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Figure 1: MagicRemover: We present a tuning-free image inpainting approach that requires only a
textual input from users, rather than manual binary masks, to erase the desired objects. From left to
right are: (a) input image, (b) manual mask, mask-based inpainters (c) LaMa (Suvorov et al., 2021)
and (d) SD-Inpaint (Rombach et al., 2022b), and (e) our MagicRemover. Our method is capable of
eliminating areas that are hard to be defined with binary masks.

ABSTRACT

Image inpainting aims to fill in the missing pixels with visually coherent and se-
mantically plausible content. Despite the great progress brought from deep gen-
erative models, this task still suffers from i. the difficulties in large-scale realistic
data collection and costly model training; and ii. the intrinsic limitations in the tra-
ditionally user-defined binary masks on objects with unclear boundaries or trans-
parent texture. In this paper, we propose MagicRemover, a tuning-free method
that leverages the powerful diffusion models for text-guided image inpainting.
We introduce an attention guidance strategy to constrain the sampling process of
diffusion models, enabling the erasing of instructed areas and the restoration of
occluded content. We further propose a classifier optimization algorithm to fa-
cilitate the denoising stability within less sampling steps. Extensive comparisons
are conducted among our MagicRemover and state-of-the-art methods including
quantitative evaluation and user study, demonstrating the significant improvement
of MagicRemover on high-quality image inpainting.

1 INTRODUCTION

Image inpainting is the task of filling in the missing or corrupted regions of an image, which shows
important implications in many applications like image editing, object removal, image restoration,
to name a few. The key challenge in image inpainting is to make the filled pixels consistent with
the non-missing areas to form a photo-realistic scene. Most existing state-of-the-art methods (Guo
et al., 2021; Suvorov et al., 2021; Li et al., 2022; Zeng et al., 2021) are developed upon Generative
Adversarial Networks (GANs) (Goodfellow et al., 2020) and show impressive capacity on gener-
ating visually plausible and consistent content in image holes with arbitrary sizes and shapes. For
model training, a large amount of corrupted-painted image pairs are synthesized by applying a set of
predefined irregular binary masks (Suvorov et al., 2021) on the original images. Although the large-
scale training samples can facilitate the generalization of inpainting models, the synthetic corrupted
regions during training still have large gap with the requirement of real-world users, leading to a
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limited performance on the removal or completion of diverse objects. On one hand, a high-quality
user-defined mask is always preferred to reduce models’ sensitivity for more robust inpainting re-
sults, which inevitably brings inconvenience and is especially hard to draw on the objects with
complex structures or unclear boundaries (see the first row of Fig. 1). On the other hand, a binary
mask with hard labels is not suitable to indicate semi-transparent areas like glass or reflection where
background pixels are usually involved. In a binary mask, the transparent pixels and the inside
background are treated equally for inpainting, easily incurring original background regions being
destroyed (See the second row in Fig. 1). In such cases, an alpha matte (Wang & Adelson, 1993)
with soft labels is demanded to separate the semi-transparent layers from RGB background, which
however is impossible for users to label on real images.

Recently, diffusion models (Ho et al., 2020a) have emerged as the mainstream frameworks in var-
ious generative tasks (Rombach et al., 2022b; Yang et al., 2023; Singer et al., 2022). Trained on
billions of text-image data (Schuhmann et al., 2022), Text-to-Image (T2I) diffusion models are ca-
pable of understanding text-vision correspondence and produce high-quality, diverse and realistic
image content. How to adapt the powerful diffusion in downstream tasks has become a hot research
issue in the literature. One of the popular solutions (Yildirim et al., 2023; Haque et al., 2023; Brooks
et al., 2023) is to leverage large-scale models (Brown et al., 2020) to synthesize large amounts of
paired data, which are subsequently used to implement a standard fully training pipeline. However,
such data synthesis based pipeline might not adapt well in image inpainting since i. the process of
data synthesis and training is costly and relies on large-scale computational resources; ii. it’s hard
to find an inpainting method with robust generalization and promising performance on diverse dis-
tributions. In contrast to the heavy training framework, another research trend (Epstein et al., 2023;
Hertz et al., 2022; Shi et al., 2023) is to explore an editable space in the internal representations of
diffusion to allow image editing from various prompts like text or drag, without applying additional
models, data or training. These methods (Hertz et al., 2022) found that the cross-attention shows
great zero-shot capacity on highlighting the correspondence areas for textual tokens. It is then nat-
ural to ask whether we can leverage powerful generalization capacity of the pretrained diffusion to
develop a zero-shot inpainting algorithm for natural images.

