
ECLM: Entity Level Language Model for Spoken Language
Understanding with Chain of Intent

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown001
remarkable success in language generation,002
demonstrating broad competence across differ-003
ent tasks. However, their direct application004
to spoken language understanding (SLU) re-005
mains challenging. This is particularly true006
for token-level tasks, where the autoregressive007
architecture of LLMs can lead to error prop-008
agation and misalignment problems. In this009
paper, we present the Entity-level Language010
Model (ECLM) framework for SLU, which ad-011
dresses these challenges by transforming the012
traditional token-level slot-filling task into an013
entity recognition problem. In addition, we pro-014
pose a novel concept, "Chain of Intent", which015
enables LLMs to effectively handle multi-intent016
recognition in a step-by-step manner. Our ex-017
periments demonstrate that ECLM achieves018
substantial improvements over state-of-the-art019
pre-trained models like Uni-MIS, with overall020
accuracy gains of 3.7% on the MixATIS dataset021
and 3.1% on the MixSNIPS dataset. Moreover,022
the ECLM framework surpasses conventional023
supervised fine-tuning of LLMs, delivering im-024
provements of 8.5% and 21.2% on MixATIS025
and MixSNIPS, respectively.026

1 Introduction027

The rapid advancement of large language models028

(LLMs) has markedly accelerated progress in the029

field of natural language processing (NLP) (Ge-030

ogle., 2023; Touvron et al., 2023). Trained on ex-031

tensive datasets, these models demonstrate excep-032

tional performance across a wide range of NLP033

tasks, including natural language inference, sum-034

marization, and dialog systems, often achieving im-035

pressive results through in-context learning alone036

(Kavumba et al., 2023; Hu et al., 2022).037

Spoken language understanding (SLU) is a crit-038

ical component of task-oriented dialog systems,039

which are designed to construct a semantic frame040

that accurately captures the user’s request. This041

Get the weather and drive to the airportUtterance

O O B-WT O O O O B-LOCSlot

Weather Inquiry NavigationIntent TP

Figure 1: An example with Multi-Intent SLU, where
B-WT donates B-Weather, B-LOC donates B-Location
and “TP” denote “Transition Point”.

semantic frame is typically built through two sub- 042

tasks: intent detection, which identifies the user’s 043

intent, and slot filling, which extracts relevant se- 044

mantic elements. Given the close interdependence 045

of these sub-tasks (Tur and Mori, 2011), state-of- 046

the-art SLU systems often employ joint models to 047

effectively capture the correlations between them 048

(Goo et al., 2018; Qin et al., 2019). 049

In real-life scenarios, users often express mul- 050

tiple intents within a single utterance, and the 051

Amazon internal dataset showed that 52% of 052

examples are multi-intent (Gangadharaiah and 053

Narayanaswamy, 2019). Figure 1 shows a two- 054

intent example, which contains a classification task 055

to classify the intent labels (i.e., predict the intents 056

as : Weather_Inquiry and Navigation) and a se- 057

quence labeling task to predict the slot label se- 058

quence (i.e., label the utterance as {O, O, B-WT, O, O, 059

O, O, B-LOC }). To deal with multi-intent scenarios, 060

an increasing number of studies have begun to fo- 061

cus on modeling SLU in multi-intent settings. Xu 062

and Sarikaya (2013) and Kim et al. (2017) first ex- 063

plored the multi-intent SLU. Then Qin et al. (2020a, 064

2021b) incorporated graph attention networks to 065

model fine-grained intent-slot guiding. Recently, 066

Huang et al. (2022) proposed a chunk-level intent 067

detection (CLID) framework to split multi-intent 068

into single-intent with an intent transition point. 069

Furthermore, Yin et al. (2024) develop an united 070

multi-view intent-slot interaction framework(Uni- 071

MIS), achieving promising performance. 072

Whether LLMs can effectively handle multi- 073
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intent SLU remains an open question. While a074

