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Abstract

We propose a novel method for estimating the rate-distortion-perception function
in perfect realism regime (PR-RDPF) for a multivariate continuous source subject
to a single-letter average distortion constraint. Our approach leads to a general
computation scheme able to solve two related problems, the entropic optimal
transport (EOT) and the output-constrained rate-distortion function (OC-RDF),
of which the PR-RDPF represents a special case. Using copula distributions,
we show that the OC-RDF is equivalent to an I-projection problem on a convex
set, which allows us to recover the parametric solution of the optimal projection
whose parameters can be estimated, up to an arbitrary precision, via the solution
of a convex program. Subsequently, we propose an iterative scheme via gradient
methods to estimate the convex program. Lastly, we support our theoretical findings
with numerical examples by assessing the estimation performance of our scheme.

1 Introduction

Rate-distortion-perception (RDP) theory, proposed by Blau and Michaeli [3] and Matsumoto [13, 14],
is a novel generalization of the classical rate-distortion framework [23], tailored to consider the
compression of complex data sources (e.g., audio, images, video) when perceptual quality is taken
into account. This generalization considers the classical rate-distortion function (RDF) formulation
and imposes an additional divergence constraint between the source distribution and its reconstruction.
The divergence constraint acts as a proxy for human perception, capturing the difference between the
reconstructed samples and the source “natural statistic” [15]. Alternatively, it can also be interpreted
as a semantic quality metric measuring the relevance of the reconstructed source from the receiver’s
perspective [11].

Previous studies on the connection between the statistical properties of the reconstructed samples
and their perceived quality led to the formulation of the so-called output-constrained rate-distortion
problem. In this class of constrained lossy compression problems, instead of restricting the maximal
statistical divergence between the source distribution and its reconstruction, the focus is on constrain-
ing the reconstruction to belong to a specific distribution, which may differ from that of the source.
The resulting problem shows close similarities with the EOT problem [1, 26], as, in both problems,
the source and the reconstruction distributions are assumed known a priori.

The mathematical formulation that quantifies the operational meaning in RDP theory is the RDPF,
which, much like its classical RDF counterpart, is not generally available in analytical form. Despite
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the general complexity, closed-form expressions have been developed under different settings [3, 27,
22, 16]. The absence of a general analytic solution for the RDPF led to the research of computational
methods for its estimation. However, dedicated algorithmic solutions have been developed so far
only for discrete sources [21] or by discretizing certain classes of continuous sources [4]. For general
sources, RDPF estimation methods often rely on data-driven solutions [3, 27, 9], which unfortunately
do not have convergence guarantees.

Contributions With this work, our objective is the development of a novel estimation method
for the PR-RDPF for multivariate continuous sources subject to a single-letter average distortion
constraint. As a result, our approach leads to a generic computational scheme for the EOT and
the OC-RDF, of which the PR-RDPF represents a particular case. The main contributions of this
paper are the following. (i) We establish the existence of a one-to-one correspondence between the
feasible set of solutions of the OC-RDF and EOT (Theorem 1), making the two problems equivalent.
(ii) Using properties of copula distributions, we cast the OC-RDF as a projection problem in the
geometry induced by the Kullback–Leibler (KL)-divergence, i.e., I-projection, on a convex constraint
set (Problem 1). However, although this class of projection has been extensively studied in [5],
the existing parametric solution is not directly suitable for computational purposes. To bypass this
technical issue, we introduce a relaxation of the constraint set of the I-projection, which results in
a lower bound to the original optimization objective (Problem 2) that we subsequently show that it
can be made arbitrarily tight (Theorem 4). (iii) We characterize the parametric closed-form solution
of the relaxed I-projection, whose optimal parameters can be directly obtained as the solution of
a strictly convex program (Theorem 5). (iv) We propose an algorithmic approach via a stochastic
gradient descent method, to estimate the strictly convex optimization problem of Theorem 5 (see
Algorithm 1). We supplement our theoretical results with various numerical evaluations aiming to
estimate the PR-RDPF under various sources and different distortion measures via Algorithm 1.

Notation We indicate with R the set of real numbers, with R̄ the extended set R ∪ {−∞,+∞}.
Given a Euclidean space (possibly finite-dimensional) X , we denote by (X ,B(X )) the Borel mea-
surable space induced by the metric, with P(X ) denoting the set of distribution functions defined
thereon. For a random variable (RV) X defined on (X ,B(X )), we denote with FX ∈ P(X ) its
distribution function (shortly, d.f.) and with fX its probability density function (shortly, pdf). Given
two RVs X and Y , we will indicate their independent product d.f. as FX ⊗ FY , equivalent to the
independent product pdf fX,Y = fXfY . Furthermore, given any joint pdf fX,Y , we will indicate
with mX(fX,Y ) and mY (fX,Y ) the pdf associated with the marginal RV’s X and Y , respectively.
We will indicate with DKL(FX ||FY ) the Kullback–Leibler (KL)-divergence between RV’s X and Y ,
whereas h(X) and h(X|Y ) will denote, respectively, the differential entropy of X and the conditional
differential entropy of X given Y . Lastly, given a set A ∈ Rn, we will denote with lp(A) the set of
functions g : A → R such that

∫
A |g(s)|pds < ∞.

