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Abstract

Rotary Positional Encodings (RoPE) have emerged as a highly effective technique
for one-dimensional sequences in Natural Language Processing spurring recent
progress towards generalizing RoPE to higher-dimensional data such as images
and videos. The success of RoPE has been thought to be due to its positional
equivariance, i.e. its status as a relative positional encoding. In this paper, we
mathematically show RoPE to be one of the most general solutions for equivariant
positional embedding in one-dimensional data. Moreover, we show Mixed RoPE
to be the analogously general solution for M-dimensional data, if we require
commutative generators — a property necessary for RoPE’s equivariance. However,
we question whether strict equivariance plays a large role in RoPE’s performance.
We propose Spherical RoPE, a method analogous to Mixed RoPE, but assumes
non-commutative generators. Empirically, we find Spherical RoPE to have the
equivalent or better learning behavior as its equivariant analogues. This suggests
that relative positional embeddings are not as important as is commonly believed
for vision. We expect this discovery to facilitate future work in positional encodings
for vision that are faster and generalize better by removing the preconception that
they must be relative.

1 Introduction

Recently, Rotational Positional Embeddings (RoPE) [61]] have gained popularity, touting an emphasis
on the relative position between two tokens rather than their absolute positions [[18, 22} 137, i40].
Because attention between tokens only depend on their relative distance, the network has shift-
equivariance. The most general form of rotary encoding is LieRE [46]]. However, when extending
to higher dimensions, requires one to either give up shift-equivariance or make constraints on the
rotations [46} 76, 153]. In this work, we unify recent extensions of RoPE to M -dimensions based on
the constraints they make on the generators of LieRE. We show that LieRE is shift-equivariant if
and only if it can be decomposed into the simpler Mixed RoPE, or the more popular Axial RoPE if
further constrained.

However, while RoPE is often claimed to be successful due to its shift-equivariance, the validity of
that claim and necessity of equivariance has not been thoroughly tested. We propose Spherical RoPE
which strictly takes the assumption of non-commuting generators — thus, non-equivariant — to test
this claim. We find Spherical RoPE to perform as well as Mixed RoPE while strictly outperforming
Axial RoPE on vision tasks. We also show that Axial RoPE with a single shared frequency performs
significantly worse, despite still being equivariant. Thus, we conclude equivariance does not seem to
be the primary contributor for ROPE’s success in vision.
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2 Background

2.1 Rotary Positional Encodings (RoPE)

Rather than adding a positional embedding to the patch embedding, RoPE proposed to modify the
queries and keys by rotating them in pairs.

:E{pw1 0 . Z
RoPE(z,p) =R,z = 0 Ry, - (1)
. . . zZp

where R, is a rotation matrix, w; is a rotation frequency for the corresponding pair. We use the
convention that real-valued queries and keys will have dimension /N and the number of sub-vectors
(pairs) is dimension D.

For images, where positions are two-dimensional, RoPE is often extended with Axial RoPE [56],
where each position rotates independent sub-vectors. However, because the horizontal and vertical
directions are treated independently, this method struggles with representing oblique attention patterns
[22]. One rotate the same pair by both positional coordinates where the amount of rotation caused
by each is a parameterized for each pair. This is known as Mixed RoPE [22]. Alternatively, one can
take the Lie algebra perspective and learn a skew-symmetric generator matrix for each positional
coordinate. This known as LieRE [46] and has the benefit of rotating beyond 2D sub-vectors.

3 The Generality of Learned RoPE and Mixed RoPE

While RoPE is proposed by rotating 2D sub-vectors of the querys and keys, LieRE can perform the
full ND rotation. However, by taking the spectral decomposition of the generators, LieRE can be
reparameterized into RoPE. For proofs see Appendix [K]

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned
frequencies.

3.1 Extending RoPE to more than one dimension
While this proof works for 1D positions, it does not generalize to M -D without introducing extra

inductive biases or giving up equivariance. By imposing constraints on A, and .A,, we can categorize
the other ROPE methods based on the assumptions made.

Generators rotate independent subspaces. For example, one can impose the assumption that p,,
and p,, rotate independent subspaces in R”. Mathematically, this assumption would imply that

vd e [1,D]: A\ =0or Al =0, )

where )\ff) and )\;y) are the eigenvalues of A, and A, respectively. This is equivalent to rotating
independent components of the query/key as done by Axial-RoPE.

Commutative generators. For LieRE to be equivariant, we only need to ensure that the generators
commute. If we make this assumption, then we arrive at Mixed RoPE.

Proposition 2. Any M-dimensional LieRE with commutative generators can be parameterized
by Mixed RoPE.

This means that any of the more recent extensions that assume commutativity in the generating
matrices of LieRE such as ComRoPE [76]] or STRING [53]], ultimately are alternative implementations
of Mixed RoPE. However, it is not clear that requiring commutativity is necessary or even beneficial.
We propose an ablation to the need of equivariance in the form of Spherical RoPE which strictly
removes commutativity of the generators.
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Figure 1: Diagram of each rotary embedding’s effect on z,;. While Mixed RoPE effect 2D vector
pairs, Spherical RoPE effects 3D vector triplets. Axial RoPE rotates independent dimensions for p,,,
thus containing pairs of pairs, or effectively quadruples. Each z contains D sub-vectors rotating at
different frequencies. While the order in which the rotations are applied does not matter for Axial or
Mixed RoPE, order matters for Spherical RoPE. Explicitly, the triplet is first rotated around the axis
associated with p, and then rotated around the axis associated with p,,.