straightforward approach might involve fine-tuning075

LLMs for this specific task, several challenges per-076

sist. For example, although LLMs exhibit strong077

capabilities in entity-level intent detection, their078

autoregressive architecture can lead to issues such079

as error propagation and misalignment, particularly080

in token-level slot filling tasks. This is because081

LLMs may generate undesirable outputs that do082

not align one-to-one with the original tokens from083

the utterance.084

To address these challenges, we introduce a085

novel method that leverages the strengths of LLMs086

for multi-intent SLU by transforming the tradi-087

tional token-level slot-filling task into an entity088

detection problem. By shifting the focus to entity-089

level slot detection, LLMs can concentrate on iden-090

tifying relevant slot labels without the need to label091

every token within a sentence. This approach ef-092

fectively mitigates the issues of misalignment and093

uncontrolled generation length. Moreover, we pro-094

pose the concept of a chain of intent, inspired095

by the chain-of-thought reasoning framework (Wei096

et al., 2022). This strategy enhances the ability of097

LLMs to differentiate and separate multi-intent ut-098

terances into distinct sub-intent segments, enabling099

the models to handle multi-intent recognition in a100

systematic, step-by-step manner.101

Our experimental results demonstrate that102

ECLM achieves substantial improvements over103

state-of-the-art pre-trained models, such as Uni-104

MIS. Specifically, ECLM achieves overall accuracy105

gains of 3.7% on the MixATIS dataset and 3.1%106

on the MixSNIPS dataset. Furthermore, the ECLM107

framework surpasses conventional supervised fine-108

tuning of LLMs, delivering improvements of 8.5%109

and 21.2% in overall accuracy on MixATIS and110

MixSNIPS, respectively. In terms of slot filling111

F1 score, ECLM outperforms vanilla LLM fine-112

tuning by 22% and 8.1%. We also conduct fur-113

ther experiments to evaluate the performance of114

ECLM across different numbers of intents within115

the datasets. Our model consistently outperforms116

Uni-MIS in overall accuracy across all settings, par-117

ticularly in scenarios with a high number of intents,118

showing improvements of 1.1%, 4.3%, and 7.8%119

for intent counts ranging from 1 to 3. Addition-120

ally, we find that ECLM requires only 60% of the121

data to surpass Uni-MIS, with more training fur-122

ther enhancing its performance. In summary, the123

contributions of this work can be outlined as fol-124

lows: (1) We design an entity-slot framework that 125

transforms the traditional token-level slot-filling 126

task into an entity detection problem, thereby mit- 127

igating issues of misalignment and uncontrolled 128

generation length. (2) We introduce the chain of 129

intent concept, which enables LLMs to effectively 130

handle multi-intent recognition in a step-by-step 131

manner. (3) We demonstrate that our proposed 132

model, ECLM, outperforms strong baselines on 133

two widely used datasets, MixATIS and MixSNIPS, 134

across the majority of metrics. 135

2 Problem Definition 136

2.1 Multi-Intent Detection 137

Given an input sequence x = (x1, . . . , xn), multi- 138

intent detection can be defined as a multi-label 139

classification task that outputs a sequence of intent 140

labels oI = (oI1, . . . , o
I
m), where m is the number 141

of intents in a given discourse and n is the length 142

of the discourse. 143

2.2 Slot Filling 144

Slot filling can be considered as a sequence annota- 145

tion task that maps the input discourse x to a slot 146

output sequence oS = (oS1 , . . . , o
S
n). 147

3 Approach 148

As depicted in Figure 2, our methodology estab- 149

lishes a comprehensive framework for integrating 150

large language models (LLMs) into the domain of 151

multi-intent spoken language understanding (SLU). 152

The left side of the figure illustrates the prompt 153

structure used for training ECLM, alongside stan- 154

dard supervised fine-tuning (SFT) prompts. On the 155

right, we present an example of the ECLM train- 156

ing process, highlighting the key components: the 157

Entity Slot and the Chain of Intent. Finally, we 158

perform supervised fine-tuning to adapt the LLM 159

to the multi-intent SLU task. 160

3.1 Entity Slots Construction and Recovery 161

Our approach introduces a novel two-phase pro- 162

cess: Entity Slots Construction for training, and 163

Entity Slots Recovery for inference, designed to 164

bridge the gap between traditional sequence label- 165

ing and the generative capabilities of large language 166

models (LLMs). 167

3.1.1 Entity Slots Construction 168

In the Entity Slots Construction phase, we trans- 169

form conventional BIO sequence labeling into a 170
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[Instruction]
you are an expert of spoken language 
understanding, I need you to perform 
intent detection and slot filling for 
given utterance. 