1.1 OC-RDF - A link between PR-RDPF and EOT

We begin this subsection by providing the mathematical definition of OC-RDPF, formally introduced
by Saldi et al. in [19].

Definition 1. (OC-RDF) Let fX ∈ P(X ). Then, the OC-RDF for the source X ∼ fX under a
distortion measure ∆ : X × Y → R+

0 and a target reconstruction distribution fY ∈ P(Y) is given
as follows

ROC(D) = min
fY |X∈Π̂(fX ,fY )

I(X,Y ) s.t. E [∆(X,Y )] ≤ D (1)

where Π̂ is the convex set of Markov kernels Π̂(fX , fY ) ≜ {fX|Y : mY (fY |X · fX) = fY }.

The main difference between the problems of PR-RDPF and OC-RDF lies in how the constraint on
the reconstruction distribution fY is handled. While in the PR-RDPF case, we specifically constrain
the reconstruction distribution and source distribution to be identical, in the OC-RDF we have an
additional degree of freedom, allowing for the distribution of the reconstruction to be chosen freely.
This results in the following observation.

Remark 1. The problem of the OC-RDF ROC particularizes to the problem of PR-RDPF RPR by
specifying the reconstruction distribution to be equal to the source distribution (i.e. fY = fX ).
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It should be noted that the PR-RDPF represents a limit case of the general problem of the RDPF
[3]. Although it became quite popular through [3], similar ideas were previously explored by Li
et. al. in [12], in the context of distribution-preserving quantization and distribution-preserving
RDF. Multiple coding theorems have been developed for PR-RDPF. Under the assumption of infinite
common randomness between the encoder and decoder, Theis and Wagner in [25] prove a coding
theorem for stochastic variable-length codes in both one-shot and asymptotic regimes. Saldi et. al., in
[19], provide coding theorems focusing on the case where only finite common randomness between
encoder and decoder is available.

Additionally, the OC-RDF highlights an interesting connection to the EOT problem (see [1, 26]), of
which the mathematical definition is stated as follows.
Definition 2. (EOT) Let fX ∈ P(X ) and fY ∈ P(Y). Then, the EOT for ϵ > 0 and distortion
measure ∆ : X × Y → R+

0 , is given as follows

DEOT (ϵ) = min
fX,Y ∈Π̄(fX ,fY )

E [∆(X,Y )] + ϵI(X,Y ) (2)

where Π̄ is the convex set of joint pdfs Π̄(fX , fY ) ≜ {fX,Y : mX(fX,Y ) = fX ,mY (fX,Y ) = fY }.

Notably, it can be shown that OC-RDF and EOT are closely related in the sense that for specific
values of D and ϵ, there exists a bijection between the sets of solutions of the two problems. In other
words, we can find the solution to one problem based on the solution of the other. We formalize this
observation in the following theorem.
Theorem 1. (Connection of OC-RDF and EOT) Let fX ∈ P(X ) and fY ∈ P(Y). Then, for any
D > 0, there exists an ϵ > 0 such that the problems of OE-RDF and EOT are equivalent.

In view of Theorem 1, we can treat the OC-RDF and EOT problems as equivalent problems. As a
result, the computational schemes derived in Section 2 applicable to the OC-RDF problem, can be
adapted mutatis mutandis to the EOT problem.

1.2 Copula distributions

In this subsection, we give some preliminaries to copulas distributions, as these have a central role
in the derivation of the main results of this paper. The following definitions and theorems are taken
from [6].
Definition 3. (Copula distribution) For every d ≥ 2, a d-dimensional copula d.f. is a d-variate d.f.
on [0, 1]d whose univariate marginals are uniformly distributed on [0, 1].

The next theorem and the two companion corollaries, demonstrate that copulas are a powerful tool
for the modeling and analysis of multivariate distributions.
Theorem 2. (Sklar’s Theorem) Let F be a d-dimensional d.f. with marginal d.f. F1, F2, . . . , Fd.
Then, there exists a d-copula d.f. C such that for all (x1, x2, . . . , xd) ∈ R̄d,

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (3)

with C being uniquely determined on [0, 1]d iff F1, F2, . . . , Fd are continuous.

