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SPATIAL MATCHING LOSS FUNCTION FOR MASS SEG-
MENTATION ON WHOLE MAMMOGRAPHY IMAGES

ABSTRACT

Breast cancer is one of the cancer types with a high mortality rate among women,
and mammography is one of the primary means to improve the identification of
breast cancer. Deep-learning-based approaches are among the pioneering meth-
ods for mass segmentation in mammography images; in this category of methods,
the loss function is one of the core elements. Most of the proposed losses aim
to measure pixel-level similarities. While the hard-coded location information is
provided in these losses, they mostly neglect to consider higher-level information
such as relative distance, sizes, and quantities, which are important for mass seg-
mentation. Motivated by this observation, in this paper, we propose a framework
for loss calculation in mass segmentation for mammography images that incorpo-
rates the higher-level spatial information in the loss by spatial matching between
the prediction and the ground truth masks while calculating the loss. The pro-
posed loss calculation framework is termed Spatial Matching (SM) loss. Instead
of only calculating the loss over the entire masks that captures the similarity of the
segmentation and the ground truth only at the pixel level, SM loss also compares
the two in cells in a grid that enables the loss to measure higher-level similari-
ties in the locations, sizes, and quantities. The grid size is selected according to
each sample, which enables the method to consider the variation in mass sizes. In
this study, Binary Cross Entropy (BCE) and Tversky are used as the core loss in
experiments for the SM loss. AU-Net is selected as the baseline approach. We
tested our method on the INbreast dataset. The results of our experiments show a
significant boost in the performance of the baseline method while outperforming
state-of-the-art mass segmentation methods.

1 INTRODUCTION

Breast cancer is reportedly one of the cancer types with a high mortality rate among women (Siegel
et al., 2022). Thanks to powerful deep-learning-based approaches proposed in recent years for breast
cancer identification, the performance of state-of-the-art research in this field has been immensely
boosted. This is specifically evident for mammography, as one of the most common screening tools
with reported effectiveness in reducing mortality rate (Nyström et al., 2002). In practice, automated
breast cancer detection could be used in the clinical setting to reduce the cost of a second reader
(Batchu et al., 2021; McKinney et al., 2020).

While mass detection approaches Liu et al. (2021b;a) provide the bounding boxes of the mass, mass
segmentation provides boundary information in addition to location and size, which is important for
determining the abnormality type Guliato et al. (2007); Sun et al. (2020); Lee et al. (2017). Some
of the challenges for mass segmentation are diversity of appearance and sizes in the abnormalities
and pixel class imbalance. In this study, we propose a spatial matching loss framework that incorpo-
rates higher-level information such as distance, size, and quantity in the calculation of a given core
loss, aiming to alleviate the limitations of the previously proposed loss functions. This is specif-
ically important for mass segmentation as spatial matching compares the masks locally and could
alleviate the pixel class imbalance problem, which is a major problem in mass segmentation. In
addition, due to the variety of sizes and appearance of the masses, specifically for samples with
higher ACR density, distinguishing the mass from other regions of the image is more challenging,
and the total mismatch between the location, quantity, and size of predicted and true masses is likely
even in recent well-developed methods. Therefore, the proposed loss is beneficial for handling these
challenges, which are common in mass segmentation in mammography images.
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Figure 1: Examples to illustrate the challenges for BCE loss. The pink and green shapes are true
and predicted masses, respectively. In each pair of images, the loss value is the same. Demonstrated
challenges are: (a) Ignoring the quantity of predicted masses with respect to true mass, (b) the bias
of the loss to correctly predict the majority class and ignoring the distance of the predicted and true
masses, (c) indifference to the false positive and false negative rates.

Widely used loss functions mostly target the pixel-level matching of the ground truth and prediction
masks. For instance, Binary Cross Entropy (BCE) (Yi-de et al., 2004) is among the widely used
loss functions for mass segmentation. Figure 1 summarizes the most challenging properties of the
BCE loss for mass segmentation. In Figure 1, simplified examples of overlaid ground truth and
prediction masks are presented. The gray color indicates that the pixels in both of the masks belong
to the background class. The pink and green color shapes present the masses in the ground truth and
the prediction mask, respectively. Each of the pairs of images in a, b, and c in Figure 1 presents a
challenge for BCE. The value of the BCE loss and the total size of the green and pink regions in the
left and right images are the same in each pair. In Figure1a, BCE is not able to differentiate between
multiple predicted masses (left) versus only one (right) when the overall sizes remain the same. In
Figure 1b, the BCE loss value is the same in both images, showing that BCE neglects to consider
the distance between the real and predicted masses. In addition, it shows that BCE will be biased
toward correctly predicting the background class as both predicted and the ground truth masses are
very small compared to the background. Finally, Figure 1c shows that BCE does not differentiate
between the different sizes for false positives and false negatives.