[Input]
utterance: {utterance}

[Response]
intent: {intent}
slot: {slots}

[Instruction]
you are an expert of spoken language 
understanding, I need you to perform 
intent detection and slot filling for 
given utterance. 

[Input]
utterance: {utterance}

[Response]
sub_intent: {sub_intents}
intent: {intent}
entity_slot: {entity_slots}

Vanilla Prompt

ECLM Prompt

Chain of Intent

Weather Inquiry # Navigation

Weather Inquiry : 
Get the weather 

Navigation:
drive to the airport

Intent

Get the weather and drive to the airportUtterance

airport : B-LOCweather : B-WT

O  O    B-WT     O     O    O   O  B-LOC

Entity Slot

Slot

Figure 2: Brief introduction of the workflow of ECLM. The left shows the prompt structure for ECLM training and
vanilla SFT prompts. The right illustrates an example training process of ECLM.

structured entity-slot representation, optimizing for171

generative modeling with LLMs. Given a token se-172

quence T = {t1, t2, . . . , tn} and its corresponding173

BIO-annotated slots S = {s1, s2, . . . , sn}, we map174

these to a set of entity slots E = {e1, e2, . . . , em},175

where m is the number of identified entities. This176

mapping is defined by a function c as follows:177

c(T, S) =
{(

ki,
⋃

j∈Ii tj

)}m

i=1
, (1)178

where ki is the entity type derived from the ’B-’179

tag, and Ii is the index set of tokens correspond-180

ing to the i-th entity, identified by contiguous ’B-’181

and ’I-’ tags in S. This function systematically182

extracts and maps each entity in S, ensuring all183

tokens related to each entity are correctly grouped184

and labeled.185

3.1.2 Entity Slots Recovery186

During the inference stage, we implement an En-187

tity Slots Recovery process to convert the gener-188

ated structured entity slots back into a BIO-tagged189

sequence. This recovery process, defined by a func-190

tion r, can be expressed as:191

r(T,E) = {s1, s2, . . . , sn}, (2)192

where sj is determined for each token tj based193

on its presence in the entity slots E. The recovery194

follows these rules: (1). If tj is the first token of195

an entity in E, sj is assigned a ’B-’ tag with the 196

corresponding entity type. (2). If tj is a non-initial 197

token of an entity in E, sj is assigned an ’I-’ tag 198

with the corresponding entity type. (3). If tj does 199

not belong to any entity in E, sj is assigned an ’O’ 200

tag. 201

3.2 Chain of Intent 202

To effectively manage the complexity of multi- 203

intent spoken language understanding, we propose 204

a novel framework termed the "Chain of Intent," 205

inspired by the "Chain of Thought" reasoning pro- 206

cess (Wei et al., 2022). This framework enhances 207

the model’s ability to discern and process multiple 208

intents within a single utterance by segmenting it 209

into distinct sub-intent utterances, enabling more 210

granular understanding and response generation. 211

Consider an utterance U consisting of n intents. 212

Each intent Ii (where i = 1, 2, . . . , n) corresponds 213

to a specific segment of the utterance Ui. The pro- 214

cess of decomposing the utterance U can be for- 215

mally expressed as a mapping: 216

U 7→ {(I1 : U1), (I2 : U2), . . . , (In : Un)} (3) 217

Here, the structured pairs (Ii : Ui) represent each 218

intent Ii paired with its associated sub-utterance Ui. 219

During training, the model is presented with this 220

mapping to learn the relationship between each in- 221

tent and its corresponding segment of the utterance, 222
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thereby improving its ability to generate contextu-223

