
A Circular Argument:
Does RoPE need to be Equivariant for Vision?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Rotary Positional Encodings (RoPE) have emerged as a highly effective technique1

for one-dimensional sequences in Natural Language Processing spurring recent2

progress towards generalizing RoPE to higher-dimensional data such as images3

and videos. The success of RoPE has been thought to be due to its positional4

equivariance, i.e. its status as a relative positional encoding. In this paper, we5

mathematically show RoPE to be one of the most general solutions for equivariant6

positional embedding in one-dimensional data. Moreover, we show Mixed RoPE7

to be the analogously general solution for M -dimensional data, if we require8

commutative generators – a property necessary for RoPE’s equivariance. However,9

we question whether strict equivariance plays a large role in RoPE’s performance.10

We propose Spherical RoPE, a method analogous to Mixed RoPE, but assumes11

non-commutative generators. Empirically, we find Spherical RoPE to have the12

equivalent or better learning behavior as its equivariant analogues. This suggests13

that relative positional embeddings are not as important as is commonly believed14

for vision. We expect this discovery to facilitate future work in positional encodings15

for vision that are faster and generalize better by removing the preconception that16

they must be relative.17

1 Introduction18

Recently, Rotational Positional Embeddings (RoPE) [61] have gained popularity, touting an emphasis19

on the relative position between two tokens rather than their absolute positions [18, 22, 37, 40].20

Because attention between tokens only depend on their relative distance, the network has shift-21

equivariance. The most general form of rotary encoding is LieRE [46]. However, when extending22

to higher dimensions, requires one to either give up shift-equivariance or make constraints on the23

rotations [46, 76, 53]. In this work, we unify recent extensions of RoPE to M -dimensions based on24

the constraints they make on the generators of LieRE. We show that LieRE is shift-equivariant if25

and only if it can be decomposed into the simpler Mixed RoPE, or the more popular Axial RoPE if26

further constrained.27

However, while RoPE is often claimed to be successful due to its shift-equivariance, the validity of28

that claim and necessity of equivariance has not been thoroughly tested. We propose Spherical RoPE29

which strictly takes the assumption of non-commuting generators – thus, non-equivariant – to test30

this claim. We find Spherical RoPE to perform as well as Mixed RoPE while strictly outperforming31

Axial RoPE on vision tasks. We also show that Axial RoPE with a single shared frequency performs32

significantly worse, despite still being equivariant. Thus, we conclude equivariance does not seem to33

be the primary contributor for RoPE’s success in vision.34
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2 Background35

2.1 Rotary Positional Encodings (RoPE)36

Rather than adding a positional embedding to the patch embedding, RoPE proposed to modify the37

queries and keys by rotating them in pairs.38

RoPE(z, p) = Rpz =

Rpω1 0 · · ·
0 Rpω2 · · ·
...

...
. . .


z1

...
zD

 (1)

where Rωdpt
is a rotation matrix, ωi is a rotation frequency for the corresponding pair. We use the39

convention that real-valued queries and keys will have dimension N and the number of sub-vectors40

(pairs) is dimension D.41

For images, where positions are two-dimensional, RoPE is often extended with Axial RoPE [56],42

where each position rotates independent sub-vectors. However, because the horizontal and vertical43

directions are treated independently, this method struggles with representing oblique attention patterns44

[22]. One rotate the same pair by both positional coordinates where the amount of rotation caused45

by each is a parameterized for each pair. This is known as Mixed RoPE [22]. Alternatively, one can46

take the Lie algebra perspective and learn a skew-symmetric generator matrix for each positional47

coordinate. This known as LieRE [46] and has the benefit of rotating beyond 2D sub-vectors.48

3 The Generality of Learned RoPE and Mixed RoPE49

While RoPE is proposed by rotating 2D sub-vectors of the querys and keys, LieRE can perform the50

full ND rotation. However, by taking the spectral decomposition of the generators, LieRE can be51

reparameterized into RoPE. For proofs see Appendix K.52

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned
frequencies.

3.1 Extending RoPE to more than one dimension53

While this proof works for 1D positions, it does not generalize to M -D without introducing extra54

inductive biases or giving up equivariance. By imposing constraints on Ax and Ay , we can categorize55

the other RoPE methods based on the assumptions made.56

Generators rotate independent subspaces. For example, one can impose the assumption that px57

and py rotate independent subspaces in RN . Mathematically, this assumption would imply that58

∀d ∈ [1, D] : λ
(x)
d = 0 or λ(y)

d = 0, (2)

where λ
(x)
d and λ

(y)
d are the eigenvalues of Ax and Ay, respectively. This is equivalent to rotating59

independent components of the query/key as done by Axial-RoPE.60

Commutative generators. For LieRE to be equivariant, we only need to ensure that the generators61

commute. If we make this assumption, then we arrive at Mixed RoPE.62

Proposition 2. Any M -dimensional LieRE with commutative generators can be parameterized
by Mixed RoPE.

This means that any of the more recent extensions that assume commutativity in the generating63

matrices of LieRE such as ComRoPE [76] or STRING [53], ultimately are alternative implementations64

of Mixed RoPE. However, it is not clear that requiring commutativity is necessary or even beneficial.65

We propose an ablation to the need of equivariance in the form of Spherical RoPE which strictly66

removes commutativity of the generators.67
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Figure 1: Diagram of each rotary embedding’s effect on zd. While Mixed RoPE effect 2D vector
pairs, Spherical RoPE effects 3D vector triplets. Axial RoPE rotates independent dimensions for px,
thus containing pairs of pairs, or effectively quadruples. Each z contains D sub-vectors rotating at
different frequencies. While the order in which the rotations are applied does not matter for Axial or
Mixed RoPE, order matters for Spherical RoPE. Explicitly, the triplet is first rotated around the axis
associated with px and then rotated around the axis associated with py .