In this paper, we propose MagicRemover, a tuning-free framework for text-guided inpainting, i.e.,
erasing object following textual instructions. Our method leverage the pretrained diffusion model
to construct an effective guidance from the internal attentions to constrain the process of object re-
moval and occluded region restoration. Given the input image and the corresponding text instruction
of interested objects, we first exploit reverse algorithm to project them into latent space, where the
intra-domain self-attention and cross-domain cross-attention are calculated. Then, a novel guidance
strategy is proposed and implemented on the attention maps to achieve soft object removal and back-
ground inpainting. Besides, we propose a classifier optimization algorithm to reduce the inversion
steps while enhancing the editing capability and stability.

Our main contributions are summarized as follows:

1. We introduce MagicRemover, which takes advantage of the internal attention of pretrained
T2I diffusion models to conduct text-guided object removal on natural images without
auxiliary model finetuning or supervision.

2. We propose an attention-based guidance strategy together with a classifier optimization
algorithm to enhance the captivity and stability of inpainting within less diffusion sampling
steps.

3. We conduct sufficient experiments including quantitative evaluation and user study, demon-
strating the superior performance of the proposed MagicRemover on object removal with
soft boundaries or semi-transparent texture.

2 RELATED WORK

2.1 DIFFUSION MODELS

Recently, Diffusion Probabilistic Models (DPMs) (Ho et al., 2020a; Song et al., 2020b) have re-
ceived increasing attention due to their impressive ability in image generation. Diffusion models
have broken the long-term domination of GANs (Goodfellow et al., 2020) and become the new
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state-of-the-art protocol in many computer vision tasks. DPMs consist of a forward and a reverse
process. Given a sample from data distribution x0 ∼ pdata(x), the forward process gradually de-
stroys the structure in data by adding Gaussian noise to x0 for T steps, according to the variance
schedule β1, ..., βT :

q (xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
. (1)

Subsequently, a U-Net ϵθ (xt; t) (Ronneberger et al., 2015) can be trained to predict the noise ϵt
added during the forward process based on the given condition y with loss:

L(θ) = Et∼U(1,T ),ϵt∼N (0,I)

[
w(t) ∥ϵt − ϵθ (xt; t,y)∥2

]
, (2)

where the condition y can be ∅, text (Ramesh et al., 2022) or images (Ho et al., 2022), etc. After
the training is completed, the reverse process can trace back from the isotropic Gaussian noise xT ∼
N (xT ;0, I) to the initial data distribution using the predicted noise.

In order to control the randomness of the DDPM (Ho et al., 2020b) sampling process, DDIM (Song
et al., 2020a) modifies the reverse process into the following form:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ (xt)√

αt

)
︸ ︷︷ ︸

”predicted x0 ”

+
√

1− αt−1 − σ2
t · ϵθ (xt)︸ ︷︷ ︸

”direction pointing to xt ”

+ σtϵt︸︷︷︸
random noise

,
(3)

where αt = 1 − βt. By manipulating the value of σt ∈ [0, 1], the randomness of the sampling
process can be controlled. When σt = 0, the sampling process becomes a deterministic process.

Due to the extensive computational resources required for diffusion and denoising directly at the
image level, Rombach et al. (2022a) introduces latent diffusion model. Latent diffusion model
employs an encoder to map images to a latent space z0 = E(x0), then utilizes a decoder to map
them back to the image space D(z0) ≈ I , while training a diffusion model in the latent space.

