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ABSTRACT

Spatial Transcriptomics (ST) allows deep characterization of the 2D organiza-
tion of expression data within tissue slices. The ST technology provides a tissue
contextualization of deep single-cell profiles. Recently, numerous computational
and machine learning methods have addressed challenges such as data quality,
augmentation, annotation, and the development of integrative platforms for data
analysis. In contrast, here we ask whether unseen spatial transcriptomics data can
be predicted and if we can interpolate novel transcriptomic slices. To this end, we
adopt a denoising diffusion probabilistic-based model (DDPM) to demonstrate the
learning of generative ST models for several tissues. Furthermore, our generative
diffusion model interpolates (predicts) unseen slices located “between” the col-
lected finite number of ST slices. This methodology sets the stage for learning
predictive deep 3D models of tissues from a finite number of spatial transcrip-
tomics slices, thus heralding the advent of AI-augmented spatial transcriptomics.

1 INTRODUCTION

The twin rise of single-cell genomics, producing high-resolution atlases of different cells, and spa-
tial transcriptomics (ST), uncovering the cellular transcriptional organization within tissues, impacts
fundamental cell biology and translational research (Vandereyken et al., 2023) . Recently, a wide
range of computational and machine learning methods target challenges such as data quality and
augmentation (imputation, normalization), annotation (deconvolution of cell types, clustering, reso-
lution), and tissue analysis (spatial gradients, extracting hierarchical organization), and development
of integrative platforms (software, databases, data management)(Zeng et al., 2022) (Fang et al.,
2023) (Palla et al., 2022a).

While the bulk of the work has been 2D Spatial Transcriptomics at different length scales (Palla
et al., 2022a), increasing efforts are homing to the potential of 3D Spatial Transcriptomics. Recently,
progress has been achieved in aligning ST slices using probabilistic models (Zeira et al., 2022) or
aligning slices using a 3D neighborhood graph into a local coordinate system (Fang et al., 2023)
(Wang et al., 2023a).

In this work, we develop a generative ST model applicable to diverse tissue types. Specifically, for a
given finite set of ST slices, we ask if we can predict or interpolate unseen ST slices beyond a finite
set of ST slices (Figure 1a). To this end, we first assessed whether a denoising diffusion probabilistic
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model (Ho et al., 2020a) (DDPM) could serve as a generative model for ST. The trilemma – the bal-
ancing act between quality, diversity, and speed - of generative models (Xiao et al., 2022) means that
both variational encoders and normalizing flows suffer from lower quality. In contrast, Generative
Adversarial Networks are prone to mode collapse, thus rendering them less suitable for producing
diversity. Recently, the DDPM model (Ho et al., 2020a) has achieved a faster subsampling, be-
coming a practical model for learning via a forward noise process and neural network learning the
reverse diffusion process (Figure 1b). We hypothesized that DDPM models are a suitable candi-
date for the reconstruction of ST slices as DDPM has recently achieved state-of-the-art in image
generation (DALLE 2), super-resolution, image denoising, and inpainting (Yang et al., 2024).

2 RESULTS

To evaluate whether DDPM models are suitable for the reconstruction of ST slices, we trained a
DDPM model (stDiffusion) (Figure 1b; see Methods) on MERFISH (Moffitt et al., 2018) slice data.
For each spatial spot, we first extract its original gene–expression vector x0 ∈ RG, compute a fixed
cell–type embedding and project its two–dimensional coordinates into a spatial embedding (see
Methods). During the forward diffusion pass, only x0 is noised, while both cell–type embedding
and spatial embedding remains unchanged. In the reverse (denoising) pass, we form the conditioned
input(Figure, 1b) and feed it into our learnable network which predicts the noise at each timestep.
We optimize the model by minimizing the mean–squared error(see Methods). We use spot-wise
clustering to compare the structure of ground truth and generated data using the neighborhood en-
richment test (Palla et al., 2022b) to identify spatially enriched clusters. Visualizing the clustering
(Supp Fig S1a,b) demonstrates the model’s ability to replicate the structure and relationships found
in the reference data (Figure 1b). Embedding contextual features such as cell type and spatial co-
ordinates enhances the model’s predictive accuracy during reverse diffusion. Thus, we provide the
first demonstration that a DDPM model can generate and reconstruct spatial transcriptomics data.