Corollary 1. Let f : R̄d → R+ be the pdf associated with (3). Then, f can be decomposed as

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd))

d∏
j=1

fj(xj)

where fj is the pdf associated with the univariate marginal d.f. Fj and c : [0, 1]d → R+ is the pdf
associated with the copula d.f. C.

Corollary 2. Let F1, F2, . . . , Fd be univariate d.f.’s and C be a copula d.f.. Then, the function
F : R̄d → [0, 1] defined in (3) is a d-dimensional d.f. with marginal F1, F2, . . . , Fd.

It is worth noticing that Corollary 1 guarantees that the pdf of any multivariate distribution can be
factorized as the product of the marginal densities and a unique copula distribution. This factorization
can be effectively thought of as inducing a decoupling between the correlation structure embedded
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in the joint distribution (represented by the copula distribution) and the information regarding each
single marginal. On the other hand, Corollary 2 shows the modeling capabilities of copulas, where,
given a set of marginal distributions, any copula distribution describes a proper joint distribution.

We conclude this subsection with the definition of the quantile function, which will also be of use in
the derivation of our main results.

Definition 4. (Quantile function) Let X ∼ FX be a univariate RV on X ⊆ R. We define the
quantile function QX : [0, 1] → R as QX(u) ≜ sup{x ∈ X : F (x) ≤ u}. If FX is continuous and
strictly increasing, then QX = F−1

X . However, even if FX may fail to have an inverse function, QX

guaranties that QX (FX(X)) = X almost surely (a.s.).

To ease the notation, in the sequel we denote by uniform transformation of an RV X =
(X1, . . . , Xd) the function ΦX : X → [0, 1]d defined as ΦX(X) ≜ (FX1(X1), . . . , FXd

(Xd)).
Moreover, we define the function ΨX : [0, 1]d → X as ΨX(U) ≜ (QX1(U1), . . . , QXd

(Ud)). By
construction, ΨX is the a.s.-inverse of ΦX , that is, ΨX(ΦX(X)) = X a.s.

2 Copula Lower Bound

First, we prove a lemma with which the functionals in the mathematical formulations of Definitions 1
and 2 can be redefined using copula distributions.

Lemma 1. Let (X,Y ) ∼ fXY ∈ P(X × Y) be a 2d-variate RV with marginal pdfs fX ∈ P(X )
and fY ∈ P(Y). Then, the mutual information I(X,Y ) can be equivalently written as follows

I(X,Y ) = DKL(CX,Y ||CX ⊗ CY ) (4)

where CX,Y , CX , CY are the copula d.f.’s associated with distributions FX,Y , FX , and FY , respec-
tively. In addition, given a distortion function ∆ : X × Y → R+, the following holds

EFX,Y
[∆(X,Y )] = ECX,Y

[∆ (ΨX(UX),ΨY (UY ))] (5)

where U = (UX , UY ) ∼ CX,Y .

Leveraging Lemma 1, we can provide an alternative formulation of the mathematical expression in
(1), which will be the subject of our estimation analysis. This is stated next as Problem 1.

Problem 1. (Copula-based OC-RDF) The mathematical expression (1) can be reformulated as

ROC(D) = min
C∈C2d

DKL(C||CX ⊗ CY ) (6)

s.t. EC [∆(ΨX(UX),ΨY (UY ))] = D (7)

where C2d is the set of 2d-copula distributions and D ∈ [Dmin, Dmax].

Remark 2. (On Problem 1) Problem 1 is a convex program in the space of copula d.f. Moreover,
the problem is equivalent to finding the I-projection of CX ⊗ CY on the set B ⊂ C2d of copula d.f.
satisfying the modified distortion constraint (7).

Problem 1 represents a projection problem in information geometry, where the goal is to find the
copula distribution C that minimizes the information divergence from the independent product copula
CX ⊗ CY while respecting a linear set of constraints. This class of projection problems has been
thoroughly studied by Csiszár in [5], where the analytical form of the optimal projection for the
considered case has been characterized. Using [5], we derive the following theorem.

Theorem 3. (Analytical solution of Problem 1) Let R = CX ⊗ CY and assume there exists a copula
d.f. P such that DKL(P ||R) < ∞ and (7) is satisfied. Then, Problem 1 admits a minimizing copula
Q with Radon–Nikodym derivative with respect to the measure R of the form

dC

dR
(u) = eµ+θ[∆(ΨX(ux),ΨY (uy))]

2d∏
i=1

gi(ui) (8)

for some constants (µ, θ), and nonnegative uni-variate functions gi such that log(gi(s)) ∈ l1([0, 1])
for i = 1, . . . , 2d.
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Although Theorem 3 provides a characterization of the solution of Problem 1, the lack of an analytical
form for the free functions {gi(·)}i=1...,2d poses a challenging problem in the computation of (8).
Following an idea of [20], we circumvent this technical issue via a relaxation on the constraint set of
Problem 1, that results into a lower bound on OC-RDF. This is demonstrated next in Problem 2.
Problem 2. (Lower bound to Problem 1) For any integer N , Problem 1 can be lower bounded by

