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Abstract

Multi-output Gaussian processes (MOGPs) introduce correlations between out-
puts, but are subject to negative transfer, where learned correlations associate an
output with another that is actually unrelated, leading to diminished predictive ac-
curacy. Negative transfer may be countered by structuring the MOGP to follow
conditional independence statements so that independent outputs do not correlate,
but to date the imposed structures have been hand selected for specific applica-
tions. We introduce the DAG-GP model, which linearly combines latent Gaus-
sian processes so that MOGP outputs follow a directed acyclic graph structure.
Our method exposes a deep connection between MOGPs and Gaussian directed
graphical models, which has not been explored explicitly in prior work. We pro-
pose to learn the graph from data prior to training the MOGP, so that correlations
between outputs are only introduced when justified. Automated structure learn-
ing means no prior knowledge of the conditional independence between outputs is
required, and training multiple MOGPs to identify the best structure is no longer
necessary. Graph structure is learned by applying existing structure learning al-
gorithms developed for graphical models to a downselected set of MOGP training
data. Experiments on real world data sets show that with sufficiently expressive
kernels, prediction error and likelihood are improved when using the DAG-GP
model compared to state of the art exact MOGP methods.

1 Introduction

Multi-output Gaussian processes (MOGPs) apply Gaussian processes to tasks with multiple output
dimensions. Correlations are learned between outputs, so that changes in one output dimension
may be used to improve prediction accuracy in another. Existing approaches to MOGPs allow for
arbitrary correlations between outputs, but this expressiveness leads to a risk of negative transfer,
where random correlations resulting from small sample statistics are incorrectly identified during
training as correlations between output dimensions. Particularly in examples with small amounts of
training data and complex covariance kernels, negative transfer leads to poor predictive performance
and underestimation of prediction errors. The effects of negative transfer can be mitigated by select-
ing an MOGP structure that controls which correlations are possible, but there currently exists no
principled method for structure selection.

In the graphical models community, highly connected graphical models also tend to fit to noise,
leading to diminished predictive performance (Freno & Trentin, 2011). Structure learning algo-
rithms, that identify structurally simple models with high likelihood, have been developed to better
learn a model of the data. The learned models enforce conditional independence statements between
variables, and are more robust to noise, resulting in improved predictive accuracy.

We present a method for limiting negative transfer in exact MOGPs by using techniques from graph-
ical model structure learning. Our approach, referred to as the DAG-GP model, enforces a directed
acyclic graph (DAG) structure between output variables of a multi-output Gaussian process. We
are able to apply algorithms developed for graphical models to learn the graph structure from data,
limiting inter-output correlations to those that are substantial, and removing the need to train and
test on different MOGP structures. Our work is the first to identify the utility of applying graphical
model structure learning to MOGPs. With sufficiently complex kernels, we show that the DAG-GP
model outperforms state of the art MOGP techniques on exact inference tasks on real life data sets.
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2 Related work

A frequently taken approach to multi-output Gaussian process regression is to combine the outputs
of multiple independent latent single output Gaussian processes, either linearly or through convolu-
tion (Álvarez et al., 2012; Liu et al., 2018). Linear combination models including the intrinsic core-
gionalization model (Journel & Huijbregts, 1978), the linear model of coregionalization (Goovaerts
et al., 1997), and the semiparametric latent factor model (SLFM) (Teh et al., 2005) all represent out-
puts as local mixtures of the latent processes. The methods differ in the number of latent processes
used and whether the latent processes share kernels. Sharing latent processes between outputs leads
to correlations between outputs, while the use of multiple kernels leads to correlations over multiple
spatial scales for each output. Extensions have explored applying higher rank combinations of the
latent processes (Bonilla et al., 2008), allowing correlated latent processes (Vargas-Guzmán et al.,
2002), and adding an additional latent process unique to each output (Nguyen et al., 2014). In all
cases, predictive performance is strongly dependent upon choices of the number of latent processes
and how they are mixed. Determination of the optimal model requires training all possibilities and
testing. In contrast, our use of structure learning may be viewed as an automated method of selecting
which latent processes contribute to which output variables.