Figure 1: Schematic of stDiffusion: a) depiction of interpolation across slices of brain b) stDif-
fusion for in silico generation and interpolation of spatial transcriptomics data. Details in methods
section.

To quantify how faithfully stDiffusion reconstructs spatial patterns, we apply Leiden clustering to
both the ground–truth and generated spot profiles, and compute neighborhood–enrichment z–scores
to capture spatial co–localization of clusters (Palla et al., 2022b). As shown in Supplementary Fig-
ure S1a–b and summarized in Figure 1b, stDiffusion successfully replicates the spatial organization
of transcriptional clusters, demonstrating that embedding cell type and spatial context exclusively
in the reverse diffusion steps substantially enhances reconstruction fidelity. This represents the first
demonstration that a DDPM framework can both generate and accurately reconstruct spatially re-
solved transcriptomics data.
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Next, we asked whether stDiffusion could generate unseen ST slices by interpolating within a given
slice and between adjacent slices (Figure 1a). The idea is to harness the DDPM’s ability to learn
the underlying data distribution through gradual transformations from noise to data, thus effectively
navigating a learned latent space. We trained stDiffusion on a subset of ST slices and then tested if
non-border held-out slices could be predicted. We used three different datasets from various tissues
and technologies.

We extract gene expression data and spatial coordinates for each slice based on layer and Bregma
values, normalized for consistent distance calculations. Stochastic gene expression encoding pre-
pares data for interpolation in the model’s latent space, capturing biological variability. For each
target slice spot, Euclidean distance identifies the closest points in adjacent reference slices, guiding
feature selection (Methods). Interpolation blends noised feature representations using a tunable fac-
tor (λ), enabling controlled transitions between slices (Supp Fig 3–5). After interpolation in latent
space, reverse diffusion reconstructs gene expression profiles. As a baseline, we compare against
linear interpolation by averaging two reference slices (Methods).

2.1 STDIFFUSION INTERPOLATES ACROSS LAYERS OF HUMAN DORSOLATERAL PREFRONTAL
CORTEX SLICE

We first challenged stDiffusion to interpolate within a slice of the human dorsolateral prefrontal cor-
tex (DLPFC (Maynard et al., 2021), Methods) between layers. Using sample profiling layers Layer1
through Layer6 and white matter (WM), we aimed to predict the Layer4 ST between Layer3 and
Layer5 (Figure 2 a-c). stDiffusion performs remarkably well (Figure 2b,c) in interpolating layers
that were not included during the initial and validation phases while preserving spatial neighbor-
hoods compared to linear interpolation. Large neighborhood enrichment values along the diagonal
(Figure 2b) indicate a robust within-cluster relationship, demonstrating that cells of the same type
are located near each other. The pattern is very similar in the reference and interpolated data, sug-
gesting that stDiffusion has effectively recapitulated actual spatial relationships in the real tissue.
Additionally, it produced a strong positive association between interpolated and actual expression
values (Supp Fig 2a), confirming that gene expression spatial arrangements closely resemble those
in ground truth layers.

2.2 STDIFFUSION INTERPOLATES ACROSS LAYERS OF MOUSE VISUAL CORTEX STARMAP
DATA SLICE

Next, we asked whether stDiffusion could navigate across the layers within a single slice of the
mouse visual cortex. Here we used the Starmap (Wang et al., 2018) encompassing distinct cortical
layers L1, L2/L3, L4, L5, and L6. The task is to interpolate the intermediate layer L2/L3 by inter-
polating between layers L1 and L4 (Figure 2 d-f), thus recapitulating the organization of clusters as
observed in the real data. To this end, stDiffusion accurately reconstructs the omitted layer L2/L3
(Figure 2e). Notably, stDiffusion outperforms a linear interpolation method (Figure 2e,f), which
falls short in capturing the spatial distribution and cluster neighborhood structure (Figure 2e, Supp
Fig 2d). stDiffusion effectively (Supp Fig 2c) interpolates and generates gene expression profiles of
the target layer.

