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ABSTRACT

Large language models (LLMs) have demonstrated significant capabilities in math-
ematical reasoning, particularly with text-based mathematical problems. However,
current multi-modal large language models (MLLMs), especially those special-
ized in mathematics, tend to focus predominantly on solving geometric problems
but ignore the diversity of visual information available in other areas of mathe-
matics. Moreover, the geometric information for these specialized mathematical
MLLMs is derived from several public datasets, which are typically limited in
diversity and complexity. To address these limitations, we aim to construct a
fine-tuning dataset named MathVL, and develop a series of specialized mathemat-
ical MLLMs termed MathGLM-Vision by conducting Supervised Fine-Tuning
(SFT) on MathVL with various parameter-scale backbones. To extensively evaluate
the effectiveness of MathGLM-Vision, we conduct experiments on several public
benchmarks and our curated MathVL-test benchmark consisting of 2,000 problems.
Experimental results demonstrate that MathGLM-Vision achieves significant im-
provements compared with some existing models, including backbone models and
open-source mathematical MLLMs. These findings indicate the importance of di-
versity dataset in enhancing the mathematical reasoning abilities of MLLMs. Both
MathGLM-Vision model (based on CogVLM2, GLM-4V-9B) and MathVL-test
will be open-sourced.

1 INTRODUCTION

Recent advancements in computational linguistics have led to substantial progress in solving mathe-
matical problems using Large Language Models (LLMs) with multi-step reasoning processes (Light-
man et al., 2023). For example, models like GPT-4 (Achiam et al., 2023), Qwen (Bai et al., 2023a),
GLM-4 (Team et al., 2024), LLaMA (Touvron et al., 2023a;b) have demonstrated impressive per-
formance on mathematical datasets such as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021). Furthermore, the development of specialized mathematical models is expanding the
potential of LLMs in this domain. These models, specifically designed for mathematical problem
solving, include notable contributions such as WizardMath (Luo et al., 2023), MAmmoTH (Yue et al.,
2023), MathCoder (Wang et al., 2023a), MetaMath (Yu et al., 2023), DeepSeekMath (Shao et al.,
2024), and others (Yang et al., 2023; Yuan et al., 2023; Gou et al., 2023; Yue et al., 2024b; Mitra
et al., 2024; Ying et al., 2024). These advancements highlight the growing proficiency of LLMs in
handling intricate mathematical reasoning and problem-solving tasks.

Despite significant advancements, the majority of models designed for mathematical problem solving
still rely predominately on textual representations. This limits their effectiveness in scenarios that
require visual information. Notably, approximately 63% of mathematics questions in Chinese K12 ed-
ucation include visual elements, highlighting the critical role of visual information in comprehending
and solving mathematical problems.

Therefore, a crucial question arises: Is visual information essential for solving these mathematical
problems that include visual elements? To verify this, we conduct a series of insightful experiments
comparing the performance of these models such as GPT-4o, Claude-3.5-Sonnet, Qwen-VL-Max,
and Gemini-1.5-Pro on MathVL-test dataset, both with and without visual inputs. As shown in
Figure 1, the results clearly demonstrate that the inclusion of visual elements significantly enhances
the models’ ability to accurately solve complex mathematical problems. Conversely, the exclusion of
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Figure 1: Insight experiments demonstrates the significance of visual information in solving math-
ematical problems. (Left) A performance comparison of different models with and without visual
inputs on MathVL-test dataset. (Right) The accuracies of MathGLM-Vision on MathVL-test with
and without visual inputs.

visual information leads to a pronounced decrease in performance, emphasizing the essential role
that visual context plays in solving mathematical problems that incorporate visual elements.

Currently, multi-modal large language models (MLLMs) are at the forefront of efforts to integrate
visual and textual information for solving mathematical problems. Close-source models such as
GPT-4V (OpenAI, 2023), Gemini (Team et al., 2023), Claude3 (Anthropic, 2024), Qwen-VL (Bai
et al., 2023b), along with several open-source MLLMs like CogVLM (Wang et al., 2023c; Hong
et al., 2024), MiniGPT Zhu et al. (2023), LLaVA-1.5 Liu et al. (2024a), SPHINX-MoE Gao et al.
(2024), and LLaVA-NeXT Liu et al., demonstrate substantial potential in addressing geometric
reasoning challenges. Additionally, specialized geometric MLLMs like G-LLaVA Gao et al. (2023a),
GeoGPT4V Cai et al. (2024) and Math-LLaVA Shi et al. (2024) are particularly focused on enhancing
capabilities in this domain. However, these models still face several challenges and limitations that
need to be addressed.

• Current MLLMs, particularly those specialized in mathematics, predominantly focus on solving
geometric problems and tend to overlook the diversity of visual information in mathematics. This
visual information encompasses a broad spectrum of elements, including arithmetic, statistics,
algebra and word problems, each integral to different mathematical domains beyond geometry.

• Current fine-tuning dataset for specialized mathematical MLLMs, typically sourced from public
datasets like GeoQA and Geometry3K, often lack diversity and complexity. This limitation restricts
the models’ ability to effectively solve a broader range of mathematical problems.

• Current specialized mathematical MLLMs are predominantly designed to process single-image
inputs and lack the capability to handle multiple images simultaneously. This limitation hampers
their ability to tackle complex problems that necessitate the integration of information from multiple
visual sources.

In response to these challenges and limitations, we construct a fine-tuning dataset named MathVL,
which encompasses both open-source data and our specially curated Chinese data collected from
K12 education. The MathVL dataset is meticulously designed to incorporate a diverse range of
mathematical problems, consisting of textual and visual inputs. For textual information, the MathVL
dataset covers a variety of mathematical subjects such as arithmetic, algebra, geometry, statistics, and
word problems. It includes various types of questions, including fill-in-the-blank, multiple-choice,
and free-form. For visual information, the MathVL dataset involves elements like functions, statistical
data, graphs, charts, LaTeX expressions, and geometric figures, providing a comprehensive resource
for complex mathematical problem solving.

With our constructed MathVL dataset, we develop a series of specialized mathematical MLLMs, col-
lectively referred to as MathGLM-Vision, with different parameter scales. Specifically, MathGLM-
Vision-9B, MathGLM-Vision-19B and MathGLM-Vision-32B are fine-tuned on three backbone
models: GLM-4V-9B, CogVLM2, and CogVLM-32B, respectively. Moreover, we establish a bench-
mark dataset named MathVL-test, which contains 2,000 problems designed to evaluate the ability
of MathGLM-Vision and other MLLMs in solving mathematical problems involving multiple im-
ages. Through extensive evaluation experiments on three public benchmark datasets and one curated
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Figure 2: Performance comparison of the different multi-modal large language models. (Left) The
accuracies of MathGLM-Vision and other MLLMs among three evaluation datasets. (Right) The
accuracy of MathGLM-Vision and other MLLMs on MathVL-test across different categories.

MathVL-test, we validate the effectiveness of our MathGLM-Vision. The results in Figure 2 demon-
strate that MathGLM-Vision exhibits superior performance in understanding and solving complex
mathematical problems with visual elements compared to existing MLLMs. For instance, on the
geometry problem solving (GPS) minitest split of MathVista (Lu et al., 2023), MathGLM-Vision-9B
achieves a 39.68% relative improvement for GLM-4V-9B, MathGLM-Vision-19B achieves a 65.06%
relative improvement for CogVLM2, and MathGLM-Vision-32B achieves a 51.05% relative improve-
ment over CogVLM-32B. Last but not least, Both MathGLM-Vision model (based on CogVLM2,
GLM-4V-9B) and MathVL-test will be open-sourced to facilitate the future development of this field.

We highlight our contributions as follows:

• Data Perspective: We construct MathVL, a diverse and comprehensive multi-modal mathematical
supervised fine-tuning dataset that contains both textual and visual inputs.

• Model Perspective: We develop a suite of specialized mathematical multi-modal large language
models, referred to as MathGLM-Vision, which demonstrates significant improvements on various
mathematical benchmarks while maintaining general vision-language understanding capabilities.

• Benchmark Perspective: We establish a benchmark dataset called MathVL-test, which designed
to evaluate the mathematical reasoning abilities of MLLMs using a multi-image format.

2 MATHVL: DATASET CURATION

To enhance the capabilities of MLLMs in solving mathematical problems, previous efforts (Chen
et al., 2021; 2022; Cao & Xiao, 2022; Gao et al., 2023a) focus on constructing high-quality datasets.
Nevertheless, the majority of these datasets fall into the category of Visual Question Answering
(VQA), which generally involves descriptive or identification tasks rather than conventional math-
ematical problems. Furthermore, the answers in some public datasets like Geometry3K (Lu et al.,
2021), GeoGPT4V (Cai et al., 2024), MathV360K (Shi et al., 2024) for standard mathematical
questions are often too simplistic, usually providing only the final answer without the intermediate
steps necessary for a thorough understanding. It is well-established that including step-by-step
solutions can significantly enhance the reasoning capabilities of large language models (Wei et al.,
2022; Lightman et al., 2023; Zhang et al., 2023; Wang et al., 2023b). Figure 3 demonstrates the
distribution of answer lengths in current open-source mathematical datasets.

To address these issues, we construct a fine-tuning dataset MathVL, including both several public
datasets and our curated Chinese dataset collected from K12 education levels. This dataset is
meticulously crafted to encompass a diverse array of mathematical problems that incorporate visual
information. Each problem is presented with detailed step-by-step solutions, aiming to enhance
the problem-solving skills of MLLMs by providing them with both the context and the procedural
knowledge necessary for effective reasoning and comprehension.
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Figure 3: Analysis of answer lengths in several open-source mathematical datasets like MathV360K,
GeoGPT4V, and Geometry3K.

Open-Source Data. We first collect open-source datasets from GeoQA+ (Cao & Xiao, 2022),
Geometry3K (Lu et al., 2021), ChartQA (Masry et al., 2022), and UniGEO-Calculation (Chen et al.,
2022). These datasets commonly serve as seed data for constructing enhanced datasets. Through
observation and statistical analysis, we discover that 57% of the answers within these datasets are
comprised of fewer than 50 words, indicating that many questions are answered directly without
elaboration or explanation. To enrich these dataset with comprehensive step-by-step solutions, we
employ GPT-4o to generate the detailed solutions for each question, thereby enhancing the learning
and reasoning potential of these datasets. After generating the detailed answers, we perform a rigorous
judgement process to ensure the accuracy of the solutions provided by GPT-4o. Additionally, we
adopt a public instruction tuning dataset named Geo170K (Gao et al., 2023a), which is constructed
using GeoQA+ and Geometry3K as seed data and contains more than 110K geometric question-
answer pairs. We also incorporate another public dataset, GeomVerse (Kazemi et al., 2023), as part of
our resources. In the end, the detailed statistics of the open-source datasets used in MathGLM-Vision
is provided in Table 1.

Datasets ChartQA UniGeo-Calculation Geometry3K GeoQA+ Geo170K GeomVerse ALL

Samples 7,398 3,499 2,101 6,026 117,205 9,339 145,568

Table 1: The detailed statistics of the open-source datasets used in MathGLM-Vision.

Chinese Data Collected from K12 Education. We construct a dataset specifically focused on
K12 education, comprising 341,346 mathematical problems with textual and visual inputs. This
dataset is meticulously curated to encompass a board range of mathematical topics and difficulty
levels tailored to the Chinese educational curriculum. It features various question types, such as
multiple-choice, fill-in-the-blank, and free-form questions, spanning disciplines including arithmetic,
algebra, geometry, statistics, and word problems. Mathematically, this dataset can be represented as
Dzh

MathVL = {Q,A, Is}, where Q represents the question, A represents the answer, and Is represents
one or more images associated with each question. To build this dataset, we first process the images
by adding a white border around each image and enhancing their resolution to ensure that MLLMs
can effectively recognize and interpret these images. This modification is crucial for facilitating
the accurate extraction of visual information. Next, we extract 341,346 samples from a raw dataset
containing 685,670 samples by implementing a selective filtering process. This selection is based
on two specific criteria: (1) filtering out samples where the answer includes images or the question
is incomplete, and (2) eliminating samples with answer that are fewer than 50 words in length to
ensure the responses are sufficiently detailed for model training. After constructing this dataset,
we categorize and analyze it based on mathematical topics associated with each question. Detailed
statistics about the distribution of these categories are presented in Table 2. Figure 4 demonstrates
some examples sampled from the constructed Chinese dataset, providing a visual representation of
the mathematical topics of questions included. More dataset cases are provided in Appendix A.