4 Experiments68

When extending RoPE to more than one dimension, we must either constrain ourselves to commuting69

Lie algebras or give up relativity. We therefore ask the question: Why does RoPE work? Which70

properties should be preserved for generalizing RoPE to vision? To explore this question, we71

propose two new RoPE variants: Spherical RoPE, which takes an non-commutative assumption, and72

Uniform-Frequency RoPE, which uses a single fixed rotation frequency across all dimensions.73

Spherical RoPE We propose Spherical RoPE as a method between Mixed RoPE and LieRE that74

minimally changes 2D RoPE to break equivariance. Spherical RoPE embeds position as75

φ(zd,p) = YωdxxRωdyyzd, (3)

where zd ∈ R3 is now a triplet instead of a pair, and Y is a block diagonal of 3× 3 yaw matrices and76

R is a block diagonal of roll matrices.77

Yωdxx =

[
cos(ωdxx) − sin(ωdxx) 0
sin(ωdxx) cos(ωdxx) 0

0 0 1

]
Rωdyy =

[
1 0 0
0 cos(ωdyy) − sin(ωdyy)
0 sin(ωdyy) cos(ωdyy)

]
. (4)

Table 1: Table listing the properties of each of the rotary-
based methods.

Positional Encoding Vision Strictly Oblique Requires
Equivariant Directions Learning

Rotary (RoPE) [61] ✗ ✓ N/A ✗

Axial RoPE [60] ✓ ✓ ✗ ✗
Mixed RoPE [22] ✓ ✓ ✓ ✓
LieRE [46] ✓ ✗ ✓ ✓

Spherical RoPE ✓ ✗ ✓ ✗
Uniform RoPE ✓ ✓ ✗ ✗

Intuitively, rather than RoPE rotat-78

ing around a circle, Spherical RoPE79

rotates around a sphere using Euler80

angles. Importantly, spherical rota-81

tions like LieRE are non-commutative82

making them not equivariant. In83

fact, their generators are strictly non-84

commutative, AxAy ̸= AyAx. While85

this does not mean Spherical RoPE is86

incapable of learning or approximat-87

ing equivariance throughout the net-88

work, it is the component of LieRE89

removed by Mixed RoPE.90

Uniform-Frequency RoPE. For an initial evaluation on the impact of relative position, we propose91

Uniform-Frequency RoPE. For this method, we perform Axial RoPE with a single frequency shared92

across all rotation matrices. While still being relative, this serves as a more restricted version of93

RoPE. If this method performs significantly worse than other methods, it indicates more importance94

of having a range of frequencies than equivariance. We implement uniform frequencies for Axial95

RoPE to gauge against relative importance of equivariance.96
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Table 2: Performance comparison (top-1 accuracy)
across datasets and methods.

Top-1 Accuracy (%)
Fixed Encoding CIFAR100 ImageNet
Learned APE 64.2±0.9 68.8
Axial RoPE 72.1±0.6 70.7
Uniform RoPE (Our Ablation) 70.5±0.2 70.0
Spherical RoPE (Our Ablation) 73.2±0.4 70.9

Learned Encoding
Learned Axial RoPE 72.9±0.6 70.4
Mixed RoPE 74.7±0.3 70.3
Learned Spherical RoPE (Our Ablation) 74.1±0.4 70.4
LieRE 74.2

Figure 2: Dependence of accuracy on image
resolution for ViT-S with various positional
embedding methods on ImageNet1k.

5 Results97

To evaluate the importance of different properties of positional embeddings in vision transformers,98

we trained the same ViT with different positional embeddings on CIFAR100 and ImageNet-1K. We99

start by evaluating the models on images of the same resolution as during training. If equivariance100

is important, we would see Axial and Mixed RoPE to perform better than Spherical RoPE, which101

lacks equivariance. On the other hand, if oblique frequencies are important, then we would obeserve102

Mixed and Spherical RoPE to do better than Axial RoPE, which does not capture oblique directions.103

We do not find either of the two to be the case: All three methods perform similarly in terms of104

top-1 accuracy both on CIFAR-100 and ImageNet (Table 1), suggesting that neither equivariance nor105

capturing oblique directions is important.106

The results from training on smaller subsets of the CIFAR100 training data and for the VOC107

segmentation task can be found in Appendix I. Intuitively, these tasks should favor shift-equivariance108

since less data favors stronger inductive biases. However, even in these settings Spherical RoPE109

performs on-par or better.110

When comparing to absolute positional encodings, we observe that all forms of RoPE perform111

better than learned APE (Table 1). This includes Uniform RoPE, the variant that uses only a single112

frequency. Moreover, all forms of RoPE using diverse frequencies outperform Uniform RoPE and113

have similar performance (whether they are learned or not), suggesting that diversity of frequencies114

is important.115

Lastly, we asked how well different PEs generalize across image sizes. Equivariance is often thought116

to aid model generalization. However, when evaluating each model using higher resolutions images,117

i. e. increasing the number of patches, we found Spherical RoPE to be the most effective method118

(Fig. 2), suggesting equivariance may not be the reason for RoPE’s generalization.119

6 Conclusion120

Because we see very little variation between Spherical RoPE and the equivariant methods, we121

conclude that equivariance is only a minor contributor to the increased performance seen by RoPE122

for vision. In fact, Spherical RoPE appeared to extrapolate to higher resolutions better than other123

methods. This could suggest that oblique frequencies are important for extrapolation. However,124

Mixed RoPE can also represent oblique directions, but did not outperform Axial RoPE. Thus, neither125

equivariance nor oblique directions appear to be significant for vision transformers.126
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A Broader Impact340

This work is fundamental research. While this work could lead to the discovery of better positional341

encodings and higher performing visual foundation models, the positivity or negativity of this impact342

is determined by the downstream task and not this work.343

B Limitations344

While our results do not show relative embeddings to be detrimental, we believe them to be evidence345

that equivariance is not the reason for RoPE’s success. However, our experiments were performed in346