2.3 STDIFFUSION INTERPOLATES BETWEEN THE SLICES IN MOUSE MERFISH DATA

We used mouse MERFISH(Moffitt et al., 2018) data from 12 consecutive hypothalamus preoptic
region slices (Figure 3a-d). The results (Figure 3b,c,d) show that stDiffusion effectively interpolates
between slices, preserving cluster neighborhood structures seen in the original data. For example, in
the MERFISH data slice, the spatial structure of clusters like cluster 8 and cluster 11 is maintained in
the interpolated slice, aligning with the ground truth slice (Figure 3d). This outperforms linear inter-
polation, which fails to preserve cluster structure (Figure 3d). Using Leiden clustering, we compare
the spatial distribution of clusters in the ground truth and generated data. Visualizing clusterings
in spatial coordinates (Figure 3b) demonstrates the model’s ability to replicate the reference data’s
structure (Figure 3a). We also conducted a normalized Spearman correlation analysis between the
expression levels of all genes in the ground truth and interpolated slices for each spot. The findings
(Supp Fig 2e) indicate that stDiffusion maintains the spatial distribution of gene expression levels in
the interpolated slice, consistent with the original data.
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Figure 2: Interpolation across human dorsolateral prefrontal cortex (DLPFC) with stDiffu-
sion: a) DLPFC slice visualization in spatial coordinates, b) Leiden clustering and neighborhood
enrichment heatmap for ground truth Layer4, showing two distinct clusters. stDiffusion replicates
this pattern, unlike linear interpolation. Strong diagonal heatmap colors indicate within-cluster re-
lationships, while off-diagonal elements show proximity between clusters. c) Normalized mean
square errors between ground truth and interpolated slice, d) Starmap data visualization, e) Leiden
clustering and neighborhood enrichment heatmap for ground truth (L2/3), where stDiffusion pre-
serves spatial structure better than linear interpolation, f) Normalized mean square errors showing
stDiffusion’s superior performance.
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Figure 3: Interpolation and extrapolation - MERFISH slices with stDiffusion: a) Visualization
of ground truth slices (Bregma 9, Bregma 21) in spatial coordinates; b) Leiden clustering of inter-
polated slices; c) normalized mean square errors showing stDiffusion outperforming linear interpo-
lation; d) neighborhood enrichment for ground truth (Bregma 9), highlighting stDiffusion’s ability
to capture spatial structure (e.g., cluster 8 reconstruction); e) neighborhood enrichment heatmap for
extrapolation, illustrating stDiffusion’s limitations in out-of-distribution predictions.4
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In summary, stDiffusion learns ST data from a single slide and predicts held-out slices, effectively
interpolating between a finite set of ST slices. We next tested whether it could extrapolate beyond
the collected spatial region. Since out-of-distribution regions may differ statistically, we expected
lower performance. Training stDiffusion on posterior brain slices while excluding anterior slice 21
(Figure 3e upper) confirmed this: extrapolation performance (Figure 3e lower) was weaker than
interpolation. This controlled experiment highlights DDPM’s predictive limits, emphasizing that
extrapolation depends on distributional similarity. Our results suggest an experimental strategy that
ensures diverse sampling for more effective predictions.

3 DISCUSSION

We used the stDiffusion model based on DDPM (Ho et al., 2020b) to tackle key challenges in spatial
transcriptomics: in silico data generation and gene expression interpolation across tissue slices and
layers. While extensive work has improved 2D spatial transcriptomics in areas like data quality,
normalization, and clustering (Zeng et al., 2022) (Fang et al., 2023) (Palla et al., 2022a), aligning
2D slices in a 3D space remains limited by finite samples (Zeira et al., 2022) (Wang et al., 2023a)
(Ortiz et al., 2020). Our approach extends generative modeling to predict ST data, paving the way
for continuous 3D tissue reconstruction.A generative 3D spatial transcriptomics AI (Wang et al.,
2023b) integrating multimodal cellular analysis could impact fundamental biology, organ modeling
(Tegnér et al., 2009), and precision medicine (Zhang et al., 2022).
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A APPENDIX