Several studies have attempted to address the bias of the BCE through weighting strategies to bal-
ance the impact of each class that could compensate for the pixel class imbalance problem in the
segmentation task for medical images. However, they mostly fall short of moving beyond pixel-level
comparison of the ground truth and the prediction and only focus on the class imbalance problem.
Tversky loss (Salehi et al., 2017) is one of the losses that eliminates the correctly predicted back-
ground (easy samples) from the calculation of the loss and also weights the false positive and false
negative terms differently to differentiate the contribution of each in the loss. However, the weights
are fixed hyper-parameters regardless of the severity of the pixel class imbalance problem. More-
over, it fails to move beyond pixel-level comparison and to take the distance and quantities into
consideration. Unlike previous attempts to address the aforementioned challenges, in this paper, in-
stead of only considering a pixel-level solution that could address the problem partially, we propose
the spatial matching loss framework, which incorporates the idea of local comparison for the masses
in a grid to embed the regional information in a given core loss. This, in turn, enables our approach
to use the distance, size, and quantity information in the calculation of the loss. All the aforemen-
tioned proposed strategies are possible with the concept of spatial matching, which was inspired by
the usage of Spatial Pyramid Matching (SPM) (Lazebnik et al., 2009) in (Alinia & Razzaghi, 2017;
Aliniya & Razzaghi, 2018) for scene parsing. It should be noted that the SM loss could be used
for other segmentation tasks for medical images with similar properties and could also be extended
to other domains for binary segmentation tasks. We tested the proposed SM loss with BCE and
Tversky losses as the core losses on AU-Net, one of the state-of-the-art methods that are proposed
specifically for mass segmentation in mammography images. The experimental results show that
the SM loss significantly outperforms state-of-the-art methods.

The following is the summary of contributions of the paper: 1) Proposing the spatial matching loss
for mass segmentation that allows the pixel-level losses to utilize spatial correspondences at the local
and global levels. 2) Introducing the gird-base loss calculation for local comparison. 3) Sample-level
cell size extraction that improves the local comparison by incorporating the size of the true mass in
the generation of the grid. 4) Introducing two ways to utilize the information provided by the grid
to incorporate the size, distance, and quantity of the masses. 5) Evaluating the proposed method
and conducting ablation studies on INbreast, which is a benchmark dataset for mass segmentation
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in mammography. 6) Quantitatively analyzing and comparing the findings from our experimental
results for the proposed method with state-of-the-art approaches.

2 RELATED WORK

This section is dedicated to reviewing the related work to this study from two perspectives. Firstly, a
brief review of recent deep-learning-based approaches for mass segmentation on whole-view mam-
mography images (the core task of this paper) is presented. Secondly, current loss functions that are
proposed mainly for binary segmentation tasks are reviewed.

2.1 MASS SEGMENTATION ON WHOLE MAMMOGRAMS

In this section, only deep-learning-based mass segmentation methods for whole mammography im-
ages have been reviewed. The ROI-based approaches have been excluded due to the differences in
their challenges and strategies for solving them compared to methods for the whole mammogram.

Inspired by the fully convolutional architecture in (Long et al., 2015), Ronneberger et al. (2015)
proposed U-Net which is one of the early deep-learning-based segmentation methods for medical
images. U-Net is designed with a symmetric encoder-decoder architecture that performs well for
limited data. This property of U-Net makes it specifically favorable for biomedical image segmen-
tation tasks with limited datasets. U-Net combines low-level location information from the encoder
with high-level contextual information from the decoder.