Vision where the number of tokens is limited compared to the long context lengths of NLP. Moreover,347

the datasets are not what many believe to be “at scale". While Spherical RoPE and LieRE would348

intuitively favored at scale over Axial RoPE, as they have less inductive bias, it is unclear whether349

inductive bias and equivariance is favored at scale [8].350

It has also been shown that vision is not a purely equivariant task and benefits from relaxed equiv-351

ariance [16]. Our results do not show that equivariance is not useful in tasks that are grounded in352

physics and obey strict symmetries.353

C Literature Review354

C.1 Natural Langauge Processing355

In natural language, positional encoding has been used to break the permutation, “bag of words",356

symmetry [65]. Although this could be done by learning a vector per position, this is both memory-357

expensive for large context sizes making it practical to apply to only the first layer. Moreover, it358

does not allow for extrapolation at test time to context sizes beyond training. Thus, it is favorable359

to perform positional embeddings with a predictable deterministic function. One way of doing this360

is to make the attention relative with local receptive fields, as is done implicitly in convolutional361

neural networks [10]. Sinusoidal positional embeddings were proposed due to approximate local362

and shift-invariant properties of Random Fourier Features [51]. Since sinusoidal, other methods363

have been proposed to get guaranteed shift invariance by explicitly parameterizing based on distance364

[55, 48, 49]. However, these methods require a positional embedding for every pair of positions365

which is not supported by many of the efficient attention optimizations such as Flash attention [14]366

[3].367

Rotary Positional Embeddings (RoPE) have become the staple in NLP having recently been adopted368

by many of the large language models [67, 18, 63, 37, 23]. However, these methods also use causal369

masking, which has been shown to allow models with no positional embedding to recover absolute370

position [20, 73, 66, 28]. This has lead to questions on the importance of relative position [4].371

In language, there has also been extensions to RoPE proposed through NTKs and kernel methods [9].372

However, these methods have not, to our knowledge, seen use in vision.373

C.2 Vision and Video374

Vision transformers were introduced in Dosovitskiy et al. [15] and, though they tried sinusoidal375

position encodings, found learnable position encodings to perform best. For convolution-esque376

models such as SWin transformers, relative positional encodings have been popular [41, 12]. More377

recently, RoPE has been shown to be an efficient and simple way to have relative embeddings and has378

been extended to 2D using Axial and Mixed RoPE. Going beyond 2D to Video data, Axial RoPE has379

become increasingly popular. The extension was first attributed to Wang et al. [67] as 3D-RoPE or380

M-RoPE, leading to two separate Video-RoPE papers from Wei et al. [68] and Liu et al. [42]. Both381

of these focus on the order of the position enumeration and interleaving positions. However, this382

should not be a problem if frequencies are not deterministic, or if frequencies are indexed by both d383

and modality m as done in Eq ??. We highly recommend using either Mixed RoPE or LieRE which384

extend naturally for videos.385

LieRE embeddings have thus far been the most general form of RoPE to N -D. However, Schenck386

et al. [53] has claimed the method to have a large memory footprint and proposed STRING. This387
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paper, a preprint released concurrently with the writing of this manuscript, follows much of the388

same math as this paper. However, they did not recognize that an orthogonal matrix is implicitly389

learned by the query and key matrix. Moreover, their method relies on commuting Lie algebras.390

From our insights in Section 3, their method can likely be viewed as a slower implementation of N -D391

Mixed-RoPE.392

It is also worth noting that positional encodings have also been explored within vision through393

the area of Neural Fields [71]. Traditional coordinate MLPs have been found to be biased toward394

low-frequency functions [62] leading to more advanced positional encodings such as Random Fourier395

Features [51] or sinusoidal activation functions [57]. These implicit functions have been used to396

encode attention and message passing in graph neural networks with recent work being put in to397

make these functions equivariant to symmetry transformations [52, 7, 31].398

C.3 Graphs and AI in Science399

Positional encodings are well studied within graph neural networks [36, 47]. Graphs are limited400

in their expressivity up to the Weisfeiler-Lehman (WL) graph isomorphism test [72], so positional401

encodings can break the isomorphism symmetry [21, 74]. Within this community, they propose402

spectral attention and graph Laplacians for positional encoding [33]. These methods seem extremely403

close to our analysis of RoPE, but from a very different perspective. We show that the frequencies of404

RoPE can be interpreted as the eigenvalues of an orthogonal transformation by taking the spectral405

decomposition.406

In an overlapping vein, relative position encodings have been studied in terms of equivariant graph407

neural networks, often for scientific disciplines such as molecular physics [7, 54] or drug discovery408

[24]. One method to achieve equivariance is through defining relative coordinate frames [32]. This409

corresponds to the learned relative positional method described in Shaw et al. [55], but can be410

generalized to higher dimensions and different transformation using bi-invariant distance functions411

[5, 31, 69]. The message-passing functions of these works correspond to a generalization of attention412

scores [17].413

However, even in these tasks with physics-grounded symmetries, the need for equivariance is hotly414

debated. While AlphaFold [24] was originally touted as the example of the success of equivariant415

inductive biases in science, AlphaFold 3 [1] explicitly stated that they benefited from removing this416

inductive bias at scale. However, while the harm of inductive bias at scale is the prevalent zeitgeist, it417

is not an established fact [8].418

C.4 Computational Neuroscience419

Coupled oscillators have become a growing area of interest within computational neuroscience420

[29, 30, 59]. By observing the projection of the RoPE circles onto the real axis, one can interpret421

RoPE as time progression in D uncoupled, undamped harmonic oscillators. This perspective naturally422

connects RoPE to Löwe et al. [43]’s series of papers on complex autoencoders and their extensions423