A.1 DATA PREPROCESSING

We developed and evaluated SpatialDiffusion (stDiffusion) using three different datasets. The MER-
FISH (Moffitt et al., 2018) dataset from (Palla et al., 2022b) was used to assess the in-silico gener-
ation and interpolation performance of stDiffusion across distinct slices. MERFISH consists of 12
consecutive slices from the mouse hypothalamic preoptic region. The dataset is segmented based
on the Bregma reference point, allowing for the exclusion or inclusion of specific slices to tailor
our training, validation, and test sets for focused analyses. Each instance comprises gene expres-
sion values, classified cell types, and two-dimensional spatial coordinates, facilitating a multifaceted
approach to understanding spatial gene expression patterns. The dataset has 73655 spots and 161
genes per spot. The second dataset we used for interpolation across layers is the mouse visual cortex
Starmap (Wang et al., 2018) data obtained from (Dong & Zhang, 2022) in the preprocessed format
with 984 spots and 1020 genes per spot. This dataset has spots of gene expression profiles for L1,
L2/L3, L4, L5, and L6 layers. The third dataset is the human dorsolateral prefrontal cortex from
(DLPFC) (Maynard et al., 2021) (Dong & Zhang, 2022). Specifically, the DLPFC dataset includes
12 human DLPFC sections sampled from three individual experiments (Maynard et al., 2021). The
number of spots ranges from 3498 to 4789 for each section, and the original authors have manually
annotated the area of DLPFC layers and white matter (WM). We used one sample from this dataset,
and we preprocessed with the SCANPY (Wolf et al., 2018) package, and used 3000 highly variable
genes with 3431 spots as an input to our stDiffusion model. Additional information, such as spatial
coordinates and layers, is included in the dataset. For DLPFC dataset, we applied our stDiffusion
model to interpolate across layers, i.e., Layer1, Layer2, Layer3, Layer4, Layer5, Layer6, and
white matter (WM).

A.2 THE SPATIALDIFFUSION MODEL

In spatial transcriptomics, stDiffusion (Figure 1b) adapts Denoising Diffusion Probabilistic Models
(Ho et al., 2020a) (Ho et al., 2020b) (DDPM) principles to address the unique challenges posed
by spatially resolved gene expression data. The model begins by learning the distribution of gene
expression profiles across spatial coordinates, effectively capturing the spatial transcriptional land-
scape of the tissue. Through forward and reverse diffusion steps, stDiffusion interpolates missing
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gene expression data within this landscape, providing a continuous view of transcriptional activity
across the tissue. In spatial transcriptomics, stDiffusion (Figure 1b) adapts Denoising Diffusion
Probabilistic Models (Ho et al., 2020a) (Ho et al., 2020b) (DDPM) principles to address the unique
challenges posed by spatially resolved gene expression data. The model begins by learning the
distribution of gene expression profiles across spatial coordinates, effectively capturing the spatial
transcriptional landscape of the tissue. Through forward and reverse diffusion steps, stDiffusion
interpolates missing gene expression data within this landscape, providing a continuous view of
transcriptional activity across the tissue.

A.3 IN SILICO GENERATION

The in-silico generation of spatial transcriptomics data aims at augmenting existing datasets with
synthetic yet biologically plausible data points. This approach enhances the dataset’s density, pro-
viding a more continuous spatial representation of gene expression patterns. We trained the stDif-
fusion model on the preprocessed spatial transcriptomics data, allowing it to learn the underlying
distribution of gene expression across spatial coordinates.

A.4 NETWORK ARCHITECTURE: DIFFUSION MODEL

The core of our approach is a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020a)
specifically designed to handle the complexities of spatial transcriptomics data. This model incorpo-
rates an embedding layer for cell types and a linear transformation for spatial coordinates, ensuring
both are integral to the learning process (Figure 1b). An embedding layer for cell type classifica-
tion allows the model to interpret cell types as dense vectors of a specified dimension. A linear
transformation is applied to spatial coordinates, mapping them to a similarly dimensioned space as
the cell-type embeddings. A concatenation of gene expression data with the transformed cell type
and spatial information is followed by a sequential network comprising linear layers and activation
functions.

A.5 NETWORK ARCHITECTURE: ENHANCEMENT OF MODEL INPUTS

Let x denote the gene expression data for a given sample, c denotes the cell type, and s represents
the spatial coordinates. The cell type c is transformed through an embedding layer, and the spatial
coordinates s are processed through a linear transformation to ensure they are in a compatible format
for concatenation:

ec = Embed(c), (1)

es = Lin(s), (2)

The enhanced input x
′

to the model is then a concatenation of the original gene expression data with
the transformed cell type and spatial information:

x′ =
[
x; ec; es

]
(3)

A.6 NETWORK ARCHITECTURE: FORWARD PROCESS (DIFFUSION)

The forward diffusion process gradually adds Gaussian noise to the data across several discrete time
steps. The process at a specific time step t can be mathematically represented as follows:

q(xt | xt−1) = N
(
xt;