ally accurate and intent-specific responses.224

3.3 Supervised Fine-tuning225

We employ supervised fine-tuning to enhance the226

generative capabilities of LLMs, ensuring they227

meet the structured requirements of multi-intent228

spoken language understanding (SLU). This pro-229

cess involves adjusting the model parameters θ to230

minimize a loss function L across a set of train-231

ing examples. Given a training set {(Uj , Tj)}Mj=1,232

where Uj represents the j-th input utterance and Tj233

denotes the corresponding target output, including234

segmented sub-intents and entity slots, the fine-235

tuning objective is defined as:236

θ∗ = argmin
θ

M∑
j=1

L (LLM(Uj ; θ), Tj) (4)237

Here, LLM(Uj ; θ) represents the output generated238

by the LLM given the input Uj with parameters θ.239

The supervised fine-tuning process iteratively up-240

dates θ to more accurately map input utterances Uj241

to their corresponding intent and entity slot outputs242

Tj , thereby improving the model’s effectiveness in243

multi-intent SLU tasks.244

4 Experiments245

4.1 Datasets246

We conducted experiments on two widely used247

multi-intent SLU datasets: MixATIS (Hemphill248

et al., 1990; Qin et al., 2020a) and MixSNIPS249

(Coucke et al., 2018; Qin et al., 2020a). The Mix-250

ATIS dataset contains 13,162 training instances and251

828 test instances, primarily focusing on airline-252

related queries. In contrast, the MixSNIPS dataset253

spans a broader range of domains, including restau-254

rants, hotels, and movies, with 39,776 training in-255

stances and 2,199 test instances. These datasets are256

designed to mimic real-world scenarios, featuring257

utterances with 1 to 3 intents, distributed in ratios258

of 30%, 50%, and 20%, respectively and detail259

information can be found in Table 1.260

4.2 Experimental Settings261

We utilize Llama3.1-8B-Instruct as base model and262

our experiments were conducted with a carefully263

selected set of hyperparameters. We employed264

FlashAttention v2 to optimize memory usage and265

accelerate training. To determine the optimal set-266

tings, we performed a grid search over the learning267

rate [1× 10−5, 2× 10−5, 5× 10−5, 1× 10−4] and 268

the number of epochs [1, 2, 3]. Based on the re- 269

sults, we settled on a learning rate of 2× 10−5 and 270

a batch size of 32, tuning the model for 1 epoch 271

on both datasets. During inference, a generation 272

temperature of 0.0 was used to ensure deterministic 273

and consistent outputs. 274

Dataset MixATIS MixSNIPS

Vocabulary Size 722 11241
Intent categories 17 6
Slot categories 116 71
Training set size 13162 39776
Test set size 828 2199

Table 1: Dataset statistics

4.3 Baselines 275

In our study, we benchmark LLMs performance 276

against a range of established baselines in the multi- 277

intent SLU domain. These include vanilla mod- 278

els like Stack-Propagation (Qin et al., 2019): a 279

stack-propagation framework to explicitly incorpo- 280

rate intent detection for guiding slot filling. AGIF 281

(Qin et al., 2020b): an adaptive interaction network 282

to achieve fine-grained multi-intent information 283

integration, GL-GIN (Qin et al., 2021b): a local 284

slot-aware and global intent-slot interaction graph 285

framework to model the interaction between multi- 286

ple intents and all slots within an utterance, SDJN 287

(Chen et al., 2022): a multiple instance learning 288

and self-distillation framework for weakly super- 289

vised multiple intent information capturing, CLID 290

(Huang et al., 2022): a chunk-level intent detection 291

framework for recognizing intent within a frag- 292

ment of an utterance and SSRAN (Cheng et al., 293

2023): a transformative network built on the Trans- 294

former model, designed to reduce the complexity of 295

multi-intent detection in SLU through scope recog- 296

nition and bidirectional interaction between results 297

of slot filling and intent detection. We also in- 298

cluded PLM-based models such as Uni-MIS (Yin 299

et al., 2024): a unified multi-intent slu framework 300

via multi-view intent-slot interaction. Additionally, 301

SDJN(Bert) and CLID(Roberta) extend their re- 302

spective base models by incorporating pre-trained 303

language model backbones. 304

4.4 Main Result Analysis 305

The evaluation metrics included slot F1 score, in- 306

tent accuracy and semantic accuracy to compre- 307
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Model MixATIS MixSNIPS
Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

Stack-Propagation (Qin et al., 2019) 87.8 72.1 40.1 94.2 96.0 72.9
AGIF (Qin et al., 2020b) 86.9 72.2 39.2 93.8 95.1 72.7
GL-GIN (Qin et al., 2021b) 87.2 75.6 41.6 93.7 95.2 72.4
SDJN (Chen et al., 2022) 88.2 77.1 44.6 94.4 96.5 75.7
CLID (Huang et al., 2022) 88.2 77.5 49.0 94.3 96.6 75.0
SSRAN (Cheng et al., 2023) 89.4 77.9 48.9 95.8 98.4 77.5
SDJN + Bert 87.5 78.0 46.3 95.4 96.7 79.3
RoBERTa+Linear 86.0 80.3 48.4 96.0 97.4 82.1
CLID + Roberta 85.9 80.5 49.4 96.0 97.0 82.2
Uni-MIS (Yin et al., 2024) 88.3 78.5 52.5 96.4 97.2 83.4
ECLM (Ours) 90.2 80.7 56.2∗ 97.0 97.0 86.5∗

Table 2: Multi-Intent SLU performance on MixATIS and MixSNIPS datasets. Values with * indicate that the
improvement from our model is statistically significant over all baselines (p < 0.05 under t-test).

