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Abstract

Video-to-music generation demands both a temporally local-
ized high-quality listening experience and globally aligned
video-acoustic signatures. While recent music generation
models excel at the former through advanced audio codecs,
the exploration of video-acoustic signatures has been con-
fined to specific visual scenarios. In contrast, our research
confronts the challenge of learning globally aligned signa-
tures between video and music directly from paired mu-
sic and videos, without explicitly modeling domain-specific
rhythmic or semantic relationships. We propose V2Meow,
a video-to-music generation system capable of producing
high-quality music audio for a diverse range of video in-
put types using a multi-stage autoregressive model. Trained
on 5k hours of music audio clips paired with video frames
mined from in-the-wild music videos, V2Meow is compet-
itive with previous domain-specific models when evaluated
in a zero-shot manner. It synthesizes high-fidelity music au-
dio waveforms solely by conditioning on pre-trained general-
purpose visual features extracted from video frames, with
optional style control via text prompts. Through both qual-
itative and quantitative evaluations, we demonstrate that our
model outperforms various existing music generation systems
in terms of visual-audio correspondence and audio quality.
Music samples are available at tinyurl.com/v2meow.

Introduction

Recent advancements in high-resolution neural audio
codecs (Zeghidour et al. 2021a; D’efossez et al. 2022; Ku-
mar et al. 2023) have introduced novel possibilities for di-
rectly generating high-quality music waveforms compara-
ble to human-made music (Borsos et al. 2022; Agostinelli
et al. 2023). Notably, AudioLM (Borsos et al. 2022) em-
ploys a multi-stage autoregressive modeling approach for
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audio generation. It utilizes a masked language model pre-
trained on tokenized audio encodings (Chung et al. 2021)
to capture long-term structures and the discrete neural au-
dio codec (Zeghidour et al. 2021a) for high-quality synthe-
sis. Music language models like MusicLM (Agostinelli et al.
2023) have further demonstrated that autoregressive models
can generate music conditioned on text prompts (Agostinelli
et al. 2023; Copet et al. 2023) or input vocals (Donahue
et al. 2023). However, the challenge persists in video-
conditioned music generation, where a gap exists between
the coarser global video signature and the aforementioned
high-resolution audio representations or audio codecs for
waveform generation.

Most existing work on video-to-music generation focuses
on modeling the audiovisual correspondence between do-
main specific video representation and symbolic representa-
tion of music. For example, dance-to-music literature (Zhu
et al. 2022a,b; Yu et al. 2023) relies on modeling music
rhythms, style from annotated human motion, other works
focuses on generating natural sound that is faithful to the
physical motion in the silent video (Su, Liu, and Shlizerman
2020a; Gan et al. 2020; Owens et al. 2016; Zhou et al. 2018;
Chen et al. 2020; Su et al. 2023), for example, reconstruct-
ing instrumental music from silent instrument performance
videos. As aresult, the input video types are restricted to cer-
tain visual scenarios, and cannot be generalized to arbitrary
video input types, e.g., a cat video or slideshows of images.
In contrast, we propose to learn a general audiovisual cor-
respondence directly from paired video frames and music
waveform data. Specifically, we bridge the gap between the
coarser video representation and the high-resolution audio
representation through finding the video-audio aligned low-
resolution representation space. This approach allows us to
generalize to a wide range of video input types, and leverage
the vast amount of parallel music and video data available on
the internet for scaling.

We introduce V2Meow, a high-fidelity music audio wave-
form generator conditioned on diverse video inputs. Draw-
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Figure 1: The video-to-music generation model V2Meow synthesizes high-fidelity music conditioned on video input and op-

tionally text describing high-level style.

ing inspiration from MusicLM (Agostinelli et al. 2023),
we employ a multi-stage autoregressive language model-
ing approach. V2Meow takes video frames as input with
optional style control through text prompts, treating video
and text as a unified input stream fed into the Transformer
with feature-specific adaptors. By not explicitly modeling
domain-specific audiovisual correspondence, V2Meow ex-
hibits zero-shot transfer capabilities, demonstrated in evalu-
ations on AIST++ dance videos (Li et al. 2021). Quantita-
tive and qualitative assessments of music-video correspon-
dence, along with an extensive ablation study, elucidate fac-
tors influencing generation quality. Numerical and human
study results affirm that, compared to MIDI-based baselines,
V2Meow aligns better with human music preferences. Ad-
ditionally, including video input enhances V2Meow’s visual
relevance learning compared to text-only input.