Inspired by the effectiveness of U-Net, a new wave of modification and tailoring of U-Net for differ-
ent medical tasks has emerged (Wu et al., 2019; Zhang et al., 2023; Zhou et al., 2018; Li et al., 2020;
Cao et al., 2023; Oktay et al., 2018; Song et al., 2019; Hai et al., 2019), continuing to push the per-
formance boundaries of medical image segmentation. In this category, in (Li et al., 2019), authors
proposed a U-Net-based approach based on the idea of utilizing a densely connected network in the
encoder and a CNN with attention gates in the decoder. Another line of research within the scope of
multi-scale studies is (Chen et al., 2020), where the generator was designed as an improved version
of U-Net. Before sending the segmentation results to the discriminator, multiscale results were cre-
ated for three critics with different scales in the discriminator. Rajalakshmi et al. (2021), developed
an approach employing the error of the outputs of intermediate layers relative to the ground truth
labels as a supervision signal to boost the model’s performance.

In (Sun et al., 2020), the authors introduced an attention-guided dense-up-sampling asymmet-
ric encoder-decoder network (AU-Net) with an intermediate up-sampling block, which includes a
channel-wise attention mechanism designed to leverage the beneficial information presented in both
low and high-level features. To mitigate the problem of relatively low performance of the U-Net
approach on small-size masses, Xu et al. (2022) proposed to use a selective receptive field module
with two parts, one for generating several receptive fields with different sizes and one for selecting
the appropriate size of the receptive fields. AU-Net has been chosen as the baseline in this study.

2.2 LOSS FUNCTIONS FOR MEDICAL IMAGE SEGMENTATION

This section reviews the loss functions widely used for the binary segmentation task. Loss functions
could be categorized into two groups with respect to the pixel dependencies: loss functions that
consider the pixels as independent entities or those that take the dependencies between the pixels
into consideration. In the pixel-level category, BCE (Yi-de et al., 2004) penalizes the discrepancy
between predicted and ground truth for all pixels. As improved versions of BCE, Weighted Binary
Cross Entropy (Pihur et al., 2007) and Balanced Cross Entropy (Xie & Tu, 2015) differentiate be-
tween the effect of false positives and false negatives through weighting coefficients. With a similar
goal, Focal loss (Yeung et al., 2022) further improved BCE by changing the magnitude of the loss
according to the hardness of the examples based on the prediction confidence for them. Entirely
eliminating the true negative, Dice loss (Milletari et al., 2016) addressed the pixel class imbalance
problem (Jadon, 2020), formulated as the ratio of correctly classified pixels to the total number of
positive pixels in the prediction and ground truth masks. Tversky loss (Salehi et al., 2017) provided
a way to control the contribution of the false positive and the false negative terms by weighting these
terms (they could have different weights).
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Figure 2: Overview of the grid loss in the proposed method. The green oval shape and the orange
circle are true and the predicted masses, respectively. (a-c) are basic, scale, and distnce-based SM
losses for L∗

G−A, respectively. (e-f) present the same variations of L∗
G−NZ , in which the cells con-

taining only true negatives are eliminated. Considering cells with positive pixels (true or predicted)
for the scale-based version (b,e), the green, orange, and yellow show cells containing TP (TP and
FP) and FP, respectively. For the distance-based version (c, f), blue cells contain FP.

All the aforementioned losses are pixel-level (i.e., they consider the pixels as independent entities).
While being effective, they neglect to consider the relationship among pixels in the loss calculation.
In this category, inspired by the influence of the structural term in the SSIM (Wang et al., 2004)
used in (Huang et al., 2020), the authors of Structural Similarity Loss (SSL) (Zhao et al., 2019b)
proposed to weight the cross-entropy of every two pixels based on the error between two image
regions, which indicates the degree of linear correlation between them. The authors also proposed
to eliminate pixels with low error and emphasize on those with high error by thresholding the error
rate. RMI (Zhao et al., 2019a) is another research aiming to incorporate structural similarity by
converting regions around a center (pixel) to a multi-dimensional point and then maximizing the MI
between multidimensional distributions.

Several compound losses (Yeung et al., 2022; Salehi et al., 2017; Taghanaki et al., 2019) have been
proposed to reap the benefits of different losses by combining two or more of them in a weighted
sum. Combo loss (Taghanaki et al., 2019) was proposed to control the contribution of false positive
and false negative terms in the BCE by weighting them differently, where the total loss is a weighted
sum of BCE and Dice loss. Adaptive sample-level prioritizing (ASP) (Aliniya et al., 2023a) and
Density-ASP (Aliniya et al., 2023b) losses are two approaches for weighting the loss terms adap-
tively, according to each sample. The loss is calculated in an adaptive manner by controlling the
influence of each loss term according to each sample. While ASP loss uses the ratio of the mass
to image size as a re-weighting signal, Density-ASP leverages the density category associated with
the image sample as the re-weighting signal. In addition, instead of re-weighting the Dice and
BCE losses in the hybrid setting, Density-ASP moves beyond the pixel-level losses by re-weighting
region-level and pixel-level loss terms.