Types Arithmetic Geometry Algebra Statistics Word Problems ALL

Samples 7,207 291,879 20,111 18,284 3,865 341,346

Table 2: Detailed statistics regarding the distribution used in MathGLM-Vision.
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Arithmetic (2.11%)

Q: The position of the point 
corresponding to the real number a on 
the number line is shown in the figure. 
Simplify the result of |a+3| as follows: 
( )
A. a+3 B. a-3 C. -a+3 D. -a-3

A: 
[Solution] From the position of a on 
the number line, we know that since -3 
< a < 0, |a| < 3, therefore a + 3 > 0, thus 
|a + 3| = a + 3. Hence, B, C, and D are 
incorrect, and A is correct. So, the 
answer is A.
 [Answer] In this question, observe the 
value of a represented on the number 
line and determine the sign of a + b. 
Finally, take the absolute value to 
solve.

Algebra (5.89%)

Q: A store shelf has large, medium, and small bottles of 
laundry detergent (as shown in the figure). It is known that 
each small bottle contains 200 grams, and the total weight of 
the detergent on each shelf is equal. Calculate the weight of 
the detergent in each large and medium bottle.
A:
[Solution]Let the medium bottle contain x grams. From the 
top and middle shelves, we know that 5 small + 1 medium + 1 
large = 5 small + 3 medium, so 1 large = 2 medium. 
Therefore, the large bottle contains 2x grams. We have the 
equation: 3x + 5 × 200 = 2x + 8 × 200. Simplifying, we get 3x 
- 2x = 360, thus x = 360. Therefore, 360 × 2 = 720 (grams). 
[Answer] The large bottle contains 720 grams, and the 
medium bottle contains 360 grams.

Q:As shown in the figure, this is the trend chart 
of the Air Quality Index (AQI) in a certain city 
from March 1 to March 14. Based on the chart, 
determine from which day the variance of the 
AQI over three consecutive days is the largest.

Statitics (5.36%)

A:
[Solution] Solution: From the figure, we can see 
that the air quality indices for three consecutive 
days starting from March 6 are 160, 40, and 
217. The data fluctuates the most during this 
period, so the variance is also the largest. 
Therefore, the answer is: 6.

Q: Given a parallelogram ABCD with diagonals AC and BD intersecting at point O, line 
FE passes through O and intersects sides AD and BC at points E and F, respectively. If 
BF equals DE, the maximum number of pairs of congruent triangles in the diagram is:

Geometry (85.51%)

Word Problems (1.13%)

A. 2 pairs B. 3 pairs C. 5 pairs D. 6 pairs
A: [Solution] ① △ADC ≌ △CBA Since ABCD is a parallelogram, AB = CD, ∠ABC = 
∠ADC, AD = BC, therefore △ADC ≌ △CBA; ② △ABD ≌ △CDB Since ABCD is a 
parallelogram, AB = CD, ∠BAD = ∠BCD, AD = BC, therefore △ABD ≌ △CDB; ③ 
△OAD ≌ △OCB Since diagonals AC and BD intersect at O, OA = OC, OD = OB, ∠AOD 
= ∠BOC, therefore △OAD ≌ △OCB; ④ △OEA ≌ △OFC Since diagonals AC and BD 
intersect at O, OA = OC, ∠AOE = ∠COF, ∠AOE = ∠COF, therefore △OEA ≌ △OFC; ⑤ 
△OED ≌ △OFB Since diagonals AC and BD intersect at O, OD = OB, ∠EOD = ∠FOB, 
OE = OF, therefore △OED ≌ △OFB; ⑥ △OAB ≌ △OCD Since diagonals AC and BD 
intersect at O, OA = OC, ∠AOB = ∠DOC, OB = OD, therefore △OAB ≌ △OCD. 
Therefore, the answer is D.

Q:Students helped pick apples, placing them into four piles. 
Farmer Li estimated each tree yields 100 kg of apples. 
Using this estimate, excess kilograms are positive, shortfall 
kilograms are negative (as shown in the figure). ① What is 
the total weight of the four piles? ② What is the average 
weight of the four piles? Using the estimate, what is the 
average excess or shortfall in kilograms?
A: [Solution] (1) -10 + 6 + (-8) + 4 = -4 + (-8) + 4 = -8 (kg) 
100 × 4 + (-8) = 392 (kg) Answer: The total weight of these 
four piles of apples is 392 kg. (2) 392 ÷ 4 = 98 (kg) 100 - 
98 = 2 (kg) 98 < 100, so it should be -2 kg; Answer: The 
average weight of each pile is 98 kg, with an average 
excess or shortfall of -2 kg.

Figure 4: Examples sampled from the constructed Chinese dataset.

3 MATHGLM-VISION: MODEL TRAINING

Model Architecture. We employ CogVLM2 (Hong et al., 2024; Wang et al., 2023c) and GLM-4V-
9B (GLM et al., 2024) architectures as our backbone models, and conduct Supervised Fine-Tuning
(SFT) on our constructed MathVL dataset. Specifically, we utilize three pre-trained multi-modal large
language models (MLLMs) for the fine-tuning process: GLM-4V-9B, CogVLM2-19B, and CogVLM-
32B. This results in the development of three distinct variants of MathGLM-Vision, designated as
MathGLM-Vision-9B, MathGLM-Vision-19B, and MathGLM-Vision-32B, respectively. Further
details about the abovementioned three pre-trained MLLMs are available in Appendix B.

Model Training. To maintain the general vision-language understanding skills of MathGLM-
Vision, we incorporate 19 open-source visual question-answering datasets (VQA datasets) into the
MathVL dataset. More details about the task type and visual context of VQA datasets are provided in
Appendix C. These datasets are meticulously selected to challenge and enhance the model’s ability to
interpret and integrate visual and textual information, ensuring it retains a broad understanding across
various contexts. By merging these varied sources, we enhance MathGLM-Vision’s specialized
capabilities for mathematical problem-solving and simultaneously preserve its robustness in general
vision-language tasks. In the end, we conduct supervised fine-tuning (SFT) across the combined
VQA and MathVL datasets. The training process undergoes 35,000 iterations with a learning rate
of 1e-5 and a batch size of 128. To ensure the stability of the training, we activate the visual
encoder’s parameters and adjust its learning rate to be one-tenth of that used for the remaining
training parameters. The details of the SFT procedures are described in Appendix D.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Datasets. We assess our MathGLM-Vision using three well-established public bench-
mark datasets (MathVista (Lu et al., 2023), MathVerse (Zhang et al., 2024), and MATH-Vision (Wang
et al., 2024) datasets) alongside our specially curated dataset MathVL-test benchmark. This bench-
mark comprises 2,000 sampled cases, distinct from those in the MathVL dataset, ensuring a rigorous
and unbiased evaluation of MathGLM-Vision’s capabilities. Additionally, we evaluate MathGLM-
Vision’s general vision-language understanding skills using the MMMU benchmark Yue et al. (2024a).
Detailed descriptions for these benchmark datasets are provided in Appendix E.

Compared Models. We compare MathGLM-Vision with other Multi-Modal Large Language Models
(MLLMs), including closed-source MLLMs such as Gemini (Team et al., 2023), GPT-4V (OpenAI,
2023), Claude3 (Anthropic, 2024), and Qwen-VL (Bai et al., 2023b), and open-source MLLMs
like mPLUG-Owl (Ye et al., 2023), LLaMA-Adapter-V2 (Gao et al., 2023b), InstrctBLIP (Dai
et al., 2024), LLaVA-1.5 (Liu et al.), ShareGPT4V (Chen et al., 2023), SPHINX (Gao et al., 2024),
InternLM-XC2 (Dong et al., 2024), and InternVL (Chen et al., 2024). Additionally, we compare
MathGLM-Vision with recent specialized mathematical MLLMs, including G-LLaVA (Gao et al.,
2023a), LLaVA-1.5-G (Cai et al., 2024), ShareGPT4V-G (Cai et al., 2024), and Math-LLaVA (Shi
et al., 2024).

Evaluation Metrics. We adopt top-1 accuracy to evaluate our MathGLM-Vision across MathVista-
GPS, MathVista, MathVerse, MATH-V, and MathVL-test benchmarks. Our evaluation process
follows the pipeline outlined in the aforementioned benchmark datasets, which involves using LLMs
to extract predicted answers from the model’s responses. Accuracy is then calculated by comparing
these extracted answers against the ground truths.

4.2 MAIN RESULTS

Results on public benchmark datasets. To comprehensively assess the ability of MathGLM-Vision
in solving mathematical problems, we evaluate its performance against other MLLMs across several
public benchmark datasets. Table 3 demonstrates the overall results from these evaluations. The ex-
perimental results indicate that our constructed MathVL dataset can significantly improve MathGLM-
Vision’s mathematical reasoning capabilities. For example, MathGLM-Vision-9B achieves a 64.42%
accuracy on the MathVista-GPS dataset, marking a substantial 39.68% improvement over its backbone
model, GLM-4V-9B. Besides, across various parameter scales, MathGLM-Vision consistently surpass
all backbone models on different evaluation benchmarks, highlighting the significant enhancements
that MathVL brings to the MathGLM-Vision’s problem-solving skills. Notably, MathGLM-Vision
outperforms all open-source specialized mathematical MLLMs across various benchmarks. The
superior performance suggests that the high-quality and diverse data, complete with detailed step-
by-step solutions, are crucial for improving MLLM’s mathematical reasoning capabilities. More
importantly, MathGLM-Vision-32B outperforms even the advanced GPT-4V on the more challenging
MATH-V benchmark, demonstrating its superior capacity to tackle complex mathematical problems.
Detailed experimental results on public benchmark datasets across different task types can be found
in Appendix F.

Results on MathVL-test. We also evaluate MathGLM-Vision and several close-source MLLMs
using our specially constructed MathVL-test benchmark. As depicted in Table 4, the results clearly
demonstrate that MathGLM-Vision significantly outperforms both its backbone models and other
leading closed-source MLLMs across various model sizes. Specifically, our MathGLM-Vision-32B
outperforms the advanced GPT-4o with a significant margin, achieving an accuracy of 59.00%
compared to GPT-4o’s 51.05%. Compared to the backbone model, GLM-4V-9B, MathGLM-Vision-
9B achieves an impressive accuracy of 57.05% with a significant improvement of 86.5%. This
superior performance suggests that MathGLM-Vision, when conducting SFT on the MathVL dataset,
notably enhances its capability to tackle complex Chinese mathematical problems. Additionally, we
report the accuracy across various categories, as illustrated in Figure 2 (See Right). MathGLM-Vision
significantly outperforms other advanced MLLMs in the domains of geometry and statistics. In
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Model Input LLM MathVista (GPS) MathVista MathVerse MATH-V

Closed Source Models

Gemini Pro Q, I - 40.40 45.20 36.80 17.66
Gemini-1.5-Pro Q, I - 53.85 63.90 51.08 19.24

GPT-4V Q, I - 50.50 49.90 50.80 22.76
GPT-4-turbo Q, I - 58.25 58.10 43.50 30.26

GPT-4o Q, I - 64.71 63.80 56.65 30.39
Claude3-Opus Q, I - 52.91 50.50 31.77 27.13

Claude3.5-Sonnet Q, I - 64.42 67.70 48.98 37.99
Qwen-VL-Plus Q, I - 33.01 43.30 19.10 10.72
Qwen-VL-Max Q, I - 46.12 51.00 35.90 15.59

Open Source Models

General Multi-modal LLMs
mPLUG-Owl Q, I LLaMA-7B 23.60 22.20 12.47 9.84

LLaMA-Adapter-V2 Q, I LLaMA-7B 25.50 23.90 4.50 9.44
InstructBLIP Q, I Vicuna-7B 20.70 25.30 15.36 10.12
LLaVA-1.5 Q, I Vicuna-13B 24.04 27.60 12.70 11.12

ShareGPT4V Q, I Vicuna-13B 38.35 29.30 16.20 11.88
SPHINX-MoE Q, I Mixtral 8*7B 31.20 42.30 19.60 14.18
SPHINX-Plus Q, I LLaMA2-13B 16.40 36.70 14.70 9.70
InternLM-XC2 Q, I InternLM2-7B 63.00 57.60 24.40 14.54

InternVL-1.2-Plus Q, I Nous-Hermes-2-Yi-34B 61.10 59.90 21.70 16.97

Geo-Multi-modal LLMs
G-LLaVA Q, I LLaMA2-7B 53.40 28.46 12.70 12.07
G-LLaVA Q, I LLaMA2-13B 56.70 35.84 14.59 13.27

LLaVA-1.5-G Q, I Vicuna-7B 32.69 45.22 13.96 14.13
LLaVA-1.5-G Q, I Vicuna-13B 36.54 48.34 15.61 14.88

ShareGPT4V-G Q, I Vicuna-7B 32.69 45.07 16.24 12.86
ShareGPT4V-G Q, I Vicuna-13B 43.27 49.14 16.37 14.45
Math-LLaVA Q, I Vicuna-13B 57.70 46.60 19.04 15.69

MathGLM-Vision and Backbone Models

GLM-4V-9B Q, I GLM-4-9B 46.12 46.70 35.66 15.31
MathGLM-Vision-9B Q, I GLM-4-9B 64.42 52.20 44.20 19.18

CogVLM2 Q, I LLaMA-3-8B 39.61 40.85 25.76 13.20
MathGLM-Vision-19B Q, I LLaMA-3-8B 65.38 61.10 42.50 21.64

CogVLM-32B Q, I GLM2-32B 41.06 40.04 35.28 19.32
MathGLM-Vision-32B Q, I GLM2-32B 62.02 62.40 49.20 26.51

Table 3: Results on several public benchmark datasets. Comparison of model performance on the
testmini set of MathVista and geometry problem solving (GPS) of MathVista. For MathVerse dataset,
results are evaluated on Vision Dominant with CoT-E. For MATH-V dataset, all 3,040 samples
included in the data are evaluated.

contrast, Claude3.5-Sonnet excels in algebra and arithmetic, demonstrating superior performance.
Meanwhile, MathGLM-Vision-19B ranks second in performance in the domain of arithmetic, showing
its strong abilities in this area as well. GPT-4o exhibits the highest performance in word problems
domain, while MathGLM-Vision also exhibits robust performance, surpassing both Gemini-1.5-Pro
and Claude3.5-Sonnet in this category.