Related Work

Video to Audio. Over the past few years, there have been
advancements in deep-learning approaches to produce real-
istic sounds from silent videos. Owens et al. (2016) initially
predicted impact sound features based on image features and
then retrieved the closest sound sample from the dataset in-
stead of directly generating the sound. Chen et al. (2017)
investigated the utilization of conditional GAN for generat-
ing sound from images, although the experiments were con-
strained to music performances collected in a laboratory set-
ting. Visual2Sound (Zhou et al. 2018) suggested generating
audio waveform from videos captured in-the-wild, but the
dataset is limited to only ten types of sounds. Subsequently,
novel loss functions (Chen et al. 2018, 2020) are introduced
to enhance the semantic alignment of generated audio from
videos. The effectiveness of models for generating audio
from videos is primarily constrained by the typically weak
correspondence between the video and audio, as well as the
limited scale of training data. Generating high-quality audio
from a silent video poses a challenge without a robust audio
generative model and adequate audio representations.

Video to Music. Apart from natural sounds, several stud-
ies have delved into the generation of music from videos.
Initial efforts focused on generating symbolic music (MIDI)
from videos depicting a musician playing the piano (Koepke
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et al. 2020; Su, Liu, and Shlizerman 2020a) or other instru-
ments (Gan et al. 2020; Su, Liu, and Shlizerman 2020b).
Later, RhythmicNet (Su, Liu, and Shlizerman 2021) show-
cased the potential to generate music soundtracks synchro-
nized with arbitrary human body movements. Following
studies have expanded the generation of symbolic music rep-
resentations to encompass waveform generation (Zhu et al.
2022b,a; Yu et al. 2023). Nevertheless, the music genera-
tion systems proposed still depend on intricate motion ex-
tractors to explicitly capture visual rhythm from domain-
specific data, such as dance videos. Apart from relying on vi-
sual cues from human motion, a music Transformer has been
suggested for the generation of video background music (Di
et al. 2021), albeit through MIDI generation. All these ap-
proaches face challenges due to their domain-specific mod-
eling assumptions, such as focusing on music from particu-
lar instruments or relying heavily on visual cues like human
body motion. Consequently, the generated samples are con-
strained to specific instrument types and visual scenarios. In
contrast to the aforementioned studies, our approach utilizes
music videos captured in real-world settings to establish a
general mapping from visual input to audio waveforms.
Music Generation. A robust music representation such as
MIDI has been widely employed in the modeling of music.
Early studies transformed MIDI into piano-roll representa-
tion by employing GANs (Dong et al. 2018) or variational
autoencoders (Roberts et al. 2018; Gillick et al. 2019) to
generate novel music. Subsequently, there were proposals
for event-based representations aimed at more efficient rep-
resentation of MIDI (Oore et al. 2020; Huang et al. 2018;
Hawthorne et al. 2018; Huang and Yang 2020). Control sig-
nals are additionally integrated into the music generative
models based on MIDI (Engel et al. 2017; Choi et al. 2019;
Lattner and Grachten 2019).

In terms of modeling music directly from raw audio
without the need for transcripts or symbolic music repre-
sentations, WaveNet (Oord et al. 2016) introduced autore-
gressive modeling to synthesize music audio with satisfac-
tory quality. Jukebox (Dhariwal et al. 2020) adopted a hi-
erarchical approach to generate tokens at different tempo-
ral resolutions, which were subsequently combined to re-
construct music. Recent work on high quality audio rep-
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resentation (Zeghidour et al. 2021a; D’efossez et al. 2022;
Kumar et al. 2023) directly apply residual vector quanti-
zation on the raw waveform. Later, several recent works
adopted such representation for text-to-audio generation us-
ing transformer-based autoregressive models, e.g., Audi-
oLM (Borsos et al. 2022), Mubert (Mubert-Inc. 2022), Au-
dioGen (Kreuk et al. 2022) and MusicLM (Agostinelli et al.
2023) or non-autoregressive models (Copet et al. 2023; Gar-
cia et al. 2023). Alternatively, Riffusion (Forsgren and Mar-
tiros 2022) and other recent work (Huang et al. 2023a; Liu
et al. 2023; Huang et al. 2023b; Schneider et al. 2023)
adopted a diffusion based approach.