2.2 CLASSIFIER GUIDANCE

From the perspective of score matching (Vincent, 2011), the unconditional neural network ϵθ (zt; t)
optimized by the diffusion models is used to predict the score function ∇zt log p (zt). In order
to more explicitly control the amount of weight the model gives to the conditioning information,
(Dhariwal & Nichol, 2021) proposed classifier guidance, where the diffusion score ϵθ (zt; t) is mod-
ified to include the gradient of the log likelihood of an auxiliary classifier model pc (y | zt) as
follows:

ϵ̂t = ϵθ (zt; t)− sσt∇zt
log pc (y | zt) , (4)

where s is employed to modulate the gradient magnitude of the noisy classifier, thereby adjusting the
degree to which the model is encouraged or discouraged from considering the conditioning informa-
tion. The classifier model can also be replaced with a similarity score from a CLIP (Radford et al.,
2021) model for text-to-image generation (Nichol et al., 2021), or an arbitrary time-independent
energy as in universal guidance (Bansal et al., 2023). A recent method named self-guidance Epstein
et al. (2023) proposes to convert the editing signal g (zt; t,y) into gradients to replace the classifier
model in diffusion sampling process. By combining this approach with classifier-free guidance (Ho
& Salimans, 2022) as follows, self-guidance achieves high-quality results in editing the location,
size and shape of the generate objects.

ϵ̂t = (1 + s)ϵθ (zt; t,y)− sϵθ (zt; t,∅) + vσt∇zt
g (zt; t,y) (5)

where v is an additional guidance weight. In this paper, we aim to design an effective energy function
to form a training-free pipeline for text-guided inpainting.

2.3 IMAGE INPAINTING

Traditional image inpainting methods (Xu & Sun, 2010; Pérez et al., 2023) leverage heuristic patch-
based propagation algorithm to borrow the texture and concept from neighbor of the corrupted re-
gions, which always fail to restore the areas with complex structure or semantics. To remedy this
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Figure 2: Framework overview. We first invert the input image to obtain the noisy latent zt at the
t-th time step and optimize a set of null text embedding lists for image reconstruction. Next, we
utilize the inversion results to generate the edited image under the guidance of attention. During
the editing process, cross-attention mechanisms are employed to obtain optimized image guidance,
while self-attention mechanisms are utilized to ensure similarity with the original image.

issue, more recent methods (Guo et al., 2021; Suvorov et al., 2021; Li et al., 2022; Zeng et al.,
2021) propose various modifications on CNNs-based image translation networks and use adversar-
ial loss from GANs to improve the consistency of inpainted regions. By synthesizing arbitrary holes
on the images, those methods achieve satisfactory performance in general scenes. Some recent at-
tempts(Lugmayr et al., 2022; Xie et al., 2023) have been made to implement diffusion models on
image inpainting, demonstrating that diffusion models are capable of produce promising inpainting
results. The work most closely related to ours is Inst-Inpaint (Yildirim et al., 2023), which also
removes objects from images based on textual descriptions. They follow the data synthesis pipeline
from (Brooks et al., 2023) to create large amounts of paired data along with text prompts, which are
further used to retrain the standard diffusion to conduct inpainting. In construct to Inst-inpaint, we
propose to use the internal attention of the pretrained T2I diffusion models as guidance to produce
consistent inpainting results and constrain the other content, which provides a tuning-free pipeline
without extra model tuning or data.

3 METHOD

3.1 OVERVIEW

In this paper, we propose a text-guided image inpainting framework, dubbed MagicRemover, which
enables object removal with textual prompts instead of the manual masks from users. The overall
framework is shown in Fig. 2. Our method is built upon a T2I diffusion model (i.e., Stable Diffu-
sion) (Rombach et al., 2022b), which consists of an autoencoder and a denoising U-net. Specifically,
given an input image x0 with a textual instruction y about the objects to be erased (e.g.,“A photo
of [object class]”), we first adopt Null-text inversion (Mokady et al., 2023) to project them into la-
tent space for text-image alignment. Then, the projected latent representation zT is interacted with
text prompt in two parallel U-nets for image reconstruction and inpainting generation, respectively.
We propose a novel attention guidance strategy between two branches to generate more consistent
filling-in in erasing areas while preserving the other content. Besides, we propose a classifier opti-
mization module to enhance the inpainting capability and stability of the denosing process. With the
aforementioned designs, our MagicRemover is capable of removing the objects from textual instruc-
tion in a tuning-free manner without extra model training or finetuning. In the following sections,
we will introduce the key components of the proposed method, including text-image alignment,
attention guidance and classifier optimization.
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3.2 TEXT-IMAGE ALIGNMENT