4.3 GENERALIZABILITY OF MATHGLM-VISION

In addition to its proficiency in mathematical reasoning, we further assess MathGLM-Vision’s
capabilities in general vision-language understanding by conducting experiments on the MMMU
benchmark. This benchmark is specifically designed to evaluate the ability of models to comprehend
and process information across a variety of academic and professional disciplines, providing a
comprehensive test of general vision-language understanding. Table 5 shows the performance of
MathGLM-Vision, a specific variant fine-tuned exclusively on MathVL without the inclusion of
VQA datasets, and backbone models. Compared to CogVLM2, MathGLM-Vision-19B achieves
comparable performance in terms of generalizability, underscoring its capacity for simultaneous
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Model Input LLM Size MathVL-test

Gemini-1.5-Pro Q, I - 52.03
GPT-4V Q, I - 35.89

GPT-4-turbo Q, I - 42.19
GPT-4o Q, I - 51.05

Claude3.5-Sonet Q, I - 46.84
Claude3-Opus Q, I - 33.77
Qwen-VL-Plus Q, I - 28.50
Qwen-VL-Max Q, I - 35.61

GLM-4V-9B Q, I 9B 30.59
MathGLM-Vision-9B Q, I 9B 57.05

CogVLM2 Q, I 8B 27.47
MathGLM-Vision-19B Q, I 8B 57.30

CogVLM-32B Q, I 32B 30.86
MathGLM-Vision-32B Q, I 32B 59.00

Table 4: Results on MathVL-test. A detailed comparison of the performance of MathGLM-Vision
and various other leading close-source MLLMs on the MathVL-test benchmark.

multi-modal understanding and mathematical reasoning. However, MathGLM-Vision-32B shows
a slight reduction in performance across multiple categories on the MMMU benchmark. Besides,
MathGLM-Vision, when fine-tuned with VQA datasets, outperforms its variant lacking VQA datasets.
This indicates that omitting VQA datasets from the fine-tuning process limits the general vision-
language understanding abilities. Thus, the SFT process using our MathVL incorporated with VQA
datasets not only enhances MathGLM-Vision’s mathematical reasoning abilities but also preserves its
generalizability.

Model MMMU Art & Design Business Sci. Health & Med. Human. & Social Sci. Tech. & Eng.

CogVLM2 40.2 58.3 30.0 26.7 41.3 38.6 53.3
w/o VQA datasets 38.1 60.8 28.7 34.0 36.7 43.3 32.9

MathGLM-Vision-19B 40.2 63.3 37.3 27.3 36.0 46.7 37.6

CogVLM-32B 42.9 63.3 31.3 32.0 43.3 62.5 36.7
w/o VQA datasets 38.6 62.5 26.7 28.0 34.0 56.7 33.8

MathGLM-Vision-32B 40.0 60.0 28.7 34.0 38.7 52.5 34.8

Table 5: Generalizability of MathGLM-Vision on the MMMU benchmark.

4.4 FURTHER ANALYSIS

Effect of Chinese Dataset. To validate the effectiveness of the adopted Chinese dataset in MathVL,
we conduct an extended experiment that involves fine-tuning GLM-4V-9B with open-source datasets,
deliberately excluding Chinese data collected from K12 education. Table 6 shows a comparison of
performance results. Compared to the backbone model GLM-4V-9B, a variant MathGLM-Vision-
9B that undergoes SFT exclusively with open-source data exhibits significant improvement on the
minitest of MathVista, particularly in geometry problem solving (GPS) and geometry reasoning
(GEO). This indicates that fine-tuning on diverse open-source data can markedly enhance model
performance in specific mathematical areas. MathGLM-Vision, incorporating both open-source
data and Chinese data, outperforms the variant tuned only with open-source data on the minitest
of MathVista, highlighting the significant value added by integrating the Chinese dataset in the
training process. Notably, compared to the variant without Chinese data, MathGLM-Vision achieves
a significantly higher accuracy on the MathVL-test benchmark. These findings confirm that the
inclusion of the Chinese dataset not only enhances the model’s capability in handling complex
mathematical problems but also contributes significantly to its overall performance on a diverse set of
tasks within MathVista.

Effect of VQA Datasets. To explore the effect of VQA datasets on the performance of MathGLM-
Vision, an extended experiment can be designed where SFT is applied exclusively to mathematical
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Model
MathVista

MathVL-test
GPS GEO ALL

GLM-4V-9B 46.12 44.35 46.70 30.59
+ SFT on Open-source Data 62.98 61.51 50.40 47.55

MathGLM-Vision-9B 64.42 62.34 52.20 57.25

Table 6: Effect of the constructed Chinese data.

Model
MathVista

GPS GEO ALL

GLM-4V-9B 46.12 44.35 46.70

MathGLM-Vision-9B 64.42 62.34 52.20
- SFT on VQA Datasets 61.54 58.58 41.34

Table 7: Effect of the VQA datasets.

datasets, deliberately excluding VQA datasets. Table 7 demonstrates the performance comparison
achieved by different models on MathVista. Compared to the backbone model GLM-4V-9B, a
variant of MathGLM-Vision-9B achieves significant improvements on geometry problem solving
(GPS) and geometry Reasoning (GEO). However, it exhibits a decline in the overall accuracy on
the minitest of MathVista (ALL). The decline can be attributed to the composition of MathVista,
which comprises five tasks, with question-answering types (such as graphical question-answering,
textbook question-answering, and visual question-answering) comprising up to 60.6% of the tasks.
Omitting VQA training in MathGLM-Vision impacts the model’s ability to effectively process and
respond to these multi-modal questions. Notably, within specific subsets of MathVista, such as GPS
and GEO, a variant of MathGLM-Vision-9B slightly below the standard MathGLM-Vision-9B. This
observation suggests that VQA datasets are crucial for preserving overall multi-modal understanding,
their impact may vary depending on different task types. Besides, VQA datasets can indirectly bolster
mathematical reasoning skills, which in turn enhances image recognition capabilities.

4.5 ERROR ANALYSIS

We meticulously analyze the causes of errors in MathGLM-Vision-32B on the MathVL-test bench-
mark and illustrate the distribution of these errors in Figure 5. We summarize these errors in
MathGLM-Vision-32B into five types: reasoning error, knowledge error, vision recognition error,
calculation error, and question misunderstood error. The most prevalent type of errors, accounting
for 69.1% of the total, is identified as Reasoning Error. This indicates a significant challenge in
the MathGLM-Vision-32B’s logical deductions and inferential reasoning. Improving these capa-
bilities can dramatically enhance the MathGLM-Vision-32B’s overall performance. Knowledge
Error, which made up 12.7% of the errors, relates to the model’s misapplicaion or lack of specific
factual information. Vision Recognition Error accounts for 11.4% of the total errors and involves
inaccuracies in interpreting visual data. This type of error can be reduced through the implementation
of more advanced vision encoders. Furthermore, the fact that Calculation Error constitutes only
4.3% of the errors suggests that MathGLM-Vision-32B demonstrates considerable robustness in
numerical and computational tasks. Lastly, Question Misunderstood Error, which constitutes 2.5% of
the total, occurs when the model fails to correctly interpret question. Enhancing natural language
processing capabilities and refining context understanding can significantly reduce these types of
errors. Addressing these identified error types through targeted enhancements can significantly
boost the overall effectiveness of MathGLM-Vision-32B. Figure 6 demonstrate some cases of the
Calculation Error category. More detailed examples of these errors can be found in Appendix G.

5 RELATED WORKS

Multi-Modal Language Model. The development of Multi-Modal Language Models (MLLMs)
have emerged as a significant area of research, which are designed to integrate information from
multiple modalities—typically text and images—to perform tasks that require a holistic understanding
of both visual and linguistic inputs. Pioneering efforts such as ViLBERT Lu et al. (2019) and
LXMERT Tan & Bansal (2019) have advanced this field by conducting the joint pre-training on
image-text datasets. They process text and image inputs separately before fusing them for final
task layers, significantly improving performance on tasks like image captioning and visual question
answering. The continues evolution of MLLMs has lead to innovations in data fusion techniques.
Notable models such as CLIP Radford et al. (2021), ALIGN Jia et al. (2021), and BLIP Li et al. (2022)
have adopted contrastive learning paradigms to align visual and language information from billions
of image-text pairs. Concurrently, the success of LLMs Brown et al. (2020); Du et al. (2021); Zeng
et al. (2022); Le Scao et al. (2023); Bai et al. (2022); Touvron et al. (2023a); Ouyang et al. (2022);

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Error distribution of MathGLM-
Vision-32B.

As shown in the figure, points A and B on the number line represent the numbers a and b, respectively. 
Which of the following expressions is true? 
A. ab > 0 B. a + b < 0 C. (b - 1)(a + 1) > 0 D. (b - 1)(a - 1) > 0

Question

GT Answer: C

MathGLM-Vision-32B:

Based on the number line, we know -1 < a < 0 and b > 1. Therefore, ab < 0, a + b > 0, (b - 1)(a + 1) < 0, 
and (b - 1)(a - 1) > 0. So the answer is D.

Calculation Error

Question

As shown in the figure, in quadrilateral ABCD, AB ∥ CD, ∠B = ∠D,                             . Find the perimeter 
of quadrilateral ABCD.

Calculation ErrorMathGLM-Vision-32B:

First, prove that quadrilateral ABCD is a parallelogram, and then find its perimeter. Solution: Since AB ∥ 
CD and ∠B = ∠D, quadrilateral ABCD is a parallelogram. Therefore, AD = BC = 6 and DC = AB = 3. 
Thus, the perimeter of parallelogram ABCD is 2(AD + DC) = 2 × 15 = 30.

GT Answer: 18

=(6+3)=9

a-1<0

a+1>0

Figure 6: Cases of Calculation Error category.

Hoffmann et al. (2022); Smith et al. (2022); Chowdhery et al. (2023) facilitates the integration of
LLMs into multi-modal tasks by utilizing pre-training alignment and visual instruction tuning, leading
to the emergence of multi-modal language models (MLLMs) Liu et al. (2024b); Liu et al.; Wang et al.
(2023c); Li et al. (2023); Dai et al. (2024); Bai et al. (2023a). Despite MLLMs have demonstrated
remarkable capabilities on tasks such as image caption and visual question answering, they stall face
significant challenges in solving mathematical problems that involve visual information Yue et al.
(2024a); Lu et al. (2023); Zhang et al. (2024); Wang et al. (2024).