The Proposed Method: V2Meow

In this section, we describe the feature representations and
modeling pipeline of our proposed method, V2Meow, in de-
tail.

Feature Representations

For audio waveforms, we follow MusicLM (Agostinelli
et al. 2023), using semantic and acoustic tokens extracted
from two different pre-trained self-supervised models. For
visual inputs, we explore various types of visual features to
find the most informative representation suitable for music
generation task. Finally, we demonstrate how we represent
the control signal without paired music-video-text examples.
Semantic Music Tokens. We extract semantic tokens using
a pre-trained w2v-BERT model (Chung et al. 2021). w2v-
BERT is a self-supervised model using masked language
modeling (MLM) with contrastive loss, coarsely learning to
represent audio, capturing both local dependencies such as
local melody in music and global long-term structure such as
harmony and rhythm. To obtain the semantic tokens, we ex-
tract embeddings from an intermediate layer of w2v-BERT.
We then apply k-means algorithm with K clusters on these
embeddings and use the centroid indices as semantic to-
kens. For each audio waveform, we obtain semantic tokens
{S; :t =1,...,Ts}, where Ty is the total number of tokens.
While the coarse resolution of the semantic tokens enables
us to model long-term dependencies, the audio reconstruc-
tion solely from these semantic tokens usually leads to poor
quality.

Acoustic Music Tokens. To generate high-quality music au-
dio, we additionally rely on acoustic tokens extracted from
a pre-trained SoundStream (Zeghidour et al. 2021a) model.
SoundStream is a universal neural audio codec that com-
presses arbitrary audio at low bit rates and reconstructs the
audio back in a high quality. Specifically, a convolutional
encoder embeds the input waveform, followed by residual
vector quantization (RVQ) to discretize them. RVQ is a hier-
archical quantization scheme composing a series of N vec-
tor quantizers, where the target signal is reconstructed as
the sum of quantizer outputs. Each quantizer with a vocab-
ulary size of K, learns to quantize the embedding simulta-
neously during training. Thanks to the residual quantization,
the acoustic tokens have a hierarchical structure such that to-
kens from the coarse quantizers recover acoustic properties
like music recording conditions, while leaving only the fine
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acoustic details to the fine quantizer tokens. Since coarser
levels are more important for high-fidelity reconstruction as
illustrated in AudioLM, we first construct a mapping from
music semantic tokens to coarse acoustic tokens and then
learn a mapping from coarse acoustic tokens to fine-grained
acoustic tokens in the later stage.

Model Conditioning

Video Frames Conditioning. Given a video as a sequence
of T frames, {vt e REXWX3 . ¢ =1, ...,T}, we aim to ex-
tract useful visual features from existing pre-trained visual
model. We explore various visual representations for this,
among pure visual models, multimodal models, and quan-
tized models, since it is unclear which kind of visual rep-
resentation could provide sufficient information for music
generation. In particular, we explored a combination of the
following visual features as.

1. Purely visual representations: Video understanding mod-
els learn underlying patterns from the pixel distribu-
tions observed in a collection of images or videos, using
CNNs (Tran et al. 2015; Carreira and Zisserman 2017,
Feichtenhofer 2020) or Transformers (Arnab et al. 2021;
Bertasius, Wang, and Torresani 2021), without access
to additional modalities. As it is common that the vi-
sual changes in a video have correspondences to musical
rhythm, we adopt the Inflated 3D (I3D), which explicitly
considers the optical flow, which is known to be useful
for analyzing motions. In our experiments, we denote the
visual flow embeddings as {f, e RP7 : ¢t =1,...,T},
extracted from an I3D model pretrained on Kinetics (Car-
reira and Zisserman 2017), where D; indicates the di-
mensionality of the I3D features.

2. Multimodal embeddings: The second type is an embed-
ding learned from multimodal correspondence, in addi-
tion to the visual modality. Contrastive Language Im-
age pre-training (CLIP) (Radford et al. 2021) is a pop-
ular image-text model, widely used in a variety of down-
stream tasks including generative applications. We ex-
pect its generality and robustness would be potentially
useful to incorporate semantics of the video. We denote
the CLIP embeddings as {c; € RP : ¢t = 1,..., T},
where D, is the dimensionality of the CLIP embedding.