All aforementioned losses could be categorized into two groups: region-level and pixel-level losses.
The proposed SM loss could be integrated with both types of losses to boost their performances. It
should be noted that our spatial matching framework while being similar to region-level losses (RMI,
SSL, and Density-ASP losses) in the respect that all of them try to incorporate the spatial information
in the calculation for the loss, is greatly different. Region-level losses aim to consider the value of
the surrounding pixels directly in the calculation of the loss for a centering pixel. However, the SM
is formulated in a way that compares the global and local spatial similarities between the images.
The following section is dedicated to presenting the proposed method in detail.

3 PROPOSED METHOD

The proposed method is presented in Algorithm 1. The main idea of SM loss is to provide a
framework for loss calculation that incorporates higher-level spatial information in a given core loss
L (in this study, BCE and Tversky losses presented in Equations 2 and 3 have been selected as
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core losses to evaluate SM loss). To achieve this goal, given prediction (P ) and ground truth (Y )
masks and a grid G = {c1, ..., cNG

} over both masks (NG is the number of the cells), we propose
to calculate the loss over the cells ( presented in Figure 2), in a grid in addition to the loss for whole
masks as presented in Equation 1.

Algorithm 1: Spatial Matching Loss
Data: P , Y , Grid, G, L, SM
Result: LSM

1 LI ← calculate L for the whole masks;
2 foreach i ∈Grid do
3 yi, pi ← get i-th cells in Y and P ;
4 Li ← compute L over pi and yi;
5 if SM is Basic then
6 LG ← LG + Li;
7 else
8 if SM is Scale or Scale-Distance then
9 NZP ← NZP + 1 if pi contains mass;

10 NZY ← NZY + 1 if yi contains mass;
11 LG ← LG + Li;
12 if SM is Distance or Scale-Distance then
13 Di ← distance from pi to closest mass in Y if pi contains mass and yi does not

contain mass;
14 LG ← LG + Li × σ(Di);

15 if G is G-A then
16 LG ← Divide LG by number of cells.
17 else
18 LG ← Divide LG by the number of cells containing at least one of the FP, FN, or TP.
19 if SM is Basic or Distance then
20 LSM ← LI + LG;
21 else
22 LSM ← LI + LG × σ(NZP /NZY );

LSM = LI + L∗
G−∗ (1)

LI is the loss over the entire masks and L∗
G−∗ presents the grid loss. We propose two different ways

to aggregate the losses for cells Li (loss value for ith cell) into the grid loss LG (the name of which
will replace the superscript star) and three versions for calculating the LG (the name for these will
replace the star in subscript). Incorporating the grid loss in the calculation of the SM loss allows
the method to capture the local spatial information in addition to the overall pixel-level loss, as the
distribution of the matches and mismatches will differ at the local level. For instance, cells only
containing true negatives in both masks will be ignored from the total loss calculation, reducing
the loss’s bias toward correctly predicting the majority class. Furthermore, one important aspect of
the SM loss is the selection of the height and width of the cells, which plays a crucial role in the
performance of the method. We propose to generate the grid according to each sample in which the
height and width of the cells are selected based on the size of the masses in Y (In Figure 2 the green
oval and orange circle are the true and predicted masses respectively). To this end, the minimum
height and width of the bounding boxes surrounding the masses in Y have been used. To ensure
equal division of the masks, the numbers have been rounded to the closest number in an exponential
sequence (up to 256, which is the image size) of numbers that are powers of 2 for the size of the
grid. This has been depicted in the ”Extract Grid Size” module in Figure 2. Using the mass size
for determining the size of the grids allows the method to reduce the impact of the class imbalance
problem by customizing the size according to the mass size (minority class).