[44, 45].424

In another, vein of research, there has been some work in hyper-dimensional computing[25, 26] in425

Phasor and Residue VSAs [34] which represent concepts as rotations around unit circles in high-426

dimensional spaces. These representations have strong connections with RoPE. Additionally, progress427

has been made in hypothesizing how biological neural networks encode positional knowledge with428

hexagonal grid cells, which can be represented as a discrete sum of three periodic functions oriented429

at the cubic roots of unity[58].430

C.5 Generality of RoPE431

The generality of RoPE has been found by others. Schenck et al. [53], Su [60], and Liu and432

Zhou [38] all propose proofs similar to Proposition 1. However, Schenck et al. [53] miss that the433

orthogonal transformation can be incorporated into key matrix. Liu and Zhou [38] and Su [60] take434

the assumption of reversibility, which leads to the independent eigenvalue assumptions of Axial RoPE.435

All three works take the assumption of an abelian subgroup –ie commutative generators, – but miss436

the generality of Mixed RoPE. While Su [60] propose quaternions – i. e. spherical rotations – as a437

direction, they immediately dismiss it as a no-go because they lack equivariance. This exemplifies the438
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“circular argument," where equivariance is assumed to be necessary because work will not investigate439

non-equivariant positional encodings because equivariance is necessary.440

Because our derivation was found independently of these works and the previous works are, to our441

knowledge, not published, we have left in Proposition 1. We would like to acknowledge their work,442

but retain the flow of this paper.443

D Notation444

Symbol / Term Dimension Meaning Notes
xi RD Patch/token/content vector of token i Raw input embedding
xi X Abstract content of token i Raw input embedding
pi RM or P Position of token i, can be M -D or abstract P Scalar (1D) or vector (2D)
m Z Modality index e.g., x, y, time
M Z Number, or space, of Modalities
D Z Hidden dimension Number of pairs/triples/quadruples
T Z Number of Tokens

Wq,Wk,Wv RX×D Query, Key, Value Matrices
q RN qi = Wqxi Query vector
k RN kj = Wkxj Key vector
v RN vj = Wvxj Value vector

Q,K,V RT×N Query, Key, Values T tokens, D latent dimensions
φ(x, p) X × P → RD Positional Encoding function

Z RT×N Output of Attention Z = Attention(Q,K,V)
a(i, j) R Attention weight Softmax of attention scores
α(q,k) R Attention score Inner product q⊤k
ωd/λd R Rotation frequency for dimension d Equivalent to eigenvalue of generator
qd R2/3/4 Query pair/triple/quadruple at dimension d After RoPE or LieRE applied

Rωdp R2×2 2× 2 rotation matrix Rotation based on frequency and position

Table 3: Summary of Notations and Key Concepts
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Positional Encoding Vision Learned Extrapolation QK Separable Relative Linear Flow Used In
Absolute (Sinusoidal) ✗ ✓/✗ ✓ ✓ ✓ ✗ Transformer[65]
Absolute (Learned) ✓ ✓ ✗ ✓ ✓ ✗ BERT, GPT, ViT[15]
Absolute (Random-Fourier) ✗ ✗ ✓ ✓ ✗ ✓ FNet[35], Performer [11]
Relative (Learned) ✗ ✓ ✗ ✗ ✗ ✗ Transformer-XL, T5 [50]
ALiBi ✗ ✓/✗ ✓ ✓ ✓ ✓ LLaMA 2 [18], ALiBi [49]
NoPE ✗* ✗ ✓* ✓* ✓* ✓* LLaMA 4 [2]
Rotary (RoPE) ✗ ✗ ✓ ✓ ✓ ✓ Contemporary LLMs [67, 18, 63, 23]
Axial RoPE ✓ ✓/✗ ✓ ✓ ✓ ✓ VisionLLaMA[13], Qwen2[67], VideoRoPE[68]
Mixed RoPE ✓ ✓ ✓ ✓ ✓ ✓ Heo et al. [22]
LieRE ✓ ✓ ✓ ✓ ✗ ✓ [46]
Spherical RoPE ✓ ✓/✗ ✓ ✓ ✗ ✓ Ours
Uniform RoPE ✓ ✓/✗ ✓ ✓ ✓ ✓ Ours

Table 4: Comparison of positional encoding methods in transformer models. ∗NoPE makes some
properties trivially true.

E Positional Encoding Properties445

Rotary positional embeddings were derived in Su et al. [61] by drawing equations from assumed446

properties. While these appear as arithmetic assumptions and equations in their work, we formalize447

what properties these assumptions imply and why we may choose these assumptions in this section.448

In their paper, to derive their equations, they use equivariance (relativity), query-key separability of449

the positional encoding, linearity and incompressability, locality, and query-key symmetry.450

1. Equivariance/Relativity: Attention score should be affected only by the relative position of451

two tokens, i. e. have the form452

α(xi, xj , pi, pj) = α̂(xi, xj , pi − pj). (5)

2. Key-query seperability: The positional encoding, φ, of the query should not depend on the453

position of the key454

α(xi, xj , pi, pj) = ᾱ(φ(xi, pi), φ(xj , pj)) (6)

3. Linearity: The positional encoding should be a linear flow, see Appendix E.3. Namely,455

φ(φ(x, pi), pj) = φ(x, pi + pj). (7)

4. Locality: The attention score between two tokens should decay with distance456

lim
|pi−pj |→∞

α(xi, xj , pi, pj) = 0 (8)

E.1 Relativity and Equivariant457

We use the term equivariant interchangably with relative. Strictly speaking, one should specify the458

transformation or group you would like to be relative to, e. g. shift/rotation or SO(2). As previous459

literature always refers to relative positional bias in terms of shifts/translations, in the main text, this460

is what we mean. We use the term equivariance to be the generalization of relativity beyond language461

because we would like to refrain from using the term ”relativity" to describe the property of being a462

relative PE too often due to its connotation within theoretical physics. First, we define relative in the463

case of positional encodings in language as464

α(xi, xj , pi, pj) = α̂(xi, xj , pi − pj). (9)

