledge can be
transferred between large variance objects which is more flexible.
Fig. 15 and Table. 8 shows the performance of zero-shot learning with our HNI.

Table 8: Performance of Zero-shot learning with HNI. (a) Confusion matrix of GRN with custom
I-SCGs of new object E. (b) Confusion matrix of original ResNet-18 trained with images of object
ABCD can not identify object E in the test set. (c) Confusion matrix of ResNet-18 after knowledge
distillation which obtains the ability to classify new object E after human’s teaching through HNI

GNN Original ResNet-18 After distillation

GT
Pred A B C D E A B C D E A B C D E

A 130 83 0 0 3 161 51 0 4 0 160 56 0 0 0
B 0 216 0 0 0 0 216 0 0 0 67 149 0 0 0
C 0 0 165 43 8 40 0 105 71 0 13 71 115 0 17
D 0 0 13 203 0 0 6 0 210 0 0 0 24 192 0
E 0 14 1 0 201 42 11 0 163 0 0 55 48 26 87
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Figure 15: Configuration of general setting of Zero-shot-learning

F HUMAN-IN-THE-LOOP USER STUDY

We conducted a user study with responses from 43 ML practitioners and students giving us the
following data.

For the practitioners: (1) they are volunteers to join the human-in-the-loop User Study and it is
unpaid. (2) the age range is 23 to 30 years old and there are 23 males and 20 females among all 43
participants. (3) The average time to finish this questionnaire is about 5 minutes.

Over 95% of the participants found ”how to modify the Structural Concept Graph” is easy to
understand. Over 93% of the participants found our method is ”more helpful” than traditional ways
to modify the logic of the neural network. Given these visualizations, 91% ”expressed interest” in
potentially using HNI to modify their models. Table. 9 shows the details of our questionnaire. As for
the ”explanation” referred to in question 1, we directly use Fig. 3 in the main paper as the example.

Table 9: Questionnaire details

id Question

1 Can you understand our explanation about how to modify the Structural Concept Graph above?

2 Do you think this tool could help you modify the logic of neural network easier compared with traditional
methods, such as data augmentation, modify parameters, or change the architecture of models?

3 Do you want to use this interface tool to improve the performance of your neural network?

G MORE DISCUSSION

G.1 TOWARDS GENERIC INTERFACE

As this work is the first attempt towards a generic interface between human and neural networks, we
primarily focus on image-related applications in our experiments. However, we want to point out
that the proposed framework can be easily extended to other data modalities and tasks with minor
adaptations. The input modality is only related to the concept extraction where the concepts can be
extracted from other modalities such as texts and other structured data.

For regression tasks, our pipeline can easily be adapted because we do not have assumptions or
constraints on the output format, the Graph reasoning network can also do regression tasks if the
original NN is used to solve the regression problem. In both classification and regression tasks,
humans only need to be involved with class-specific SCG (c-SCG) to modify the reasoning logic,
which is agnostic to the output format. For textual input, only adaptation required is in the concept
extraction, one will need to discover the concepts with different representations (e.g., important
tokens).
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We do have the plan to apply the proposed framework to tackle more applications such as few-shot
learning, continual learning, active learning, more humanoid Neural networks, and fine-grained
classification

G.2 LIMITED DATASET SETTING

The reason we use a limited dataset is to simulate the scenario where NN fails to generalize from
limited training data, hence it is easier to demonstrate how human guidance can help to improve the
original NN in this case. However, we want to emphasize that the proposed framework is not limited
by or making any assumption on, the training data size. First, the size of GRN depends on the classes
of interest whose logic we want to modify, and it is compatible with any scale original NN with a
large number of unmodified classes. As is shown in Table. 1, where we modify the logic of 6 classes
of interest among 20 classes, the number of modified classes is independent of the total number of
classes. We only create a Graph reasoning network for the classes of interest, and change the “local
logic” where these classes may be confused with each other. On the other hand, when sufficient
sampling of a large variety of classes (e.g., ImageNet) is available in training, NN is likely to be able
to learn a good representation and reliable reasoning logic. In this case, NN can help humans to better
understand and learn to differentiate specific classes by NN-to-Human path via the visualization of
the decision logic (e.g., the most discriminative concepts and relationships). However, in real-world
scenarios, if we have very limited data and a limited number of very specific classes of interest, NN
may learn some hard-to-decouple bias and may fail to generalize. Human users can easily spot the
bias (irrelevant concepts and incorrect relationships) and help modify the reasoning logic to improve
the original NN’s performance. That is the reason why, to demonstrate the efficacy of our framework,
we chose to use a limited dataset to simulate the scenarios with data scarcity.