√
ᾱt xt−1, (1− ᾱt) I

)
, ᾱt =

t∏
s=1

αs. (4)

where ᾱt =
∏t

s=1 αs is the cumulative product of αt = 1 − βt, with βt being the variance of the
noise added at step t. I is the identity matrix, ensuring the noise is independently added to each
dimension.
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A.7 NETWORK ARCHITECTURE: REVERSE PROCESS (DIFFUSION)

During the reverse process, the enhanced input x′ is used to predict the original data from its noised
version. The model utilizes the concatenated features to predict the mean µ of the reverse process
distribution:

p(xt−1 | xt, c, s, θ) = N (xt−1;µθ(x
′, t), σ2

t I) (5)

Where µθ(x
′, t) depends on the enhanced input x′, incorporating embeddings for cell type and

spatial coordinates, along with the noised data xt. Incorporating cell type and spatial coordinates
into the stDiffusion allows the model to make more informed predictions during the reverse diffusion
process. By embedding these contextual features and concatenating them with the gene expression
data, the model can leverage the full spectrum of biological information available in the dataset. This
procedure enhances the model’s predictive accuracy and the biological relevance of the reconstructed
data, facilitating a deeper understanding of the spatial patterns of gene expression within tissue
samples.

A.8 NETWORK ARCHITECTURE: LOSS FUNCTION

The loss function aims to minimize the difference between the actual noise introduced during the
forward diffusion process and the noise predicted by the model during reverse diffusion, incorporat-
ing cell type (c) and spatial information (s) as conditioning variables. To this end we use the Mean
Squared Error (MSE) loss between the actual and predicted noise:

L(θ) = Ex0ϵ,t,c,s

[
∥ϵ− ϵ̂θ(xt, t, c, s)∥2

]
(6)

Where ϵ is the actual noise added to the original data x(0) to obtain the noised version xt,
ϵ̂θ(xt, t, c, s) is the noise predicted by the model, and x(0) is the original data. t is a randomly
chosen diffusion time step, and θ denotes the model parameters. This objective encourages the
model to accurately predict the noise at any given time step, thereby learning the reverse of the
diffusion process to reconstruct the original data from noised observations.

A.9 INTERPOLATION WITH STDIFFUSION

The stochastic encoding process incrementally introduces Gaussian noise into the original gene
expression data x0 across a series of discrete time steps. This stochastic encoding process transforms
the data into a latent space where the original high-dimensional structure is preserved amidst the
added noise. The process at a specific time step t can be mathematically represented as follows:

q(xt | xt−1) = N
(
xt;

√
ᾱt · xt−1, (1− ᾱt)I

)
(7)

where: ᾱt is the cumulative product of 1 − βt over time, indicating the proportion of the original
signal preserved. I is the identity matrix, ensuring that noise is added isotropically.

A.10 SPATIAL PROXIMITY CALCULATION

The interpolation between two slices involves calculating the spatial proximity to determine the
blending factor λ. This is achieved by normalizing the coordinates and calculating distances to the
target coordinates to ensure comparability:

coordsnormalized =
coords −min(coords)

max(coords)−min(coords)
(8)

A.11 DISTANCE CALCULATION

The Euclidean distance from each point in the slices to the target coordinates is calculated. The
blending factor λ for each target point is then determined based on the proximity of points in slice
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1 and slice 2 to the target coordinates. Our experimentation with λ values ranging from 0.1 to 0.9
has revealed its significant impact on interpolation quality, indicating that the optimized λ can vary
across different datasets (Supp Fig 3, Fig 4, Fig 5).

A.12 LATENT SPACE BLENDING FOR INTERPOLATION

Given noised data x(t,1) from slice 1 and x(t,2) from slice 2 at time t, the interpolation for a target
spatial coordinate is computed by blending these representations based on spatial proximity. The
interpolated data x(t,interp) at time t is calculated as:

xt,interp = (1− λ)xt,1 + λxt,2. (9)

λ is adjusted based on the spatial proximity of the points in the slices to the target coordinate,
influencing their contribution to the interpolated output.