Convolutional methods instead construct output processes by convolving latent processes with a
smoothing kernel. Initial approaches used a single white noise process (Ver Hoef & Barry, 1998;
Melkumyan & Ramos, 2011), while more recent extensions have used mixtures of multiple latent
processes (Boyle & Frean, 2005) and allowed latent processes different from white noise (Alvarez
& Lawrence, 2009; Lawrence et al., 2007). Convolution allows non-local effects such as time delays
to be modeled, but this leads to more hyperparameters to train, and a greater potential for negative
transfer if the number of latent processes is not carefully controlled.

Our method is most similar to a class of methods we refer to as Gaussian process autoregressors,
where outputs are considered sequentially and are computed using transformations of previous out-
puts, leading to a Bayesian network structure. However, work to date has used one of a fully con-
nected network (Requeima et al., 2019), a single parent for each output (Kennedy & O’Hagan, 2000),
or a bipartite network (Leen et al., 2012). Choices of structure are application driven, designed to
transfer information between outputs according to known relationships. Our approach has the same
goal of controlling information flow, but we generalize on these methods by allowing any DAG
structure between outputs and learning that structure directly from the data. The possible structures
include those used in the previously mentioned work, but typically they are found to differ. Gaussian
processes autoregressors bear similarity to deep Gaussian processes (Damianou & Lawrence, 2013),
but deep GPs use the outputs of latent GPs as inputs to another layer of GPs, rather than networks
between output dimensions.

Finally, a related body of work has considered inference on Gaussian processes defined over trees
and general undirected graphs (Sudderth et al., 2004; Wainwright et al., 2001; Venkitaraman et al.,
2020). These methods improve prediction capability when using small training sets. However, in
these cases the graphical model is imposed over the input space for GPs with a single output variable,
whereas we consider a graphical model imposed between multiple output variables.

3 Preliminaries

3.1 Gaussian processes

Gaussian processes (GPs) are continuous valued regressors that model any finite set of input/output
pairs {(xi, yi)}Ni=1, xi ∈ R

Dx , yi ∈ R as drawn from a N-dimensional Gaussian distribution (Williams
& Rasmussen, 2006). The GP f ∼ GP(m, k) is specified through its mean function m(·) and covari-
ance kernel k(·, ·). For input and output vectors X = [x1 . . .xn]T and Y =

[
y1 . . . yn

]T , the output
vector is modeled as drawn from the GP plus independent noise,

f (X) ∼ N(m(X), k(X ,X)), (1)

Y = f (X) + ε, ε ∼ N(0, σ2I), (2)
where [k(X ,X)]i, j = k(xi,x j). It is typical to shift the output such that m(X) = 0, and we proceed
under this assumption for the rest of this paper.
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Prediction of outputs Y∗ at inputsX∗ is accomplished using a conditional Gaussian distribution,

f (X∗) |X ,Y ∼ N(µ∗,K∗), (3)

µ∗ = k(X∗,X)
[
k(X ,X) + σ2I

]−1
Y , (4)

K∗ = k(X∗,X∗) − k(X∗,X)
[
k(X ,X) + σ2I

]−1
k(X ,X∗). (5)

Gaussian process covariance kernels are selected so that covariance matrix is always positive defi-
nite. Popular kernels include the radial basis function (RBF) kernel

k(xi,x j) = θ2 exp

−1
2

Dx∑
d=1

(xi,d − x j,d)2

l2d

 (6)

and the spectral mixture (SM) kernel (Wilson & Adams, 2013)

k(xi,x j) =

S∑
s=1

θs

Dx∏
d=1

exp

− (xi,d − x j,d)2

2l2s,d

 cos
(
νs,d(xi,d − x j,d)

)
. (7)

Kernel hyperparameters and noise are selected to maximize log p(Y ).