3. Visual tokens: Since the semantic and acoustic music rep-
resentations in our pipeline are both discrete tokens, we
explore using a similar type of discrete tokens for vi-
sual inputs. To obtain discrete tokens for a video frame,
we adopt VIT-VQGAN (Yu et al. 2021), the state-of-
the-art self-supervised Vision Transformer (ViT) model
that performs image quantization on each image to ob-
tain a set of discretized latent codes and uses a Trans-
former to predict these image tokens autoregressively
for image reconstruction. Given a video frame v; €
RIXWX3 where H,W indicate the image height and
width, respectively, the VIT-VQGAN encodes the image
into H/D, x W/D, discretized latent codes, where D,,
is the size of non-overlapping image patches mapped to
one token. A video with T" frames is represented as a set

of tokens {Qt € Zf/D“XW/D" t=1,... ,T}.
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Figure 2: V2Meow Architecture Overview: (left) Feature extraction pipeline for video, audio and text representations. (right)

Overview of multi-stage video to music modeling.

Text Conditioning. Since the music for a video could be
highly dependent on personal preference, we allow users
to optionally provide a music-related text description, in
addition to the visual input, to control the generated mu-
sic at a high-level. However, it is challenging to collect
music-video-text pairs in the wild. To overcome this is-
sue, we leverage a music-text joint embedding model, Mu-
Lan (Huang et al. 2022), which is trained on paired music-
text data using a contrastive loss. For each video in the train-
ing set, V2Meow first extracts MuLan embeddings of all
audio segments {m; € RP» :j=1,...,J}, where each
segment is ten second long and J indicates the total num-
ber of audio segments in the video, D,, = 128 is the di-
mension of MuLan audio embedding. We then average the
embeddings into a single video-level. It is worth noting that
we extract a fixed-length segment at a random starting point
from a music video at each training iteration. Although it
would be ideal to perform inference on MuLan with the se-
lected segment only, we avoid doing this aiming for an ef-
ficient experiment. Instead, we use a video-level embedding
for the entire video and empirically verify that this is suffi-
cient, probably because our goal is to have a high-level con-
trol on the style of generated music, instead of fine-grained
control. At inference time, we may use a music-related text
description to obtain a MuLan embedding and condition our
V2Meow model on it.

Modeling Pipeline

We adapt the AudioLM pipeline to train the visual condi-
tioned music generation model. There are three main stages
of sequence-to-sequence modeling tasks.

Stage 1. Visual Features to Music Semantic Tokens. In
the first stage, V2Meow learns a mapping from visual in-
puts to the music semantic tokens. Specifically, we use an
encoder-decoder Transformer (Vaswani et al. 2017) where
the encoder takes the visual features, and the decoder pre-
dicts the music semantic tokens autoregressively. It turns
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out that this stage is the most critical part of generating mu-
sic which reflects the video well. On the one hand, it builds
up the connection between visual and audio modalities, and
models the semantic transformation from visual information
to audio. On the other hand, this stage does not output high-
quality fine-grained audio, allowing the model to focus on
associating the two modalities with each other.

Stage 2. Music Semantic Tokens to Coarse Acoustic To-
kens. In the second stage, we aim to convert the music se-
mantic tokens to acoustic tokens for high-quality synthe-
sis. We follow the AudioLM pipeline to split this stage into
coarse and fine acoustic modeling. In the coarse acoustic
modeling, we explore two different training strategies: 1) We
follow AudioLM to train a decoder-only Transformer to map
music semantic tokens to coarse acoustic tokens. Since such
a training strategy does not require visual information, we
could use the large-scale music data in the wild to pre-
train a robust model. 2) We also explore to see whether
adding visual conditioning at this stage improves the per-
formance. Specifically, we train an encoder-decoder Trans-
former model where the encoder takes the visual features
and music semantic tokens and the decoder generates the
coarse acoustic tokens. While ideally the second approach
should work better, the final results are not necessarily bet-
ter since the amount of music-video pairs available is still
incomparable to the amount of music-only data.

Stage 3. Coarse to Fine Acoustic Tokens and Audio De-
coding. Once we have the coarse acoustic tokens, we follow
AudioLM (Borsos et al. 2022) and perform coarse to fine
acoustic tokens modeling. This stage maps the tokens in the
first NV, levels of SoundStream RVQ to the tokens of the re-
maining N levels. Finally, all levels of tokens are passed to
SoundStream Decoder to reconstruct the audio.