In the rest of this section, we mathematically explore where this equation comes from.465

The behavior we are trying to capture is that if we renumber the words in the sentence, it should not466

affect the attentions score. Intuitively, if a text is padded with spaces at the beginning, that will not467

have a significant effect on the meaning of the sentences. We can ensure this by colloquially saying468

that the attention between two words should depend on the distance between them. Notice, that469

strictly speaking this is not a proper distance, since it can be negative; it is, instead, a signed distance470

function. Though this may seem pedantic in one dimension, in two dimensions defining a distance471

function is less unique. For example, one may choose L1 or L2 distance metrics. Because distance472

functions are more nebulous, it makes more sense to define relative in terms of the transformations473

that we would like our attention score to be independent of.474

α(xi, xj , pi, pj) = α(xi, xj , T (pi), T (pj)). (10)
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These transformations can be combined to generate a set of transformations which leave the attention475

score unchanged, or symmetric. This set has the mathematical properties of a group and is known as476

a symmetry group. We can index transformations by elements in the symmetry group, g ∈ G, and let477

the elements act on478

α(xi, xj , pi, pj) = α(xi, xj , g.pi, g.pj). (11)

As an example, g could represent an angle, θ, and it may act on a vector p as a rotation g.p = Rθp.479

Connecting everything back to Eq. 9, Noether’s theorem states that any continuous symmetry can480

be expressed as a conservation law. This allows us to introduce bi-invariant function [31, 69], or481

“Noether charge", β(pi, pj), that is invariant under the group action,482

β(pi, pj) = β(g.pi, g.pj) =⇒ β(pi, pj)− β(g.pi, g.pj) = 0. (12)

Thus, we can express our symmetry group through isodistances of β,483

α(xi, xjpi, pj) := α̂(xi, xj , β(pi, pj)). (13)

For example, we can pick the function484

β(pi, pj) = pi − pj = (pi − p0)− (pj − p0) = β(pi − o, pj − p0) (14)

If we were to define β(pi, pj) = |pi−pj |, then we we would additionally be equivariant to reflection of485

the order of tokens in a sentence. If we trivially define β(pi, pj) = C, then we arrive at bag of words,486

or no positional encoding (NoPE). For a list of common transformations and their corresponding487

bi-invariants see Theorem 1 of Bekkers et al. [5].488

E.2 Query-Key Separability489

Query and key separability is important for efficiency reasons. If we can decompose our positional490

encoded attention score as,491

α(xi, xj , pi, pj) = α(φ(xi, pi), φ(xj , pj)) (15)

then we can pre-compute the positional encoding for the queries and keys on time making the492

computation O(T ). If the positional encoding is not separable, then it will need to be computed for493

every pair, (i, j)[41, 50, 55]. Although there are many symmetries that can be exploited to make this494

not a quadratic computation, it removes the symmetries exploited by efficient attention mechanisms495

[6, 11, 27].496

E.3 Linear Flow Property497

The property of being a “flow" was first proposed in Liu et al. [39], however it is not often discussed.498

It is a property inherently present in RoPE[61], LieRE[46] and ALiBi [49] embeddings, specifically499

as a linear flow.500

We use the term linear flow for this property because the embedding can be found by repeated501

application of a linear function. However, the term “linear" this is a small misnomer because it is502

only locally linear. We define a flow as function503

φ : RN × R → RN (16)

such that for all x ∈ X and p1, p2 ∈ R, the following conditions hold:504

1. Initial condition (identity at time zero):505

φ(0, x) = x (17)

2. Group property (flow property):506

φ(φ(x, p1), p2)) = φ(x, p1 + p2) (18)

3. Continuity (or differentiability): φ is continuous with respect to its variables, depending on507

the context508
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Strictly speaking, continuity is not necessary for positional encodings as positions tend to be integer509

values. What we really wish to capture with this property is for the positional encoding to be510

recursively defined. It may be strange to wish to apply the positional encoding multiple times;511

however, by having the positional encoding as an endomorphism it can allow for more predictable512

behavior when extrapolating to larger contexts, which we suspect helps the model train.513

We define a position embedding to be a linear flow if the flow has the form:514

φ(x,∆p) = Ax, (19)
for A ∈ RN×N and x ∈ RN , where ∆p is the increment rate for position. By Eq. 18, any position515

p := p0∆p can then be attained by,516

φ(x, p) = Ap0x. (20)
This can be seen as a geometric series if A is a scalar as seen in Press et al. [49]. If we let ∆t become517

infinitesimal, then we can express the recurrence relationship as the ODE,518

∂φ

∂t
= Aφ (21)

which we can integrate to get,519

φ(x, p) = exp(Ap)x (22)
This A is our generator of the flow, which is also a generator for a matrix Lie algebra, which we520

focus on in the main text. The matrix exponential, exp : RN×N → RN×N , can be unstable for long521

contexts; similar to the scalar exponential function exp, the function can quickly become large for522

high values of x. However, this can be stable value x = 0, since it always results in one. Similarly,523

the matrix exponential can be stable if the divergence of the flow – trace of the generator – is zero.524

We call flow “incompressible" or “divergence-free" if the trace of A is zero, making the determinant525

of A unit. If fluid dynamics, this is called incompressibility. For fluids, this implies that the flow526

conserves mass.527

If there are more than one generator of the Lie group, A1 and A2, then Eq. 18 must be modified to,528