Mathematical Reasoning. Recently, math-specific LLMs Azerbayev et al. (2023); Wang et al.
(2023a); Yue et al. (2024b); Ying et al. (2024); Yu et al. (2023); Yue et al. (2023); Yuan et al.
(2023); Luo et al. (2023) have demonstrated remarkable abilities in handling mathematical reasoning
tasks that only involve textual information. These models have been specifically trained on web-
scale instruction mathematical dataset or fine-tuned on specialized mathematical problem sets. For
instance, WizardMath Luo et al. (2023) and MetaMath Yu et al. (2023) have implemented data
augmentation methods to enhance the models’ ability to understand and solve mathematical problems
by enriching the MATH Hendrycks et al. (2021) and GSM8K Cobbe et al. (2021) datasets. Recent
research has also focused on creating specialized MLLMs for mathematical tasks. UniGeo Chen
et al. (2022) and UniMath Liang et al. (2023) have demonstrated enhanced datasets and conventional
deep learning approaches for geometric problem solving. MLLMs like G-LLaVA Gao et al. (2023a),
GeoGPT4V Cai et al. (2024), and Math-LLaVA Shi et al. (2024) are tailored for mathematical
problem solving, incorporating both geometric understanding and algebraic reasoning. Additionally,
several benchmark datasets Yue et al. (2024a); Lu et al. (2023); Zhang et al. (2024); Wang et al.
(2024) are proposed to evaluate the multi-modal mathematical reasoning abilities of MLLMs.

6 CONCLUSION

In this paper, we attempt to address the issues in current mathematical MLLMs. We construct a fine-
tuning dataset named MathVL, upon which we conduct a Supervised Fine-Tuning (SFT) process. This
initiative results in the development of a series of enhanced MLLMs, designated as MathGLM-Vision.
Specially, MathGLM-Vision contains three variations: MathGLM-Vision-9B, MathGLM-Vision-19B,
and MathGLM-Vision-32B, each fine-tuned on different backbone models: GLM-4-V, CogVLM2,
and CogVLM-32B, respectively. These developed MathGLM-Vision significantly improve the
capabilities of mathematical reasoning, achieving substantial performance improvements. Relative to
their respective backbone models, MathGLM-Vision-9B, MathGLM-Vision-19B, and MathGLM-
Vision-32B show improvements of 39%, 65%, and 53.7% on the Geometry Problem Solving (GPS)
minitest split of MathVista, demonstrating the effectiveness of MathVL in enhancing the mathematical
problem-solving abilities of MLLMs. Additionally, we evaluate the effectiveness of MathGLM-Vision
on our curated MathVL-test benchmark. Experimental results reveal that MathGLM-Vision not only
surpass their backbone models in specialized mathematical tests but also preserve the generalizability
capabilities in general vision-language understanding domains.
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A DATASET CASES

In this section, we provide a detailed overview of specific cases from our constructed MathVL
dataset. These cases demonstrate the variety of mathematical disciplines covered by MathVL,
including arithmetic, geometry, algebra, statistics, and word problems. Figure 7, Figure 8, Figure 9,
Figure 10, and Figure 11 depict the types of problems that MathGLM-Vision is designed to tackle
in each respective category. Each of these categories is critical for assessing the comprehensive
mathematical capabilities of MathGLM-Vision. By tackling a wide range of problems, MathGLM-
Vision demonstrates its versatility and robustness in addressing diverse mathematical tasks.

B BACKBONE MODELS

We utilize the following multi-modal large language models as our backbone models for conducting
Specialized Fine-Tuning (SFT) on the constructed MathVL. The detailed description of each backbone
model can be represented as follows:

• GLM-4V-9B is a bilingual (Chinese and English) multi-modal large language model, devel-
oped collaboratively by Zhipu.AI and Tsinghua University. It is built upon the foundational
architecture of GLM-4-9B, enhancing its capabilities to handle complex multi-modal inter-
actions. GLM-4V-9B takes a high resolution of 1120 * 1120 images as visual inputs. In
comprehensive evaluations that test various capabilities including combined language skills,
perceptual reasoning, text recognition, and chart understanding, GLM-4V-9B consistently
outperforms competitors such as GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max,
and Claude 3 Opus, demonstrating its superior performance across multiple modalities.

• CogVLM2 is a series of open-source multi-modal large language models derived from Meta-
Llama-3-8B-Instruct, developed by Zhipu.AI and Tsinghua University. This series contains
two models: cogvlm-llama3-chat-19B and cogvlm2-llama3-chinese-chat-19B. The former
is a monolingual language model focused on English and the latter is a bilingual model
supporting both English and Chinese. CogVLM2 is designed to handle extended content
lengths up to 8K and accepts high-resolution images up to 1344 * 1344. Here, we choose
cogvlm2-llama3-chinese-chat-19B as our backbone to pre-train our MathGLM-Vision-19B.

• CogVLM-32B is a close-source multi-modal large language model, developed by Zhipu.AI
and Tsinghua University. It is based on the GLM-32B architecture and is optimized for
handling complex multi-modal tasks. CogVLM-32B is engineered to process visual inputs at
a high resolution of 1120 * 1120, enabling detailed image analysis and enhanced interaction
with visual data.

Table 8 demonstrates an overview of the MathGLM-Vision series, detailing the different model
parameters and configurations.

Model LLM Size ToTal Size Language Model Image Encoder
Layers Hidden Size Heads Layers Hidden Size Heads

MathGLM-Vision-9B 9B 20B 40 4096 32 63 1792 16
MathGLM-Vision-19B 8B 19B 32 4096 32 63 1792 16
MathGLM-Vision-32B 32B 43B 58 6656 52 63 1792 16

Table 8: An overview of MathGLM-Vision series along with model parameters and configurations.

C DESCRIPTIONS OF VQA DATASETS

Here, we provide a detailed description of collected visual question answering datasets (VQA)
datasets. Table 9 demonstrates details 19 different VQA datasets, including task types and visual
context.
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Given that a, b, and c are points on the number line as shown in the figure, simplify |a - b| - 2|c - b| + |b - c| to get ______.

Question

Answer

[Solution]Given that from the figure, b < a < 0 < c, we have a - b > 0 and b - c < 0. Therefore, the original expression simplifies to a - b - 
2(c - b) - b + c = a - c. 
[Answer]The answer is a - c.

Question

Answer

[Solution] Substitute x = 4 into the program flow: (4 × (4 + 1)) / 2 = 10, which is less than 100. Substitute x = 10 into the program flow: 
(10 × (10 + 1)) / 2 = 55, which is less than 100. Substitute x = 55 into the program flow: (55 × (55 + 1)) / 2 = 1540, which is greater than 
100. Therefore, the final output result is 1540. 
[Answer]The answer is B.

Question

Given that the positions of numbers a and b on the number line are as shown in the figure, then a + b is ( ) 
A. Negative   B. Positive   C. 0   D. Indeterminate.

Answer

[Solution]Given that b < 0 < a and |a| < |b|, therefore, a + b < 0. Thus, a + b is a negative number. So the answer is A. From the given 
conditions, we know b < 0 < a and |a| < |b|, which leads to the conclusion. This problem tests the understanding of the number line. Using 
the number line to determine the relationship between a and b is key to solving the problem. 
[Answer] A

According to the program flow shown in the figure, if the initial input value is x = 4, the final output result is ( ) 
A. 60    B. 1540    C. 1500    D. 2020

As shown in the figure, in the long division of 28 by 16, the step indicated by the arrow represents ( )
 A. 80 ones   B. 80 tenths   C. 80 hundredths

Question

Answer

[Solution]The 8 indicated by the arrow is in the tenths place, and after dropping the 0, it combines with 8 to form 80 hundredths; based on 
this, the solution can be given. In the long division of 28 by 16, the step indicated by the arrow represents 80 hundredths. 
[Answer]The answer is C.

Question

As shown in the figure, below is Yutan's test paper. The score is ( ) 
A. 20 points   B. 80 points   C. 0 points   D. 40 points

Answer

[Solution]The reciprocal of -3 is -1/3, so the first question is incorrect. The arithmetic square root of √9 is 3, so the second question is 
incorrect. Therefore, Yutan's score is 0 points. Thus, the answer is C. First, according to the rule of finding the reciprocal of an integer, which 
is one over that integer, the reciprocal of -3 is -1/3. Then, according to the definition and method of finding the arithmetic square root, the 
arithmetic square root of √9 is 3. This problem mainly tests the understanding and method of finding the arithmetic square root and the 
reciprocal, which should be mastered well. 
[Answer]C.

Figure 7: Cases of arithmetical problems in our MathVL dataset.
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As shown in the figure, it is known that BC is parallel to GE, and ∠AFG = ∠1 = 50°.
(1) Prove that AF is parallel to DE;
(2) If AQ bisects ∠FAC, intersects BC at point Q, and ∠Q = 15°, find the measure of ∠ACQ.

Question

Answer

[Solution](1) According to the properties of parallel lines, we get ∠E = ∠1 = 50°. Given that ∠AFG = 50°, we have ∠AFG = ∠E. Finally, 
according to the criteria for parallel lines, we can draw the conclusion. (2) According to the properties of the exterior angle of a triangle, we 
get ∠AHD = 65°. Using the properties of parallel lines and angle bisectors, we find ∠CAQ = 65°. By using the sum of the interior angles 
of a triangle, we can get the conclusion. This question tests the determination and properties of parallel lines, the definition of angle 
bisectors, and the properties of the exterior angle of a triangle. Mastery of the determination and properties of parallel lines is key to 
solving the problem. 
[Answer] (1) Proof: ∵ BC ∥ GE, ∴ ∠E = ∠1 = 50°, ∵ ∠AFG = ∠1 = 50°, ∴ ∠E = ∠AFG = 50°, ∴ AF ∥ DE; (2) Solution: ∵ ∠1 = 50°, ∠Q 
= 15°, ∴ ∠AHD = 65°, ∵ AF ∥ DE, ∴ ∠FAQ = ∠AHD = 65°, ∵ AQ bisects ∠FAC, ∴ ∠CAQ = ∠FAQ = 65°, ∴ ∠ACQ = 180° - ∠CAQ - 
∠Q = 180° - 65° - 15° = 100°.

Question

Answer

[Solution] Given that △ABC is an equilateral triangle, ∠A = ∠B = 60°. Therefore, ∠ADE + ∠BED = 360° - 60° × 2 = 240°. Thus, the 
answer is 240°. By first noting that ∠A and ∠B are each 60° due to the properties of an equilateral triangle, and then using the fact that the 
sum of the interior angles of a quadrilateral is 360°, subtracting the measures of ∠A and ∠B gives the result. This problem mainly tests the 
understanding of the interior angles of polygons and the properties of equilateral triangles, with the key point being that the sum of the 
interior angles of a quadrilateral is 360°. 
[Answer] 240°.

Question

As shown in the figure, the quadrilateral paper piece ABCD is folded along MN, and points A and D fall 
on A₁ and D₁ respectively. If ∠1 + ∠2 = 145°, then ∠B + ∠C = ______°.

Answer

[Solution]Given that ∠1 + ∠2 = 145°, we have ∠AMN + ∠DNM = (360° - 145°) / 2 = 107.5°. Since ∠A + ∠D + (∠AMN + ∠DNM) = 
360° and ∠A + ∠D + (∠B + ∠C) = 360°, it follows that ∠B + ∠C = ∠AMN + ∠DNM = 107.5°. 
[Answer]The answer is 107.5°.

As shown in the figure, in the equilateral triangle ABC, angle ∠C is cut along the dashed line DE. Then, ∠ADE + 
∠DEB = ______.

As shown in the figure, the large rectangle is composed of 2 identical large squares, 2 identical small squares, 
and 5 identical small rectangles. If the perimeter of this large rectangle is 48 cm, and the sum of the areas of 
the four squares is 68 cm², find the area of one of the small rectangles.

Question

Answer

[Solution] Let the length of the small rectangle be a cm and the width be b cm. According to the problem, we have a + b = 8 and a² + b² = 
34. Therefore, ab = (1/2)[(a + b)² - (a² + b²)] = 15. 
[Answer] The area of the small rectangle is 15 cm².

Question

The three views of a geometric body are shown in the figure. The surface area of the geometric body is ( ) 
A. 24 + 3π/4   B. 24 + 5π/4    C. 24 + π     D. 8 + 3π/4

Answer

[Solution]Based on the three views of the geometric body, the geometric body is composed of a cube and an 
eighth of a sphere. Therefore, the surface area is S = 6 × 4 + (1/8) × 4π × 1² + (1/4) × π × 1² = 24 + 3π/4. 
[Answer] The answer is A.

Figure 8: Cases of geometric problems in our MathVL dataset.
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In the same Cartesian coordinate system, the graphs of the linear function y = k₁x + b and the 
proportional function y = k₂x are shown in the figure. The range of x values that satisfy k₁x + b 
> k₂x is ______.