ROC(D) ≥ R
(N)
OC = min

Q∈D([0,1]2d)
E[∆(ΨX(UX),ΨY (UY ))]=D

EQ[un
i ]=αn, (i,n)∈I

DKL(Q||R)

where R = CX ⊗CY , I = (1, . . . , 2d)× (1, . . . , N), D ∈ [Dmin, Dmax], and αn is the nth moment
of a uniform distribution on [0, 1].

Remark 3. (Problem 1 vs Problem 2) The main technical difference between Problems 1 and 2
concerns their constraint sets. Particularly, in Problem 1 we require that the minimizing distribution
Q∗ belongs to the set of copula distributions, which means that its marginals are uniformly distributed.
On the other hand, the marginals of the minimizing distribution Q̂∗

N of Problem 2 only require to
respect up to N moments of a uniform distribution. This in turn implies that the constraint set of
Problem 1 is a subset of the constraint set of Problem 2, justifying the lower bound of the latter.

In the following theorem, we show that, for N → ∞, Problem 2 recovers the solution of Problem 1.

Theorem 4. Let Q∗ be the optimal solution of Problem 1 and Q̂∗
N be the optimal solution of Problem

2. Then, as N → ∞,DKL(Q̂
∗
N ||Q∗) → 0 and R

(N)
OC → ROC .

We now provide the analytical form of the solution of Problem 2. Unlike Theorem 3, the optimal
solution does not depend on free functions {gi(·)}i=1...,2d, but it depends only on the Lagrangian
multipliers of Problem 2 obtained as result of its dual problem.
Theorem 5. (Analytical solution of Problem 2) Let R = CX ⊗ CY and assume there exists a d.f.
P on [0, 1]2d such that DKL(P ||R) < ∞ and (7) is satisfied. Then, Problem 2 admits minimizing
copula Q with Radon–Nikodym derivative with respect to the measure R of the form

dQ

dR
(u) = eµ+θ∆(ΨX(ux),ΨY (uy))

2d∏
i=1

e
∑N

n=0 νi,nu
n
i (9)

where the constants (µ, θ, {νi,n}(i,n)∈I) are the Lagrangian multipliers of Problem 2 obtained as a
result of the following dual program

min
(µ,θ,{νi,n}(i,n)∈I)

− µ− θD −
∑

(i,n)∈I

νi,nαn +

(∫
[0,1]2d

dQ

dR
(u)dR(u)− 1

)
. (10)

The following result is a consequence of Theorem 5.
Corollary 3. Let Q be the minimizing copula d.f. characterized in Theorem 5. Then, the mutual
information I(X,Y ) of the joint distribution (X,Y ) defined by marginals d.f. {FXi

}i=1,...,d and
{FYi

}i=1,...,d and copula Q is given by

I(X,Y ) = DKL(Q||R) = −µ− θD −
∑

(i,n)∈I

νi,nαn. (11)

Copula Estimation As anticipated in Theorem 5, the Lagrangian multipliers (µ, θ, {νi,n}(i,n)∈I)
defining the optimal solution of Problem 2 can be obtained by solving (10). Although not available
in closed form, the solution of (10) can be optimally computed using numerical methods, given the
properties of the problem.
Lemma 2. The optimization problem (10) is strictly convex, hence it has a unique solution.

To compute (10), we propose a low-complexity optimization scheme based on gradient methods.
The main technical detail to clarify is related to the estimation of the integral present in (10), since
numerically solving a possibly high dimensional integral could hinder the complexity of the algorithm.
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However, since its computation is required only for the estimation of the gradient and not for the
computation of I(X,Y ) (as shown in (11)), we can approximate the integral using Monte Carlo
method [17]. The resulting iterative scheme can be considered as a mini-batch stochastic gradient
descent algorithm on a convex objective [7]. The algorithm is given in Algorithm 1.

Algorithm 1 ROC(D) - Copula Estimation

Require: marginal distributions {FXi
, FYi

}i=1,...,d; distortion level D; number of iterations T ;
initial Lagrangian multipliers l(0) = (µ(0), θ(0), {ν(0)i,n}(i,n)∈I);

1: for i do = 1, . . . , T
2: Sample {ui}i=1...M with ui ∼ U([0, 1]2d)

3: f(l) ≈ (11) +
(

1
M

∑M
i=1

dQ
dR (l,ui)dR(ui)

)
4: l(i) = GradientMethod(l(i−1), f)
5: end for

Ensure: Lagrangian multipliers l(T ); I(X,Y ) = (11).