Model MixATIS Dataset MixSNIPS Dataset
Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

ECLM (Ours) 90.2 80.7 56.2 97.0 97.0 86.5
-w/o Entity Slot 73.5 78.7 54.9 92.7 97.6 69.7
-w/o Chain of Intent 89.4 82.6 52.9 96.8 98.0 85.1
-w/o Both (Vanilla SFT) 68.2 74.0 47.7 88.9 97.4 65.3

Table 3: Ablation experiments on the MixATIS and MixSNIPS datasets. Interestingly, we observe that entity slots
play a more significant role in the MixSNIPS dataset compared to MixATIS, while the chain of intent does not
explicitly improve intent accuracy but instead enhances overall performance.

hensively assess the sentence-level semantic frame308

parsing capabilities. These metrics, adhering to309

the methodologies delineated by Qin et al. (2021b);310

Huang et al. (2022); Yin et al. (2024) facilitate a nu-311

anced evaluation of SLU systems. The paramount312

metric, semantic overall accuracy, quantifies the313

system’s proficiency in simultaneously and cor-314

rectly predicting both intents and slots within a315

single sentence.316

Our main experiments yield several important317

observations: (1) As shown in Table 2, ECLM318

outperforms the strong baseline in slot filling F1319

scores in both datasets. This improvement indi-320

cates that the ECLM interaction effectively utilises321

entity slots to improve it’s slot filling ability. (2)322

For the single-domain MixATIS dataset, ECLM323

outperforms Uni-MIS with a 1.9 % point improve-324

ment in slot filling F1 scores (90.2%), a 2.2 %325

point improvement in intent prediction accuracy326

(80.7%), and a 3.7 % point improvement in over-327

all sentence-level semantic frame parsing accuracy328

(56.2%). For the multi-domain MixATIS dataset,329

ECLM outperforms Uni-MIS by 0.6 % points in330

slot-filling F1 score (97.0%) and 3.1 % points in331

overall sentence-level semantic frame parsing accu-332

racy (86.5%). These results highlight the competi-333

tive advantage of robust language models in multi- 334

intent SLU tasks. (3) Importantly, our framework 335

achieves state-of-the-art performance for most eval- 336

uation metrics, highlighting a promising research 337

direction for multi-intent SLU using LLM-based 338

methodologies. 339

4.5 Ablation Study 340

To understand the impact of key components in 341

ECLM, we conducted ablation experiments on the 342

MixATIS and MixSNIPS datasets. As shown in Ta- 343

ble 3, the results illustrate the contribution of entity 344

slots and the chain of intent to overall performance. 345

4.5.1 Without Entity Slot 346

Removing the entity slot significantly reduces per- 347

formance, with a drop of 16.7 % in slot F1 score 348

and 1.3 % points in overall accuracy on MixATIS. 349

Similarly, on MixSNIPS, we observe a drop of 4.3 350

% in slot F1 score, and the overall accuracy de- 351

creases by 16.8 %. This highlights the crucial role 352

of entity slots in maintaining high performance. Es- 353

pecially in the multi-domain dataset MixSNIPS, 354

the absence of entity slots may cause significant 355

misalignment, as the majority of slot labels are "O". 356

This could lead to the model incorrectly labeling 357
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Model intent num = 1 intent num = 2 intent num = 3
Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc)

GL-GIN 88.0 91.3 72.6 87.3 76.2 39.1 86.8 63.1 23.0
CLID 88.6 94.7 76.4 88.1 77.5 48.4 87.6 64.3 28.5
CLID + Roberta 88.6 95.8 77.6 85.4 80.3 48.8 84.7 66.8 29.0
Uni-MIS 89.2 95.1 78.6 87.6 78.3 50.5 86.7 66.7 31.7
ECLM(Ours) 92.1 93.7 79.7 90.3 79.4 54.8 90.3 70.0 39.5