The image inversion module requires users to provide an image and the corresponding text descrip-
tion, which is flexible ranging from a single word of the object to be erased (e.g., [cls]) to a detailed
description containing the target object and other information about the image (e.g., a photo of [cls]
[scene]). The purpose of text-image alignment is to enable the model to reconstruct the original
image based on the given text and initial noise so that it can provide a more accurate spatial re-
sponse for the target word during the denoising process. We adopt an advanced approach called
Null-text inversion (Mokady et al., 2023), which takes the DDIM inversion trajectory

{
zinvt

}T
t=1

and the text prompt y as input, and then optimizes a set of null-text embeddings {∅t}Tt=1 according
to the following equation:

min
∅t

∥∥zinvt−1 − fθ (zt, t,y;∅t)
∥∥2
2
, (6)

where fθ represents applying DDIM sampling on the noise predicted by the pre-trained image dif-
fusion model ϵθ(xt; t,y). t indicates the t− th denoising process in totally T steps.

3.3 ATTENTION GUIDANCE

In our approach, the traditional user-defined masks for indicating erasing areas are discarded,
whereas only the text prompts like object classes or referring captions are used as instructions to
remove the objects and restore the occluded background. To this end, we leverage the powerful T2I
stable diffusion to extract the cross-attention between text prompts and visual latent zt, and take
it as a guidance signal to produce inpainting results. Specifically, for any word with index k in a
given text condition y, we can obtain its corresponding cross-attention map At,k ∈ RH×W at any
timestep t. This cross-attention map can be regarded as the spatial response of the image to that
specific word. Therefore, optimizing zt towards the direction where the response to the k-th word
is zero naturally leads to the erasure of the object corresponding to the k-th word. However, the
cross-attention map corresponding to each word not only contains the spatial response to that word
but also includes some responses from other objects in the image (see Figure 4). Directly optimizing
zt towards the direction of zero response may cause significant changes in the image background.
To overcome this issue, we propose three improvements to construct effective guidance g(t, k, λ)
from pretrained diffusion models.

Relaxing constraints. We optimize zt towards a lower response direction rather than an absolute
zero matrix. Since the pixel values in the cross-attention map At,k represent the degree of relevance
to the corresponding word, generally, the values in At,k from high to low correspond to the target
object, shadows (reflection, etc. if present), and the background. Therefore, we set the optimization
target as a matrix filled with pixel values corresponding to the top 20% of the values in the cross-
attention map. Empirically, we find that setting the optimization target in this way is sufficient to
completely erase the target object. Furthermore, to accommodate users’ desires to erase additional
associated objects, such as reflections, we provide a hyperparameter λ ∈ [0, 1] to control the degree
of object erasure, which is set to 0.8 by default. Therefore, the guidance for erasing the object
corresponding to the k-th word at timestep t can be defined as follows:

g(t, k, λ) = ∥At,k − [min(At,k) + λ(max(At,k)−min(At,k))]At,k∥1. (7)

For the function of lambda, please refer to Figure 9 in the Appendix.

Reweight perturbation. Since the areas with higher relevance to their corresponding word in
the cross-attention map have larger values, and those with lower relevance have smaller values,
directly multiplying it with the additive perturbation of the classifier guidance can greatly suppress
background changes. Therefore, for erasing a single object corresponding to a word, the original
attention guidance classifier in Eq. 5 can be rewritten as:

ϵ̂guidt = (1 + s)ϵθ (zt; t,y)− sϵθ (zt; t,∅t) +At,k ⊙∇zt
g(t, k, λ). (8)

In some cases, such as removing a specific instance from an image, processing with a single cross-
attention map for one word cannot meet the requirements. To further expand the applicability of our
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method, we make some modifications to Eq.8. When we want to remove an object described by n
words, we change it to the following form:

ϵ̂guidt = (1 + s)ϵθ (zt; t,y)− sϵθ (zt; t,∅t) + (
∏
n

At,k)⊙ (∇zt

∑
n

g(t, k, λ)). (9)

Additionally, our method supports the use of an extra input mask M 1 to label instances in certain
extreme cases, such as when there are multiple objects of the same category in an image, making it
more difficult to describe the desired instance to erase than obtaining a mask. In this situation, we
only need to add an additional term ∇zt(ẑt−1 − zinvt−1)⊙ (1−M) to Eq.9.

