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Abstract

Despite machine learning models’ success in Natural Language Processing (NLP)
tasks, predictions from these models frequently fail on out-of-distribution (OOD)
samples. Prior works have focused on developing state-of-the-art methods for
detecting OOD. The fundamental question of how OOD samples differ from in-
distribution samples remains unanswered. This paper explores how data dynamics
in training models can be used to understand the fundamental differences between
OOD and in-distribution samples in extensive detail. We found that syntactic
characteristics of the data samples that the model consistently predicts incorrectly
in both OOD and in-distribution cases directly contradict each other. In addition,
we observed preliminary evidence supporting the hypothesis that models are more
likely to latch on trivial syntactic heuristics (e.g., overlap of words between two
sentences) when making predictions on OOD samples. We hope our preliminary
study accelerates the data-centric analysis on various machine learning phenomena.

1 Introduction

Detecting out-of-distribution (OOD) has become one of the key bottlenecks in building reliable
open-world systems [3], leading to new SOTA approaches meant to mitigate this problem [5, 16, 18,
29, 20, 23]. Previous works have explored the discrepancy between OOD and in-distribution test
performance from the model and algorithm perspective. Le Lan & Dinh (2020) [17] observed the
limitation of density estimation for anomaly detection. Zhang et al. (2021) [37] suggested that the
cause of OOD failure is the combination of the model architecture and maximum likelihood objective.
Choi et al. (2018) [6], Just & Ghosal (2019) [14], Fetaya et al. (2020) [9], Kirichenko et al. (2020)
[15], Zhang et al. (2020) [36], and Wang et al. (2020) [34] concluded that significant mismatch
between the real and estimated distribution gives rise to the performance discrepancy. Nevertheless,
what are the fundamental differences between in-distribution and OOD data samples which cause
models to be especially brittle to the latter?

Our approach to studying this difference is inspired by emerging studies on machine learning models
adopting shallow heuristics (i.e., irrelevant statistical patterns found in the majority of training
examples), instead of learning the underlying generalizations that they are intended to capture
[22, 33, 1, 2]. For example, Beery et al. (2018) [2] demonstrated a network that accurately recognizes
cows in a typical context (e.g., pasture) consistently misclassifies cows in a non-typical context
(e.g., beach). Similar heuristics also arise in visual question answering systems [1] and researchers
proposed graph generative modeling schemes [13] (inspired by graph convolutional networks [30])
to handle the problem implicitly. In this paper, we study this problem within the Natural Language
Inference (NLI): the task of determining whether a premise sentence entails (i.e., implies the truth
of) a hypothesis sentence [7, 8, 4]. McCoy et al. (2019) [22] exhaustively characterized shallow
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heuristics that commonly appears in benchmark NLI datasets, which we will refer to as syntactic
heuristics.

To this end, we study the difference between in-distribution and OOD samples which gives rise to
models brittleness through two perspectives: (i) training dynamics of the model, and (ii) syntactic
heuristics of the data samples. Specifically, we perform two types of data-dynamic analyses: We
first examine the difference between OOD and in-distribution samples distributions in the data
cartography space [28] at each training epoch. Cartography space allows us to distinguish which
samples are harder to learn (i.e., the model often misclassifies them) based on training dynamics
measures. Second, we mark each data sample by their syntactic heuristic, which enables us to identify
what shallow characteristics tend to be harder to learn. For instance, we hypothesize whether more
word overlap between a premise and a hypothesis text influences model’s ability to infer their label
correctly.

Our analyses suggested that the syntactic heuristic that the model deems hard-to-learn during training
directly contradicts the characteristic of OOD samples that are hard-to-learn during inference. We
also found preliminary evidence suggesting the model’s tendency to make inferences based on trivial
syntactic heuristic is higher in the OOD case. We hope that this study will drive more effort to better
understand the difference between in-distribution and OOD samples and, consequently, develop more
informed and data-centric OOD detection and generalization methods.

2 Our Hypotheses

This section presents our two initial hypotheses to characterize OOD data samples. Motivated by
previous works [11, 12], we perform a comparative analysis between OOD and in-distribution samples
over dynamic information of model training (e.g., confidence, prediction variance across epoch) per
set of train-test epoch. Moreover, to interpret the quantitative difference of these measures, we mark
data samples based on their syntactic heuristics. We hypothesize that the difference between OOD
and in-distribution samples can be characterized in the combination of multiple training dynamics
(§2.1) and sample heuristics (§2.2).