4 [Experiments

When extending RoPE to more than one dimension, we must either constrain ourselves to commuting
Lie algebras or give up relativity. We therefore ask the question: Why does RoPE work? Which
properties should be preserved for generalizing RoPE to vision? To explore this question, we
propose two new RoPE variants: Spherical RoPE, which takes an non-commutative assumption, and
Uniform-Frequency RoPE, which uses a single fixed rotation frequency across all dimensions.

Spherical RoOPE We propose Spherical RoPE as a method between Mixed RoPE and LieRE that
minimally changes 2D RoPE to break equivariance. Spherical RoPE embeds position as

SD(Zdv P) = ywdszwdyyzd» (3)

where z; € R? is now a triplet instead of a pair, and ) is a block diagonal of 3 x 3 yaw matrices and
‘R is a block diagonal of roll matrices.

cos(wdzx) —sin(wggx) 0 1 0 0
Viogow = |sin(wazx)  cos(waz) 01 Reuayy [O cos(wayy) —sin(wayy)|. (4)
0 0 1 0 sin(wgyy)  cos(wayy)

Intuitively, rather than RoPE rotat- Table 1: Table listing the properties of each of the rotary-
ing around a circle, Spherical RoPE  based methods.
rotates around a sphere using Euler

angleS. Importantly’ Spherical rota- Positional Encoding Vision Strictly Oblique Requires
tions like LieRE are non-commutative Equivariant Directions Learning

making them not equivariant. In  Rotary (RoPE) [61] X v N/A X

fact, their generators are strictly non- -

commutative, Az A, # A, A;. While Axial RoPE [o0] v v X X

his d -”S h Y 1 RoPE i Mixed RoPE [22] v v v v

this does not mean Spherical RoPE is 1 i pF: ag) v X v v

incapable of learning or approximat- -

ing equivariance throughout the net- Spherical RoPE v X v X
Uniform RoPE v v X X

work, it is the component of LieRE

removed by Mixed RoPE.

Uniform-Frequency RoPE. For an initial evaluation on the impact of relative position, we propose
Uniform-Frequency RoPE. For this method, we perform Axial RoPE with a single frequency shared
across all rotation matrices. While still being relative, this serves as a more restricted version of
RoPE. If this method performs significantly worse than other methods, it indicates more importance
of having a range of frequencies than equivariance. We implement uniform frequencies for Axial
ROPE to gauge against relative importance of equivariance.
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Table 2: Performance comparison (top-1 accuracy)

across datasets and methods. 0

o]
=]
|

Top-1 Accuracy (%)

N
S

training resolution

ImageNet topl-accuracy [%]

Fixed Encoding CIFAR100 ImageNet

Learned APE 64.2:+09 68.8 30-

Axial RoPE 72.1+0.6 70.7 —e— Learned Spherical RoPE

Uniform RoPE (Our Ablation) 70.5+0.2 70.0 20- —e— Learned Axial RoPE

Spherical RoPE (Our Ablation) 73.2+0.4 70.9 Mixed RoPE

R 10 - —e— Uniform Axial RoPE

Learned Encoding —e— Learned APE

Learned Axial RoPE 72.9+0.6 70.4 ) | I | | | I I I

Mixed RoPE 747403 70.3 100 150 200 250 300 350 400 450 500

Learned Spherical RoPE (Our Ablation) ~ 74.1+0.4 70.4 testimage resolution [px]

LicRE 74.2 . .
Figure 2: Dependence of accuracy on image
resolution for ViT-S with various positional
embedding methods on ImageNetlk.

5 Results

To evaluate the importance of different properties of positional embeddings in vision transformers,
we trained the same ViT with different positional embeddings on CIFAR100 and ImageNet-1K. We
start by evaluating the models on images of the same resolution as during training. If equivariance
is important, we would see Axial and Mixed RoPE to perform better than Spherical RoPE, which
lacks equivariance. On the other hand, if oblique frequencies are important, then we would obeserve
Mixed and Spherical RoPE to do better than Axial RoPE, which does not capture oblique directions.
We do not find either of the two to be the case: All three methods perform similarly in terms of
top-1 accuracy both on CIFAR-100 and ImageNet (Table[T)), suggesting that neither equivariance nor
capturing oblique directions is important.

The results from training on smaller subsets of the CIFAR100 training data and for the VOC
segmentation task can be found in Appendix [I] Intuitively, these tasks should favor shift-equivariance
since less data favors stronger inductive biases. However, even in these settings Spherical RoPE
performs on-par or better.

When comparing to absolute positional encodings, we observe that all forms of RoPE perform
better than learned APE (Table[T). This includes Uniform RoPE, the variant that uses only a single
frequency. Moreover, all forms of RoPE using diverse frequencies outperform Uniform RoPE and
have similar performance (whether they are learned or not), suggesting that diversity of frequencies
is important.

Lastly, we asked how well different PEs generalize across image sizes. Equivariance is often thought
to aid model generalization. However, when evaluating each model using higher resolutions images,
i.e. increasing the number of patches, we found Spherical RoPE to be the most effective method
(Fig. 2), suggesting equivariance may not be the reason for RoPE’s generalization.

6 Conclusion

Because we see very little variation between Spherical RoPE and the equivariant methods, we
conclude that equivariance is only a minor contributor to the increased performance seen by RoPE
for vision. In fact, Spherical RoPE appeared to extrapolate to higher resolutions better than other
methods. This could suggest that oblique frequencies are important for extrapolation. However,
Mixed RoPE can also represent oblique directions, but did not outperform Axial RoPE. Thus, neither
equivariance nor oblique directions appear to be significant for vision transformers.
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A Broader Impact

This work is fundamental research. While this work could lead to the discovery of better positional
encodings and higher performing visual foundation models, the positivity or negativity of this impact
is determined by the downstream task and not this work.