Table 4: The result comes from the dataset MixATIS. The intent num denotes the number of intents in an utterance.
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Figure 3: Performance of ECLM on the MixATIS and MixSNIPS datasets at different training data proportions

words as "O" rather than their corresponding slot358

tags.359

4.5.2 Without Chain of Intent360

Eliminating the chain of intent structure leads to361

a 0.8 % point drop in slot F1 score and a 3.3 %362

decline in overall accuracy on MixATIS. On MixS-363

NIPS, the overall accuracy decreases by 1.4 %, em-364

phasizing the importance of intent chaining in en-365

hancing the model’s semantic understanding. How-366

ever, we observe that the improvement in intent367

detection accuracy is less pronounced, suggesting368

that the chain of intent mainly contributes to the369

joint effect and compromises some intent accuracy.370

4.5.3 Without Both (Vanilla SFT)371

When both components are removed, the perfor-372

mance suffers dramatically. The slot F1 score drops373

by 22.0 % and the overall accuracy by 8.5 % on374

MixATIS. The MixSNIPS dataset also shows a sig-375

nificant decrease, with the overall accuracy drop-376

ping by 21.2 %. This indicates that the Vanilla377

SFT method cannot effectively adapt LLMs to this378

domain.379

5 Further Exploration380

5.1 Influence of Different Intent Numbers381

The analysis of MixATIS dataset results, catego-382

rized by the number of intents as shown in Ta-383

ble 4, reveals significant insights into the perfor-384

mance of our ECLM model compared to baseline385

approaches. For single-intent utterances, ECLM 386

achieves superior performance with a slot F1 score 387

of 92.1% and overall accuracy of 79.7%, outper- 388

forming the strong Uni-MIS over Uni-MIS (89.2% 389

and 78.6% respectively). As the complexity in- 390

creases with multi-intent scenarios, ECLM’s ad- 391

vantages become more pronounced. In two-intent 392

cases, ECLM maintains its lead with a slot F1 of 393

90.3% and overall accuracy of 54.8%, showing a 394

substantial improvement over Uni-MIS (87.6% and 395

50.5% respectively). The performance gap widens 396

further for three-intent utterances, where ECLM 397

achieves a slot F1 of 90.3%, intent accuracy of 398

70.0%, and overall accuracy of 39.5%, significantly 399

surpassing Uni-MIS (86.7%, 66.7%, and 31.7% re- 400

spectively). This consistent outperformance, partic- 401

ularly in challenging multi-intent scenarios, under- 402

scores ECLM’s robustness and efficacy in handling 403

complex spoken language understanding tasks. The 404

results demonstrate ECLM’s capacity to maintain 405

high performance across varying levels of intent 406

complexity, indicating its potential as a versatile 407

solution for advanced SLU systems. 408

5.2 Influence of Training Data Ratio 409

Figure 3 illustrates the impact of varying training 410

data volumes on ECLM’s performance, focusing 411

on overall semantic accuracy across the MixATIS 412

and MixSNIPS datasets. We systematically ad- 413

justed the training data ratios at 0.2, 0.4, 0.6, 0.8, 414

and 1.0 to assess model proficiency under different 415
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Utterance:     what movie theatre is showing if the huns came to melbourne

ECLM 

Slot: 

Vanila SFT 

Slot: 

['SearchScreeningEvent']

['O', 'O', 'B-object_location_type', 'I-object_location_type', 'O', 'O', 'O’, 
'B-movie_name', 'I-movie_name', 'I-movie_name', 'I-movie_name']

ECLM 

Intent: 

Vanila SFT 

Intent: 
['SearchScreeningEvent']

[O', 'B-object_location_type', 'I-object_location_type', 'O', 'O’, 'B-movie_name’, 
'I-movie_name', 'I-movie_name', 'I-movie_name', 'I-movie_name', 'I-movie_name']

Vanilla LLM is not suitable for 
token level tagging !