2.1 H1: Are OOD and in-distribution samples different with their training dynamics?

Data cartography [28] is a tool to group data samples into three regions: easy-to-learn, hard-to-learn,
and ambiguous (see Figure 1), enabled by following two training dynamics as axes:

1. Confidence: the mean model probability of the true label (y∗i ) across epochs (equation 1). The
term p

(e)
θ (y∗i |xi) denotes the model’s probability with parameters θ at the end of eth epoch.

2. Variability: the spread of p(e)θ (y∗i |xi) across epochs, and is defined by equation 2.

µ̂i =
1

E

E∑
e=1

p
(e)
θ (y∗i |xi) (1) σ̂i =

√∑E
e=1(p

(e)
θ (y∗i |xi)− µ̂i)2

E
(2)

Intuitively, higher variability implies a high range of probability outputted by the model for the same
sample. As seen in Figure 1, the rightmost region (i.e., high variability) is the ambiguous region. The
easy-to-learn region is characterized by high confidence and low variability (i.e., correct prediction
with high assigned probability across epochs), and hard-to-learn region samples have low confidence
and low variability (i.e., incorrect prediction across epochs).

At each epoch E, we record the following four measurements for all train samples i ∈ Ntrain and
test samples j ∈ Ntest (Ntrain and Ntest denote the size of train and test sets respectively). As θ is
constant for all samples at each epoch, for conciseness sake, we abbreviate p

(e)
θ (y∗i |xi) as p(e)i .
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In each epoch E, we then plot all train samples based on their respective (µ̂E
i , σ̂i

E) resulting in train
cartography map CE

train (e.g., figure 1a). Similarly, we also plot all test samples based on their (µ̂E
j ,

σ̂j
E) resulting in test cartography map CE

test. (e.g., figure 1c)

As models’ performance in inferring in-distribution samples far exceeds that of the OOD case, we
hypothesize that most OOD samples will stay in the hard-to-learn regions in CE

test for all E . In
contrast, most in-distribution samples will eventually move to the easy-to-learn region in CE

test for
larger E, which results in a noticeable difference between the two distributions in the cartography
space. We hope to interpret this difference using syntactic heuristic (§2.2).

2.2 H2: Do models tend to adopt syntactic attributes of OOD samples more readily?

Past works have shown that machine learning models often adopt ‘shortcut’ data characteristics
instead of the generalization that humans would learn and use to perform the same task [22, 33, 1, 2].
More specifically, a model trained on NLI might assign a label of contradiction to any input containing
the word “not” [24, 26], as this heuristic often applies in standard NLI training sets. As OOD samples
come from a different distribution, they will have less common generalizable characteristics with the
training set than the in-distribution samples. Thus, we hypothesize that models will rely even more
upon the shortcut characteristics (i.e., heuristics) when making inferences on OOD samples.

We focus on lexical overlap heuristic [22], as it is one of the simplest and most common across NLI
datasets. This heuristic assumes that a premise entails all hypotheses constructed from words in the
premise. Below are examples:

Premise Hypothesis Label Type

The judge was paid by the actor. The actor paid the judge. Entailed Support
The actor was paid by the judge. The actor paid the judge. Not entailed Contradict

A sample can either: (i) supporting, (ii) contradicting (i.e., possessing the property of heuristic and
labels entailed or not entailed respectively), or (iii) having no heuristic. We mark each sample’s
heuristics, as illustrated by the different circle colors of Figure 1.

To quantify the degree of which each sample adopts lexical heuristic, we calculate the percentage of
words in the hypothesis (s2) which overlap with premise (s1), which aligns with the lexical heuristic
definition. More formally, we measure m2 = |s1

⋂
s2|

|s2| .

To measure the model’s tendency to adapt the heuristic, we calculate three sets of correlations: (i)
ρ(m2, µE

i ) (ii) ρ(m2, µE
j(in−dist)) (iii) ρ(m2, µE

j(OOD)), and observe the trends across epochs. We
calculate these correlations for all samples and also for samples from each class independently.
Intuitively, a high heuristic adoption is indicated by high absolute correlation values in the individual
class samples (e.g., the model learns that high words overlap means the label is entailment, vice
versa).

3 Experiments

Table 1: Datasets combination in our experiments.