B Limitations

While our results do not show relative embeddings to be detrimental, we believe them to be evidence
that equivariance is not the reason for ROPE’s success. However, our experiments were performed in
Vision where the number of tokens is limited compared to the long context lengths of NLP. Moreover,
the datasets are not what many believe to be “at scale". While Spherical RoPE and LieRE would
intuitively favored at scale over Axial RoPE, as they have less inductive bias, it is unclear whether
inductive bias and equivariance is favored at scale [8]].

It has also been shown that vision is not a purely equivariant task and benefits from relaxed equiv-
ariance [16]. Our results do not show that equivariance is not useful in tasks that are grounded in
physics and obey strict symmetries.

C Literature Review

C.1 Natural Langauge Processing

In natural language, positional encoding has been used to break the permutation, “bag of words",
symmetry [65]. Although this could be done by learning a vector per position, this is both memory-
expensive for large context sizes making it practical to apply to only the first layer. Moreover, it
does not allow for extrapolation at test time to context sizes beyond training. Thus, it is favorable
to perform positional embeddings with a predictable deterministic function. One way of doing this
is to make the attention relative with local receptive fields, as is done implicitly in convolutional
neural networks [[10]. Sinusoidal positional embeddings were proposed due to approximate local
and shift-invariant properties of Random Fourier Features [51]. Since sinusoidal, other methods
have been proposed to get guaranteed shift invariance by explicitly parameterizing based on distance
[55. 148, 149]. However, these methods require a positional embedding for every pair of positions
which is not supported by many of the efficient attention optimizations such as Flash attention [14]

[3].

Rotary Positional Embeddings (RoPE) have become the staple in NLP having recently been adopted
by many of the large language models [[67. 18 163} 137 123]. However, these methods also use causal
masking, which has been shown to allow models with no positional embedding to recover absolute
position [20} 731166 [28]]. This has lead to questions on the importance of relative position [4]].

In language, there has also been extensions to RoPE proposed through NTKs and kernel methods [9].
However, these methods have not, to our knowledge, seen use in vision.

C.2 Vision and Video

Vision transformers were introduced in Dosovitskiy et al. [15] and, though they tried sinusoidal
position encodings, found learnable position encodings to perform best. For convolution-esque
models such as SWin transformers, relative positional encodings have been popular [41[12]. More
recently, RoPE has been shown to be an efficient and simple way to have relative embeddings and has
been extended to 2D using Axial and Mixed RoPE. Going beyond 2D to Video data, Axial RoPE has
become increasingly popular. The extension was first attributed to Wang et al. [67] as 3D-RoPE or
M-RoPE, leading to two separate Video-RoPE papers from Wei et al. [68] and Liu et al. [42]. Both
of these focus on the order of the position enumeration and interleaving positions. However, this
should not be a problem if frequencies are not deterministic, or if frequencies are indexed by both d
and modality m as done in Eq ??. We highly recommend using either Mixed RoPE or LieRE which
extend naturally for videos.

LieRE embeddings have thus far been the most general form of RoPE to N-D. However, Schenck
et al. [53]] has claimed the method to have a large memory footprint and proposed STRING. This



388
389
390
391
392

393
394
395
396
397
398

399

400
401
402
403
404

406

407

409
410
411
412
413

414
415
416
417
418

419

420
421
422
423
424

425
426
427
428
429
430

431

432
433
434
435

437
438

paper, a preprint released concurrently with the writing of this manuscript, follows much of the
same math as this paper. However, they did not recognize that an orthogonal matrix is implicitly
learned by the query and key matrix. Moreover, their method relies on commuting Lie algebras.
From our insights in Section[3] their method can likely be viewed as a slower implementation of N-D
Mixed-RoPE.

It is also worth noting that positional encodings have also been explored within vision through
the area of Neural Fields [71]. Traditional coordinate MLPs have been found to be biased toward
low-frequency functions [62] leading to more advanced positional encodings such as Random Fourier
Features [51] or sinusoidal activation functions [S7]. These implicit functions have been used to
encode attention and message passing in graph neural networks with recent work being put in to
make these functions equivariant to symmetry transformations [52} 7} [31]].

C.3 Graphs and Al in Science

Positional encodings are well studied within graph neural networks [36, 47]. Graphs are limited
in their expressivity up to the Weisfeiler-Lehman (WL) graph isomorphism test [[72]], so positional
encodings can break the isomorphism symmetry [21} [74]]. Within this community, they propose
spectral attention and graph Laplacians for positional encoding [33]]. These methods seem extremely
close to our analysis of RoPE, but from a very different perspective. We show that the frequencies of
ROPE can be interpreted as the eigenvalues of an orthogonal transformation by taking the spectral
decomposition.

In an overlapping vein, relative position encodings have been studied in terms of equivariant graph
neural networks, often for scientific disciplines such as molecular physics [[7,154] or drug discovery
[24]. One method to achieve equivariance is through defining relative coordinate frames [32]. This
corresponds to the learned relative positional method described in Shaw et al. [55]], but can be
generalized to higher dimensions and different transformation using bi-invariant distance functions
[SL1311169]. The message-passing functions of these works correspond to a generalization of attention
scores [[17]].