Figure 4: Comparative analysis of ECLM and vanilla SFT performance on a complex multi-intent utterance,
highlighting ECLM’s superior slot filling capabilities and the limitations of LLMs in token-level tagging tasks.

data availability scenarios. The results demonstrate416

a consistent positive correlation between the data417

ratio and performance improvements across both418

datasets. For MixATIS, ECLM’s semantic accu-419

racy rises from 46.7% at 0.2 data ratio to 56.2%420

at full data utilization, surpassing the Uni-MIS421

baseline (52.5%) with just 60% of the training422

data. Similarly, on MixSNIPS, ECLM’s perfor-423

mance increases from 77.6% to 86.5%, exceeding424

the Uni-MIS benchmark (83.4%) also at approxi-425

mately 60% data ratio. Notably, ECLM exhibits426

robust performance even with limited data, achiev-427

ing competitive results at lower data ratios. The428

performance gains are more pronounced in the429

MixSNIPS dataset, suggesting ECLM’s particu-430

lar effectiveness in multi-domain scenarios. As431

the data ratio approaches 1.0, the performance im-432

provement rate gradually stabilizes, indicating a433

potential plateau effect at higher data volumes.434

5.3 Influence of Different Backbone LLMs in435

the ECLM Framework436

Table 5 presents a comparative analysis of over-437

all accuracy across various large language models438

(LLMs) when integrated into our ECLM frame-439

work, evaluated on both the MixATIS and MixS-440

NIPS datasets. The results demonstrate a clear441

progression in performance as we move towards442

more advanced LLM architectures. Llama2-7B-443

Chat, while competent, shows the lowest perfor-444

mance with overall accuracies of 48.2% and 81.5%445

on MixATIS and MixSNIPS respectively. Mistral-446

7B-Instruct-v0.1 exhibits a notable improvement,447

achieving 50.1% and 83.9% on the same datasets,448

highlighting the rapid advancements in LLM capa-449

bilities. The Llama3.1 series showcases significant 450

performance gains. The base Llama3.1-8B model 451

achieves impressive results of 55.6% and 85.9% 452

on MixATIS and MixSNIPS, respectively. How- 453

ever, the instruction-tuned variant, Llama3.1-8B- 454

Instruct, emerges as the top performer, reaching 455

56.2% accuracy on MixATIS and 86.5% on MixS- 456

NIPS. The superior performance of Llama3.1-8B- 457

Instruct underscores the importance of instruction 458

tuning in enhancing model capabilities for specific 459

tasks like multi-intent SLU. This model’s consis- 460

tent outperformance across both datasets justifies 461

its selection as the default backbone for our ECLM 462

framework. 463

Model MixATIS MixSNIPS
Llama2-7B-Chat 48.2 81.5
Mistral-7B-Instruct-v0.1 50.1 83.9
Llama3.1-8B 55.6 85.9
Llama3.1-8B-Instruct 56.2 86.5

Table 5: The impact of different backbone LLMs Inte-
grated into the ECLM Framework.