3.2 Multi-output gaussian processes

Multi-output Gaussian processes (MOGPs) extend GPs to treat multivariate output, where yi ∈ R
Dy .

An MOGP expresses all outputs as a single NDy-dimensional Gaussian distribution,

f (X) ∼ N(0,K(X ,X)), f (X)T =
[
f1(X)T . . . fDy (X)T

]
, (8)

where fm corresponds to the predictions for output dimension m. K(X ,X) may be considered to
be composed of D2

y blocks of size N × N. The block of Km,n corresponding to outputs m and n is
specified through a cross covariance kernel,

Km,n(X ,X) = kmn(X ,X). (9)

The kernels are defined such that the overall covariance matrix is positive definite. Then, dimension
m of the outputs follow Ym = fm(X) + εm, where εm ∼ N(0, σ2

mI).

3.3 ConstructingMOGPs from latent processes

Linear MOGP methods use multiple independent single-output GPs that are combined to intro-
duce correlations between the output dimensions. The semiparametric latent factor model (SLFM)
models each output as the weighted linear combination of Q independent latent processes uq. The
Collaborative MOGP (CoGP) model adds an additional process wm specific to each output, so that

fm(xi) = wm(xi) +

Q∑
q=1

λmquq(xi), (10)

where each wm ∼ GP(0, k̄m) and uq ∼ GP(0, k̃q). The CoGP model is visualized in figure 1a. The
covariance kernel between outputs is

kmn(xi,x j) = δmnk̄m(xi,x j) +

Q∑
q=1

λmqλnqk̃q(xi,x j) (11)

where δmn is the Kronecker delta function. In particular, when using RBF kernels for all latent
processes, each kernel kmn encodes correlations over Q + 1 length scales in each input dimension
with the CoGP and Q length scales with the SLFM.

Convolutional processes instead model each output as a convolution of the latent processes with a
smoothing kernel function. Álvarez & Lawrence (2011) recommend a general purpose kernel in
which the kernel smoothing function and latent covariances follow a Gaussian distribution. In this
case, the kernels may be expressed as follows, with matrices Sm, Sn, and Sq

kmn(xi,x j) =

Q∑
q=1

λmqλnq
|Sm|

1
4 |Sn|

1
4√

|Sm + Sn + Sq|
exp

(
−

1
2

(xi − x j)T (Sm + Sn + Sq)−1(xi − x j)
)
. (12)
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(a) CoGP model
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(b) GPAR model

f1(xi) f2(xi)

f3(xi) f4(xi)
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yi,3 yi,4

(c) DAG-GP model

Figure 1: Comparison of MOGP model structures.

4 Gaussian processes autoregressors and DAG-GPs

MOGPs that rely on combinations of latent processes suffer from negative transfer (Leen et al.,
2012), where outputs that are not related are correlated in the model. False correlations between
outputs can reduce MOGP predictive performance in two ways; they can lead to incorrect mean
predictions as patterns in one output dimension are projected onto another, and they can reduce
variance estimates below truth as noise is found to be explained by other outputs.

Negative transfer can be combated by controlling information flow between outputs. Gaussian pro-
cess autoregressors allow for control over correlations by forming each output as a transformation
of previous outputs. We focus on local linear transformations, because they have been shown to be
effective (Leen et al., 2012), and they permit inference to be performed exactly. When applied to the
process fm, the MOGP is constructed as

fm(xi) = um(xi) +
∑

n∈pa(m)

λmn fn(xi). (13)

where um ∼ GP(0, k̃m) and pa(m) is the parent set of index m, consisting of all indices that are
combined to produce fm.