Self-attention guidance. Inspired by the consistency in video editing works (Khachatryan et al.,
2023; Wang et al., 2023), self-attention plays a vital role in preserving information such as image
texture and color. In order to further maintain the similarity between the edited image and the
original image, we store the Krec matrix and Vrec matrix from the reconstruction branch and then
modify the self-attention computation formula in the inpainting branch as follows:

Attention(Qedit,Krec,Vrec) = softmax

(
QeditK

T
rec√

d

)
Vrec, (10)

where, Qedit matrix comes from the inpainting branch.

3.4 CLASSIFIER OPTIMIZATION

… …

(a) DDIM sampling

… …

x N

(b) Ours

Figure 3: Illustration of Classifier optimization. Our classifier optimization operation can be per-
formed any number of times at any given sampling moment t.

In Sec.3.2, we use Null-text inversion (Mokady et al., 2023) to achieve image and text alignment,
which requires optimizing Eq.6 for about 100 steps at each sampling moment. Therefore, the
more sampling steps we use, the more steps Null-text inversion optimization takes, which is time-
consuming. To reduce time while not compromising the editing capability of the algorithm, we
propose the classifier optimization operation in this section. Considering that in diffusion-based
image editing methods, besides adding perturbations to the predicted noise like classifier guidance
sampling, we can also optimize the noisy latent zt using gradient descent algorithms through an
optimizer (Shi et al., 2023). Given the similarities between these two approaches, we attempt to
make some modifications to classifier guidance to achieve the same function as the optimizer, opti-
mizing zt without changing t. This allows us to increase the optimization steps, reduce the number
of sampling steps, and ultimately decrease the time required for Null-text inversion.

Let us reconsider Eq.3, as DDIM can be implemented in the order of first predicting inital latent z0
from noisy latent zt and then adding noise to zt−1. In order to update zt without changing t, we try
to add an optimization step in the denoising process, that is, modifying DDIM to predict z0 from zt,
and then add noise to zoptt :

zoptt =
√
αt

(
zt −

√
1− αtϵ̂

guid
t (zt)√

αt

)
+
√
1− αt − σ2

t · ϵ̂
guid
t (zt) + σtϵt (11)

To guarantee the resemblance between the edited image and the original image, as well as to regulate
the randomness during the sampling process, it is beneficial to set σt to 0. However, this may result

1Unless specifically stated, the results presented in this paper are achieved without masks.
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in xopt
t being exactly equal to xt, which would not serve the purpose of updating xt. Therefore,

we replace the noise used in the ”predicted x0” and the ”direction pointing to xt” process with two
different noise sources:

zoptt =
√
αt

(
zt −

√
1− αtϵ̂t (zt)√

αt

)
+

√
1− αt · ϵ̂guidt (zt) (12)