φ(φ(x,p1),p2)) = φ(x,p1 ◦ p2), (23)
where ◦ is the group product. By the Baker–Campbell–Hausdorff formula, expA1p1 expA2p2 =529

expA1p1 +A2p2 iff the commutator of A1p1 and A2p2 is zero, i. e. the matrices commute. If they530

do commute, then531

φ(φ(x,p1),p2)) = φ(φ(x,p2),p1)) =⇒ φ(x,p1 ◦ p2) = φ(x,p2 ◦ p1) (24)
thus making ◦ commutative and having the same properties as addition, ◦ := “+", and Eq. 18 will532

hold. In this case, the group/flow is known as an abelian Lie group, or abelian flow. However, if they533

do not commute, then ◦ will not commute and they are known as non-abelian. This also makes the534

flow non-integrable.535

E.4 Locality536

Locality is often conflated with relativity. The general idea is that tokens far from each other should537

be independent of one another – i. e. attention should decay as distance grows. This often motivates538

the definition539

lim
|pi−pj |→∞

α(xi, xj , pi, pj) = 0 (25)

for pi, pj ∈ R and xi, xj ∈ RD. However, this definition is both relative and local. We instead define540

local as,541

lim
|pi−p0|→∞

α(xi, xj , pi, p0) = 0. (26)

The difference being that p0 is the origin position. If an embedding is relative, then the origin is542

arbitrary and can be defined as pi or pj . In Press et al. [49], they define the origin vector as the next543

word. However, they can only do this because of the causal mask.544

In general, the most natural way to measure locality is through the concept of the quantum mechanical545

concept of the variance of an operator. We will simply use exponential decay, but we point interested546

readers to Chapter 3 of Griffiths [19]. This formalism works for RoPE as it is a linear transformation547

and the attention mechanism defines a Hilbert space.548

To be clear, RoPE and LieRE are not relative embeddings. This was shown for RoPE in Barbero et al.549

[4]. Because they are orthogonal matrices, they have unit determinant, which naturally precludes550

locality.551

14



E.5 Other properties552

For completeness, there are two additional assumptions that are common.553

Adjoint symmetry of the Positional Encoding We implicitly assume that the positional encoding554

is symmetric for the query and key. That is, we assume that the query and key are from the same555

domain, so the positional encoding has the same representation. More generally, the positional556

encoding can act differently on the query and key,557

α(φ̄(xi, pi), φ(xj , pj)) = α(φ(xi, pi), φ(xj , pj)), (27)

where φ̄ is the positional encoding function for queries. More generally, we can have a relative558

embedding by letting φ̄ act on queries differently from the keys. For example, if we let559

φ(x, p) = exp(Λp) φ̄(x, p) = exp(−Λp), (28)

where Λ is a diagonal matrix. We end up with,560

α(φ̄(xi, pi), φ(xj , pj)) = q⊤
i exp(Λ(pj − pi))kj , (29)

where RoPE can be interpreted as a simple harmonic oscillator, by weakening the symmetry require-561

ment, one could incorporate damping. This can also be used to incorporate graph Laplacian positional562

encodings into the framework.563

Reversibility Reversibility means that the positional encoding is an injective map – that is, every564

coordinate is mapped to a unique rotation, thus position can be recovered. This property is important565

in Liu and Zhou [38] and Su [60] to derive Axial RoPE. While it prevents Eq. ??, it is necessary only566

for the D = 1 case. More generally, Mixed RoPE can learn an injective map for large D. Moreover,567

while having a “lossless" positional encoding is nice mathematically, its practical utility has yet to be568

soundly justified, especially if the positional encoding is learnable.569
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F Fast Implementation570

We follow a vectorized implementation for Spherical RoPE similar to the “fast implementation"571

proposed in Su et al. [61].572

First, apply the rotation directly on after the other:573

zd[1] = cos(ωypy) zd[1]− sin(ωypy) zd[3] (30)
zd[3] = sin(ωyy) zd[1] + cos(ωy) zd[3], (31)

then574

zd[2] = cos(ωypx) zd[2]− sin(ωxpx) zi[3] (32)
zd[3] = sin(ωxpx) zd[2] + cos(ωxpx) zd[3], (33)

where steps 30 and 31 happen simultaneously, and steps 32 and 33 occur at the same time.575

G Experimental Setup576

Models We use the ViT-S backbone from the timm library [70]. The network always has a depth577

of 12. We keep N as close to constant across models as we can. For CIFAR100, the embedding578

dimensions are changed from 64 × Nheads to 60 × Nheads to be compatible with pairs, triplets and579

quadruples. For ImageNet, we make the embedding dimension 63×Nheads for Spherical RoPE and580

64×Nheads for other methods. For classification, we use a class token to pool the tokens and predict.581

Unlike the patch tokens, the class token is not affected by any positional encoding.582

CIFAR100 All experiments on CIFAR100 were performed on one A100 GPUs with a batch size583

256. We use a patch size of 4 × 4 on the original image size 32 × 32. The training uses heavy584

regularization and augmentations including dropout, MixUp [78] and CutMix [77]. The models are585

trained for 400 epochs, taking ∼ 40 seconds per training loop.586

ImageNet All experiments on ImageNet1k were performed on four A100 GPUs with a batch size587

256. We used cosine learning rate with a learning rate of 3e − 3 for 200 epochs with 5 epochs of588

linear warm-up. We used a patch size of 16× 16 on the cropped and resized 224× 224 image after589

applying 3-Augment [64]. We use the LAMB [75] optimizer. All experiments took ∼20 hrs with ∼ 5590

to 8 minutes to complete a training loop depending on method.591

Positional Encodings For testing with different resolutions, the images from ImageNet’s validation592

set were normalized, resized and cropped. On training, the patches were assigned position [−π, π]593

and for evaluation, the patch positions were extrapolated to the range [− P
P0

π, P
P0

π]. For Learned594

APE, the positional embeddings are instead interpolated. The fixed frequencies were given by595

ωd = 1/1002d/D, where d is the index of the pair/tuple/quadruple. One frequency is shared between596

both x and y in our implementation of Axial RoPE .597
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H Hyperparameters598