In some previously applied methods, linear transformations are instead applied directly to the out-
puts yi,m. For example, the GPAR model (Requeima et al., 2019) in figure 1b connects outputs using
parent sets containing all previously solved output dimensions. We focus with DAG-GPs on net-
works connecting the processes fm as in (13), which is visualized in figure 1c. This model captures
noise that can be specific to a single output dimension, and in our experiments performs better than
applying a DAG structure between raw outputs. This is also the more general model, because the
structure in figure 1b can be recovered by setting εm = 0 and adding an independent noise to the
kernel k̃m. However, this choice does prevent optimizing the MOGP as Dy separate single-output
GPs, as is performed by (Kennedy & O’Hagan, 2000) and (Requeima et al., 2019).

4.1 The DAG-GP model

Through appropriate selection of parent sets so that no process depends linearly on itself, the model
in (13) may be naturally interpreted as a Directed Acyclic Graph (DAG) between fm(x). Criti-
cally, the DAG implies the existence of conditional independence relationships between the output
dimensions. The DAG-GP model selects the appropriate conditional independence relationships -
corresponding to appropriate DAG structure - that prevent negative transfer between outputs in the
MOGP. This corresponds to choosing which parent sets will appear in the structural equation model.

Previously applied autoregressive models may be interpreted as DAG-GP models with a DAG struc-
ture selected based on assumptions specific to the application. These methods have not explicitly
considered their model to be the construction of a DAG, and have not applied insights from the study
of graphical models. With the DAG-GP model we propose to use graphical model structure learning
to obtain conditional independence statements directly from the data, in order to formulate a DAG
structure between the outputs that is appropriate for any problem. As a result, the DAG-GP model
may be used regardless of whether an appropriate structure between output dimensions is already
known.
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Let the set of non-descendants nd(m) consists of the indices of all processes that cannot be
reached by following directed edges from fm(x). Then the DAG-GP model satisfies all con-
ditional independence relationships of the form fm(X) y fnd(m)(X) | fpa(m)(X) in addition to
fm(xi) y fnd(m)(xi) | fpa(m)(xi) for any xi. These results follow immediately from the conditional
independence statements followed by a distribution that factors according to DAG, plus the equiva-
lence between a linear structural equation model (13) and a Gaussian DAG (Pearl et al., 2000). We
provide a more formal proof in the appendix.

Learning structure from data has been successful in the graphical models community. Constructing
a DAG has been shown to improve prediction of unobserved data by preventing negative transfer
of information between unrelated variables. This has lead to development of a number of structure
learning techniques for DAGs, and we are able to leverage these methods directly to learn a DAG
structure to be used in the DAG-GP.

4.2 Comparison of DAG-GPs and linearMOGP models

Define A as the Dy × Dy matrix such that Am,n = λmn where defined and 0 otherwise, and let
B = (I −A)−1. Then

f (xi) = Bu(xi), (14)

and covariance kernels are constructed using

kmn(xi,x j) =

Dy∑
d=1

Bm,dBn,d k̃d(xi,x j). (15)

From (14) and (15) it is clear that any DAG-GP is equivalent to an SLFM instance with Dy latent
processes and appropriately selected linear parameters. The difference is that in the DAG-GP model,
the elements of B cannot be selected arbitrarily, they must be consistent with construction from
fewer values of λmn. There are QDy coefficients connecting the latent processes to the outputs in
the SLFM, while in our experiments, each output averages two parents or fewer in the DAG-GP
model, leading to fewer coefficients to be optimized compared to the SLFM with a large number of
latent processes. Since the SLFM is more general, it reaches a higher marginal likelihood during
training. The success of the DAG-GP model reveals that the additional marginal likelihood arises
from correlations that are learned from noise, and reduce predictive accuracy in the MOGP.

A consequence of having fewer connecting coefficients is that the number of latent processes in kmn
is at most max(|an(m)|, |an(n)|) for m , n, and at most |an(m)| + 1 for m = n, where the set of
ancestors an(m) consists of the indices of all processes that can reach fm(x) by following directed
edges. Processes with few ancestors in the DAG have simpler kernels, with fewer effective length
scales. For example, for the DAG-GP in figure 1c, k11 and k13 are diffent multiples of k̃1, while k33
is a weighted sum of k̃1, k̃2, and k̃3. Since kernels are effectively simpler for processes with few
ancestors, we recommend kernels with mixtures of more than one length scale in DAG-GPs. Our
experiments show that this is critical to achieving strong predictive performance.