Adding Control. To incorporate the control signal into
V2Meow during training, we simply feed the MuLan audio
embedding as an additional input with a sequence length be
one to the Transformer encoder along with the visual fea-
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tures in the first stage. Both Mulan audio embedding and
visual features are projected to the same feature dimension.
At inference, we instead use the MuLan text embedding with
the visual features to generate the semantic tokens.

Experiments
Experimental Settings

Training Datasets. Following (Suris et al. 2022), we filtered
a public available video dataset (Abu-El-Haija et al. 2016)
to 110k videos with the label Music Videos and refer to it
as MV100K. The training and validation datasets were split
into an 80:20 ratio. We trained the Stage 1 model and Stage
2 model on 5k hours of music videos. A version of Stage 2
model is trained on audio-only data for ablation study. For
computing semantic and acoustic audio tokens, we adopt the
SoundStream tokenizer and w2v-BERT tokenizer, both of
which are pre-trained on 46k hours of music only audio data
sampled at 16kHz sampling rate.

Evaluation Datasets. We evaluate our methods on three dif-
ferent datasets. For the task of video conditional music gen-
eration, we use the test partition of the MV100K. We select
13 genres of music videos to comprise a genre balanced sub-
set with a total number of 4076 videos. For the task of video
and text conditional music generation, we use the latest Mu-
sicCaps dataset (Agostinelli et al. 2023) which is a subset of
AudioSet (Gemmeke et al. 2017). The MusicCaps has about
5.5k human annotated text captions, music, and video pairs.
With the text caption, we can verify whether the generated
music could be controllable and whether its performance is
comparable with text-to-music generation models like MU-
BERT (Mubert-Inc. 2022) and Riffusion (Forsgren and Mar-
tiros 2022). For both tasks, we generate ten second audio
for each video clip. For dance-to-music generation task, we
evaluate temporal alignment on 20 dance videos in the test
split of AIST++ (Li et al. 2021). The evaluation is in zero-
shot fashion without any fine-tuning on the AIST++ train
split, and only video frames are used for modeling while no
motion data is involved. The reported metrics represent av-
erages over 20 10-second audio segments and 86 2-second
audio segments, with 5 inference examples per segment.
Implementation Details. For all visual features, we
use a frame rate at 1 fps, following the standard on
MVI100K (Abu-El-Haija et al. 2016). We use the released
ViT-L/14 model! to extract the CLIP embeddings, whose
dimensionality is 768. For computing the I3D Flow embed-
dings, we use a model pre-trained on the Kinetics dataset,
whose dimensionality is 1024. We use a pre-trained VIT-
VQGAN encoder to obtain 1024 tokens for each image and
the vocabulary size is 8192. For the visual feature to music
semantic tokens modeling, we use encoder-decoder Trans-
former with 12 layers, 16 attention heads, an embedding
dimension of 1024, feed-forward layers of dimensionality
4096, and relative positional embeddings. We use 10-second
random crops of the music video for visual to music seman-
tic tokens modeling and semantic tokens to coarse acoustic
tokens modeling. The coarse to fine acoustic tokens mod-
eling is trained on 3-second crops. During inference, we

'huggingface.co/sentence-transformers/clip-ViT-L-14
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use temperature sampling for all stages, with temperatures
{1.0,0.95,0.4} for modeling stages 1, 2, and 3, respectively.

Evaluation Metrics

Objective Metrics. We follow (Agostinelli et al. 2023) to
use different quantitative metrics to automatically assess the
fidelity, the semantic relevance of the generated samples
and (Zhu et al. 2022a,b) to evaluate rhythmic alignment.

* Audio Quality. We use Fréchet Audio Distance (FAD)
based on two audio embedding models to measure dif-
ferent aspects of the audio quality, both of which are
publicly available (1) TRILL? (Shor et al. 2020), which
is trained on speech data, and (2) VGGish? (Hershey
et al. 2017), which is trained on the public audio event
dataset (Abu-El-Haija et al. 2016; Lee et al. 2018).