Question

Answer

[Solution]When x ≤ -3, the line l₁: y₁ = k₁x + b is above the line l₂: y₂ = k₂x, meaning k₁x + b > k₂x. Therefore, the range of x values that 
satisfy k₁x + b > k₂x is x < -3. 
[Answer]The answer is x < -3.

Question

Answer

[Solution]① From the graph, we know that a > 0 and c < 0, so ac < 0. Thus, ① is incorrect. ② From the graph, we know that when x = -1, 
y = a - b + c > 0, so ② is incorrect. ③ Since the parabola has two intersection points with the x-axis, △ = b² - 4ac > 0. Thus, ③ is correct. 
④ From the axis of symmetry, we know that -b / 2a < 1, so 2a + b > 0. Thus, ④ is correct. ⑤ When x > -b / 2a, y increases as x increases, 
so ⑤ is incorrect. 
[Answer]The answer is B.

Question

As shown in the figure, the solution set of the inequality 2x - a < -1 is represented. The value of a is ( ) 
A. a ≤ -1    B. a ≤ -2    C. a = -1    D. a = -2

Answer

[Solution]Given 2x - a < -1, we have 2x < a - 1, which means x < (a - 1) / 2. From the number line, we know x < -1. Therefore, (a - 1) / 2 = 
-1. Solving this, we get a = -1. 
[Answer]The answer is C.

As shown in the figure, the graph represents the quadratic function y = ax² + bx + c. Among the 
following statements: ① ac > 0; ② a - b + c < 0; ③ 4ac < b²; ④ 2a + b > 0; ⑤ When x > 0, y 
decreases as x increases. The number of correct statements is ( ) 
A. 1    B. 2    C. 3    D. 4

The graph of the quadratic function y = ax² + bx + c is shown in the figure. Among the 
following conclusions: ① ab > 0; ② a + b - 1 = 0; ③ a > 1; ④ One root of the quadratic 
equation ax² + bx + c = 0 is 1, and the other root is -1/a. The correct conclusions are ______.

Question

Answer

[Solution]① From the graph of the quadratic function, we know that the parabola opens upwards, so a > 0. The axis of symmetry is to the 
right of the y-axis, so b < 0. Therefore, ab < 0, making ① incorrect. ② From the graph, we know that the parabola intersects the x-axis at 
(1, 0) and the y-axis at (0, -1). Therefore, c = -1 and a + b - 1 = 0, making ② correct. ③ Since a + b - 1 = 0, we have a - 1 = -b. Given that 
b < 0, we have a - 1 > 0, so a > 1, making ③ correct. ④ Since the parabola intersects the y-axis at (0, -1), the equation of the parabola is y 
= ax² + bx - 1. Since the parabola intersects the x-axis at (1, 0), one root of ax² + bx - 1 = 0 is 1. According to the relationship between the 
roots and coefficients, the other root is -1/a, making ④ correct. 
[Answer]The correct conclusions are ②, ③, and ④.

Question

The store purchased a batch of T-shirts at a unit price of 20 yuan. After a trial sale, it was found 
that the daily sales volume y (units) and the sales price x (yuan/unit) satisfy the linear function 
relationship shown in the figure. (1) Find the function relationship between y and x (no need to 
write the range of x values). (2) Without considering factors like inventory, at what sales price 
will the daily profit W be maximized?
Answer

[Solution](1) Let the function relationship between y and x be y = kx + b (k ≠ 0). Substituting (40, 300) and (55, 150) into the equation, we 
get: 300 = 40k + b and 150 = 55k + b. Solving, we get: k = -10 and b = 700. Therefore, the function relationship between y and x is y = -10x 
+ 700. (2) From the problem, we get: W = (x - 20) · y = (x - 20)(-10x + 700) = -10x^2 + 900x - 14000 = -10(x - 45)^2 + 6250. Since -10 < 0, 
when x = 45, W reaches its maximum value of 6250 yuan. 
[Answer]Without considering factors like inventory, the daily profit W is maximized when the sales price is set at 45 yuan.

Figure 9: Cases of algebraic problems in our MathVL dataset.
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 A city plans to build a flower bed in the central square, dividing it into 6 parts (as shown in the 
figure). Four different colors of flowers need to be planted, one color per part, and adjacent 
parts cannot have the same color. The number of different planting methods is __________. 
(Answer with a number)

Question

Answer
[Solution]From the problem's context, we need to plant flowers of 4 different colors in 6 parts. From the figure, we can see that there must 
be 2 pairs of parts with the same color. We can classify and calculate the planting methods based on the parts with the same color. (1) If 
parts ② and ⑤ are the same color, then parts ③ and ⑥ or parts ④ and ⑥ must also be the same color. Therefore, the number of methods 
for this case is N₁ = 4 × 3 × 2 × 2 × 1 = 48. (2) If parts ③ and ⑤ are the same color, then parts ② and ④ or parts ⑥ and ④ must also be 
the same color. Therefore, the number of methods for this case is N₂ = 4 × 3 × 2 × 2 × 1 = 48. (3) If parts ② and ④ and parts ③ and ⑥ are 
the same color, then the number of methods for this case is N₃ = 4 × 3 × 2 × 1 = 24. Therefore, the total number of planting methods is N = 
N₁ + N₂ + N₃ = 48 + 48 + 24 = 120. 
[Answer]The answer is 120.

Question

Answer
[Solution]In statement ①, the mean score for Person B is (5 + 5 + 5 + 6 + 9) / 5 = 6, and the mean score for Person A is (4 + 5 + 6 + 7 + 
8) / 5 = 6. Therefore, the mean score for Person A is equal to the mean score for Person B, so ① is correct. In statement ②, the median 
score for Person A is 6, and the median score for Person B is 5. Therefore, the median score for Person A is greater than the median score 
for Person B, so ② is correct. In statement ③, the variance for Person A's scores is (2² × 2 + 1² × 2) / 5 = 2, and the variance for Person B's 
scores is (1² × 3 + 3² × 1) / 5 = 2.4. Therefore, the variance for Person A's scores is less than the variance for Person B's scores, so ③ is 
correct. In statement ④, the range for Person A's scores is 4, and the range for Person B's scores is 4. Therefore, the range for Person A's 
scores is equal to the range for Person B's scores, so ④ is correct. 
[Answer]The answer is D.

Question

As shown in the pie chart, the number of seventh-grade (Class 1) students participating in 
extracurricular activities at a certain school is represented. If the number of students 
participating in art activities is 16, then the number of students participating in sports activities 
is ______.

Answer
[Solution]Given that the number of seventh-grade (Class 1) students participating in art activities is 16, which represents 32% of the total 
number of students in the class, the total number of students in seventh-grade (Class 1) is 16 ÷ 32% = 50. Since the percentage of students 
participating in sports activities is 40%, the number of students participating in sports activities is 50 × 40% = 20. 
[Answer]The answer is 20.

In a shooting competition, Person A and Person B each shoot 5 times. The bar chart of their scores is shown in the figure. The number of 
correct statements among the following four is ( ) ① The mean of Person A's scores is equal to the mean of Person B's scores. ② The 
median of Person A's scores is greater than the median of Person B's scores. ③ The variance of Person A's scores is less than the variance 
of Person B's scores. ④ The range of Person A's scores is equal to the range of Person B's scores. 
A. 1    B. 2    C. 3    D. 4

To understand the physical fitness of ninth-grade students at a certain school, a random sample 
of ninth-grade students was tested for the number of sit-ups they could do in one minute. The 
results were displayed in the histogram shown. Based on the chart, calculate the percentage of 
students whose number of sit-ups falls within the range of 25 to 30. The percentage is ( ) 
A. 40%    B. 30%    C. 20%    D. 10%

Question

Answer
[Solution]From the frequency histogram, we can determine that the total number of students surveyed is 3 + 10 + 12 + 5 = 30. The number 
of students who did 25 to 30 sit-ups is 12, so the percentage is 40%. 
[Answer]A.

Question

As shown in the chart regarding the weekly physical exercise of students in a certain class, the 
mode and median of the time spent on physical exercise by the students this week are ( ) 
A. 8, 9    B. 8, 8.5    C. 16, 8.5    D. 16, 14

Answer

[Solution]The mode is the number that appears most frequently in a data set, which is 8. When the data set is arranged in ascending order, the 
number in the middle position is the median. According to the definition of median, the median of this data set is 9. 
[Answer]The answer is A.

Figure 10: Cases of statistical problems in our MathVL dataset.
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During the May Day holiday, there was an appliance promotion, and mom bought two appliances as 
shown in the figure. (1) How much did mom spend in total? (2) How much cheaper was the 
microwave oven compared to its original price? (3) Can you propose and solve other math problems 
based on this scenario?

Question

Answer

(1) 5900 yuan (2) 300 yuan (3) Question: How much cheaper was the washing machine compared to its original price? Answer: 1900 yuan

Question

As shown in the figure, the operating hours of Haichang Polar Ocean Park are (________) hours.

Answer

This question requires calculating the operating hours, which is the elapsed time. Using the formula elapsed time = end time - start time, 
convert 7 PM to 24-hour time as 19:00. Thus, 19:00 - 10:00 = 9 hours, then subtract a 1-hour lunch break. Therefore, the answer is 8 hours. 

Question

The store is preparing to bag 120 apples for sale (as shown in the figure). The apples can be evenly 
divided into bags of (______ ) apples each; using bags of (______ ) apples each will leave (______ ) 
apples remaining.

Answer

Divide 120 by 8 and 9 respectively to get the answer. 120 ÷ 8 = 15 (bags) 120 ÷ 9 = 13 (bags) with a remainder of 3 (apples) Therefore, 
120 apples can be evenly divided into bags of 8 apples each, and when using bags of 9 apples each, there will be 3 apples remaining. So 
the answer is: 8, 9, 3.

Question

As shown in the figure, at the 15th Asian Games, China won ( ) more gold medals than the combined total 
of gold medals won by South Korea and Japan. 
A. 108        B. 57      C. 115      D. 107

Answer

[Solution] 165 - (58 + 50) = 165 - 108 = 57 (medals) Thus, China won 57 more gold medals than the combined total of South Korea and 
Japan. [Answer] B

Question

Mr. Zhang and Mr. Ma took a taxi together from the school. Mr. Zhang went to Xinhua Bookstore, and Mr. Ma went to Yintai Department 
Store (as shown in the figure). They agreed to share the taxi fare reasonably. The taxi fare rates are: 0-3 kilometers (base fare) 10 yuan, and 
beyond 3 kilometers, 1.8 yuan per kilometer (rounded up to the nearest kilometer). Please help them calculate how much each person 
should pay.

[Solution] 10 + (5 - 3) × 1.8 = 13.6 yuan 1.8 × (15 - 5) = 18 yuan 13.6 ÷ 2 = 6.8 yuan 6.8 + 18 = 24.8 yuan.Thus, Mr. Zhang should pay 6.8 
yuan, and Mr. Ma should pay 24.8 yuan. [Answer] 6.8 yuan; 24.8 yuan.

Answer

Figure 11: Cases of word problems in our MathVL dataset.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Dataset Task Visual Context

DocVQA Figure Question Answering (FQA) Document Image
DVQA Figure Question Answering (FQA) Bar Chart

FigureQA Figure Question Answering (FQA) Charts and Plots
PlotQA Figure Question Answering (FQA) Bar, Line, Scatter
MapQA Figure Question Answering (FQA) Map Chart

IconQA Math Word Problem (MWP) Abstract Scene
TabMWP Math Word Problem (MWP) Table

CLEVR-Math Math Word Problem (MWP) Synthetic Scene

TQA Textbook Question Answering (TQA) Scientific Figure
AI2D Textbook Question Answering (TQA) Scientific Figure

ScienceQA Textbook Question Answering (TQA) Scientific Figure

A-OKVQA Visual Question Answering (VQA) Natural Image
VQA2.0 Visual Question Answering (VQA) Natural Image

PMC-VQA Visual Question Answering (VQA) Medical Image
VizWiz Visual Question Answering (VQA) Natural Image

Super-CLEVR Visual Question Answering (VQA) Synthetic Scene
VQA-AS Visual Question Answering (VQA) Abstract Scene

VQA-RAD Visual Question Answering (VQA) Medical Image
TextVQA Visual Question Answering (VQA) Natural Image

Table 9: Summary of VQA datasets.