5 Structure selection

In the graphical models community, DAG structure is typically optimized through score-based or
constraint-based methods. Score-based methods maximize data likelihood subject to a penalization
on graph complexity, while constraint-based methods identify conditional independence statements
from the data and construct a consistent graph. DAG-GP structure can be selected through applica-
tion of these methods.

In principle two frequently used score-based methods, the Akaike Information Criterion (AIC)
(Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978) can be used
directly as objectives during MOGP optimization. AIC and BIC for DAGs are defined below, where
|E| is the number of edges in the corresponding DAG

AIC = max
{
2 log p(Y )

}
− 2|E| (16)

BIC = max
{
2 log p(Y )

}
− |E| ln(N). (17)
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Optimization of structure could be performed simultaneously with DAG-GP hyperparameter opti-
mization, with the highest scoring DAG-GP selected. However, this approach significantly increases
MOGP training complexity, and has a high risk of converging to locally optimum structure unless a
DAG-GP is trained for every possible DAG. Instead, we learn the structure from data before training
Gaussian process parameters, so training only a single DAG-GP is required.

We face two challenges in applying DAG structure learning algorithms to DAG-GPs. First, structure
learning algorithms typically rely on the assumption that samples from the DAG are independent
and identically distributed. Independence does not hold in DAG-GPs, where data correlation is
fundamental. Second, we only have access to Y , which are noisy observations of f (X).

5.1 Generating approximately i.i.d. training data

We make use of structure learning algorithms developed for i.i.d. data by using the conditional
independence in DAG-GPs at each specific input, i.e. fm(xi) y fnd(m)(xi) | fpa(m)(xi). Large classes
of kernels of interest, including the RBF and SM kernels used in this paper, are stationary and decay
rapidly with distance between inputs. By downselecting training data so that all inputs are separated
by a distance that is much larger than the length scale in such kernels, the training data at each
input may be treated as approximately i.i.d. draws from a Dy-dimensional Gaussian DAG. Existing
structure learning algorithms may then be applied to the downselected data set.

In practice, the length scale of correlations is unknown prior to training, and excessive downselection
decreases structure learning accuracy. In our experiments, we found strong performance using all
training data or by selecting data to be separated by twice the average closest neighbor distance. The
success of this method, despite significant correlations between data at different inputs, suggests that
additional data for structure learning is preferable to strict insistence on independence.

5.2 Choice of structure learning method

A number of constraint-based methods have been proposed to perform structure learning on data
corrupted by observation noise. However, the shortcomings of these methods range from strict
restrictions on structure (Anandkumar et al., 2013), to requirements that the noise model be known
(Saeed et al., 2020), to a requirement that the number of leaf nodes in the DAG to be known (Zhang
et al., 2017). For our score-based experiment, we follow the suggestion of Zhang et al. (2017) for
Gaussian DAGs with unknown noise, which applies the deterministic PC algorithm and requires an
estimate for the number of leaf nodes found by first optimizing BIC.

For the training set sizes we consider, independence tests tend to be imprecise. We have greater suc-
cess applying score-based methods, where we test with AIC, BIC, and BGe (Geiger & Heckerman,
1994). The presence of measurement noise means the maximum likelihood of the DAG must be
computed numerically. Combined structure learning and likelihood maximization can be performed
for AIC and BIC through the MS-EM algorithm (Friedman, 1997), but the complexity of structure
learning is still significantly increased compared to when the DAG variables are observable, and
BGe, which assumes a fully observable DAG, cannot be applied. Analysis by Zhang et al. (2017)
suggests that the covariance of noisy output is similar to the covariance of f (xi) unless any σ2

m is
comparable in magnitude to the variance of fm(xi). In the problems where effective learning can
be performed, we expect the noise variance to be small compared to the variance of fm(xi), so we
apply score-based algorithms to the noisy data directly. Experiments with this method show strong
results, with negligible time required for structure learning.