where ϵ̂t = (1 + s)ϵθ (xt; t, y) − sϵθ (xt; t,∅t) refers to the noise predicted through classifier-free
guidance approach. The proposed optimization step can be integrated into the denoising process
at any given timestep t, allowing for the arbitrary updates of xt without being restricted by the
limitation that the sampling steps should be less than T . In our experiments, we found that during
the denoising process, using the noise before perturbation ϵ̂t for ”predicted x0” and the noise after
perturbation ϵ̂′t for ”direction pointing to xt” can also improve the editing results, which has been
confirmed in the image editing method by Kwon et al. (2022). Detail of our final sampling process
can be found in Appendix.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement MagicRemover on the publicly available Stable Diffusion 1.5 version (Rombach
et al., 2022b). To compare with existing methods, we resize the input image resolution to 512×512.
Since the U-Net used in Stable Diffusion consists of three modules, i.e., encoder, decoder, and
bottleneck, with cross-attention maps at four different resolutions at 8 × 8, 16 × 16, 32 × 32, and
64 × 64. We uniformly resize all cross-attention maps to the input image’s resolution. We then
accumulate all cross-attention maps according to the corresponding word and perform normalization
to obtain the final cross-attention map used for calculating guidance. Additionally, the diffusion
model provides macro information such as layout and content at larger time-steps and generates
texture and other details at smaller time-steps. Our pre-trained model has 1000 training steps. We
find that incorporating attention guidance at larger time-steps results in a greater erasure strength for
objects, but the corresponding cross-attention map is not accurate enough ((as shown in Figure.4)),
leading to visually noticeable changes in image tone and background content. Therefore, to achieve
a stronger erasure effect while minimizing excessive changes in background content and color tone,
we incorporate attention guidance at time-steps 100 < t < t2 and add an extra step of classifier
optimization for each time-step within the range t1 < t < t2. By default, t1 and t2 are set to 500
and 800, respectively.

Input t=881 t=781 t=681 t=581 t=481

A photo 
of a 

sneaker.

t=381

t=301

t=981

Figure 4: The top row displays the cross-attention maps of the word “sneaker” at various diffusion
steps, while the bottom row demonstrates the outcomes obtained by incorporating attention guidance
starting from different diffusion steps.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with three inpainting methods, including two mask-guided approaches
(LaMa Suvorov et al. (2021) and SD-Inpaint (Rombach et al., 2022b)) and one text-guided Inst-
Inpaint (Yildirim et al., 2023), in terms of quantitative evaluation and user studies.
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Figure 5: Visual comparisons with state-of-the-art methods. From left to right are: (a) input image,
(b) manual mask, (c) LaMa (Suvorov et al., 2021), (d) SD-Inpaint (Rombach et al., 2022b), (e) Inst-
Inpaint (Yildirim et al., 2023) and (f) MagicRemover. Best viewed by zoom-in on screen.

Table 1: Comparison with sota in terms of FID on
COCO 2017 val and the user study result.

Methods FID User Study

SD-Inpaint 9.72 5%
LaMa 8.44 27%
MagicRemover w mask 12.07 -

Inst-Inpaint 16.15 7%
MagicRemover w/o mask 12.78 61%

Quantitative Results. Consider the ab-
sence of ground truth after object re-
moval, we use Fréchet Inception Distance
(FID) (Heusel et al., 2017) to assess the
overall quality of the edited images on
the COCO 2017 val (Lin et al., 2015).
For mask-guided inpainters, we used the
ground truth mask from COCO. As shown
in Table.1, compared with SD-Inpaint and
LaMa, our FID is slightly lower. We be-
lieve this is due to the distribution differ-
ence caused by the inversion-reconstructed image. Compared with Inst-Inpaint, our method is more
accurate in object recognition and does not leave shadows on the target object, resulting in a better
FID value. In a vertical comparison, our method includes a mask, which ensures the consistency of
the background, thereby obtaining a more favorable FID value.

User Studies. Since FID metric can not directly measure the performance of removal operation,
We conduct a user study to evaluate the quality of our method. We collect 50 natural images from
Internet and DAVIS (Perazzi et al., 2016) and 30 randomly selected ones from COCO 2017val set,
resulting in 80 samples in total for user study. For the natural images without mask ground truth,
we manually draw a mask for the target object and its effect like shadow or reflection. We ask 30
volunteers to participate in the study and the statistical results are shown in Table.1 demonstrate that
our method receives the majority of votes. A subset of the samples in this study are offered in the
supplementary materials.