BCE = − 1

N

(
Yj log(Pj) + (1− Yj)log(1− Pj)

)
(2)
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T =

∑
j yjpj∑

j yjpj + α
∑

j yj(1− pj) + β
∑

j(1− yj)pj
(3)

3.0.1 AGGREGATING THE CELL LOSSES INTO THE GRID LOSS

We propose two ways to combine the cell losses to form the grid loss. One is averaging loss values
over all of the cells (Equation 4), which is called L∗

G−A, as shown in Figure 2(a-c).

L∗
G−A =

1

NG

NG∑
i

Li (4)

In the second variation, we aim to target the class imbalance problem by eliminating the easy cells
that only contain true negative samples. This variation (Figure 2(d-f)), L∗

G−NZ is presented in
Equation 5 in which 1{} returns one only if the condition inside {} is met; otherwise, it will be zero.
For the condition, we used summation to specify cells containing at least one of the true or false
positives will be considered. As shown in Figure 2(d-f), all of the cells containing only true negative
(shown by cross sign) have been eliminated.

L∗
G−NZ =

∑NG

i Li∑NG

i 1{
∑

k y
k
i +

∑
k p

k
i > 0}

(5)

Here, yi and pi are regions from Y and P in ith cell and k presents kth pixel in the region i .

3.0.2 STRATEGIES FOR CALCULATING THE GRID LOSS

Up to this point, the basic idea of the SM loss has been presented by simply calculating the loss for
each cell Li in the grid (Equation 6) called basic SM loss (Figure 2(a,d)). This variation captures
local similarities in the masks. In subsection 3.0.1, the basic SM loss was used for explanation.

LB
G−∗ =

NG∑
i

Li (6)

The SM loss could be further improved by incorporating the scale of the real and predicted masses to
overcome the size differences and also the differences in the quantities of the masses. This variation,
called scale SM loss, is presented in Equation 7, in which the LG will be re-scaled with the scale
ratio (Equation 8). The ratio is defined as the number of the cells containing the positive pixels in
the predicted mask (shown by orange and yellow color cells in Figure2(b,e)) over the number of
the cells containing the positive pixels in the ground truth ( shown by green and yellow colors in
Figure 2(b,e). Yellow color presents cells that contain both predicted and true masses. The ”Extract
Positive Cells” module identifies these cells.

LS
G−∗ = σ(S)

NG∑
i

Li (7)

S =

∑NG

i 1{
∑

k p
k
i > 0}∑NG

i 1{
∑

k y
k
i > 0}

(8)

The σ is a sigmoid function used to keep the ratio between 0 and 1, in addition to adding some non-
linearity to control the effect of the scale ratio. The numerator measures how large the predicted
mass is relative to the true mass as the cell size is defined according to the true mass size, penalizing
the large differences by increasing the loss. The cell size is a function of true mask size, so the
denominator will be four at maximum for samples with one mass, which is the majority of samples.
The values of more than one occur if the mass is divided between the cells. The sigmoid function
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Figure 3: Results of ablation studies for (a) using minimum and average of the real masses sizes for
determining the size of cells, (b) using sigmoid versus direct values of the scale and distance.

helps to handle the small changes that can present small noise, like division up to four in the masses.
One situation in which the denominator can have large values is when there are several masses in one
sample. For these cases, as the cell size is selected based on the size of the smaller mass, the scale-
based loss would not accurately present the initial idea of the scale, depending on the sizes of the
true and predicted mass. The denominator might be considerably bigger than the numerator, which
will decrease the impact of the grid-based loss depending on the magnitude of these samples, which
is appropriate as the cell loss does not accurately present the true mass size. The scale implicitly
penalizes the larger qualities of the predicted mass compared to the real mass, considering that if
a certain number of predictions for the positive class are presented in one cell, they all will be
counted as one cell. However, if the same number of positively predicted pixels are presented in
five different parts of the image (more quantities), the number of cells for the same number of pixels
will be larger; therefore, SM will penalize the difference in the quantity to some extent compared to
pixel-level losses. It should noted the ratio of the number of pixels instead of the cells in the scale
would not incorporate the quantities into the calculation.

The last variation of the SM loss presented in Equation 9 aims to incorporate the distances between
the real and predicted masses in the calculations. To this end, for all cells that contain only false
positive and true negative (shown by blue color in Figure 2(c,f)), their loss value will be rescaled by
the distance of the cell to the closest real mass to penalize far predictions more. The ”Extract False
Positive Cells” module identifies these cells

LD
G−∗ =

NG∑
i

σ(di)Li (9)

The σ function in Equation 9 is used for the same purpose as in Equation 7. Finally, the scale and
distance-based SM loss could be used in combination. The overview of the approach is presented
in more detail in Algorithm 1. The inputs are the ground truth (Y ), prediction (P ), aggregation type
(G), loss type (BCE or Tversky), grid, and SM loss variation (SM ). The output is the SM loss.