However, even in these tasks with physics-grounded symmetries, the need for equivariance is hotly
debated. While AlphaFold [24] was originally touted as the example of the success of equivariant
inductive biases in science, AlphaFold 3 [1]] explicitly stated that they benefited from removing this
inductive bias at scale. However, while the harm of inductive bias at scale is the prevalent zeitgeist, it
is not an established fact [8]].

C.4 Computational Neuroscience

Coupled oscillators have become a growing area of interest within computational neuroscience
[291 130, 159]. By observing the projection of the RoPE circles onto the real axis, one can interpret
ROPE as time progression in D uncoupled, undamped harmonic oscillators. This perspective naturally
connects RoPE to Lowe et al. [43]’s series of papers on complex autoencoders and their extensions
(44, 145].

In another, vein of research, there has been some work in hyper-dimensional computing[25} 26] in
Phasor and Residue VSAs [34] which represent concepts as rotations around unit circles in high-
dimensional spaces. These representations have strong connections with RoPE. Additionally, progress
has been made in hypothesizing how biological neural networks encode positional knowledge with
hexagonal grid cells, which can be represented as a discrete sum of three periodic functions oriented
at the cubic roots of unity[S8]].

C.5 Generality of RoPE

The generality of RoPE has been found by others. Schenck et al. [53]], Su [60], and Liu and
Zhou [38] all propose proofs similar to Proposition [T} However, Schenck et al. [53]] miss that the
orthogonal transformation can be incorporated into key matrix. Liu and Zhou [38] and Su [60] take
the assumption of reversibility, which leads to the independent eigenvalue assumptions of Axial RoPE.
All three works take the assumption of an abelian subgroup —ie commutative generators, — but miss
the generality of Mixed RoPE. While Su [60] propose quaternions — i. e. spherical rotations — as a
direction, they immediately dismiss it as a no-go because they lack equivariance. This exemplifies the

10



439
440

441
442
443

444

“circular argument," where equivariance is assumed to be necessary because work will not investigate
non-equivariant positional encodings because equivariance is necessary.

Because our derivation was found independently of these works and the previous works are, to our
knowledge, not published, we have left in Proposition[I] We would like to acknowledge their work,

but retain the flow of this paper.

D Notation

Symbol / Term Dimension Meaning Notes
X; RP Patch/token/content vector of token ¢ Raw input embedding
T X Abstract content of token ¢ Raw input embedding
i RM or P Position of token 4, can be M-D or abstract P | Scalar (1D) or vector (2D)
m 7 Modality index e.g., x,y, time
M 7 Number, or space, of Modalities
D Z Hidden dimension Number of pairs/triples/quadruples
T 7 Number of Tokens
W, W, W, RYXD Query, Key, Value Matrices
q RN qi = W,z; Query vector
k RY k; = Wiz, Key vector
v RN v, =W,x; Value vector
Q. K,V RTXN Query, Key, Values T tokens, D latent dimensions
o(x,p) X x P —RP Positional Encoding function
Z RTX Output of Attention Z = Attention(Q, K, V)
a(i, ) R Attention weight Softmax of attention scores
a(q, k) R Attention score Inner product q ' k
wal\a R Rotation frequency for dimension d Equivalent to eigenvalue of generator
qa R2/374 Query pair/triple/quadruple at dimension d | After RoPE or LieRE applied
Rop R?XZ 2 x 2 rotation matrix Rotation based on frequency and position

Table 3: Summary of Notations and Key Concepts
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Positional Encoding Vision Learned Extrapolation QK Separable Relative Linear Flow Used In

Absolute (Sinusoidal) X vIX v v v X Transformer[65'

Absolute (Learned) v 4 X 4 v X BERT, GPT, ViT[15

Absolute (Random-Fourier) X X v v X v FNet|35], Performer |11

Relative (Learned) X v X X X X Transformer-XL, T5 [50

ALIiBi X vIX v v v v LLaMA 2 (18], ALiBi [49

NoPE X* X v v v v LLaMA 4 [2

Rotary (RoPE) X X v v v v Contemporary LLMs [67][18]1631123
Axial RoPE 4 vIX v v v v VisionLLaMA[13], Qwen2[67], VideoRoPE[68
Mixed RoPE v v 4 v v v Heo et al. [22

LieRE v v v v X 4 [46]

Spherical RoPE v 3 v 4 X 4 Ours

Uniform RoPE v viX v v v v Ours

Table 4: Comparison of positional encoding methods in transformer models. *NoPE makes some
properties trivially true.

E Positional Encoding Properties

Rotary positional embeddings were derived in Su et al. [61] by drawing equations from assumed
properties. While these appear as arithmetic assumptions and equations in their work, we formalize
what properties these assumptions imply and why we may choose these assumptions in this section.
In their paper, to derive their equations, they use equivariance (relativity), query-key separability of
the positional encoding, linearity and incompressability, locality, and query-key symmetry.