* Semantic Relevance. KL Divergence (KLD) (Yang et al.
2022; Kreuk et al. 2022) and MuLan Cycle Consistency
(MCC) (Agostinelli et al. 2023) is used to determine
whether generated music is semantically relevant to the
reference audio or text. We run a LEAF classifier (Zeghi-
dour et al. 2021b) for multi-label classification on Au-
dioSet, and use KLD over the predicted class probabili-
ties between the original audio and the generated audio
to evaluate if they share similar concept. For the video to
music task, we use MuLan audio embedding of ground
truth audio as reference to compute MCC as the average
cosine similarity between the MuLan audio embedding
of the generated music audio and reference. For the video
and text to music task, we use the MuLan text embedding
of the text description as reference instead to check text
adherence.

* Rhythmic Alignment. (Zhu et al. 2022a,b) introduces
Beats Coverage Scores (BCS) and Beats Hit Scores
(BHS) to count the aligned rhythm points of synthesized
music and ground-truth music. BCS refers to the fraction
of generated musical beats by the ground truth musical
beats, while BHS refers to the ratio of aligned beats to
the ground truth beats. Here we adopt the adjusted BCS
and BHS introduced in Yu et al. (2023) and compute F1
score in addition.

Subjective Metrics. Whether the video and background
music match is subjective. The generated music can be a
reasonable match to the video, even if it is not similar to
the ground truth music that accompanies the original video.
Thus we conduct a human study to measure visual relevance
and music preferences. Specifically, we sampled 89 distinct
video examples from the MV100K test set and 76 distinct
video examples from the MusicCaps test set. We surveyed
around 200 participants individually, and each participant
was asked to evaluate a pair of videos with the same video
but different background music. Each video pair is rated by
3 person. A total number of 3500 ratings are collected in the
end.

* Visual Relevance. We asked human raters to conduct a
side-by-side comparison of the music generated from the

2tfhub.dev/google/nonsemantic-speech-benchmark/trill/3
3tfhub.dev/google/vggish/1
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Semantic / Semantic + Acoustic Modeling Semantic + Acoustic Modeling

Method Visual Text | FAD TRILL] FAD VGG] KL Div. | MCC 1 Visual Rele- Music Pref-
vance T erence T

Eval Dataset: MV 100K
CMT v X N/A N/A N/A N/A 20.6% 30.0%
Random Shuffle X X - - 0.67 0.268 N/A N/A
V2Meow-CLIP v X 0.236/0.158 6.094/2.779  0.63/0.54  0.312/0.372 | 78.2% 67.6%
V2Meow-13D v X 0.236/0.151 6.278/2.328  0.77/0.65  0.279/0.296 | 74.3% 65.8%
V2Meow-VIT v X 0.240/0.174 6.097/1.988  0.73/0.62  0.276/0.294 | 81.4% 71.5%
V2Meow-VIT+I3D v X 0.236/0.178 5.801/1.945  0.68/0.57 0.298/0.327 | 83.8% 76.8%
V2Meow-CLIP+I3D v X 0.235/0.165 6.126/2.003  0.64/0.49  0.343/0.419 | 79.2% 68.2%
Eval Dataset: MusicCaps
CMT v X N/A N/A N/A N/A 19.7% 20.7%
Riffusion X v 0.760 13.4 1.19 0.34 38.6% 41.2%
MUBERT X v 0.450 9.6 1.58 0.32 43.3% 49.3%
V2Meow-CLIP v v 0.379/0.328 5.198/4.628  1.31/1.19  0.364/0.377 | 63.6% 58.5%
V2Meow-13D v v 0.389/0.331 5.190/4.623  1.26/1.22  0.377/0.371 | 68.8% 68.0%
V2Meow-VIT v v 0.377/0.366 4.970/5.039  1.34/1.23  0.380/0.392 | 66.9% 60.3%
V2Meow-VIT+I3D v v 0.381/0.359 5.094/4.819  1.34/1.21  0.379/0.389 | 71.8% 67.1%
V2Meow-CLIP+I3D v v 0.391/0.349 5.385/4.948  1.27/1.19  0.369/0.394 | 67.4% 65.8%

Table 1: Quantitative evaluations on MV100K and MusicCaps for different models. For FAD and KL Divergence, lower is
better. For MCC, higher is better. Bold font indicates the best value. The five V2Meow variants are named based on the video
features used as input. Semantic Modeling indicates video conditioning is used only for semantic modeling, while Semantic +
Acoustic Modeling indicates video conditioning is used for both semantic and acoustic modeling.