3 Numerical Results

In this section, we provide numerical estimation of the PR-RDPF for both scalar and vector sources
using Algorithm 1. In the cases where the MSE distortion metric is considered, we compare the
estimated result with the analytically available Shannon Lower Bound RSLB

PR derived in Appendix G.

Scalar Case We estimate the PR-RDPF for scalar sources under a single-letter constraint on the
reconstruction error in terms of (a) the l2 norm, i.e., the MSE distortion (see Fig. 1a), and (b)
the l1 norm i.e. the mean-absolute-error (MAE) distortion (see Fig. 1b). We consider various
source distributions, such as Gaussian, Laplace, exponential, and uniform, assuming that the source
X ∼ G(0, 1) is normalized, i.e., zero mean with unitary variance. In Fig. 1a, the Gaussian source
case allows us to quantify the algorithm estimation accuracy by comparing it with the RSLB

PR , which
in this case represents the exact PR-RDPF. Regarding the other cases, the numerical results show
that the bound RSLB

PR behaves similarly to the SLB of the classical RDF, being tight only in the low
distortion (high resolution) regime.

Vector Case We estimate the PR-RDPF under an MSE distortion metric for correlated bivariate
sources, considering the cases where the source marginals are normalized and either Gaussian (see
Fig. 2a) or exponentially (see Fig. 2b) distributed. In both cases, the multivariate distribution is
constructed by imposing a Gaussian coupling1 with variable correlation coefficient ρ ∈ [0, 1]. By
changing ρ, we analyze the cases where the bivariate source presents independent (ρ = 0), mildly
correlated (ρ = 0.5) and highly correlated (ρ = 0.9) marginals. Similarly to the scalar case, in Fig.
2a we compare the Gaussian PR-RDPF estimate obtained via Alg. 1 with the RSLB

PR , which in this
case represents the exact PR-RDPF, observing very good estimate of the Gaussian PR-RDPF for all
the selected ρ. Contrary to Fig. 2a, in Fig. 2b we observe that beyond high resolution (low distortion),
the exponential PR-RDPF estimate obtained via Alg. 1 is much tighter compared to the RSLB

PR .
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Figure 1: PR-RDPF for various source distributions un-
der (a) MSE distortion and (b) MAE distortion metrics.
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Figure 2: PR-RDPF under MSE distortion metric for a
(a) Gaussian, and (b) exponential bivariate source.

1For more details on parametric copula models, we refer the reader to [6].
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A Proof of Theorem 1

We start by showing that Π̂ and Π̄ in Definitions 1 and 2, define essentially the same set, i.e., there
exists a bijection between two sets. Assuming fX to be the source distribution in OC-RDF, then for
any Markov kernel fY |X ∈ Π̂, the joint pdf fY |X · fX lies in Π̄. Conversely, for any joint distribution
fX,Y ∈ Π̄ the Markov kernel fY |X =

fX,Y

fX
belongs to Π̂. Hence, there is a one-to-one mapping

between the optimization variables of Definitions 1 and 2.
Let (D,λ) be the pair composed by the distortion level in the constraint of (1) and the associated
Lagrangian multiplier. Then, the Lagrangian functional of Definition 1 for distortion level D is
defined as

LRD(fY |X , λ) ≜ I(X,Y ) + λEfY |XfX [∆(X,Y )] . (12)

Similarly, the Lagrangian functional associated with Definition 2 is defined as

LEOT (fX,Y , ϵ) ≜ EfX,Y
[∆(X,Y )] + ϵI(X,Y ). (13)

Based on (12), (13), we observe that the following relation holds

LRD

(
fX,Y

fX
, λ

)
= LEOT

(
fX,Y ,

1

λ

)
hence

argmin
fX,Y ∈Π̄

LEOT

(
fX,Y ,

1

λ

)
= argmin

fX,Y ∈Π̄

LRD

(
fX,Y

fX
, λ

)
= fX · argmin

fY |X∈Π̂

LRD(fY |X , λ).

As a result, (14) shows that the solution of Definition 2 for ϵ = 1
λ is uniquely determined by the

solution of Definition 1 for the pair (D,λ). This completes the proof.