1. Equivariance/Relativity: Attention score should be affected only by the relative position of
two tokens, i. e. have the form

a(zi, x4, pipj) = &(xi, x5, pi — pj)- (5)

2. Key-query seperability: The positional encoding, ¢, of the query should not depend on the
position of the key

o(zi, 5, pirpj) = a(e(zi,pi), o(z5,pj)) (6)
3. Linearity: The positional encoding should be a linear flow, see Appendix [E.3] Namely,
e(e(@,pi),p;) = (@, pi + pj)- (7N
4. Locality: The attention score between two tokens should decay with distance
lim  a(x;,xj,pi,pj) =0 ®)
|pi—p;|—o0

E.1 Relativity and Equivariant

We use the term equivariant interchangably with relative. Strictly speaking, one should specify the
transformation or group you would like to be relative to, e. g. shift/rotation or SO(2). As previous
literature always refers to relative positional bias in terms of shifts/translations, in the main text, this
is what we mean. We use the term equivariance to be the generalization of relativity beyond language
because we would like to refrain from using the term “relativity" to describe the property of being a
relative PE too often due to its connotation within theoretical physics. First, we define relative in the
case of positional encodings in language as

oz, g, pispj) = &(xi, 5, pi — pj)- )
In the rest of this section, we mathematically explore where this equation comes from.

The behavior we are trying to capture is that if we renumber the words in the sentence, it should not
affect the attentions score. Intuitively, if a text is padded with spaces at the beginning, that will not
have a significant effect on the meaning of the sentences. We can ensure this by colloquially saying
that the attention between two words should depend on the distance between them. Notice, that
strictly speaking this is not a proper distance, since it can be negative; it is, instead, a signed distance
function. Though this may seem pedantic in one dimension, in two dimensions defining a distance
function is less unique. For example, one may choose LL; or L, distance metrics. Because distance
functions are more nebulous, it makes more sense to define relative in terms of the transformations
that we would like our attention score to be independent of.

a(xi, x5, pi,05) = alzs, 25, T(pi), T(p;))- (10)
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These transformations can be combined to generate a set of transformations which leave the attention
score unchanged, or symmetric. This set has the mathematical properties of a group and is known as
a symmetry group. We can index transformations by elements in the symmetry group, g € G, and let
the elements act on

a(xzaxj7p’mpj):a(mhwjvgphgpj) (11)
As an example, g could represent an angle, 6, and it may act on a vector p as a rotation g.p = Ryp.

Connecting everything back to Eq. [0] Noether’s theorem states that any continuous symmetry can
be expressed as a conservation law. This allows us to introduce bi-invariant function [31} [69], or
“Noether charge", 5(p;, p;), that is invariant under the group action,

B(pi, ;) = B(g-pi, 9-p;) = B(pi,p;) — B(g-pi, g-p;) = 0. (12)
Thus, we can express our symmetry group through isodistances of 3,
a(zi, zpi, ;) = &lx;, xj, B(pispj))- (13)
For example, we can pick the function
B(pi,pj) = pi —pj = (Pi —po) — (p; — o) = B(pi — 0,pj — Po) (14)

If we were to define 5(p;, p;j) = |pi—p;|, then we we would additionally be equivariant to reflection of
the order of tokens in a sentence. If we trivially define 3(p;,p;) = C, then we arrive at bag of words,
or no positional encoding (NoPE). For a list of common transformations and their corresponding
bi-invariants see Theorem 1 of Bekkers et al. [5]].

E.2 Query-Key Separability

Query and key separability is important for efficiency reasons. If we can decompose our positional
encoded attention score as,

O‘(x“x]aplap]) :&(QO(IZ,pZ)7§0($],pJ)) (15)

then we can pre-compute the positional encoding for the queries and keys on time making the
computation O(T'). If the positional encoding is not separable, then it will need to be computed for
every pair, (i, 7)[41,150L55]). Although there are many symmetries that can be exploited to make this
not a quadratic computation, it removes the symmetries exploited by efficient attention mechanisms
(6} 114 27].

E.3 Linear Flow Property

The property of being a “flow" was first proposed in Liu et al. [39], however it is not often discussed.
It is a property inherently present in ROPE[61], LieRE[46]] and ALiBi [49] embeddings, specifically
as a linear flow.

We use the term linear flow for this property because the embedding can be found by repeated
application of a linear function. However, the term “linear" this is a small misnomer because it is
only locally linear. We define a flow as function

0:RY xR - RY (16)
such that for all z € X and p;, p2 € R, the following conditions hold:
1. Initial condition (identity at time zero):
0(0,2) = 7)
2. Group property (flow property):
e(p(x,p1),p2)) = @z, p1 + p2) (18)
3. Continuity (or differentiability): ¢ is continuous with respect to its variables, depending on

the context
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Strictly speaking, continuity is not necessary for positional encodings as positions tend to be integer
values. What we really wish to capture with this property is for the positional encoding to be
recursively defined. It may be strange to wish to apply the positional encoding multiple times;
however, by having the positional encoding as an endomorphism it can allow for more predictable
behavior when extrapolating to larger contexts, which we suspect helps the model train.

We define a position embedding to be a linear flow if the flow has the form:

p(x, Ap) = Ax, (19)
for A € RV*N and x € RY, where Ap is the increment rate for position. By Eq. any position
p := poAp can then be attained by,

p(x,p) = AP°x. (20)
This can be seen as a geometric series if A is a scalar as seen in Press et al. [49]]. If we let At become
infinitesimal, then we can express the recurrence relationship as the ODE,

dp
- 21
ot Ap 2D
which we can integrate to get,
o(x,p) = exp(Ap)x (22)

This A is our generator of the flow, which is also a generator for a matrix Lie algebra, which we
focus on in the main text. The matrix exponential, exp : RV XN — RV>*N can be unstable for long
contexts; similar to the scalar exponential function e*?, the function can quickly become large for
high values of x. However, this can be stable value x = 0, since it always results in one. Similarly,
the matrix exponential can be stable if the divergence of the flow — trace of the generator — is zero.
We call flow “incompressible" or “divergence-free" if the trace of A is zero, making the determinant
of A unit. If fluid dynamics, this is called incompressibility. For fluids, this implies that the flow
conserves mass.