Qualitative Results. Fig.5 presents visual comparisons of our method against the other competi-
tors. As seen in Fig.5, existing image inpainting methods cannot preserve background information
when removing semi-transparent objects and face challenges in obtaining suitable masks. Although
Inst-Inpaint can automatically obtain masks based on text after training, it still fails to acquire ap-
propriate masks when dealing with object removal with soft boundaries. Furthermore, inpainting
methods based on generative models can provide text-guided content generation in the mask area.
However, they still leave other objects in the mask area and cannot achieve completely clean object
removal.
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4.3 ABLATION STUDY

To validate the effectiveness of the attention strategy proposed in Sec.3, we separately remove relax-
ing constraints, reweight perturbation, and self-attention guidance, and display the resulting images
in Figure.6. As can be seen from Figure.6, Self-attention guidance can greatly maintain the similar-
ity with the original image, while relaxing constraints and reweight perturbation can further ensure
the consistency of the image background.

(a)  Input (b)  w/o Re (c)  w/o Rp (d)  w/o Sg (e)  Full

Figure 6: Ablation study on attention guidance: From left to right are: (a) the input images with the
corresponding text being “a photo of a bubble,”; (b) to (d) display the output results by removing
three components in attention guidance; (e) final output. Here, “Re” stands for relaxing constraints,
“Rp” represents reweight perturbation, and “Sg” refers to self-attention guidance.

The effectiveness of the classifier optimization algorithm is demonstrated in Figure 7. (b)-(d) exhibit
the results obtained with sampling steps set to 50, 100, and 200, respectively, without using classifier
optimization. (e) demonstrates the results achieved with 50 sampling steps and an optimization step
added at every timestep during the t1 < t < t2. It is clear that classifier optimization can enhance the
erasure effect of the algorithm. We hypothesize that in the context of a limited number of sampling
steps, incorporating classifier optimization into the denoising process can significantly reduce the
residual information of the target object, thereby enhancing the algorithm’s editing capabilities.

(a)  Input (b) w/o Co N=50 (e)  w Co  N=50(c)  w/o Co N=100 (d) w/o Co N=200

Figure 7: Ablation study on classifier optimization: The first column shows the input images, with
the corresponding text being “a photo of a woman,”. Here, “Co” stands for classifier optimization,
and “N” denotes the number of sampling steps.

5 CONCLUSION

We propose a tuning-free image inpainting method namely MagicRemover, which harnesses the
pretrained diffusion to achieve flexible object removal with only textual instruction. An attention
guidance strategy and a classifier optimization algorithm are proposed to constrain the denoising
process of diffusion to erase the object and restore the occluded areas. Experimental results in terms
of quantitative evaluation and user study demonstrate the superiority of our MagicRemover over
state-of-the-art methods.

Limtations. Since we obtain the guidance for erasing objects in the latent space of Stable Dif-
fusion, and the encoder used in Stable Diffusion reduces the image resolution to one-eighth of the
original, small objects in the image, such as raindrops, cannot be erased. Considering the combina-
tion of the encoder and decoder features to acquire guidance might be a solution. We will leave this
for future work.
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A APPENDIX

A.1 DETAIL OF OUR SAMPLING ALGORITHM

Algorithm 1 sampling algorithm
Parameter: Initialize model ∼ ϵθ.
Input image x0

Input caption y
Number of diffusion steps T .
Optimization time list opt t.
OPtimization times N .

1: z0 = E(x0)

2:
{
zinv
t

}T
t=1

=DDIM-inversion(z0)

3: {∅t}Tt=1 =Null-text-optimization
({

zinv
t

}T
t=1

,y
)

4: for t in scheduler.timesteps do
5: ϵ̂t = (1 + s)ϵθ (xt; t, y)− sϵθ (xt; t,∅t)

6: ϵ̂guidt = ϵ̂t +
∑

m

∏
n At,k∇zt

∑
m×n g(t, k, λ)

7: zoptt = zt
8: if t in opt t then
9: for i in range(N) do

10: zoptt =
√
αt

(
zt−

√
1−αtϵ̂t(zt)√

αt

)
+

√
1− αt · ϵ̂guidt (zt)