Table 5: Hyperparameters for ImageNet-1K Training

Category Setting
Model Architecture
Patch Size 16x16
Heads 6
Latent Dimension 64 (63 for Spherical) × Heads
Depth 12
Pooling [CLS]
Stochastic Depth No
Dropout No
LayerScale 1

Optimization
Optimizer LAMB [75]
Base Learning Rate 4e-3
Weight Decay 0.05
Learning Rate Schedule Cosine Decay
Warmup Schedule Linear
Warmup Epochs 5
Epochs 200
Batch Size 512
Gradient Clipping ✓

Precision and Backend
Precision Mixed (bfloat16)
Backend torch.autocast

Data Augmentation - Train
Crop RandomResizedCrop (192→224)
Flip ✓
3-Augment ✓
Color Jitter (0.3, 0.3, 0.3, 0.0)
Mixup [78] ✗
Cutmix [77] ✗
Normalization ImageNet-1K Statistics

Data Augmentation - Test
Resize Resize → Resolution
Crop CenterCrop
Normalize ImageNet-1K Statistics
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Table 6: Hyperparameters for CIFAR100 Training

Category Setting
Model Architecture
Patch Size 16x16
Heads 12
Latent Dimension 60 × Heads
Depth 12
Pooling [CLS]
Stochastic Depth 0.1
Dropout 0.1
LayerScale ✓

Optimization
Optimizer LAMB [75]
Base Learning Rate 4e-3
Weight Decay 0.05
Learning Rate Schedule Cosine Decay
Warmup Schedule Linear
Warmup Epochs 5
Epochs 400
Batch Size 1024
Gradient Clipping ✓

Precision and Backend
Precision Mixed (bfloat16)
Backend torch.autocast

Data Augmentation - Train
Crop RandomResizedCrop (32)
Flip ✓
3-Augment ✓
Color Jitter (0.3, 0.3, 0.3, 0.0)
Mixup [78] 0.8
Cutmix [77] 1.0
Normalization CIFAR Statistics

Data Augmentation - Test
Normalize CIFAR Statistics
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I Additional Evaluations599

In this section, we include extra evaluations including, basic data scaling, segmentation and speed.600

We also include additional experiments on the effect of rotation frequencies on Uniform RoPE.601

I.1 Data Scaling602

Below we evaluate the data scaling of each method. We partition the CIFAR100603

Table 7: Performance on different portions of CIFAR100.

Dataset Size Spherical (Learned) Axial (Learned) Mixed Uniform APE
0.2 56.04 (57.2) 55.3 (56.6) 56.9 52.82 45.9
0.4 63.6 (65.34) 63.3 (62.5) 64.4 59.7 53.4
0.6 67.6 (69.8) 66.0 (66.78) 70.0 64.1 57.7
0.8 69.8 (72.6) 69.9 (69.1) 71.6 65.8 59.0

604

Equivariance, in theory, should provide better scaling due to its inductive bias. However, we observe605

that learned Spherical RoPE performs on-par or better than Mixed RoPE with less parameters.606

J Segmentation607

Table 8: Segmentation results (IoU) on VOC with and without augmentation.
Spherical Axial (Learned) Mixed Uniform

VOC (No Aug.) 0.45 0.42 (0.43) 0.41 0.41
VOC (Simple Aug.) 0.50 0.46 (0.47) 0.50 0.45

608
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K Proofs and Lemmas609

Axial RoPE Separability610

Proposition 3. Axial RoPE is separable in x and y, that is, the attention score can be decom-
posed into,

α(xi,xj ,pi,pj) = α
(x)
ij + α

(y)
ij

Proof. Suppose we define the dot-product attention score as611

α(q,k) = q⊤k.

We incorporate Axial Rotary Positional Embeddings by rotating each 2-dimensional subvector of the612

query (and likewise the key). Concretely, if the hidden dimension is 2n, we partition613

614

q =
[
qx,1, qy,1, . . . , qx,n, qy,n

]⊤
, k =

[
kx,1, ky,1, . . . , kx,n, ky,n

]⊤
, (34) where each615

qx,d, qy,d, kx,d, ky,d ∈ R2. At spatial location p = (px, py), we apply rotations616

q′
x,d = R

(
ωd px

)
qx,d, q′

y,d = R
(
ωd py

)
qy,d,

and similarly for k. Here R(θ) ∈ R2×2 is the planar rotation by angle θ.617

For tokens at positions pi = (pi,x, pi,y) and pj = (pj,x, pj,y), their rotated queries and keys yield618

αij =

n∑
d=1

[
(qx,d)

⊤ R
(
ωd (pj,x − pi,x)

)
kx,d + (qy,d)

⊤ R
(
ωd (pj,y − pi,y)

)
ky,d

]
.

Define the horizontal and vertical components by619

α
(x)
ij :=

n∑
d=1

(qx,d)
⊤ R

(
ωd (pj,x − pi,x)

)
kx,d, α

(y)
ij :=

n∑
d=1

(qy,d)
⊤ R

(
ωd (pj,y − pi,y)

)
ky,d.

Hence the total attention decomposes additively:620

αij = α
(x)
ij + α

(y)
ij ,

demonstrating that axial rotary embeddings factorize the positional dependence along each axis.621

Matrix Exponentiation Computing the matrix exponential by exponentiating the eigenvalues is a622

common result in linear algebra and numerics, however we provide it here for those unfamiliar.623

Lemma 1. Let A be a diagonalizable matrix A = UΛU−1, then the matrix exponential of A
is given by

exp(A) = U exp(Λ)U−1

Proof.624

Recall the power-series definition of the matrix exponential:625

exp(A) =

∞∑
k=0

1

k!
Ak. (35)

Since A is diagonalizable,626

Ak =
(
UΛU−1

)k
= UΛk U−1. (36)

Substituting into the series gives627

exp(A) =

∞∑
k=0

1

k!