5.4 Case Analysis 464

As illustrated in Figure 4, we present a compar- 465

ative analysis of ECLM and vanilla LLM-based 466

SFT approaches on a complex multi-intent utter- 467

ance. The example, "what movie theatre is showing 468

if the huns came to melbourne", demonstrates the 469

superior performance of ECLM in handling intri- 470

cate spoken language understanding tasks. Both 471

ECLM and vanilla SFT correctly identify the pri- 472

mary intent as "SearchScreeningEvent". How- 473

ever, the critical distinction emerges in the slot 474

7



filling task. ECLM accurately labels each token,475

precisely identifying "movie theatre" as the "ob-476

ject_location_type" and "if the huns came to mel-477

bourne" as the "movie_name". In contrast, the478

vanilla SFT model, despite its correct intent clas-479

sification, exhibits significant errors in slot filling.480

The vanilla SFT incorrectly labels "what" as part of481

the "object_location_type" and mistakenly extends482

the "movie_name" to include "showing". This mis-483

alignment highlights a fundamental limitation of484

autoregressive LLMs in token-level tagging tasks.485

The sequential nature of their predictions can lead486

to error propagation and misalignment with the487

original utterance tokens.488

6 Related Work489

6.1 Intent Detection and Slot Filling490

The inherent interconnected of intent detection and491

slot filling has spurred the development of unified492

models that foster mutual interaction between the493

two elements. Joint learning techniques, acknowl-494

edging the potent correlation between intents and495

slots, have proven particularly efficacious in re-496

cent years. Certain methodologies facilitating si-497

multaneous slot filling and intent detection employ498

shared parameters (Liu and Lane, 2016; Wang et al.,499

2018; Zhang and Wang, 2016), while others model500

the relationship between the two via either unidirec-501

tional interaction or bidirectional-flow interaction502

(Qin et al., 2021c). Models adopting unidirectional503

interaction, such as those by (Goo et al., 2018; Li504

et al., 2018; Qin et al., 2019), primarily empha-505

size the flow from intent to slot. Gating mecha-506

nisms, functioning as specialized guiding forces507

for slot filling, have seen extensive use (Goo et al.,508

2018; Li et al., 2018). Qin et al. (2019) put forth a509

token-level intent detection model to curtail error510

propagation. Bidirectional-flow interaction mod-511

els (E et al., 2019; Zhang et al., 2019; Liu et al.,512

2019; Qin et al., 2021a), on the other hand, ex-513

amine the reciprocal influence of intent detection514

and slot filling. E et al. (2019) utilized iterative515

mechanisms to enhance intent detection and slot516

filling in both directions. Fine-grained intent de-517

tection and intent-slot interaction models have also518

seen remarkable advancements. Chen et al. (2022)519

developed a Self-distillation Joint SLU model ex-520

ploitating multi-task learning, and treated multiple521

intent detection as a weakly-supervised problem522

solved through Multiple Instance Learning (MIL).523

Similarly, Huang et al. (2022) introduced a chunk-524

level intent detection framework that employs an 525

auxiliary task to pinpoint intent transition points 526

within utterances, thereby augmenting the recogni- 527

tion of multiple intents. Furthermore, Cheng et al. 528

(2023) proposed a transformative network rooted 529

in the Transformer model, designed to diminish the 530

complexity of multi-intent detection in SLU. Re- 531

cently, Yin et al. (2024) further develop an united 532

multi-view intent-slot interaction framework(Uni- 533

MIS), archiving promising performance. 534

6.2 Open Source Large Language Models 535

The advent of open-source Large Language Mod- 536

els (LLMs) such as Llama2 (Touvron et al., 2023), 537

Vicuna (Peng et al., 2023), and Mistral (Jiang et al., 538

2023) has dramatically reshaped the landscape of 539

Natural Language Processing. These models, char- 540

acterized by their vast parameter spaces and di- 541

verse training corpora, have significantly expanded 542

the capabilities and applications of NLP technolo- 543

gies. The rapid evolution of LLMs has accelerated 544

progress across a broad spectrum of NLP tasks, in- 545

cluding natural language inference, summarization, 546

and dialogue systems (Geogle., 2023; Kavumba 547

et al., 2023). Complementing these advancements, 548

the "Chain of Thought" method (Wei et al., 2022) 549

has emerged as a pivotal technique in enhancing 550

the reasoning capabilities of LLMs. This approach 551

enables models to break down complex problems 552

into interpretable steps, significantly improving per- 553

formance on tasks requiring multi-step reasoning 554

or complex problem-solving. 555

7 Conclusion 556

In this paper, we introduced the Entity-level Large 557

Language Model framework ECLM for multi- 558

intent spoken language understanding. By trans- 559

forming token-level slot-filling into an entity recog- 560

nition problem and introducing the "Chain of In- 561

tent" concept, we effectively addressed the chal- 562

lenges of applying LLMs to SLU tasks. Our 563

approach significantly outperformed state-of-the- 564

art models, including Uni-MIS and conventional 565

LLM fine-tuning, on the MixATIS and MixSNIPS 566

datasets. ECLM demonstrated robust performance 567

across various intent counts, particularly excelling 568

in complex multi-intent scenarios. 569

8 Limitations 570

(1) Scaling up Model Size of ECLM: Due to com- 571

putational resource constraints, we were unable to 572

8



experiment with ECLM models larger than 8 bil-573

lion parameters. However, we believe that scaling574

to larger model sizes could potentially yield further575

improvements in performance. Recent trends in576

language model research suggest that larger mod-577

els often demonstrate enhanced capabilities across578

various NLP tasks. Future work with access to579

more substantial computational resources could580

explore the impact of increased model size on581

ECLM’s performance in multi-intent SLU tasks.582

(2) Prospects for Improvement through Data Cu-583

ration and Prompt Optimization: Our current re-584

search framework does not extend to the advanced585

strategies of selective data curation or intricate586

prompt engineering. Recognizing this as a limi-587

tation, we propose that future investigations will588

embrace these crucial techniques.589
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