11: end for
12: end if
13: zt−1 =

√
αt−1

(
zopt
t −

√
1−αtϵ̂t(zopt

t )√
αt

)
+

√
1− αt−1 · ϵ̂guidt

(
zoptt

)
14: end for

A.2 COMPARISON WITH PROMPT-TO-PROMPT

P2P (prompt-to-prompt) (Hertz et al., 2022) proposed three methods to adjust the corresponding
attention map during the generation process, namely word swap, adding a new phrase, and attention
re-weighting, to achieve the purpose of editing the generated image. A natural question is whether
the P2P method, i.e., setting the attention weight of the target object’s word to 0 during the recon-
struction process or directly deleting the target object’s word from the input text, can achieve the
function of removing the object. To evaluate this, we conducted a series of experiments and pre-
sented partial results in Figure 8. First, we implemented text-image alignment using the method
proposed in Sec 3.2 3.2. Then, during the denoising process, we tried using P2P refine and P2P
reweighting to erase the target object. P2P refine refers to directly removing the target object’s word
from the text condition, while P2P reweighting refers to multiplying the cross attention value cor-
responding to the target object by 0 during the denoising process. As can be seen from the results
in Figure 8, the combination of P2P and Null text inversion is unable to remove the target object
cleanly.

A.3 INVESTIGATE THE INFLUENCE OF LAMBDA

In Figure 9, we show the influence of different λ values. Since the values in the cross-attention map
express the relevance to the text, the lower the lambda value, the cleaner the object will be erased.
However, this may also cause some changes in the image’s color tone or background. Users may
need to adjust the λ value to achieve the best results.

A.4 THE FUNCTION OF MASK

When performing a remove operation on an image, we may encounter objects that are difficult to
describe with text or instances that are hard to distinguish through text. For these two situations,
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A photo of 
a ball.

A photo of 
a duck.

A photo of 
a bear.

(a) Input (b) P2P Refine (c) P2P Reweighting (d) MagicRemover

Figure 8: Visual comparisons with Prompt-to-Prompt

 

(a)  Input (b)  λ=0.8 (e) λ=0.2(c) λ=0.6 (d) λ=0.4

Figure 9: Investigate the influence of lambda.

we need the user to provide an additional mask M to annotate the object to obtain a more accurate
result. For the first case, we initially use the mask to cover the object and setting the text condition
to ”a photo of black stains.” Then, we use the method proposed in Sec3.1 to eliminate the ’black
stains.’ The only change is that since we already have an accurate mask M , we can modify Eq.9 to

ϵ̂guidt = (1 + s)ϵθ (zt; t,y)− sϵθ (zt; t,∅) +M ⊙ (∇zt

∑
m×n

g(t, k, λ)) (13)

to obtain a more precise result, or we can just add an additional term ∇zt
(ẑt−1−zinvt−1)⊙(1−M) to

Eq.9. In our experiments, the results obtained from these two methods did not show any significant
differences. For the case of instances that are difficult to distinguish through text, we only need to
replace Eq.9 with Eq.13. Figure 10 shows the results for these two situations, respectively.

 

Input  Image Manual Mask ResultInput  Image Manual Mask Result

Figure 10: Visual examples in some special cases. In the left image, we use the text “black stains on
a photo of a man”, and in the right image, we use the text “a photo of two persons.”
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A.5 MORE RESULTS

We illustrate more visual comparison results in Fig. 11 and Fig. 12. As we can see, the proposed
MagicRemover performs consistently better than other methods on both natural images and coco
images. Besides, we list the screenshot of our user study in Fig. 13, more visual results are given in
the supplementary zip file.
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Figure 11: More visual results. Stable inpainting and LaMa utilize manual masks to erase objects.
Our method, relies solely on the input text for object erasure. For Inst-Inpaint, we modify the input
text from “a photo of...” to “remove the...” in order to obtain results with the object removed.
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Figure 12: Visual comparisons on coco. Our method relies solely on text-based conditions and
adapts the textual input to “remove...” as the condition for inst-inpaint.
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Figure 13: Screenshot of our user study.

18


	Introduction
	Related Work
	Diffusion Models
	Classifier Guidance
	image inpainting

	Method
	Overview
	Text-image alignment
	Attention guidance
	classifier Optimization

	Experiments
	Implementation Details
	Comparison with State-of-the-Art Methods
	Ablation Study

	Conclusion
	Appendix
	detail of our sampling algorithm
	comparison with prompt-to-prompt
	Investigate the influence of lambda
	The function of mask
	more results