If there are more than one generator of the Lie group, A; and As, then Eq. [I§| must be modified to,

o(p(x,P1),P2)) = ¢(X, P10 P2), (23)
where o is the group product. By the Baker—Campbell-Hausdorff formula, exp A1 p; exp Asps =
exp A1 p1 + Asps iff the commutator of A;p; and Asps is zero, i. e. the matrices commute. If they
do commute, then

P(p(x,P1),P2)) = ¢(p(x,P2), P1)) = @(X,P1°P2) = ¢(X,p2°P1) (24)
thus making o commutative and having the same properties as addition, o := “+", and Eq. [I§ will
hold. In this case, the group/flow is known as an abelian Lie group, or abelian flow. However, if they
do not commute, then o will not commute and they are known as non-abelian. This also makes the
flow non-integrable.

E.4 Locality

Locality is often conflated with relativity. The general idea is that tokens far from each other should
be independent of one another — i. e. attention should decay as distance grows. This often motivates
the definition
lim oz, 2, pi,p;) =0 (25)
|pi—pj|—o0
for p;,p; € Rand x;,x; € RP. However, this definition is both relative and local. We instead define
local as,

|pi —po|—o0
The difference being that pg is the origin position. If an embedding is relative, then the origin is
arbitrary and can be defined as p; or p;. In Press et al. [49], they define the origin vector as the next
word. However, they can only do this because of the causal mask.

In general, the most natural way to measure locality is through the concept of the quantum mechanical
concept of the variance of an operator. We will simply use exponential decay, but we point interested
readers to Chapter 3 of Griffiths [[19]]. This formalism works for RoPE as it is a linear transformation
and the attention mechanism defines a Hilbert space.

To be clear, RoPE and LieRE are not relative embeddings. This was shown for RoPE in Barbero et al.
[4]]. Because they are orthogonal matrices, they have unit determinant, which naturally precludes
locality.
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E.5 Other properties

For completeness, there are two additional assumptions that are common.

Adjoint symmetry of the Positional Encoding We implicitly assume that the positional encoding
is symmetric for the query and key. That is, we assume that the query and key are from the same
domain, so the positional encoding has the same representation. More generally, the positional
encoding can act differently on the query and key,

a(@(wi, pi), p(x5,p5)) = ale(xi, pi), (T4, p5)), 27

where ¢ is the positional encoding function for queries. More generally, we can have a relative
embedding by letting ¢ act on queries differently from the keys. For example, if we let

¢(r,p) = exp(Ap) @(w,p) = exp(—Ap), (28)

where A is a diagonal matrix. We end up with,

a(@(zi,pi), o(x5,p5)) = a; exp(A(p; — pi))k;, (29)

where RoPE can be interpreted as a simple harmonic oscillator, by weakening the symmetry require-
ment, one could incorporate damping. This can also be used to incorporate graph Laplacian positional
encodings into the framework.

Reversibility Reversibility means that the positional encoding is an injective map — that is, every
coordinate is mapped to a unique rotation, thus position can be recovered. This property is important
in Liu and Zhou [38] and Su [60] to derive Axial RoPE. While it prevents Eq. ??, it is necessary only
for the D = 1 case. More generally, Mixed RoPE can learn an injective map for large D. Moreover,
while having a “lossless" positional encoding is nice mathematically, its practical utility has yet to be
soundly justified, especially if the positional encoding is learnable.
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F Fast Implementation

We follow a vectorized implementation for Spherical RoPE similar to the “fast implementation”
proposed in Su et al. [61].

First, apply the rotation directly on after the other:

zq[1] = cos(wypy) z4[1] — sin(wypy) za[3] (30)

z4[3] = sin(wyy) zq[1] + cos(wy) za[3], 31
then

z4[2] = cos(wyps) 2a[2] — sin(waps) 2i[3] (32)

za[3] = sin(wps) z4[2] + cos(wzp.) z4[3], (33)

where steps [30]and [31] happen simultaneously, and steps [32) and 33| occur at the same time.

G Experimental Setup

Models We use the ViT-S backbone from the timm library [[70]. The network always has a depth
of 12. We keep N as close to constant across models as we can. For CIFAR100, the embedding
dimensions are changed from 64 X Npeags t0 60 X Npeads to be compatible with pairs, triplets and
quadruples. For ImageNet, we make the embedding dimension 63 X Npeaqs for Spherical RoPE and
64 X Npeags for other methods. For classification, we use a class token to pool the tokens and predict.
Unlike the patch tokens, the class token is not affected by any positional encoding.

CIFAR100 All experiments on CIFAR100 were performed on one A100 GPUs with a batch size
256. We use a patch size of 4 x 4 on the original image size 32 x 32. The training uses heavy
regularization and augmentations including dropout, MixUp [78] and CutMix [77]. The models are
trained for 400 epochs, taking ~ 40 seconds per training loop.

ImageNet All experiments on ImageNetlk were performed on four A100 GPUs with a batch size
256. We used cosine learning rate with a learning rate of 3e — 3 for 200 epochs with 5 epochs of
linear warm-up. We used a patch size of 16 x 16 on the cropped and resized 224 x 224 image after
applying 3-Augment [64]. We use the LAMB [75] optimizer. All experiments took ~20 hrs with ~ 5
to 8 minutes to complete a training loop depending on method.