6 Experiments

6.1 Description

We tested DAG-GPs against an independent process model, SLFM, CoGP, the convolutional ap-
proach (Conv), and GPAR. For latent process models, we ran the experiments with multiple num-
bers of latent processes, and present the highest likelihood and lowest error achieved. We compared
DAG-GPs with structure selected through deterministic PC (DPC), maximization of AIC, BIC, BGe,
and unpenalized likelihood (Full). DAGs were learned with all data, and with data separated by two
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Table 1: Mean negative log likelihood (NLL) and 2-norm error (Err) for RBF and SM2 kernels.
Bolded entries indicate lowest result in each column.

ANDROMEDA EXCHANGE JURA

RBF SM2 RBF SM2 RBF SM2

METHOD NLL ERR NLL ERR NLL ERR NLL ERR NLL ERR NLL ERR

Independent 4.995 0.628 4.464 0.583 3.328 0.418 2.696 0.390 15.248 2.006 14.978 1.891
SLFM 3.574 0.636 3.613 0.569 2.670 0.423 2.027 0.384 13.822 1.880 13.963 1.823
CoGP 4.060 0.656 4.248 0.617 1.993 0.379 1.884 0.380 14.158 1.873 13.899 1.810
Conv 3.813 0.557 - - 2.390 0.392 - - 15.003 1.857 - -
GPAR 3.826 0.630 3.520 0.595 2.343 0.412 2.019 0.393 13.662 1.917 13.443 1.888

DAG Full 3.842 0.693 3.522 0.588 2.710 0.408 1.941 0.392 14.092 1.951 14.663 1.903
DAG AIC 4.122 0.701 3.174 0.515 2.605 0.404 1.861 0.375 14.067 1.922 13.514 1.831
DAG BIC 4.122 0.702 3.174 0.515 2.557 0.408 1.881 0.382 13.960 1.912 13.584 1.783
DAG BGe 4.176 0.722 3.386 0.547 2.759 0.418 1.946 0.379 14.010 1.921 13.374 1.789
DAG DPC 4.437 0.717 3.241 0.532 2.971 0.416 2.002 0.378 14.511 2.069 13.792 1.842

and four times the average nearest neighbor distance, with lowest NLL and error presented. Tests
were performed using both the RBF kernel and the spectral mixture kernel with two components
(SM2), except with the convolutional method, as there is no closed form expression for convolu-
tions with spectral mixture kernels.

In each experiment, all outputs at a random subset of inputs were selected for training in four sep-
arate runs. The task was to jointly predict all outputs at remaining inputs. Data was normalized to
mean 0 and standard deviation 1. Score-based DAGs were learned using GOBNILP (Cussens et al.,
2017), and MOGP optimization was performed using BFGS. We present the 2-norm error of the
predicted mean (Err) and the negative log-likelihood (NLL) of the normalized testing data averaged
across all runs. Our initial experiment was performed on the Andromeda data set (Hatzikos et al.,
2008) as collected by Spyromitros-Xioufis et al. (2016). The data consists of a daily average of wa-
ter quality variables observed by an underwater vehicle across 49 days. We trained on temperature,
conductivity, salinity, and oxygen concentration data from 45 of the 49 days. Our second test used
a time series of daily exchange rate values against USD across 2007. We modeled the exchange
rates of silver, gold, and the currencies CAD, EUR, JPY, and GBP. 209 complete data entries were
available, of which 150 were used for training. Finally, we used the Jura data set as an example of
multiple input dimensions and a larger number of output dimensions. The data set records concen-
trations of 7 elements sampled at various x,y locations in the Swiss Jura (Goovaerts et al., 1997).
We trained on 150 random locations out of 259, and simultaneously modeled all 7 outputs.1