D IMPLEMENTATION DETAILS

We provide a detailed overview of the Specialized Fine-Tuning (SFT) process applied to our
MathGLM-Vision. The specific hyperparameters used during this process are outlined in Table 10.

parameters MathGLM-Vision-9B MathGLM-Vision-19B MathGLM-Vision-32B

Total steps 35,000 35,000 35,000
Global Batch Size 128 128 128

Learning Rate 1e−5 1e−5 1e−5

Learning Rate Schedule cosine decay cosine decay cosine decay
Warmup Ratio 0.01 0.01 0.01
Weight Decay 5e−2 5e−2 5e−2

Optimizer AdamW AdamW AdamW
Input Resolution 1120 * 1120 1344 * 1344 1120 * 1120

Image Length 1600 2304 1600

Table 10: The detailed setup of the SFT procedures.

E THE DETAILED DESCRIPTION OF BENCHMARK DATASETS

In this section, we provide an in-depth description of the benchmark datasets used to evaluate the
performance of MathGLM-Vision. These benchmark datasets have been carefully curated to test the
MLLMs’ capabilities. The detailed description of benchmark datasets is provides as follows.

• MathVista
MathVista is a comprehensive benchmark dataset designed to rigorously evaluate the math-
metical reasoning capabilities of language models (LMs), especially in varied visual contexts.
This dataset offers a comprehensive evaluation benchmark designed to integrate mathemat-
ical reasoning with visual understanding, focusing on five primary tasks: figure question
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answering (FQA); geometry problem solving (GPS); math word problem (MWP); textbook
question answering (TQA); and visual question answering (VQA).

• MathVista-GPS
MathVista-GPS, a subset of the MathVista Dataset, specifically focuses on the domain of
geometry problem solving. The questions in this subset range from basic shape recognition
to more advanced problems involving theorems, calculations and reasoning.

• MathVerse
MathVerse is designed to provide a fair and comprehensive assessment of MLLMs’ capa-
bilities in visual mathematics. The benchmark comprises 2,612 high-quality, multi-subject
math problems, each featuring diagrams and converted into six different versions by human
annotators. These versions offer varying levels of multi-modal information, allowing for a
thorough evaluation of MLLMs’ understanding of visual diagrams.

• MATH-Vision
The MATH-Vision (MATH-V) dataset comprises 3,040 high-quality mathematical problems,
each featuring a visual context and sourced from 19 real math competitions. This extensive
and diverse collection allows for a comprehensive evaluation of LMMs’ ability to interpret
and reason with visual information in mathematical contexts.

• MMMU
The Massive Multi-discipline Multi-modal Understanding and Reasoning (MMMU) bench-
mark encompasses 11.5K questions across six disciplines, including Art, Business, Health
& Medicine, Science, Humanities & Social Science, and Tech & Engineering. The tasks
in MMMU challenge models to perform sophisticated multi-modal analysis and apply
domain-specific knowledge, demanding a higher level capability in comprehension and
integration.

F DETAILED EXPERIMENTAL RESULTS ON PUBLIC BENCHMARK DATASETS

Results on the testmini subset of MathVista. To comprehensively evaluate the performance of
MathGLM-Vision across various task types featured in the MathVista dataset, we systematically
evaluate it on the testmini subset. This subset has been carefully selected to represent a diverse range
of mathematical problem types, ensuring a robust assessment of our model’s capabilities. Table 11
shows the evaluation results on the testmini subset of MathVista across various task types. Notably,
MathGLM-Vision-19B and MathGLM-Vision-32B surpass human performance in overall accuracy,
highlighting the advanced capabilities of these models in handling complex mathematical problems.
In particular, MathGLM-Vision excels significantly in geometry problem solving (GPS) and geometry
reasoning (GEO), demonstrating its superior proficiency in mathematical reasoning.

Model Input ALL FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA

Human Performance Q, I 60.30 59.70 48.40 73.00 63.20 55.90 50.90 59.20 51.40 40.70 53.80 64.90 63.90

2-shot CoT GPT-4 Q, Ic, It 30.50 27.21 35.91 21.30 43.13 28.17 35.72 25.17 35.80 24.74 15.41 47.28 31.29
2-shot PoT GPT-4 Q, Ic, It 31.74 27.58 37.35 23.87 43.00 30.27 37.15 27.93 37.48 22.68 15.83 44.47 31.87
GPT-4V Q, I 49.90 43.10 50.50 57.50 65.20 38.00 53.00 49.00 51.00 21.60 20.10 63.10 55.80

LLaVA-LLaMA-2-13B Q, I 25.40 22.86 24.57 18.15 35.82 29.69 26.93 22.47 24.45 19.07 19.05 34.71 21.61

MathGLM-Vision-9B Q, I 52.20 46.10 64.42 58.60 55.70 37.43 59.79 43.91 62.34 10.81 37.50 54.10 54.82
MathGLM-Vision-19B Q, I 61.10 59.85 65.38 68.28 53.80 55.31 59.79 59.21 63.18 18.92 59.03 53.28 68.44
MathGLM-Vision-32B Q, I 62.40 62.83 62.02 69.35 62.03 54.19 60.50 60.62 61.92 16.22 52.08 60.66 72.09

Table 11: Accuracy scores on the testmini subset of MathVista. Input: Q: question, I: image,
Ic: image caption, It: OCR texts detected from the image. ALL: overall accuracy. Task types:
FQA: figure question answering, GPS: geometry problem solving, MWP: math word problem, TQA:
textbook question answering, VQA: visual question answering. Mathematical reasoning types: ALG:
algebraic reasoning, ARI: arithmetic reasoning, GEO: geometry reasoning, LOG: logical reasoning,
NUM: numeric common sense, SCI: scientific reasoning, STA: statistical reasoning. The highest
accuracy among all baseline MLLMs is marked in red, while the highest accuracy among various
variants of MathGLM-Vision is marked bold.
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Results on the testmini set of MathVerse. To thoroughly evaluate the performance of MathGLM-
Vision across 12 detailed subjects within the MathVerse dataset, we conduct comprehensive exper-
iments and report the results in Table 12. This analysis delves into the model’s ability to address
a broad spectrum of mathematical challenges, ranging from geometry to functions. As shown in
Table 12, MathGLM-Vision surpasses all open-source MLLMs and most close-source MLLMs.
However, it still falls short by 14% compared to the performance of GPT-4V. In some subjects such as
Angle, Analytic, and Property, MathGLM-Vision achieves better performance compared the advanced
GPT-4V. For example, MathGLM-Vision-32B shows remarkable performance in plane geometry,
particularly in handling angle-related problems, where it achieves a 60.1% accuracy, showcasing its
strong geometric reasoning capabilities.

Model All
Plane Geometry Solid Geometry Functions

All Len Area Angle Anal Apply All Len Area Vol All Coord Prop Exp Apply

Closed-source MLLMs

Qwen-VL-Plus 21.3 17.3 19.1 16.4 16.1 23.6 13.2 24.8 18.1 18.7 33.4 31.3 52.5 25.1 10.8 50.3
Gemini-Pro 35.3 33.0 32.2 42.6 28.4 30.2 32.3 33.4 35.0 29.3 36.1 28.3 25.7 26.6 10.8 51.3
Qwen-VL-Max 37.2 38.4 41.7 46.4 32.6 40.6 38.7 33.7 25.4 28.3 42.6 38.4 43.7 35.5 13.6 61.0
GPT-4V 54.4 56.9 60.8 63.4 52.6 48.5 60.9 50.2 54.8 39.9 56.8 52.8 72.3 47.1 30.9 70.1

Open-source MLLMs

LLaMA-Adapter V2 5.8 5.9 4.0 5.9 6.6 13.4 3.3 4.6 5.3 3.1 5.7 6.2 6.7 6.1 4.5 7.9
ImageBind-LLM 10.0 9.7 12.1 9.9 9.2 10.2 4.8 4.6 4.9 3.5 5.3 14.9 12.3 13.8 4.6 25.9
mPLUG-Owl2 10.3 7.7 8.2 6.0 5.7 12.4 10.6 11.0 9.2 6.7 15.7 17.4 22.8 18.6 5.3 22.2
MiniGPT-v2 10.9 11.6 10.0 9.8 14.3 9.1 11.8 1.7 2.2 1.6 0.5 11.2 4.2 15.7 4.0 21.1
LLaVA-1.5 12.7 11.8 13.1 15.1 9.7 9.4 13.2 10.6 12.1 8.7 11.6 14.8 18.8 12.7 9.5 23.7
SPHINX-Plus 14.0 14.4 14.2 10.5 14.1 16.5 16.8 7.0 7.2 6.1 7.6 17.9 11.1 19.1 6.3 27.7
G-LLaVA 15.7 20.2 17.3 13.6 26.5 5.9 23.1 5.0 10.3 4.4 3.1 9.2 9.1 9.1 1.3 15.5
LLaVA-NeXT 17.2 15.9 14.8 13.1 16.3 17.7 17.8 19.6 33.3 11.7 12.6 23.1 24.5 23.4 8.0 33.1
ShareGPT4V 17.4 16.9 16.2 17.9 16.9 12.2 21.1 15.0 13.6 10.9 19.7 20.2 19.9 22.2 8.4 25.8
SPHINX-MoE 22.8 24.5 26.3 28.4 21.1 26.6 24.4 15.8 9.4 10.7 26.3 19.5 23.5 19.3 9.2 30.3
InternLM-XC2 25.9 26.2 27.1 29.7 20.6 18.5 22.2 20.1 34.5 14.1 25.2 23.7 24.4 24.9 10.6 36.3

MathGLM-Vision

MathGLM-Vision-9B 44.2 45.3 43.7 48.9 41.5 53.5 52.2 42.0 54.2 50.0 29.4 42.1 25.0 42.3 43.8 47.5
MathGLM-Vision-19B 42.5 41.8 34.8 55.3 38.9 46.5 53.6 51.3 66.7 52.3 43.1 38.4 18.8 38.0 28.1 55.0
MathGLM-Vision-32B 49.2 49.0 42.4 59.6 51.3 48.8 50.7 45.4 62.5 40.9 41.2 52.8 43.8 59.2 40.6 55.0

Table 12: Mathematical Evaluation on Different Subjects and Subfields in MathVerse’s testmini
Set. Len: Length; Anal: Analytic; Apply: Applied; Vol: Volume; Coord: Coordinate; Prop: Property;
Exp: Expressio. The highest accuracy among all baseline MLLMs is marked in red, while the highest
accuracy among various variants of MathGLM-Vision is marked bold.

Results on Math-Vision datasets. To effectively assess MathGLM-Vision’s ability across diverse
subjects and difficulty levels within the Math-Vision dataset, we conduct a series of detailed evaluation
experiments and report results in Table 13. Specifically, GPT-4V leads the close-source models with
an overall accuracy of 22.76%, yet it remains significantly below the human performance benchmark
of 75.66%. MathGLM-Vision shows competitive performance across a variety of mathematical
disciplines compared to most of close-source MLLMs, with MathGLM-Vision-32B achieving the
overall accuracy of 26.5%, closely approaching that of GPT-4V. Notably, MathGLM-Vision-32B
excels in solid geometry with a accuracy of 29.1%, significantly outperforming the accuracy of
23.8% on GPT-4V. This superior performance in solid geometry highlights MathGLM-Vision-32B’s
advanced spatial reasoning and geometric processing capabilities, which are essential for tackling
complex three-dimensional problems.

G ERROR CASES

Figure 12, Figure 13, Figure 14, and Figure 15 show examples of errors made by MathGLM-Vision-
32B on the MathVL-test dataset. Each figure highlights a specific type of error, providing valuable
insights into the model’s limitations and areas for improvement.

H CASE STUDY

Figure 16, Figure 17, Figure 18, and Figure 19 present several case studies from MathGLM-Vision-
32B. These figures showcase the model’s performance in various scenarios, highlighting its strengths
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As shown in the figure, when a weight is placed in a measuring cup and water is added, the relationship between the 
height of the water in the cup (y) and the volume of water added (x) is approximately ( ).

Question

GT Answer: B

MathGLM-Vision-32B:

Analysis: According to the problem, the relationship between the height of the water in the cup (y) and the 
volume of water added (x) should be divided into two segments: initially slow, then fast. Solution: Since a 
weight is placed in the cup first, the height of the water (y) initially increases slowly with the volume of 
water added (x). Only when the water surface surpasses the weight does the height increase rapidly with 
the addition of more water. Therefore, the answer is C.

Reasoning Error

Figure 12: An example of reasoning error. MathGLM-Vision-32B mistakenly believed that the
height of the water would initially increase rapidly and then slowly, indicating a reasoning error.