B Proof of Lemma 1

From the definitions of I(X,Y ) and EFX,Y
[∆(X,Y )], (4) can be derived as

I(X,Y ) =

∫
R2d

fXY (x,y) log

(
fXY (x,y)

fX(x)fY (y)

)
dxdy

(a)
=

∫
R2d

cX,Y (ΦX(x),ΨY (y)) log

(
cX,Y (ΦX(x),ΨY (y))

cX(ΦX(x))cY (ΨY (y))

) d∏
i=1

dFXi(xi)dFYi(yi)

(b)
=

∫
[0,1]2d

cX,Y (ux,uy) log

(
cX,Y (ux,uy)

cX(ux)cY (uy)

)
duxduy

= DKL(CX,Y ||CX ⊗ CY )

and (5) is similarly obtained by

EFX,Y
[∆(X,Y )] =

∫
R2d

∆(x,y)fXY (x,y)dxdy

(a)
=

∫
R2d

∆(x,y)cX,Y (ΦX(x),ΦY (y))

d∏
i=1

dFXi
(xi)dFYi

(yi)

(b)
=

∫
[0,1]2

∆(ΨX(ux),ΨY (uy)) cX,Y (ux,uy)duxduy

= EcX,Y
[∆ (ΨX(UX),ΨY (UY ))]

where, in both derivations, (a) follows from the application of Corollary 1 on fX,Y ,fX , and fY , and
(b) follows from the change of variables ux = ΦX(x) and uy = ΦY (y).
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C Proof of Theorem 3

The proof follows similar steps to the proof of [20, Theorem 3.1] with some technical differences,
hence at certain points we skip the heavy mathematical details for ease of readability. In particular,
we project on the product copula d.f. R, instead of the I-projection of the uniform distribution U
on [0, 1]2d, which is considered in [20, Theorem 3.1]. First, we inquire about the existence of the
projection.

Existence and uniqueness Under the assumption of our Theorem that there exist P ∈ B with
DKL(P ||R) < ∞, if the convex set B is variation closed, i.e., closed in the topology induced by the
total variation distance [10, Corollary 7.45], then there exists a unique Q being the I-projection of R
on B. This property of the set B can be proved using [20, Lemma B.1].

Parametric form of the density of the projection The projection task can be facilitated by defining
an intermediate projection step onto the set A that corresponds to the set of d.f. on [0, 1]d satisfying
the distortion constraint (7). Clearly, in this case A is convex and B ⊂ A.

Since the set A is defined by linear constraints, then following [5, Theorem 3.1, (Case A)], we obtain
that RA is the unique I-projection of R onto A with density

dRA

dR
(u) = eµ+θ∆(ΨX(ux),ΨY (uy)) (14)

and, for all P ∈ A, holds that

DKL(P ||R) = DKL(P ||RA) + DKL(RA||R). (15)

Moreover, under the result of [5, Theorem 2.3], if R has I-projection RA on A, and I-projection QB
on B, and if (15) holds for all P ∈ A, then QB is the unique I-projection of QA onto B.

Since the set B is defined by imposing a constraint on the marginals of the measure, and QA has
I-projection on B, then using [5, Theorem 3.1, (Case B)], there exist nonnegative scalar functions gi
with log(gi) ∈ l1([0, 1]) for i = 1, . . . , 2d such that

dQ

dRA
(u) =

2d∏
i=1

gi(ui).

Therefore, Q has density with respect to R given by dQ
dR = dQ

dRA

dRA
dR = (8). This completes the

proof.

D Proof of Theorem 4

Let Q̂i and Ai be, respectively, the copula distribution solution of Problem 2 and its constraint set,
for a number i of constraints on the moments of each marginal. Furthermore, let the constraint set
and optimal solution of Problem 1 be denoted with B and Q∗, respectively. Our goal is to prove that
the sequence {Q̂i}i=0,1,... convergences to Q∗.

By construction, for all i = 0, 1, . . ., it holds that B ⊆ Ai+1 ⊆ Ai. As a consequence of [5,
Theorem 2.3], we can characterize Q̂i+1 and Q∗ as the I-projections of Q̂i onto the sets Ai+1 and B,
respectively. Then, for all i = 0, 1, . . ., the following geometric relation holds (see [5, Equation 3.1])

DKL(Q̂i||Q∗) = DKL(Q̂i||Q̂i+1) + DKL(Q̂i+1||Q∗). (16)

Recursively, applying (16) k + 1 times leads to

DKL(Q̂i||Q∗) =

i+k∑
j=i

DKL(Q̂j ||Q̂j+1) + DKL(Q̂k+1||Q∗)

from which we immediately obtain
i+k∑
j=i

DKL(Q̂j ||Q̂j+1) ≤ DKL(Q̂i||Q∗).
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Since we assume that DKL(Q̂i||Q∗) < ∞, then, necessarily limk→∞ DKL(Q̂k||Q̂k+1) = 0, imply-
ing the convergence of the sequence {Q̂i}i=0,1,... in KL-divergence.

To prove that the limit of the sequence is Q∗, we transform Problem 1 into a specific instance of
Problem 2 under an infinite number of marginals moments constraints. As a consequence of the
uniqueness of solutions of the Hausdorff moments problem [24], any RV on [0, 1] that respects
E [un] = αn for all n ∈ N, is necessarily uniformly distributed. This allows us to transform the
uniform marginal constraints in Problem 1 into a set of countably infinite marginal constraints.