G.3 PERFORMANCE DROP AFTER PARTIAL KNOWLEDGE DISTILLATION

GRN accuracy on the modified classes is better than modified NN after knowledge distillation. Here
are the analysis and reasons:

(1) GRN is a specialist model which is only trained on modified classes of interest and only needs
to consider the local logic. It cannot predict the unmodified classes. However, the original NN is a
larger and general model which can classify more categories.

(2) Our proposed “Partial knowledge distillation” method (Fig. 5) tries to transfer knowledge between
Graph neural network and Convolutional Neural network with different input modalities, we also
have two teacher models and combine them together as soft labels. It is known that knowledge
distillation is sensitive to the hyperparameter temperature (T ). We have three different choices of T s
in our case which makes it even harder to find the best one. Due to the goal of verifying the key idea,
we do not take too much effort to conduct a hyperparameter search which may further improve the
distillation performance. Moreover, we need to keep the high performance of the unmodified classes,
which may also influence the performance of modified classes during knowledge distillation.

(3) Combining both GRN and original NN may have the best performance, but at an additional cost
(both in parameters and run time). The reason we want to distill the knowledge from GRN back to
the original NN is to try to avoid modifying the structure, size, and inference time of the original NN
and instead serve as a tool to improve its performance. This way it does not affect the deployment of
the original NN (e.g., the original NN may be a tiny network to be deployed on an edge platform).
Our main goal is to use the proposed Human-NN Interface, to exchange knowledge between human
users and original NN.

Table 10: ImageNet 20 class classification performance details (GRN accuracy) with node modifica-
tion via HNI

Category Beach
wagon

Ambu
lance

School
bus Jeep Fire

engine
Recrea
vehicle

Original NN Accuracy 0.54 0.69 0.80 0.53 0.73 0.68
GRN Accuracy 0.88 0.86 0.96 0.93 0.84 0.80
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Table 11: iLab-20M three class classifier performance details (GRN accuracy)

Category Bus Military Tank

Original NN Accuracy 0.31 0.49 0.66
GRN Accuracy 0.78 0.91 0.75

G.4 LIMITATIONS

(1) The zero-shot learning experiments use a synthesized dataset which is an ideal situation to show
the idea. But in the real world, the shared concepts between objects may have larger variance, which
may hinder the performance. (2) The knowledge distillation result is sensitive to the temperature
of knowledge distillation, finding a suitable temperature is a time-consuming process. (3) The
consistency of discovered concepts may not be good. However, our work highly relies on the result
of discovered concepts. In order to solve this, we need to use different segmentation methods to find
consistent concepts, which takes a longer time. We plan to use better methods for segmentation and
match during the concept discovery and matching stage.

G.5 BROADER IMPACT

HNI allows humans and NN to understand each other using SCG as a ”language”. A human can
directly modify NN with human prior knowledge. It can also help us ”teach” NN to learn new objects.
This can have a positive impact on: (1) We can teach NN not to learn some knowledge we do not
want it to learn, e.g., not learn some social bias; (2) we can help NN learn something it has never
seen before. This will be useful when we lack the data. We can use our prior knowledge to build
SCG and help NN to learn the knowledge of this object.
However, those who have bad intentions may be able to figure out a way to use it maliciously. In our
case, one might find a way to teach NN something unsuitable. There are more and more scenarios
using NN to help humans to make decisions. If we teach NN unsuitable knowledge, it may make
wrong decisions, but that could be done through standard training as well.

G.6 ASSET

Imagenet license: Researcher shall use the Database only for non-commercial research and educa-
tional purposes
We use a subset of the ILSVRC2012 dataset (ImageNet) and iLab-20M. The objects in ImageNet are
vehicles and animals that can be found on the Internet. The object in iLab-20M is toy vehicles, under
Creative Commons CC-BY license. They do not contain any personally identifiable information
offensive content.
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