4 EXPERIMENTAL RESULTS

4.1 DATASET AND EVALUATION METRICS

The INbreast dataset contains 410 images, including various abnormality types. Only 107 of the
images containing masses have been used in this study. A 5-fold cross-validation was employed,
which is a commonly used setting for the measurement of the performances of methods on the
INbreast dataset. The dataset was randomly divided into training (80%), validation (10%), and test
(10%) sets. We have normalized the intensity of the images, and all images have been resized to
256×256. No data augmentation or image enhancement was considered in our experiments in order
to only measure the effect of the loss function. For AU-Net (baseline), the batch size was set to four;
the learning rate was set to 0.0001.
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L∗
G−A L∗

G−NZ

Metrics DSC {∆A} SEN HAU ACCU DSC {∆A} SEN HAU ACCU

B
C

E
SM-B 72.12 13.09 70.88 5.00 98.69 71.25 16.21 71.95 5.08 98.54
SM-D 73.13 12.45 72.80 5.00 98.66 73.03 14.77 70.89 4.97 98.67
SM-S 73.03 14.44 74.42 5.11 98.60 72.76 16.53 71.16 5.01 99.32
SM-SD 75.70 10.29 73.79 4.89 99.46 71.12 12.62 66.95 5.14 98.59

T
ve

rs
ky

SM-B 71.77 14.88 70.70 5.06 98.58 75.92 11.85 78.41 5.00 98.72
SM-D 72.25 17.58 74.92 5.11 99.17 71.86 13.51 70.65 5.06 98.57
SM-S 77.24 09.49 79.38 4.84 98.78 73.38 12.31 75.82 4.96 99.16
SM-SD 72.72 05.80 72.87 4.97 98.57 70.36 21.34 69.46 5.03 98.55

Table 1: Comparison of different variations of the proposed method using BCE and Tversky losses.

Method DSC ∆A SEN SEN Accuracy
ARF-Net 70.05 30.05 59.59 - 98.71
AU-Net 65.32 23.68 57.95 5.29 98.46
ASP-Q 68.03 25.04 63.12 - 98.54
ASP-L 71.92 22.31 64.56 - 98.71
ASP-C 74.18 19.28 67.21 - 98.78
Density-ASP 74.59 10.91 78.16 - 98.65
SM-SD(BCE) 75.70 10.29 73.49 4.89 99.46
SM-S(Tversky) 77.24 09.49 79.38 4.84 98.78

Table 2: Comparison of the proposed method with state-of-the-art approaches.

Due to the pixel class imbalance problem associated with mammograms, we have selected several
metrics to better illustrate the strengths and weaknesses of the methods. Specifically, the Dice Sim-
ilarity Coefficient (DSC), Relative Area Difference (∆A), Sensitivity, Hausdorff Distance (HAU),
and Accuracy (ACCU) have been selected due to the complementary information they provide for
the evaluation of methods. For the AU-Net method, the publicly available implementation was used,
and we implemented the ARF-Net approach according to the description in the paper.

4.1.1 ABLATION STUDY

In this section, the results of experiments for selecting various parameters that influence the perfor-
mance of the SM loss have been presented. Table 1 summarises the results for each of the BCE and
Tversky losses using all the variations of the SM loss. As shown in Table 1, the SM loss significantly
improves upon the BCE loss across all of the metrics. SM loss using the BCE performs better in the
LG−A version, and the best performance is achieved for the combination of scale and distance.

Regarding the Tversky loss, SM loss provides a robust improvement across all the metrics. SM
loss using Tversky as the core loss also yields better results in LG−A setting in general. Also, the
best performance of the SM loss is achieved by the LS

G−A using the Tversky loss (SM-S row in
the L∗

G−A for Tversky) section. While achieving overall improvement on both BCE and Tversky
losses, the relative performance of the basic, scale, and distance-based SM loss vary in different
settings; we attribute this to the fact that some of them may target the same challenge at the same
time. For example, for the BCE in the L∗

G−A, the only varying factors are the effect of basic, scale,
and distance-based and a combination of scale and distance-base versions. Appendix A provides the
result for Dice loss as the core loss.