Model (Length) \ Beat Coverage  Beat Hit F1

GT 100 100 100
V2Meow CLIP+I3D (10s) | 100.0 (0.00)  84.4(25.1) 91.5
V2Meow CLIP+I3D (6s) 99.3 (8.64) 84.7(25.7) 91.4
V2Meow CLIP+I3D (2s) 90.0 (30.0) 84.8(32.1) 87.3
CDCD Step-Intra (6s) 87.9 83.2 85.5
D2M-GAN (2s) 88.2 84.7 86.4
CMT (2s) 85.5 83.5 84.5

Table 2: Zero-shot evaluation results on AIST++. For CMT
and V2Meow only video frames are used as input, while
CDCD Step-Intra and D2M-GAN requires additional mo-
tion annotation as inputs. For each video input we randomly
generate 10 music samples and report the average score and
standard deviation.

baseline models (CMT, Riffusion, or MUBERT) and the
five different V2Meow model variants by answering the
question: “Which music do you think goes best with the
video?”. They are asked to ignore the sound quality and
only focus on how well the music matches the video.

* Music Preference. We asked human raters to choose
which music they prefer to hear and ignore the video con-
tent. This task aim to study whether the generated music
is aligned with human perceptual preference. Here we
ask the listener to ignore sound quality and tell us which
music they like.

Results

We initiate our evaluation of V2Meow’s video-to-music
generation capabilities by comparing it to the state-of-the-
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art model CMT (Di et al. 2021), which relies on video-
driven symbolic music representations. This evaluation is
conducted on the MV100K dataset. Subsequently, we ex-
tend our comparison to two text-to-music systems, Mu-
bert (Mubert-Inc. 2022) and Riffusion (Forsgren and Mar-
tiros 2022), using the MusicCaps dataset augmented with
videos. The objective here is to assess the impact of incorpo-
rating video frames as conditioning signals in additional to
text. For the task of dance-to-music generation, we further
compare V2Meow with baseline models D2M-GAN (Zhu
et al. 2022a), CDCD Step-Intra (Zhu et al. 2022b), and
CMT (Di et al. 2021) on the AIST++ test split, aiming to
evaluate V2Meow’s understanding of complex dance mo-
tion. Detailed results are presented in Table 1 and Table 2.
The assessment concludes with an ablation study that dis-
sects the significance of each stage in the modeling pipeline.

Video Conditional Music Generation

In the MV 100K dataset, introducing video conditioning dur-
ing the acoustic modeling stage notably enhances both audio
quality-related metrics and semantic relevance, as illustrated
in the second column of Table 1. Notably, when conditioned
on specific visual embeddings, we find that clip embedding
attains the highest MCC score, whereas I3D flow embed-
ding exhibits superior performance in FAD metrics. This
implies that different visual features capture distinct aspects
within the video-music aligned subspace. The combination
of Clip and I3D Flow embeddings achieves the highest MCC
score across all models, with a corresponding enhancement
in FAD VGGish compared to models with either Clip or
I3D Flow embedding alone. While VIT-VQGAN tokens do
not surpass others in individual metrics, the amalgamation
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of VIT-VQGAN tokens and I3D Flow embedding demon-
strates improved performance compared to a single visual
input. In terms of visual relevance and music preference,
V2Meow significantly outperforms CMT by a substantial
margin, as indicated in the third column of Table 1.

Video and Text Conditional Music Generation

In the MusicCaps evaluation, our approach, enhanced by the
inclusion of video frames as an additional control, demon-
strates a 20-30% improvement in visual relevance compared
to Riffusion and MUBERT that only condition on text. It’s
noteworthy that our approach also achieves lower FAD and
higher MCC scores. Here the MCC is the similarity between
generated music audio and text. This indicates that augment-
ing the conditioning with video frames not only enhances vi-
sual relevance but also contributes to improved audio qual-
ity and text adherence, despite utilizing a relatively small
dataset of 5,000 hours of music videos. The combination of
Clip and I3D Flow embeddings maintains the highest KLD
and MCC scores, while the combination of VIT-VQGAN
tokens and I3D Flow embeddings achieves the best visual
relevance. Across all variations, V2Meow consistently out-
performs the baseline in terms of audio quality, text adher-
ence, visual relevance and music preference.