In such form, the only difference between Problems 1 and 2 resides in the finite number i of the
moment constraints of the latter. Hence, since Q∗ = Q̂∞, the limit limi→∞ DKL(Q̂i||Q∗) = 0 holds.
This completes the proof.

E Proof Theorem 5

Let M+([0, 1]2d) denote the set of measurable functions on [0, 1]2d. We notice that the constraint set
A of Problem 2 is defined by linear constraints in the copula d.f. CX,Y . The results of [5, Theorem
3.1, (Case A)] ensure that a unique projection Q of R on A exists with DKL(Q||R) < ∞, hence
dQ
dR ∈ M+([0, 1]2d). More generally, any function g ∈ M+([0, 1]2d) defines a probability measure
dG = gdR on [0, 1]2d under the condition that

∫
[0,1]2d

g(u)dR(u) = 1. This enables the definition
of an optimization problem over the set M+([0, 1]2d) equivalent to Problem 2 as follows

min
g∈M+([0,1]2d)

∫
[0,1]2d

log (g(u)) g(u)dR(u). (17)

s.t.
∫
[0,1]2d

g(u)dR(u) = 1 (18)∫
[0,1]2d

∆(ΨX(ux),ΨY (uy))g(u)dR(u) = D (19)∫
[0,1]2d

un
i g(u)dR(u) = αn (i, n) ∈ I (20)

Indicating with µ′, θ, {νi,n} the Lagrangian multipliers associated with constraints (18)-(20), we
define the Lagrangian functional of the problem as

L(g, µ′, θ, {νi,n}) =
∫

S(g(u), µ′, θ, {νi,n})dR(u) + V (µ′, θ, {νi,n}) (21)

S(z, µ′, θ, {νi,n}) = z
[
log(z)− µ′ −

∑
(i,n)∈I

νi,nu
n
i − θ∆(ΨX(ux),ΨY (uy))

]
V (µ′, θ, {νi,n}) = µ′ + θD +

∑
(i,n)∈I

νi,nαn.

By applying the Euler-Lagrange equation [8], we characterize necessary conditions for the function g
to be an extreme point for (21). If g∗ is an extreme point of (21) , then the necessary stationarity
condition holds, i.e.,

dS

dz
(g∗) = 0

from which we obtain

g∗(u) =
dQ

dR
(u) = exp

[
(µ′ − 1) +

∑
(i,n)∈I

νi,nu
n
i + θ∆(ΨX(ux),ΨY (uy))

]
, (22)

which is equivalent to (9) by considering µ = µ′ − 1.

To determine the optimal values of the Lagrangian multipliers µ′, θ, {νi,n}, we leverage Lagrangian
duality theorem [18] and define the dual problem (10) as

(10) = min
(µ,θ,{νi,n}(i,n)∈I)

−L(g∗, µ+ 1, θ, {νi,n}(i,n)∈I).

This concludes the proof.
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F Proof Lemma 2

The proof makes use of the Hessian matrix of the optimization problem in (10). Specif-
ically, define the vector l ≜ ((µ, θ, {νi,n}(i,n)∈I)) ∈ R2+2d·N and the mapping ω(u) ≜
(1,∆(ΨX(ux),ΨX(uy)), u1, . . . , u

N
1 , . . . , uN

2d). Then, the Hessian of the optimization problem
(10) can be expressed as ∫

I2d

ω(u)ω(u)T dQ = EQ

[
ω(u)ω(u)T

]
,

which, due to the linear independence of the components of ω(u), is a strictly positive definite matrix.
This is a sufficient condition for the strict convexity of (10). This completes the proof.

G Shannon Lower Bound (SLB) for PR-RDPF

In this appendix, we derive a generalization of the well-known SLB on the classical RDF with MSE
distortion [2] to the case of PR-RDPF, denoted hereinafter by RSLB

PR . The bound is stated in the
following theorem.

Theorem 6. (SLB for PR-RDPF) Let S ≜ {fX : EfX

[
(X − E [X])(X − E [X])T

]
⪯ Σ} be the

set of source distribution with a fixed covariance matrix Σ. Then, for all X ∼ fX with fX ∈ S, the
PR-RDPF under MSE distortion constraint admits the following lower bound

RPR(D) ≥ RSLB
PR (D) = h(X)− h(X∗) +RG

PR(D) (23)

where RG
PR(D) denotes the Gaussian PR-RDPF for a source X∗ ∼ N(0,Σ).