Training Eval (In-distribution) Eval (OOD)

MNLI (train) MNLI (dev matched) WNLI (train)
MNLI (train) MNLI (dev matched) RTE (dev)
RTE (train) RTE (dev) WNLI (train)

Setup: In all experiments, we trained Roberta
[21] with batch size 20 and learning rate 1.1e−5,
and initialized with the same random seed. All
experiments were carried out using PyTorch [25]
with one NVidia Tesla K20X GPU. Experiments
were carried out using three datasets (MNLI
[35], RTE [31], WNLI [19]) which combina-
tions are shown in table 1.

In our study, we define OOD samples as those with different textual genre and sentence structure
from the training. For instance, WNLI were derived by taking sentences from fiction books. Each
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(a) Training cartography map at E = 2 (C2
train) (b) Training cartography map at E = 8 (C8

train)

(c) Evaluation cartography map at E = 2 (C2
test) (d) Evaluation cartography map at E = 8 (C8

test)

Figure 1: Training and evaluation cartography maps. The different colors illustrate different sample
heuristics and the different shapes in figures (c) and (d) illustrate OOD sample (’o’ for in-distribution
and ’x’ for OOD).

hypothesis-premise pair is a sentence and it’s copy with the ambiguous pronouns replaced by each
possible referent. While RTE and MNLI’s hypothesis-premise pairs are different sentences. RTE are
texts from Wikipedia and MNLI were crowdsourced from speech, fiction, and government report.
Our extensive experiments results can be found in Appendix A.3, Appendix A.1, and Appendix A.2.
For conciseness sake, we only present results with MNLI as train and in-distribution data, and WNLI
as OOD data.

3.1 OOD vs in-distribution on training dynamics and syntactic heuristic

Result for this section are the cartography maps C2
train, C8

train, C2
test, C

8
test in Figure 1. For

visualization clarity, the points showed are a sampled fraction from the original set. We observe the
following:

• Observation: A contradicting pattern between the trajectories of training and OOD samples.
By comparing figures (a) and (b) (C2

train and C8
train), we observed samples that contradict the

heuristic (blue circles) either stays in the hard-to-learn region or move towards the ambiguous
region. On contrary, the figures (c) and (d) (C2

test and C8
test) shows that OOD samples that support

the heuristic (green ’x’s) stay in the hard-to-learn region.
Conjecture: Samples heuristics (i.e., lexical overlap) that the model deems hard/easy to learn
during training completely flips in the OOD case.

• Observation: At the end of epoch 8, we observe way less color mix at the ambiguous region of
C8

test (blue and green ’x’s at the ambiguous region of map (d)). While in C8
test (map (b)), this mix

is very apparent in the easy-to learn region (blue and green circles).
Conjecture: a more generalizable knowledge is learned during training (indicated by the samples
mix). Although, this generalizable knowledge is slower to be adopted by the model in inferring
OOD samples.

3.2 OOD vs in-distribution on tendency to adopt syntactic heuristics
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(a) Correlation in all samples

(b) Correlation in entailment samples

Figure 2: Hypothesis 2.2: ρ(m2, µE
i ),

ρ(m2, µE
j(in−dist)), ρ(m2, µE

j(OOD)) on
all samples (a) and entailment sam-
ples(b)

For the second hypothesis, we find the following observa-
tions (refer to figure 2):

• Observation: Correlation values (ρ(m2, µE
i ),

ρ(m2, µE
j(in−dist)), ρ(m2, µE

j(OOD))) are relatively low
in the plot for all samples (a). This applies to all cases
(train, in-distribution, and OOD test). However, an
obvious divergence is observed in the ρ(m2, µE

j(OOD))

plot for the entailment samples (b).
Conjecture: This observation confirms our hypothesis
in 2.2 that models are more prone to adopt syntactic
heuristics when making inference on OOD samples.

• Observation: All samples’ trends adhere to the entail-
ment trends in the train and in-distribution test case
(orange and blue lines in figures (a) and (b)) but contra-
dict the OOD case (green lines in figures (a) and (b)).
In the OOD case, we can see that the negative and non-
zero slopes are only found in all samples trend, but the
correlation keeps increasing (with a huge difference in
value) in the entailment samples trend.
Conjecture: This might indicate that knowledge used
by the model to infer class labels is consistent for all
classes in train and in-distribution but conflicts in the
OOD case.

More supplementary plots of this analysis (more experi-
ments on different datasets and the trend plots for non-entailment samples) can be found in appendix
A.4.

4 Limitations and Future Directions

This data-centric approach to understanding the difference between OOD and in-distribution samples
offers an intuition of failure mode in OOD. However, the results and approach presented in this paper
have some limitations.