6.2 Results

Mean results in table 1 show the DAG-GP model leads to lower average prediction errors and nega-
tive log likelihood when using the SM2 kernel, but is not competitive when limited to RBF kernels.
We hypothesize this to be a consequence of the less expressive kernels in output dimensions with
few ancestors, as discussed in section 4.2. The simple RBF kernels are unable to capture a covari-
ance with multiple length scales that arises from real data, and this deficiency is worse than the
potential for negative transfer. Once more flexible kernels are used, the DAG-GP model with sparse
DAG structure shows lower negative log likelihood and mean error when compared to fully con-
nected DAG structures and to other state of the art methods. The alternate approaches typically have
higher marginal likelihood on the training data than DAG-GPs, but the correlations that are learned
do not generalize to unseen data. Based on our experimental results, we recommend the use of
AIC as a scoring criterion, as it leads to the lowest NLL and error in the Andromeda and Exchange
experiments, and performs competitively in the Jura dataset.

The benefit of the learned DAG structure in the Exchange data set is shown in figures 2a and 2b,
which display learned GPs with SM2 kernels against a crest in gold (Au) and silver (Ag) prices

1Data available at http://mulan.sourceforge.net/datasets-mtr.html (Andromeda), http://fx.sauder.ubc.ca (Ex-
change), https://sites.google.com/site/goovaertspierre/pierregoovaertswebsite/download/jura-data (Jura)
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(a) Excerpt from prediction of Au/USD (b) Excerpt from prediction of Ag/USD

(c) Excerpt from prediction of CAD/USD (d) Standard deviation of prediction of Ag/USD

Figure 2: Comparison of MOGP performance on the Exchange data set. Black/red crosses indicate
training/testing data.

between days 155 and 163. Using the DAG-GP model, the crest is learned for silver because of the
troughs on either side, and silver is a direct parent of gold, passing on the prediction of a similar
crest. Figure 2c shows CAD, which is learned to be an ancestor of gold and silver in the DAG, so
no crest is predicted. In the SLFM and CoGP models, all outputs share generating latent processes,
and as a result the crest is smoothed over, because it appears in some but not all outputs.

Outside of selected areas like the crest, the predicted means of the DAG-GP model are similar to
those predicted using the CoGP and convolutional models with optimal numbers of latent processes.
The DAG-GP model reaches this result using 6 latent processes and 12 linear parameters λmn. In
contrast, the optimized CoGP model requires 10 latent processes with 24 linear parameters, and the
convolutional model requires 6 latent processes and 36 linear parameters. Furthermore, determi-
nation of the optimal number of latent processes required training and testing multiple CoGP and
convolutional models, which was not necessary when using the DAG-GP model.

In the vicinity of training data, the DAG-GP model produces a similar predicted variance profile
to the more complex CoGP and convolutional models, as shown in figure 2d. Further away from
training data, the predicted variance of the simpler DAG-GP model more rapidly rises. The larger
variance is physical, as it better matches the deviation of the test data from the predicted mean,
resulting in higher test data likelihood.

7 Conclusions

MOGP models are subject to negative transfer of information between output dimensions that are
truthfully conditionally independent. To counteract negative transfer, we propose the DAG-GP
model, in which a Gaussian directed acyclic graph is constructed between the outputs. Previous
MOGP methods have used arbitrarily correlated outputs or hand-coded structures, but ours is the
first to allow outputs to follow an arbitrary DAG, and to learn that DAG from the data. The DAG
structure is learned by downselecting training data to produce an approximately independent and
identically distributed data set, to which an existing structure learning algorithm is directly applied.
Structure learning is fast compared to the time required to train an MOGP, and it removes the need
to train on multiple structures like other MOGP methods. When using covariance kernels with mul-
tiple length scales, experiments on real world data sets showed that the DAG-GP model uses fewer
parameters, better shares trends between outputs when they only appear in some dimensions, and
constructs more realistic confidence bounds, thereby decreasing mean prediction error and increas-
ing likelihood over state of the art MOGP methods.
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A Conditional independence in the DAG-GP model