A.13 REVERSE DIFFUSION PROCESS (RECONSTRUCTION)

The reverse diffusion process reconstructs the original data from the noised state to generate the
interpolated gene expression data.

p(xt−1 | xt) = N
(
xt−1; µθ(xt, t), σ

2
t (xt, t) I

)
(10)

where: x(t−1) and xt represent the gene expression data at two consecutive time steps, with (t− 1)

being closer to the original data. µθ(xt, t) and σ2
t (xt, t) are the functions modeled by the neural net-

work parameterized by θ. These functions predict the mean and variance of the Gaussian distribution
from which x(t−1) is sampled, given xt.

A.14 LOSS FUNCTION FOR INTERPOLATION

The loss function aims to minimize the difference between the actual noise added to the data during
the forward process and the noise predicted by the model during the reverse process. For interpola-
tion, we used mean squared error (MSE) between the actual noise ϵ and the estimated noise ϵ̄θ given
the noised data xt and model parameters θ:

L(θ) = Ex0ϵ,t

[
∥ϵ− ϵ̂θ(xt, t)∥2

]
(11)

where: ϵ is the actual noise vector sampled from a Gaussian distribution during the forward process,
ϵ̂θ(xt, t) is the noise estimated by the model, given the noised data xt at time t, and E denotes the
expectation over the distribution of original data x0, noise ϵ, and time steps t.

For interpolation, the focus is on blending noised representations from different slices based on spa-
tial proximity and then reconstructing the interpolated data through the reverse process. Although
the loss function remains centered on noise prediction accuracy, the application in interpolation em-
phasizes the model’s capability to handle blended data from multiple sources and generate coherent
interpolated outputs.

A.15 LINEAR INTERPOLATION

The linear interpolation method calculates the gene expression profile for a target slice by averaging
the expression profiles of two reference slices. For each spatial coordinate in the target slice S2, the
closest points in reference slices S1 and S3 are identified based on Euclidean distance. The gene
expression profile for a point in target slice S2 is computed as the average of the gene expression
profiles of the closest point in slices S1 and S3.

A.16 TRAINING PARAMETERS

For tasks such as in silico generation and interpolation of spatial transcriptomics data, training pa-
rameters play an essential role in the performance of stDiffusion. The key parameters optimized
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for stDiffusion for the task of in silico generation and interpolation across slices and layers are the
noise schedule (βt) - linearly spaced from 1 × 10−4 to 0.02. The noise schedule directly impacts
the model’s ability to learn the data distribution through diffusion, requiring tuning to match the
complexity of spatial transcriptomics data. We used AdamW (Loshchilov & Hutter, 2019) as an
optimizer and learning rate (lr = 1×10−3). In addition to this, stDiffusion is trained for 300 epochs
with an early stopping criterion. To adapt the learning rate, using OneCycleLR promotes faster
convergence and mitigates the risk of getting stuck in local minima. For interpolation tasks, most
hyperparameters remain the same as those for in silico generation, reflecting the shared underlying
model architecture and training strategy. However, specific considerations for interpolation include
the interpolation factor (λ), which ranges from 0.1 to 1.0 in increments of 0.1 in experiments. This
factor controls the blend between the gene expression profiles of two slices.

A.17 EVALUATION METRICS: NEIGHBORHOOD ENRICHMENT TEST

We used Squidpy’s (Palla et al., 2022b) Neighborhood Enrichment Test. This test evaluates the
spatial relationships between different clusters or types of cells within a tissue or dataset. It helps
to understand how certain groups of cells are distributed to one another and whether there are sig-
nificant patterns of co-localization or segregation. The test first identifies pairs of nodes (cells)
belonging to specific classes or clusters (i and j). The next step is to count the sum of nodes that are
proximal to each other, represented as xi,j . This count reflects the direct interactions or the degree
of proximity between cells of two different clusters. To determine whether the observed proximity
of cluster pairs is significant, the test compares the cluster distance against what would be expected
by chance. The randomized background is computed by scrambling the cluster labels while keeping
the spatial connectivity unchanged, effectively randomizing the distribution of clusters. This pro-
cess is repeated multiple times (default: 1,000 iterations) for a robust statistical comparison. From
these iterations, the test calculates the expected means (µi,j) and standard deviations (σi,j) for the
proximity counts of each cluster pair in the randomized configurations. A z-score is then computed
for each cluster pair using the formula:

z(i,j) =
x(i,j) − µ(i,j)

σ(i,j)
(12)