Proof. We start by considering the scalar version of the proposed problem, i.e., S ≜ {fX :
EfX

[
(X − E [X])2

]
≤ σ2}. Define the constraint set H(fX , D) as follows

H(fX , D) = {fY |X : EfXfY |X

[
||X − Y ||2

]
≤ D,X ∼ Y }.

Then, by definition of the PR-RDPF, we obtain

RPR(D) = h(X)− max
fY |X∈H(fX ,D)

h(X|Y )

(a)
= h(X)− max

fY |X∈H(fX ,D)
h(Y |X)

(b)

≥ h(X)− max
fZ∈S

max
fY |Z∈H(fZ ,D)

h(Y |Z) (24)

where (a) follows by observing that h(X|Y ) = h(Y |X) under the constraint X ∼ Y , and (b) follows
from the maximization over the set of sources S.

Consider the joint distribution on (Z, Y ) with Z ∼ Y . Then, the conditional variance of the RV Y
conditioned on Z can be expressed as σ2

Y |Z = σ2
Z(1− ρ2), hence the constraint set H(fZ , D) can be

simplified to

EfZfY |Z

[
||Z − Y ||2

]
= 2σ2

Z(1− ρ) ≤ D

=⇒ σ2
Y |Z ≤ σ2

Z

(
1−

(
1− D

σ2
Z

)2
)

= D′. (25)

Since (25) constraints only the second moment of the distribution fY |Z , we can infer that the
maximum h(Y |Z) is attained by fY |Z ∼ N(0, D′). Furthermore, since (25) depends only on the
second moment of the source σ2

Z , the maximization over the set of source distributions has to satisfy
only the distribution constraint Z ∼ Y . Assuming Y |Z to be Gaussian, we can select Z to be also
Gaussian distributed with fZ ∼ N(0, σ2), which ensures that Y will have the same distribution.
Therefore, the distribution on (Y,Z) maximizing h(Y |Z) is itself Gaussian and coincides with the
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PR-RDPF achieving distribution assuming a Gaussian source X∗ ∼ N(0, σ2). This allows the
characterization of the following equality

max
fZ∈S

max
fY |Z∈H(fZ ,D)

h(Y |Z) = max
fY |X∗∈H(fX∗ ,D)

h(Y |Z) (26)

= RG
PR(D)− h(X∗) (27)

which, together with (24) yields (23).

For the general vector case, we consider that for every source Z ∼ fZ ∈ S, we have marginals
{Zi}i=1,...,N with variance σ2

Zi
= λi, where {λi}i=1,...,N is the set of eigenvalues of Σ. Then, from

(24) we obtain

max
fZ∈S

max
fY |Z∈H(fZ ,D)

h(Y |Z)
(a)

≤ max
fZ∈S

max
fY |Z∈H(fZ ,D)

N∑
i=1

h(Yi|Zi)

(b)

≤ max
Di:

∑N
i Di=D

max
fZ∈S,fY |Z

E[||Zi−Yi||2]≤Di ∀i=1,...,N

Z∼Y

N∑
i=1

h(Yi|Zi)

(c)

≤ max
Di:

∑N
i Di=D

N∑
i=1

max
fZi

∈S,fYi|Zi

E[||Zi−Yi||2]≤Di ∀i=1,...,N

Zi∼Yi

h(Yi|Zi)

(d)

≤ max
Di:

∑N
i Di=D

N∑
i=1

RG,i
PR(Di)− h(X∗

i )

= −h(X∗) + max
Di:

∑N
i Di=D

N∑
i=1

RG,i
PR(Di) (28)

where (a) follows from the property of the differential entropy h(Yi|Zk, Zj) ≤ h(Yi, Zk); (b) follows
from the tensorization properties of the MSE distortion; (c) follows from breaking the maximization
of the sum of functions into the sum of the maximum of each function; (d) follows from (27), by
considering X∗ ∼ N(0,Σ) with marginals X∗

i ∼ N(0, λi) and RG,i
PR(Di) being the PR-RDPF for

source Xi and distortion level Di. Using [22, Corollary 3], we see that the second term of (28)
can be shown to be equivalent to the PR-RDPF for the source X∗, therefore showing that (24), and
consequently (23), also hold in the general vector case. This completes the proof.

We stress the following technical remark on Theorem 6.

Remark 4. (On Theorem 6) For the scalar case of the PR-RDPF, let S ≜ {fX :
EfX

[
(X − E [X])2

]
≤ σ2]} for a finite variance value σ2. Then, (23) can be further simplified to

RPR(D) ≥ RSLB
PR (D) =

1

2
log

(
N(X)

D − D2

4σ2

)
with N(X) denoting the entropy power of source X . For the general vector case, the lower bound
depends on the vector Gaussian PR-RDPF, RG

PR, which can be easily computed using the adaptive
reverse-water-filling solution developed in [22, Corollary 3].
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