Although all NLI sets in our experiments came from different topic domains and had distinct
characteristics, a more careful selection is needed to ensure maximum separation of in-distribution
vs. OOD data distribution. Zhang et al. (2021) [37] highlights the problem with experiments setup
where OOD regions can lie in support of the data distribution: high logit values assigned to certain
OOD samples due to model estimation error. By ensuring this criterion is met, we can achieve a more
accurate confidence score, which in turn will improve our results in section 3.1.

More controlled experiment is needed for results in section 3.2 to ensure that the correlation between
confidence and m2 is not spurious (i.e., there exists no unobserved confounding variable). One way
to remedy this is by running the same measurements on random subsets and see if the correlation
pattern still holds (i.e., randomized controlled experiments).

Future work may include remedies for the two mentioned limitations. Furthermore, investigating the
root cause of contradicting syntactic heuristics of OOD and in-distribution samples that the model
fails to predict correctly (section 3.1) is also an exciting direction. It will also be exciting to see the
effect of correcting for distribution mismatches [27, 10, 32] to the observations presented in this paper.
To further corroborate the analysis and conjecture presented in this paper, the two possible directions
can be: (i) adding more syntactic heuristics for analysis (e.g., coreference, negation), and (ii) setting
up similar experiments on vision and other domains datasets. Finally, we hope that the insights
provided by this data-centric view can motivate more informed development of OOD detection and
generalization methods.
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A Appendix

A.1 Supplementary plot: OOD vs in-distribution on training dynamics information (Training
and in-dis: RTE; OOD: WNLI)

(a) Training cartography map at epoch 2 (b) Training cartography map at epoch 8

(c) Evaluation cartography map at epoch 2 (d) Evaluation cartography map at epoch 8

Figure 3: Training cartography maps (training set: RTE). The number of heuristics related samples in
RTE is small.

A.2 Supplementary plot: OOD vs in-distribution on syntactic characteristics (entailment)

(a) Correlation between m2 and all samples µ̂i (b) Correlation between m2 and entailment sam-
ples µ̂i

Figure 4: Results for hypothesis 2.2. Training and in-distribution test samples are RTE, and OOD
samples are WNLI.
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(a) Correlation between m2 and all samples µ̂i (b) Correlation between m2 and entailment sam-
ples µ̂i

Figure 5: Results for hypothesis 2.2. Training and in-distribution test samples are MNLI, and OOD
samples are RTE.

Results presented are at the end of epoch 8 for MNLI training and the end of epoch 50 for RTE
training. This is based on the epoch in which the training error has converged (around 0.02).

A.3 Supplementary plot: OOD vs in-distribution on training dynamics information (Training
and in-dis: MNLI; OOD: RTE)

(a) Training cartography map at epoch 2 (b) Training cartography map at epoch 8

(c) Evaluation cartography map at epoch 2 (d) Evaluation cartography map at epoch 8

Figure 6: Training and evaluation cartography maps (train: MNLI, evaluation: RTE). The number of
heuristics related samples in RTE is small.
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A.4 Supplementary plot: OOD vs in-distribution on syntactic characteristics
(non-entailment)

This section shows plots for correlation between confidence scores (µ̂i) of non entailment samples
and m2

(a) Train & in-distribution: MNLI,
OOD: WNLI

(b) Train & in-distribution: RTE,
OOD: WNLI

(c) Train & in-distribution: MNLI,
OOD: RTE

Figure 7: Supplementary results for 3.2. Correlation between µ̂i of non-entailment samples and m2

A.5 Supplementary material: Extra lexical overlap measure

We also added another measure to quantify tendency to adopt lexical overlap heuristic. We calculated
m1 = |s1

⋂
s2|

|s1| . Essentially, this measures how much percentage of words found in the premise (s1)
can also be found in the hypothesis (s2).

(a) Correlation between m2 and all samples µ̂i (b) Correlation between m2 and entailment sam-
ples µ̂i

Figure 8: Results for hypothesis 2.2. Training and in-distribution test samples are MNLI, and OOD
samples are WNLI.

(a) Correlation between m2 and all samples µ̂i (b) Correlation between m2 and entailment sam-
ples µ̂i

Figure 9: Results for hypothesis 2.2. Training and in-distribution test samples are RTE, and OOD
samples are WNLI.
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(a) Correlation between m2 and all samples µ̂i (b) Correlation between m2 and entailment sam-
ples µ̂i

Figure 10: Results for hypothesis 2.2. Training and in-distribution test samples are MNLI, and OOD
samples are RTE.
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