Positional Encodings For testing with different resolutions, the images from ImageNet’s validation
set were normalized, resized and cropped. On training, the patches were assigned position [—, 7]
and for evaluation, the patch positions were extrapolated to the range [—P%w, P%w]. For Learned
APE, the positional embeddings are instead interpolated. The fixed frequencies were given by
wg =1/ 100%4/P  where d is the index of the pair/tuple/quadruple. One frequency is shared between
both z and y in our implementation of Axial RoPE .
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ses H Hyperparameters

Table 5: Hyperparameters for ImageNet-1K Training

Category Setting

Model Architecture

Patch Size 16x16

Heads 6

Latent Dimension 64 (63 for Spherical) x Heads
Depth 12

Pooling [CLS]

Stochastic Depth No

Dropout No

LayerScale 1

Optimization

Optimizer LAMB [75]]

Base Learning Rate 4e-3

Weight Decay 0.05

Learning Rate Schedule Cosine Decay
Warmup Schedule Linear

Warmup Epochs 5

Epochs 200

Batch Size 512

Gradient Clipping v

Precision and Backend

Precision Mixed (bfloat16)
Backend torch.autocast
Data Augmentation - Train

Crop RandomResizedCrop (192—224)
Flip v

3-Augment v

Color lJitter (0.3,0.3,0.3,0.0)
Mixup [78] X

Cutmix [[77] X

Normalization ImageNet-1K Statistics

Data Augmentation - Test

Resize
Crop

Normalize

Resize — Resolution
CenterCrop
ImageNet-1K Statistics
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Table 6: Hyperparameters for CIFAR100 Training

Category Setting

Model Architecture

Patch Size 16x16

Heads 12

Latent Dimension 60 x Heads
Depth 12

Pooling [CLS]
Stochastic Depth 0.1

Dropout 0.1

LayerScale v

Optimization

Optimizer LAMB [75]
Base Learning Rate 4e-3

Weight Decay 0.05

Learning Rate Schedule Cosine Decay
Warmup Schedule Linear

Warmup Epochs 5

Epochs 400

Batch Size 1024

Gradient Clipping v

Precision and Backend

Precision Mixed (bfloat16)
Backend torch.autocast
Data Augmentation - Train

Crop RandomResizedCrop (32)
Flip v

3-Augment v

Color Jitter (0.3,0.3,0.3,0.0)
Mixup [78]] 0.8

Cutmix [[77]] 1.0
Normalization CIFAR Statistics

Data Augmentation - Test

Normalize

CIFAR Statistics

18



599

600
601

602

603

604

605
606

607

608

I Additional Evaluations

In this section, we include extra evaluations including, basic data scaling, segmentation and speed.
We also include additional experiments on the effect of rotation frequencies on Uniform RoPE.

I.1 Data Scaling

Below we evaluate the data scaling of each method. We partition the CIFAR100
Table 7: Performance on different portions of CIFAR100.

Dataset Size  Spherical (Learned) Axial (Learned) Mixed Uniform APE

0.2 56.04 (57.2) 55.3 (56.6) 56.9 52.82 459
0.4 63.6 (65.34) 63.3 (62.5) 64.4 59.7 534
0.6 67.6 (69.8) 66.0 (66.78) 70.0 64.1 57.7
0.8 69.8 (72.6) 69.9 (69.1) 71.6 658  59.0

Equivariance, in theory, should provide better scaling due to its inductive bias. However, we observe
that learned Spherical RoPE performs on-par or better than Mixed RoPE with less parameters.

J Segmentation

Table 8: Segmentation results (IoU) on VOC with and without augmentation.

Spherical Axial (Learned) Mixed Uniform

VOC (No Aug.) 0.45 0.42 (0.43) 0.41 0.41
VOC (Simple Aug.)  0.50 0.46 (0.47) 0.50 0.45
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K Proofs and Lemmas

Axial RoPE Separability

Proposition 3. Axial RoPE is separable in x and y, that is, the attention score can be decom-
posed into,

a(xiaxja piapj) - Oéz(;:) + OZS/)

Proof. Suppose we define the dot-product attention score as
a(q, k) =q'k.

We incorporate Axial Rotary Positional Embeddings by rotating each 2-dimensional subvector of the
query (and likewise the key). Concretely, if the hidden dimension is 2n, we partition

T T
q = [%,1, qy,17 ey qa:,nv qy,n] ) k = [km’,la ky,la ceey kx,nv ky,n} 7(34) Where eaCh
Qu.d> 9y.d» Ka,d» Ky,a € R?. At spatial location p = (p,, p, ), we apply rotations

Uq = R(Waps) Ao, dya = R(wapy) ay.a.
and similarly for k. Here R(6) € R?*? is the planar rotation by angle 6.
For tokens at positions p; = (p; ., Pi,y) and p; = (pj.z, Pj,y). their rotated queries and keys yield

n

Qij = Z [(Qz,d)T R(wq (pjo — Piw)) Kava + (ay,a) " R(wa (pjy — piy)) ky,d]
=1

Define the horizontal and vertical components by
o =3 (@r.a) T R(wa (D0 — Pia)) Kwar 0l =3 (@) T R(wa (0 — Piy) Ky
d=1 d=1
Hence the total attention decomposes additively:
(¥)

37
demonstrating that axial rotary embeddings factorize the positional dependence along each axis. [

Qi = ozl(;c) + «

Matrix Exponentiation Computing the matrix exponential by exponentiating the eigenvalues is a
common result in linear algebra and numerics, however we provide it here for those unfamiliar.