In addition to the previous experiments, we conducted several experiments on the impact of the
selection of the grid size and the re-scaling method for the distance and scale-based SM loss. Firstly,
as some mammography images contain several masses with different sizes when computing the grid
size, the question is whether to use the average of the sizes or the minimum size. As the maximum
will increase the effect of the true negative, it is not considered in this experiment. Figure 3a depicts
the results of the experiments, highlighting the advantage of using minimum value. It should be
noted that a minority of images in the mammography dataset contain several masses. Therefore,
given the boost in the result, this is still an important factor to consider. In the second experiment,
we explored the idea of using sigmoid (that adds some non-linearity toward the tails of the ratios
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Figure 4: Examples of results for AU-Net, ARF-Net, ASP variations, Density-ASP, and SM loss
(two top rows are for BCE loss, and the rest are for the Tversky loss). The green and blue lines are
the borders of ground truth and prediction masks, respectively.

for scale and distance) and using the ratios directly, in which even small changes in the ratio will
be reflected in the loss. As shown in Figure 3b the sigmoid performs better compared to directly
including the ratios. One reason could be that directly using ratio might add noise to the training.

4.1.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2 presents the comparison between the best-performing version for the SM loss and the state-
of-the-art methods. AU-Net and ARF-Net use hybrid loss, which is a weighted sum of Dice and
BCE losses. ASP loss variations and Density-ASP loss are also hybrid losses with sample-based
weighting strategies, and they utilize the mass size and density categories of the images in the calcu-
lation of the loss, respectively. As shown in Table 2, SM loss significantly outperformed all of them.
Compared to the baseline method the improvements are as follows: (DSC : +11.92, ∆A : −14.19,
SEN : +21.43, HAU : −0.45, Accuracy : +0.32). ARF-Net has a different architecture, which
incorporates the size in the design; also, sample-level losses use additional information alongside
the ground truth segmentation. Compared to these methods, SM loss does not use additional infor-
mation or the sizes in the architecture (AU-Net) yet outperformed them by a considerable margin.
Some of the segmentation examples for all the methods have been presented in Figure 4, in which
SM loss improves the segmentation results for various mass sizes.

5 CONCLUSION

In summary, in this paper, we present a new framework for calculating the loss for mass segmenta-
tion in mammography images. With the goal of addressing the common challenges in this domain,
including pixel class imbalance, various sizes, and distance between the real and predicted masses,
the proposed spatial matching loss leverages the idea of a sample-level grid that provides the com-
monly used losses with the ability to incorporate local spatial similarities between the masks. For
the grid size, we propose to use the size of the real masses, which enables the method to reduce the
pixel class imbalance problem. In addition, the grid information enables the SM loss to capture the
differences between the size, quantity, and location of the masses. The proposed SM loss is evalu-
ated using BCE and Tversky as the core losses on the INbreast dataset which is a benchmark dataset
for mass segmentation. The experimental results confirm the promise of the SM loss by robustly
outperforming the state-of-the-art methods.
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L∗
G−A L∗

G−NZ
DSC {∆A} SEN HAU ACCU DSC {∆A} SEN HAU ACCU

SM-B 70.76 07.76 68.13 5.08 98.52 73.05 22.42 72.03 4.98 98.66
SM-D 73.17 11.82 71.69 5.15 98.65 75.31 11.25 76.49 5.02 98.72
SM-S 73.17 13.13 68.86 4.92 98.72 73.86 07.66 74.78 5.03 98.66
SM-SD 73.72 13.18 72.58 5.09 99.41 72.11 09.08 70.57 4.98 98.59

Table 3: Results for SM loss with dice as the core loss.

6 APPENDIX A: DICE LOSS AS CORE LOSS

Dice loss is one of the losses that is commonly used in combination with BCE loss for mass seg-
mentation. We tested the dice loss as the core loss and reported the results in Table 3. The best-
performing version for dice loss LG−NZ for SM-D is consistently better than baseline and ARF-Net
and has comparable results with ASP. This is a significant improvement as dice loss, to the best of
our knowledge, has not been used alone for the mass segmentation due to training instability, yet
using SM-loss greatly outperforms the hybrid setting.
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