As shown in the figure, in the square paper ABCD, diagonals AC and BD intersect at 
point O. When the square paper is folded so that AD falls on BD, point A coincides 
with point F on BD. After unfolding, the crease DE intersects AB and AC at points E 
and G, respectively, and GF is connected. The following conclusions are 
correct:__________________①                                 ; ②                             ; ③ the 
quadrilateral AEFG is a rhombus; ④ BE = 2OG. 

Question

GT Answer: ①③④

MathGLM-Vision-32B:

Problem analysis: ∵ The quadrilateral ABCD is a square, ∴ ∠BAD = 90°. Based on the folding properties: EF ⊥ AD, 
and AF = AB = AD. ∴ ∠EFA = ∠AED = 45°. ∴ AE ∥ GF. ∴ ∠AGF = ∠AGE = ∠GAB = 22.5°. ∴ ∠AGD = 180° - 
22.5° × 3 = 112.5°. Therefore, statement ① is correct. It is easy to prove that △AEF ≌ △DFG (ASA). ∴ S_{△}{AEF} 
= S{△}{DFG}. ∴ S{△}{AEF} + S{△}{OGF} = S{△}{OGF} + S{△}{OGD}. ∴ S{△}{AGD} = S{△}_{OGD}. 
Therefore, statement ② is correct. From ①, we get AE ∥ GF, and AE = GF. ∴ The quadrilateral AEFG is a 
parallelogram. Furthermore, ∵ ∠EFA = 45°, ∴ ∠GEF = 67.5°. ∴ ∠AGE = 67.5°. ∴ AE = EG. ∴ The quadrilateral 
AEFG is a rhombus. Therefore, statement ③ is correct. Let OG = x, then BE = 2x. ∵ ∠OBE = ∠OBC + ∠CBE = 45° + 
67.5° = 112.5°, ∠BOE = ∠BOC = 45°. ∴ ∠BEO = 180° - 112.5° - 45° = 22.5°. ∴ BE is not the height on the 
hypotenuse. ∴ BE ≠ 2OG. Therefore, statement ④ is incorrect. In conclusion, the correct statements are: ①②③.

Vision Recognition Error

Figure 13: An example of vision recognition error. MathGLM-Vision-32B incorrectly interpreted
the geometric properties of the diagram, leading to a vision recognition error.
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As shown in Figure 1, in the isosceles trapezoid ABCD, AB ∥ CD, AD = BC, and DC = 2. A moving point P starts from 
point C and moves along CB and BA until it stops at point A. Let the distance traveled by point P be x, and the area of 
△DCP be y. If the graph of the function y with respect to x is shown in Figure 2, then the area of the isosceles trapezoid 
ABCD is ( ).
A. 12    B. 18    C. 20   D. 21

Question

GT Answer: C

MathGLM-Vision-32B:

【Analysis】According to the graph of the function and the figure, we find the length of AB. Using the properties of the 
isosceles trapezoid, we find that DC = AD = BC = 2. Using the Pythagorean theorem, we find AC, and thus the answer. 
【Solution】From the graph, we see that when point P moves 5 units, the area of △DCP starts to remain unchanged, so 
we deduce that BC = 5. As point P moves from C to B, y increases with x, and when x = 5, the area changes, so AB = 5. 
∵ The quadrilateral ABCD is an isosceles trapezoid, ∴ ∠B = ∠BAD. Also, ∵ ∠B + ∠BAP = ∠BAD + ∠CDA, ∴ 
∠CDA = ∠BAP. Also, ∵ ∠ADC = ∠BAP, ∴ △DCA ∼ △PBA. Thus, CD : AB = DA : PA, which means 2 : 5 = (5 - 
2) : PA. Solving for PA, we get PA = 3.75. ∴ The area of the isosceles trapezoid ABCD is the sum of the areas of 
△ABC and △DAB, which is 1/2 × (2 + 5) × 3.75 + 1/2 × 3.75 × 2 = 18.75 + 3.75 = 22.5. Therefore, the answer is D.

Calculation Error

Figure 14: An example of calculation error. MathGLM-Vision-32B made an error in calculating
the lengths and areas in the isosceles trapezoid, leading to an incorrect solution.

As shown in the figure, the plane development diagram of a cube is 
given. In the cube, the positional relationship between         and                                 
is ( )  
A. Intersecting                     B. Parallel
C. Skew and Perpendicular D. Skew but not Perpendicular

Question

GT Answer: D

MathGLM-Vision-32B:

【Analysis】Utilize the characteristics of the cube and its unfolded surface diagram to solve the problem. 【Solution】
This is a plane development diagram of a cube, with a total of six faces. Among them, face "A" is opposite to face "C," 
face "B" is opposite to face "D," and "AB" and "CD" are skew lines, and "AB ⊥ CD." Therefore, the answer is C.

Premature Conclusion Error

Figure 15: An example of premature conclusion error. MathGLM-Vision-32B prematurely
concluded that AB is perpendicular to CD without proper reasoning, leading to a premature conclusion
error.
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Human Performance

Model Overall Alg AnaG Ari CombG Comb Cnt DescG GrphT Log Angle Area Len SolG Stat Topo TransG
Human (testmini) 75.66 57.9 79.0 100.0 100.0 47.4 94.7 89.5 63.2 63.2 36.8 52.6 73.7 89.5 89.5 100.0 73.7

Open-source MLLMs

LLaVA-v1.5-7B 8.52 7.0 7.1 10.7 7.1 4.8 10.5 7.7 10.0 9.2 15.6 10.2 9.8 5.3 8.6 4.4 4.8
SPHINX (V2) 9.70 6.7 7.1 12.9 7.5 7.7 6.0 9.6 16.7 10.1 11.0 11.8 12.5 8.2 8.6 8.7 6.0
ShareGPT4V-7B 10.53 5.5 3.6 12.9 10.1 4.8 7.5 11.5 14.4 10.9 16.2 11.8 12.3 9.8 15.5 17.4 11.3
LLaVA-v1.5-13B 11.12 7.0 14.3 14.3 9.1 6.6 6.0 13.5 5.6 13.5 10.4 12.6 14.7 11.5 13.8 13.0 10.7
ShareGPT4V-13B 11.88 7.5 15.5 16.4 10.7 8.9 9.0 11.5 8.9 7.6 11.6 13.0 17.4 10.3 8.6 8.7 12.5
SPHINX-MoE 14.18 7.8 17.9 14.3 15.6 9.5 11.9 12.5 15.6 12.6 16.2 15.6 17.8 13.5 12.1 8.7 16.1
InternLM-XComposer2-VL 14.54 9.3 15.5 12.1 15.3 11.3 10.5 14.4 22.2 19.3 19.7 15.6 15.0 11.9 15.5 26.1 15.5

Closed-source MLLMs

Qwen-VL-Plus 10.72 11.3 17.9 14.3 12.7 4.8 10.5 15.4 8.9 14.3 11.6 6.4 10.0 14.3 6.9 8.7 11.31
Qwen-VL-Max 15.59 10.7 19.1 20.0 16.9 12.5 17.9 16.4 12.2 21.0 13.3 14.2 19.8 11.5 20.7 13.0 17.3
Gemini Pro 17.66 15.1 10.7 20.7 20.1 11.9 7.5 20.2 21.1 16.8 19.1 19.0 20.0 14.3 13.8 17.4 20.8
GPT4V 22.76 27.3 32.1 35.7 21.1 16.7 13.4 22.1 14.4 16.8 22.0 22.2 20.9 23.8 24.1 21.7 25.6

MathGLM-Vision

MathGLM-Vision-9B 19.2 18.6 20.2 19.3 15.3 18.5 20.9 26.0 18.9 15.1 23.1 20.4 18.3 23.8 19.0 17.4 14.3
MathGLM-Vision-19B 21.6 22.0 29.8 23.6 22.4 18.5 25.4 25.0 17.8 16.0 20.2 22.0 20.3 21.3 20.7 30.4 23.2
MathGLM-Vision-32B 26.5 22.9 20.2 24.3 23.1 28.0 20.9 34.6 27.8 23.5 31.2 26.8 30.1 29.1 22.4 17.4 26.2

Table 13: Comparison of model performances across various mathematical subjects. Subjects:
Alg: algebra, AnaG: analytic geometry, Ari: arithmetic, CombG: combinatorial geometry, Comb:
combinatorics, Cnt: counting, DescG: descriptive geometry, GrphT: graph theory, Log: logic, Angle:
metric geometry - angle, Area: metric geometry - area, Len: metric geometry - length, SolG: solid
geometry, Stat: statistics, Topo: topology, TransG: transformation geometry. The highest accuracy
among all baseline MLLMs is marked in red, while the highest accuracy among various variants of
MathGLM-Vision is marked bold.

in providing concise and clear answers with logical mathematical reasoning. Compared to other close-
source MLLMs, MathGLM-Vision-32B stands out for its ability to deliver precise and understandable
solutions.

As shown in the figure, a cylinder has a height of 8 cm and a base radius of 2 cm. An ant 
needs to crawl from point A to point B to get food. The shortest path the ant needs to 
crawl is (             is rounded to 3)____________.
A. 20cm； B. 10cm； C. 14cm； D. Not Sure

Question

GT Answer: B

MathGLM-Vision-32B:

Solution: Unfold half of the cylinder's lateral 
surface to obtain a rectangle. The length of the 
rectangle is half of the circumference of the 
cylinder's base, which is \(2\pi \approx 6\). The 
width of the rectangle is the height of the 
cylinder, which is 8.
According to the Pythagorean theorem, the 
shortest path the ant needs to crawl is the length 
of the diagonal of the unfolded rectangle, which 
is 10.
Therefore, the answer is B.

To solve this problem, we can unfold the cylinder into a rectangle to calculate 
the shortest path the ant needs to crawl.
### Step-by-Step Solution:
1. **Unfold the Cylinder:**
   The height of the rectangle after unfolding the cylinder is 8 cm (the height of 
the cylinder), and the width is the circumference of the circle \(2 \pi r\).
   Given the base radius \( r = 2 \) cm, the circumference of the circle is \( 2 \pi 
\times 2 = 4 \pi \) cm.
2. **Determine the Position of Points:**
   - Point A is at the top of the unfolded rectangle, for example, at the top left 
corner.
   - Point B is at the bottom of the unfolded rectangle, for example, at the bottom 
right corner.
3. **Calculate the Shortest Path on the Rectangle:**
   The shortest path from A to B is the diagonal of the rectangle. Using the 
formula for the length of the diagonal:\[d = \sqrt{(4 \pi)^2 + 8^2}\]
4. **Perform the Calculations:**\[\begin{aligned}& (4 \pi) = 4 \times 3 = 12 
\quad (\text{since } \pi\approx 3) \\& (4 \pi)^2 = 12^2 = 144 \\& 8^2 = 64 \\& d 
= \sqrt{144 + 64} = \sqrt{208}\end{aligned}\]
5. **Further Simplify:**208 can be expressed as \( 16 \times 13 \).\[\sqrt{208} 
= \sqrt{16 \times 13} = 4 \sqrt{13}\]Using a calculator, we know that 
( \sqrt{13} \approx 3.605 \), so\[d \approx 4 \times 3.605 = 14.42 \approx 14 
\quad (\text{rounded to the nearest integer})\]
### Final Answer:
The answer to the problem is: C. 14 cm

GPT-4o:

Figure 16: An example of solid geometry problem. MathGLM-Vision-32B correctly calculated
the shortest path with shorter steps, while GPT-4o made a reasoning error, leading to a different
conclusion.
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In the             square grid shown in the image, 
A. 330°   B. 315°   C. 310°   D. 320°

Question

GT Answer: B

MathGLM-Vision-32B:

【Analysis】Based on the axial symmetry of the 
square, we have ∠1 + ∠7 = 90°, ∠2 + ∠6 = 90°, ∠3 + 
∠5 = 90°, and ∠4 = 45°. 【Solution】Since the 
triangle containing ∠1 is congruent to the triangle 
containing ∠7, ∠1 + ∠7 = 90°. Similarly, ∠2 + ∠6 = 
90°, and ∠3 + ∠5 = 90°. Additionally, since ∠4 = 45°, 
we have ∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = 
315°. Therefore, the answer is B.