The conditional independence statements between outputs in the DAG-GP model follow from its
representation in (13). We prove the conditional independence statements hold through the following
theorem.
Theorem 1 (Theorem 1.4.1 of Pearl et al. (2000)). Consider the set of possibly correlated ran-
dom variables {z1, z2, . . . , zD}, jointly independent random variables {c1, c2, . . . , cD}, and equations
{g1, g2, . . . , gD} related by the structural equation model

zm = gm(zpa(m), cm).
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Construct a graph by drawing directed edges from each of the zpa(m) to zm. If the resultant graph
is acyclic, then the resultant distribution p(z1, z2, . . . , zD) admits the following conditional indepen-
dence relationships for each m,

zm y znd(m) | zpa(m).

Proof. The proof by Pearl et al. (2000) is based on d-separation in directed acyclic graphs. Instead,
we present a proof based on the representation of the joint distribution.

Since each zm depends only on its parents and an independent noise term cm, the distribution
p(z1, c1, z2, c2, . . . , zD, cD) decomposes as

p(z1, c1, z2, c2, . . . , zD, cD) =

D∏
m=1

p(zm, cm | zpa(m)). (18)

cm terms may be marginalized to yield

p(z1, z2, . . . , zD) =

D∏
m=1

p(zm | zpa(m)). (19)

The graph connecting all zm is acyclic, so the parents of all nondescendants of zm are disjoint from
the descendants of zm. If znd(m) refers to all nondescendants that are not elements of zpa(m), then the
descendants of zm can be marginalized to give

p(zm, zpa(m), znd(m)) = p(zm | zpa(m))
∏

i∈pa(m)

p(zi | zpa(i))
∏

j∈nd(m)

p(z j | zpa( j)), (20)

p(zpa(m), znd(m)) =
∏

i∈pa(m)

p(zi | zpa(i))
∏

j∈nd(m)

p(z j | zpa( j)). (21)

Dividing (20) by (21) yields

p(zm|zpa(m), znd(m)) = p(zm|zpa(m)), (22)

which is the required statement of conditional independence. �

Corollary 1.1. In the DAG-GP model, fm(xi) y fnd(m)(xi) | fpa(m)(xi) for any xi.

Proof. The DAG-GP model uses a structural equation model fm(xi) = um(xi) +
∑

n∈pa(m) λmn fn(xi)
across an acyclic graph. This expression continues to hold with all f (x j) marginalized for x j , xi
All um(xi) are jointly independent, so the assumptions of theorem 1 apply with zm = fm(xi) and
cm = um(xi). �

Corollary 1.2. In the DAG-GP model, fm(X) y fnd(m)(X) | fpa(m)(X).

Proof. Theorem 1 places no restriction on whether the random variables may be vector valued.
um(X) follow jointly independent Gaussian processes, and so are jointly independent random vec-
tors. A structural equation model holds, given by

fm(X) = um(X) +
∑

n∈pa(m)

λmnI fn(X). (23)

The graph drawn between all fm(X) is acyclic, and so the assumptions of theorem 1 apply with
zm = fm(X) and cm = um(X). �

The conditional independence statements do not depend on the linearity of the structural equations
used in the DAG-GP model. In the absence of linearity, the joint distribution is no longer Gaussian
distributed and exact inference may not be possible.

The conditional independence statements in corollary 1.2 do not depend on the use of a local struc-
tural equation model. For example, λmnI in (23) may be replaced with a non-diagonal matrix in
order to capture non-local correlations between an output and its parents. However in this case
corollary 1.1, which is fundamental to learning DAG structure, would not apply.
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