Dance to Music Generation

The zero-shot evaluation on dance videos in the AIST++ test
split (Li et al. 2021) reveals that V2Meow can attain perfor-
mances comparable to those of specialized dance-to-music
generation baselines (Zhu et al. 2022a,b), measured by beat
coverage and beat hit. This evaluation is conducted in a zero-
shot fashion, without any fine-tuning on the AIST++ train-
ing split. Only video frames are used for modeling, and no
human-annotated motion data is involved. The results sug-
gest that our proposed framework can adeptly handle videos
with significant rhythm changes, even when dance motion
occurs below our 1fps sampling rate. It’s important to note
that D2M-GAN and CDCD Step-Intra utilize the AIST++
training split for fine-tuning, requiring a much higher sam-
pling rate and additional motion annotation as input. In con-
trast, our model and CMT exclusively take video frames as
input.

Ablation Study

Ilustrated in Figure 3, we conducted additional ablation
studies to assess the contribution of each stage, (a) on
MV100K, measured using FAD VGGish score (|), and (b)
on MusicCaps, measured by MCC score (1). The results in
the figure suggest that video conditioning is crucial for both
semantic and acoustic modeling. Furthermore, directly mod-
eling acoustic tokens without semantic tokens proves sub-
optimal compared to the multi-stage modeling in terms of
audio quality and semantic consistency. Directly predicting
acoustic tokens from CLIP visual features results in a degra-
dation of the FAD score from 2.779 to 3.331 and a reduction
in semantic alignment from 0.377 to 0.275. This novel multi-
stage design facilitates the implicit learning of both coarse-
grained (style) and fine-grained (rhythm) semantics shared
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w.0. semantic 3.331
3.316

(a)

full model 2.779

2 3 FAD Végish
0275
0.286

(b) :

full model 0.377

0.15 0.20 0.25 0.30 0.35

MCC
Figure 3: (a) Ablation study on the contribution of each com-
ponent for MV100K dataset using FAD VGGish score, the
lower the better. (b) Ablation study on the contribution of
each component of for MusicCaps dataset using MCC score

between text and generated audio, the higher the better.

between music and video, enabling the generation of visu-
ally relevant soundtracks. Notably, this is achieved despite
training solely on 5,000 hours of music videos, where video
and audio are not perfectly semantically aligned, unlike in
other tasks such as text-to-speech.

Conclusion

V2Meow is a versatile soundtrack generation model that
excels in producing high-fidelity music for diverse video
inputs. To overcome the disparity between coarser global
video signatures and high-resolution audio representations
designed for waveform reconstruction, our approach learns
implicit, general video-audio-aligned low-resolution repre-
sentations. The hierarchical multi-stage autoregressive mod-
eling is crafted to achieve optimal music generation quality.
The semantic modeling stage embeds video and audio in a
shared semantic space, while the acoustic modeling stage
refines the high-resolution audio representation space in a
coarse-to-fine fashion. What sets this multi-stage approach
apart is its decoupling; only the semantic modeling stage
needs to be trained on paired data with semantic video and
audio features. The acoustic modeling stage can be trained
on audio-only data and optionally fine-tuned on audio data
from video to address domain shift. Zero-shot evaluation on
dance videos indicates transferability to unseen video in-
put types. Compared to MIDI-based and text-input-only mu-
sic generation models, V2Meow can generate music more
aligned with visual content and human perception. Ablation
studies underscore the critical role of video conditioning in
both semantic and acoustic modeling stages for generating
high-fidelity sounds from video inputs, emphasizing that di-
rectly generating acoustic tokens without semantic tokens
leads to a degradation in generation quality.
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Ethical Statement

Large generative models learn to imitate patterns and bi-
ases inherent in the training set, and in our case the model
might propagate the potential biases built in the video and
music corpora used to train our models. Our introduction
of text control allows us to debias undesirable stereotypi-
cal video-to-music associations. These biases can originate
from the video and music corpora used during training, lead-
ing to skewed genre distributions and unequal representation
of gender, age, and ethnic groups within each genre. These
concerns extend to learned visual-audio associations, which
can result in stereotypical links between video content (e.g.,
people, body movements, dance styles, locations, or objects)
and a limited set of musical genres. Additionally, derogatory
associations may arise between video choreography and au-
dio output (e.g., minstrelsy, parody, miming).
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