Let's solve this problem step by step: Step 1: Understand the 
problem The problem presents a 4x4 square grid with 7 rays 
emanating from the bottom left corner. We need to calculate 
the sum of these 7 angles. Step 2: Analyze the angle of each 
ray - Ray 1: 45° (1 square up, 1 square right) - Ray 2: 
63.43° (1 square up, 2 squares right, arctan(1/2)) - Ray 3: 
71.57° (1 square up, 3 squares right, arctan(1/3)) - Ray 4: 
75.96° (1 square up, 4 squares right, arctan(1/4)) - Ray 5: 
51.34° (2 squares up, 3 squares right, arctan(2/3)) - Ray 6: 
59.04° (2 squares up, 4 squares right, arctan(2/4)) - Ray 7: 
36.87° (3 squares up, 4 squares right, arctan(3/4)) Step 3: 
Calculate the sum of the angles 45° + 63.43° + 71.57° + 
75.96° + 51.34° + 59.04° + 36.87° = 403.21° Step 4: Adjust 
the result Since we are calculating the angles between these 
rays, we need to subtract 360° (a full circle) from 403.21°. 
403.21° - 360° = 43.21° Step 5: Choose the closest answer 
The closest option to 43.21° is 45°, which corresponds to 
315° (because 360° - 45° = 315°). The answer to this 
problem is: B. 315°.

Claude-3.5-Sonnet:

Figure 17: An example of a planar geometry problem. MathGLM-Vision-32B correctly utilized
axial symmetry to determine the angle sum, while Claude-3.5-Sonnet arrived at the correct answer
through an erroneous calculation process. Despite the correct final answer, the calculation process
was incorrect and overly complex.
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As shown in the figure, in the parallelogram ABCD, E is a point on CD, and 
AE and BD are connected, intersecting at point F. If                         , then                          
= _________.

Question

GT Answer: 4:25

MathGLM-Vision-32B:

【Solution】\n Analysis: From the properties of the 
parallelogram, we can deduce that △DFE ∽ △BFA. 
Based on the fact that the area ratio of similar triangles 
is equal to the square of the ratio of their 
corresponding sides, we can find the answer.\n ∵ The 
quadrilateral ABCD is a parallelogram,\n ∴ DC ∥ AB, 
and CD = AB.\n ∴ △DFE ∽ △BFA,\n ∴ 
S_{△{DEF}} : S{△_{ABF}} = (DE : AB)² = 4 : 
25.\n Therefore, the answer is 4 : 25.

To solve the plane geometry problem, we proceed as follows: **Step 1: 
Define the known quantities** In the parallelogram ABCD: - E is a point 
on segment CD - AE and BD intersect at point F - The ratio of DE to EC 
is 2:3, i.e., DE:EC = 2:3 **Step 2: Set the unknown quantities** Let DE = 
2x, EC = 3x, then CD = DE + EC = 5x. **Step 3: Calculate the area 
ratio** To calculate \( \frac{S_{DEF}}{S_{ABF}} \), we first determine 
the position of the intersection point F of AE and BD. According to the 
problem, point F is at the common vertex of triangles DEF and ABF, and 
we can use the area ratio of similar triangles to solve it. **Step 4: Analyze 
similar triangles** Since DE:EC = 2:3, and triangle AEF is similar to 
triangle CDF, the area ratio is proportional to the square of the segments: - 
The area ratio of triangles DEF and CDF \( \frac{S_{DEF}}{S_{CDF}} 
= \left(\frac{DE}{CD}\right)^2 = \left(\frac{2}{5}\right)^2 = \frac{4}
{25} \) - The area ratio of triangles CDF and ABC \( \frac{S_{CDF}}
{S_{ABC}} = \left(\frac{CD}{AB}\right)^2 = \left(\frac{1}{1}\right)^2 
= 1 \) - Since the base sides of the two triangles are equal, \
( \frac{S_{CDEF}}{S_{CABC}} = 4/20 = 1/5 \) **Step 5: 
Comprehensive calculation** Therefore, the area ratio of triangles DEF 
and ABF is: - \( \frac{S_{DEF}}{S_{ABF}} = \frac{S_{DEF}}
{S_{ABF}} = \frac{2 \times 4 \times 1}{5 \times 20 \times 5} = 2/15 \). 
**Step 6: Determine the final ratio** In summary, the answer to this 
problem is \( \frac{S_{DEF}}{S_{ABF}} = 2/15 = 2:15 \) Therefore, the 
answer is 2:15.

GPT-4o:

Figure 18: An example of a planar geometry problem. MathGLM-Vision-32B correctly used
the properties of similar triangles to find the area ratio, while GPT-4o misinterpreted the geometric
relationships and misapplied the formula for the area ratio, leading to an erroneous conclusion.

As shown in the figure, a right triangle ABC (where ∠ABC = 60° and ∠C = 
90°) is rotated clockwise around point B by a certain angle to position 
A₁BC₁, making points A, B, and C₁ collinear. This angle is ( ) 
A. 30° B. 60° C. 90° D. 120°

Question

GT Answer: D

MathGLM-Vision-32B:

【Analysis】Use the properties of rotation to 
calculate. 【Solution】In the triangle, ∠ABC = 60°, 
and the rotation angle is ∠CBC₁. Therefore, ∠CBC₁ = 
180° - 60° = 120°. This rotation angle is equal to 120°. 
Therefore, the answer is D.

This is a problem about geometric transformation. We need 
to find the angle of rotation for triangle ABC. Step 1: 
Determine the initial position In the initial position, angle 
ABC in triangle ABC is 60 degrees, and angle C is 90 
degrees. Step 2: Understand the problem The problem 
requires us to rotate triangle ABC clockwise around point B 
so that points A, B, and C1 lie on the same straight line. 
Step 3: Calculate the rotation angle Since we want points A, 
B, and C1 to be collinear, it means that angle AB_1C1 must 
be 180 degrees. Since angle ABC is 60 degrees, angle BAC 
is 30 degrees. Therefore, angle AB_1C1 = 180 - (angle 
BAC + angle ABC) = 180 - (30 + 60) = 180 - 90 = 90 
degrees. Step 4: Draw the conclusion Based on the above 
calculations, we can conclude that the rotation angle should 
be 90 degrees. The answer to this problem is C. 90°.

QWen-VL-Max:

Figure 19: An example of a geometric transformation problem. MathGLM-Vision-32B correctly
used the properties of rotation to determine the angle, while QWen-VL-Max misunderstood the
problem requirements and incorrectly calculated the rotation angle as 90°.
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I MODEL EVALUATION

Evaluation on public benchmarks The existing public benchmarks for evaluating a wide array
of open-source and close-source models are neither timely nor comprehensive enough. To com-
pare our MathGLM-Vision with the state-of-the-art open-source and close-source LLMs, we have
supplemented the evaluations for some models missing from the public benchmark leaderboard.

We generate LLMs’ responses through API access (for closed-source models) and local inference
(for open-source models). The evaluation was then conducted following the official evaluation code
from each benchmark’s GitHub repository. The source of the models used in the evaluation can be
found in Table 14.

Model Input LLM Size Source

Closed Source Models

Multi-modal LLMs
Gemini Pro Q, I - gemini-pro

Gemini 1.5 Pro Q, I - gemini-1.5-pro
GPT-4V Q, I - gpt-4-vision-preview

GPT-4-turbo Q, I - gpt-4-turbo
GPT-4o Q, I - gpt-4o

Claude-3-Opus Q, I - claude-3-opus-20240229
Claude-3.5-Sonnet Q, I - claude-3-5-sonnet-2024620

Qwen-VL-Plus Q, I - qwen-vl-plus
Qwen-VL-Max Q, I - qwen-vl-max

Open Source Models

General Multi-modal LLMs
mPLUG-Owl Q, I 7B mPLUG-Owl

LLaMA-Adapter-V2 Q, I 7B LLaMA-Adapter V2
InstructBLIP Q, I 7B InstructBLIP
LLaVA-1.5 Q, I 13B LLaVA-v1.5-13B

ShareGPT-4V Q, I 13B ShareGPT4V-13B
SPHINX-MoE Q, I 8*7B SPHINX-MoE
SPHINX-Plus Q, I 13B SPHINX-Plus
InternLM-XC2 Q, I 7B InternLM-XComposer2-VL-7B

InternVL-1.2-Plus Q, I 34B InternVL-Chat-V1-2-Plus

Geo-Multi-modal LLMs
G-LLaVA Q, I 7B G-LLaVA-7B
G-LLaVA Q, I 13B G-LLaVA-13B

LLaVA-1.5-G Q, I 7B LLaVA-1.5-7B-GeoGPT4V
LLaVA-1.5-G Q, I 13B LLaVA-1.5-13B-GeoGPT4V

ShareGPT4V-G Q, I 7B ShareGPT4V-7B-GeoGPT4V
ShareGPT4V-G Q, I 13B ShareGPT4V-1.5-13B-GeoGPT4V
Math-LLaVA Q, I 13B Math-LLaVA-13B

Table 14: The source of the models used in the evaluation.
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https://ai.google.dev/
https://ai.google.dev/
https://platform.openai.com/
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4o
https://www.anthropic.com/api
https://www.anthropic.com/api
https://help.aliyun.com/zh/dashscope/developer-reference/vl-plus-quick-start
https://help.aliyun.com/zh/dashscope/developer-reference/vl-plus-quick-start
https://github.com/X-PLUG/mPLUG-Owl
https://github.com/ml-lab/LLaMA-Adapter-2
https://huggingface.co/docs/transformers/main/en/model_doc/instructblip
https://github.com/haotian-liu/LLaVA
https://huggingface.co/Lin-Chen/ShareGPT4V-13B
https://github.com/Alpha-VLLM/LLaMA2-Accessory/blob/main/SPHINX/README.md
https://github.com/Alpha-VLLM/LLaMA2-Accessory/blob/main/SPHINX/README.md
https://huggingface.co/internlm/internlm-xcomposer2-vl-7b
https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus
https://huggingface.co/renjiepi/G-LLaVA-7B
https://huggingface.co/renjiepi/G-LLaVA-13B
https://huggingface.co/caishihao/GeoGPT4V-LLaVA-1.5-7B-v1
https://huggingface.co/caishihao/GeoGPT4V-LLaVA-1.5-13B-v1
https://huggingface.co/caishihao/GeoGPT4V-ShareGPT4V-7B-v1
https://huggingface.co/caishihao/GeoGPT4V-ShareGPT4V-13B-v1
https://github.com/HZQ950419/Math-LLaVA
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Evaluation on MathVL-test We evaluate MathGLM-Vision and several close-source MLLMs using
our specially constructed MathVL-test. The evaluation process of our MathVL-test is conducted
through 3 key-step: generation, extraction, and scoring.

For the generation step, the model responses are generated by providing the model with queries
which incorporate the Chain of Thought (CoT) template, questions, and diagram information. The
reponses of close-source MLLMs is generated through API access. For the extraction step, we use
GPT-3.5-turbo to extract the model’s answer based on the reponses of first step. Finally, in the scoring
step, the score for each question is determined by GLM-4 based on the comparison between the
extracted answer and the standard answer.

The prompts used to guide the LLM in response generation, answer extraction and scoring can be
found in Table 15.

Task Prompt

Response Generation

You are a very skilled math teacher. Please provide a detailed, step-by-
step solution to the question, following a step-by-step format. Be sure
to conclude with a summary that states "The answer to this question is"
followed by the final result.

Answer Extraction

Please read the following example. Then extract the answer from the
model response and type it at the end of the prompt. Hint: Please answer
the question requiring an integer answer and provide the final value, e.g.,
1, 2, 3, at the end. Question: Which number is missing? Model response:
The number missing in the sequence is 14. Extracted answer: 14 Hint:
Please answer the question requiring a floating-point number with one
decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.
Question: What is the fraction of females facing the camera? Model
response: The fraction of females facing the camera is 0.6, which means
that six out of ten females in the group are facing the camera. Extracted
answer: 0.6

Scoring

Please determine if the extracted_answer correctly answers the question.
The correct answer needs to be extracted from the answer without re-
calculating it, and the answer in the answer should be considered the
final answer. Also, do not judge whether the answer is correct. The
question may contain multiple sub-questions, and correctly answering
the question includes correctly answering every sub-question and every
result within each sub-question. A relative error divided by the absolute
value of the original answer of less than 0.01 is allowed. If the prediction
does not contain an answer, it is considered wrong. If the answer is
not numerical, determine the equivalence of the expression, not just the
value. If there is one mistake, the answer is wrong. Only if all results
given in the prediction are correct is it considered correct. There is no
need to consider whether the solution process of the prediction is com-
plete. Please first extract the answers given by the prediction, determine
the relative error, check if each sub-question is answered correctly, and
finally give the judgment in a single line (output only "yes" or "no" in a
single line).

Table 15: Prompts for response generation, answer extraction and scoring.
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