(
UΛk U−1

)
= U

( ∞∑
k=0

1

k!
Λk
)
U−1. (37)
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Because Λ is diagonal, the series
∑∞

k=0
1
k! Λ

k is itself the diagonal matrix of scalar exponentials,628

exp(Λ) = diag(eλ1 , . . . , eλn). (38)

Hence is well defined, and629

exp(A) = U exp(Λ)U−1. (39)
630

Simultaneous-Diagonalizability The proof that two (diagonalizable) matrixes are simultaneous-631

diagonalizability if and only if they are commutative is also a standard result. However, we once632

again provide it here:633

Lemma 2. Let Ax and Ay be skew-symmetric. Then Ax and Ay are simultaneously diagonal-
izable if and only if AxAy = AyAx .

Proof.634

Suppose Ax and Ay are simultaneously diagonalizable. Then, because they are skew-symmetric,635

there exists a unitary matrix U such that636

UΛxU
⊤ = Ax and UΛyU

⊤ = Ay, (40)

where Λx and Λy are diagonal matrices.637

Then,638

AxAy = UΛxU
⊤UΛyU

⊤ = UΛxΛyU
⊤ = UΛyΛxU

⊤ = AxAy (41)
Hence, Ax and Ay commute.639

Now suppose Ax and Ay commute, AxAy = AyAx. Since Ax and Ay are skew-symmetric, they640

are diagonalizable in CDxD, thus there exists a basis of eigenvectors of Ax. Because Ay commutes641

with Ax, the eigenspaces of Ax are invariant under Ay. That is, for any eigenvalue λ of Ax, the642

corresponding eigenspace643

Eλ = {v ∈ CD : Axv = λv} (42)
is Ay-invariant: if v ∈ Eλ, then644

Ax(Ayv) = Ay(Axv) = Ay(λv) = λAyv ⇒ Ayv ∈ Eλ. (43)

Now, restrict Ax to each eigenspace Eλ. Since C is algebraically closed and Ay|Eλ
is a linear645

operator on a finite-dimensional space, Ay is diagonalizable on Eλ. Thus, we can choose a basis of646

eigenvectors for Ay in each Eλ.647

Putting these together, we get a basis for CN consisting of vectors that are eigenvectors for both Ax648

and Ay . Therefore, Ax and Ay are simultaneously diagonalizable.649

650

1-D LieRE is equivalent to RoPE In this section, we will more formally prove that the traditional651

RoPE with learned rotation frequencies is equivalent to 1-D RoPE as proposed in Section 3.652

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned
frequencies.

Proof.653

We define a rotation to be an orthogonal matrix with positive determinant; that is, it is an element654

of R ∈ SO(N). We can write any element of SO(N) via the exponential map R = eA where655

A ∈ so(N), i.e. A is a skew-symmetric matrix. It is well-known that the eigenvalues of a real, skew-656

symmetric matrix are purely imaginary (or zero), and such a matrix is unitarily (i.e. orthogonally)657

diagonalizable over C, resulting in a spectral decomposition with a purely imaginary eigenvalue658

matrix. Thus,659

A = UΛiU† (44)
and, by Lemma 1,660

exp (A) = U exp (Λi)U†. (45)
where, because Λ is diagonal, exp(Λ) is simply the scalar-exponential of each element. The positional661

encoding of a token to a query can be written as,662

φ(x, p) = exp(Ap)Wqx = U exp(Λi p)W′
qx (46)
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where W′
q = WqU. We assume the same encoding for the key with a different matrix, W′

k and663

the same generator, A. This equation can be rewritten as φ(x, p) = URoPE(x, p) by Eq.1. If664

the attention score is given by α(q,k) = q†k, where † denotes the Hermitian transpose, then the665

attention score can be expanded into,666

α(xi,xj , pi, pj) = RoPE(xi, pi)
†U†URoPE(xj , pj) (47)

= RoPE(xi, pi)
†RoPE(xj , pj). (48)

Hence, any LieRE of one generator can be expressed as RoPE with learned rotation frequencies.667

Any commutative LieRE is equivalent to Mixed RoPE We now prove that multi-dimensional668

LieRE with commutative generators generalizes directly to Mixed RoPE.669

Proposition 2. Any M -dimensional LieRE with commutative generators can be parameterized
by Mixed RoPE.

Proof.670

Let A1, . . . ,AM ⊂ so(N) be skew-symmetric generators such that [Am,An] = 0 for all m,n. By671

Lemma 2, commuting normal matrices are simultaneously unitarily diagonalizable. Thus, there exists672

a unitary U and diagonal matrices Λ1, . . . ,ΛM such that673

Am = UΛmiU† for all m = 1, . . . ,M. (49)

For a position vector p = (p1, . . . , pM ) ∈ RM , the LieRE positional encoding is674

LieRE(x,p) = exp

(
M∑

m=1

Ampm

)
Wqx, (50)

which, using Lemmas 1 and 2, can be written as675

LieRE(x,p) = U exp

(
M∑

m=1

Λmi, pm

)
U†Wqx. (51)

Let W′
q = U†Wq . Then676

LieRE(x,p) = UMixedRoPE(x,p), (52)

where MixedRoPE applies elementwise complex rotations677

ei(λ
(k)
1 p1+···+λ

(k)
M pM ) (53)

to each channel k, with frequencies λ(k)
m learned from Λm.678

If the attention score is given by α(q,k) = q†k, then679

α(xi,xj ,pi,pj) = MixedRoPE(xi,pi)
†U†UMixedRoPE(xj ,pj) (54)

= MixedRoPE(xi,pi)
†MixedRoPE(xjpj). (55)

Hence, any M -dimensional LieRE with commutative generators is equivalent to a Mixed RoPE680

parameterization with learned rotation frequencies.681
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