This z-score provides insights into the spatial organization of the tissue or dataset and helps to
identify which cell types or clusters are more likely to be found near each other, potentially indi-
cating functional relationships, shared microenvironments, or developmental pathways. To assess
our model’s performance, we applied the Leiden clustering method to group spots/cells into clusters
and used these clusters as the basis for our neighborhood enrichment test. This approach allowed
us to directly compare the spatial relationships observed in both the original (ground truth) data and
the data generated by our model (both in-silico and interpolated slices), providing a clear metric
for evaluating how well our model can replicate the complex spatial organization found in actual
tissue samples. The second evaluation metric used is the Spearman correlation, which assesses the
similarity between ground truth gene expression data and interpolated gene expression data across
spatial spots in a dataset. This approach is advantageous in spatial transcriptomics to understand
how well the interpolation process preserves the original data’s spatial gene expression patterns. For
each spot i, we calculated the ρ Spearman correlation coefficient between the corresponding rows
(gene expression profiles) in Xground truth and Xinterpolated as:

ρi = spearmanr
(
Xground truthi , :, Xinterpolatedi , :

)
(13)

where: Xground truth and Xinterpolated denote the gene expression profiles for the spot i in the ground
truth and interpolated data, respectively, and spearmanr() is the function that computes the
Spearman correlation coefficient. After calculating the Spearman correlation for each spot and com-
paring the original and interpolated expression matrices, these correlations are normalized. This
normalization step adjusts the correlation values so they fit within a specific range, making it easier
to visualize differences.
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A.18 EVALUATION METRICS: SPATIAL DISTRIBUTION OF NORMALIZED SPEARMAN
CORRELATION

The second evaluation metric used is the Spearman correlation, which assesses the similarity be-
tween ground truth gene expression data and interpolated gene expression data across spatial spots
in a dataset. This approach is advantageous in spatial transcriptomics to understand how well the in-
terpolation process preserves the original data’s spatial gene expression patterns. For each spot i, we
calculated the ρ Spearman correlation coefficient between the corresponding rows (gene expression
profiles) in the Xground truth and Xinterpolated as:

ρi = spearmanr
(
Xground truthi , :, Xinterpolatedi , :

)
(14)

where: Xground truth and Xinterpolated denote the gene expression profiles for the spot i in the ground
truth and interpolated data, respectively, and spearmanr() is the function that computes the
Spearman correlation coefficient. After calculating the Spearman correlation for each spot and com-
paring the original and interpolated expression matrices, these correlations are normalized. This
normalization step adjusts the correlation values so they fit within a specific range, making it easier
to visualize differences.

A.19 SUPPLEMENTARY FIGURES

a) b)

Figure S1: in silico generation of MERFISH data, a) showcases a heatmap of neighborhood en-
richment, highlighting how stDiffusion effectively simulates spatial transcriptomics data in silico,
ensuring the preservation of cluster neighborhoods as seen in actual data, b) presents a scatter plot of
clusters identified through Leiden clustering and plotted in spatial coordinates, effectively reflecting
the clustering and spatial distributions found in the actual data.
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a) b)

c) d)

e)

Figure S2: Spatial distribution of normalized Spearman correlation for DLPFC and Starmap data a,
b) spatial distribution of normalized Spearman correlation between the ground truth Layer 4 from a
DLPFC slice and interpolated Layer 4 with stDiffusion and linear interpolation, respectively, c, d)
spatial distribution of normalized spearman correlation between the ground truth layer 2/3 from a
Starmap slice and interpolated layer 2/3 with stDiffusion and linear interpolation. Results show that
stDiffusion captures the spatial structure as it is distributed more evenly than linear interpolation,
e) spatial distribution of normalized spearman correlation between the ground truth slice 9 from a
mouse MERFISH data and interpolated slice 9 with stDiffusion, showing its efficacy in maintaining
the spatial distribution of gene expression levels in the interpolated slice, consistent with the original
data.
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Figure S3: Effect of lambda on interpolation within and across slices: Figures S3 (DLPFC), S4
(Starmap), and S5 (MERFISH) illustrate the interpolation results for varying lambda (λ) values
from 0.1 to 0.9, demonstrating how different blending ratios between reference slices and layers
within a slice affect the quality and accuracy of the interpolated gene expression profiles. Each
subplot represents the interpolated data generated using a specific λ value, highlighting the gradual
transition in gene expression patterns as the blending ratio changes. The comparison underscores the
significance of selecting an optimal λ value to achieve the most biologically plausible interpolation
between slices.
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