Lemma 1. Let A be a diagonalizable matrix A = UAU™!, then the matrix exponential of A
is given by
exp(A) = Uexp(A) U™!

Proof.
Recall the power-series definition of the matrix exponential:
1
_ LAk
exp(A) =) A (35)
k=0
Since A is diagonalizable,
AP = (UAU ) =UAtU L (36)
Substituting into the series gives
_ o 1 Epr-1Y) — N RV T
exp(A)—kz:H(UA U )_U(ka!A)U . (37)
—0 =0
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Because A is diagonal, the series >~ % AF is itself the diagonal matrix of scalar exponentials,

exp(A) = diag(e™, ..., eM). (38)

Hence is well defined, and
exp(A) = U exp(A) UL (39)
O

Simultaneous-Diagonalizability The proof that two (diagonalizable) matrixes are simultaneous-
diagonalizability if and only if they are commutative is also a standard result. However, we once
again provide it here:

Lemma 2. Let A, and A, be skew-symmetric. Then A, and A, are simultaneously diagonal-
izable if and only if A, A, = Ay A, .

Proof.
Suppose A, and A, are simultaneously diagonalizable. Then, because they are skew-symmetric,
there exists a unitary matrix U such that

UA,U" = A, and UAUT = A4, (40)
where A, and A, are diagonal matrices.
Then,
A A, =UAU'UA U =UAAUT =UA AU = AA, (41)

Hence, A, and A, commute.
Now suppose A, and A, commute, A, A, = A,A,. Since A, and A, are skew-symmetric, they
are diagonalizable in CPP, thus there exists a basis of eigenvectors of .A,. Because A, commutes
with A, the eigenspaces of A, are invariant under .4,.. That is, for any eigenvalue A of A,, the
corresponding eigenspace

Ey={veCP: A=} (42)

is Ay-invariant: if v € Ej, then
Ay (Ayv) = Ay (Azv) = Ay(Av) = A v = Ayv € Ey. 43)

Now, restrict A, to each eigenspace Ey. Since C is algebraically closed and A, |z, is a linear
operator on a finite-dimensional space, .4, is diagonalizable on Ey. Thus, we can choose a basis of
eigenvectors for A, in each E}.

Putting these together, we get a basis for CV consisting of vectors that are eigenvectors for both A,

and A,. Therefore, A, and A, are simultaneously diagonalizable.
O

1-D LieRE is equivalent to RoOPE In this section, we will more formally prove that the traditional
RoPE with learned rotation frequencies is equivalent to 1-D RoPE as proposed in Section 3]

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned
frequencies.

Proof.
We define a rotation to be an orthogonal matrix with positive determinant; that is, it is an element
of R € SO(N). We can write any element of SO(N) via the exponential map R = e“* where
A € s0(N), i.e. Ais askew-symmetric matrix. It is well-known that the eigenvalues of a real, skew-
symmetric matrix are purely imaginary (or zero), and such a matrix is unitarily (i.e. orthogonally)
diagonalizable over C, resulting in a spectral decomposition with a purely imaginary eigenvalue
matrix. Thus,
A=TUAiUf (44)

and, by Lemmal[l]

exp (A) = Uexp (Ad) UT. 45)

where, because A is diagonal, exp(A) is simply the scalar-exponential of each element. The positional
encoding of a token to a query can be written as,

¢(x,p) = exp(Ap)Wyx = Uexp(Ai p)Wx (46)
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where W = W, U. We assume the same encoding for the key with a different matrix, W} and
the same generator, A. This equation can be rewritten as ¢(x,p) = URoPE(x,p) by Eq[l} If

the attention score is given by a(q, k) = q'k, where 1 denotes the Hermitian transpose, then the
attention score can be expanded into,

a(xi,Xj,pi, pj) = RoPE(x;,p;)'UTURoPE(x;,p;) 47)
= RoPE(x;,pi)  RoPE(x;,pj). (48)
Hence, any LieRE of one generator can be expressed as RoPE with learned rotation frequencies. [

Any commutative LieRE is equivalent to Mixed RoOPE We now prove that multi-dimensional
LieRE with commutative generators generalizes directly to Mixed RoPE.

Proposition 2. Any M -dimensional LieRE with commutative generators can be parameterized
by Mixed RoPE.

Proof.
Let Ay,..., Ay C s0(N) be skew-symmetric generators such that [A,,, A,] = 0 for all m, n. By
Lemma[2] commuting normal matrices are simultaneously unitarily diagonalizable. Thus, there exists

a unitary U and diagonal matrices A1, ..., Ay such that
Am = UA,,,iU" forallm=1,..., M. (49)
For a position vector p = (p1, ..., pay) € RM, the LieRE positional encoding is
M
LieRE(x, p) = exp <Z Ampm> Wax, (50)
m=1
which, using Lemmas|T|and[2} can be written as
M
LieRE(x,p) = Uexp (Z Amz‘,pm) U'Wx. (51)
m=1
Let W/ = U'W,. Then
LieRE(x, p) = UMixedRoPE(x, p), (52)

where MixedRoPE applies elementwise complex rotations
O Pt A par) (53)
to each channel k, with frequencies )\gf ) Jearned from A,,.
If the attention score is given by a(q, k) = q'k, then
a(x;, X, pi, Pj) = MixedRoPE(x;, pi)TUTUMiXedROPE(Xj, P;) (54)
= MixedRoPE(x;, p;) 'MixedRoPE(x;p;). (55)

Hence, any M -dimensional LieRE with commutative generators is equivalent to a Mixed RoPE
parameterization with learned rotation frequencies. O
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