A Circular Argument: Does RoPE *need* to be Equivariant for Vision?

Anonymous Author(s)

Affiliation Address email

Abstract

Rotary Positional Encodings (RoPE) have emerged as a highly effective technique for one-dimensional sequences in Natural Language Processing spurring recent progress towards generalizing RoPE to higher-dimensional data such as images and videos. The success of RoPE has been thought to be due to its positional equivariance, i.e. its status as a relative positional encoding. In this paper, we mathematically show RoPE to be one of the most general solutions for equivariant positional embedding in one-dimensional data. Moreover, we show Mixed RoPE to be the analogously general solution for M-dimensional data, if we require commutative generators – a property necessary for RoPE's equivariance. However, we question whether strict equivariance plays a large role in RoPE's performance. We propose Spherical RoPE, a method analogous to Mixed RoPE, but assumes non-commutative generators. Empirically, we find Spherical RoPE to have the equivalent or better learning behavior as its equivariant analogues. This suggests that relative positional embeddings are not as important as is commonly believed for vision. We expect this discovery to facilitate future work in positional encodings for vision that are faster and generalize better by removing the preconception that they must be relative.

1 Introduction

2

3

4

5

6

8

9

10

11

12

13 14

15

16

17

- Recently, Rotational Positional Embeddings (RoPE) [61] have gained popularity, touting an emphasis 19 on the *relative* position between two tokens rather than their absolute positions [18, 22, 37, 40]. 20 Because attention between tokens only depend on their relative distance, the network has shift-21 equivariance. The most general form of rotary encoding is LieRE [46]. However, when extending 22 to higher dimensions, requires one to either give up shift-equivariance or make constraints on the rotations [46, 76, 53]. In this work, we unify recent extensions of RoPE to M-dimensions based on 24 the constraints they make on the generators of LieRE. We show that LieRE is shift-equivariant if 25 and only if it can be decomposed into the simpler Mixed RoPE, or the more popular Axial RoPE if 26 further constrained. 27
- However, while RoPE is often claimed to be successful due to its shift-equivariance, the validity of that claim and necessity of equivariance has not been thoroughly tested. We propose Spherical RoPE which strictly takes the assumption of non-commuting generators thus, non-equivariant to test this claim. We find Spherical RoPE to perform as well as Mixed RoPE while strictly outperforming Axial RoPE on vision tasks. We also show that Axial RoPE with a single shared frequency performs significantly worse, despite still being equivariant. Thus, we conclude equivariance does not seem to be the primary contributor for RoPE's success in vision.

35 2 Background

36 2.1 Rotary Positional Encodings (RoPE)

Rather than adding a positional embedding to the patch embedding, RoPE proposed to *modify the* queries and keys by rotating them in pairs.

$$RoPE(\mathbf{z}, p) = \mathbf{R}_{p}\mathbf{z} = \begin{bmatrix} \mathbf{R}_{p\omega_{1}} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{R}_{p\omega_{2}} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{pmatrix} \mathbf{z}_{1} \\ \vdots \\ \mathbf{z}_{D} \end{pmatrix}$$
(1)

where $\mathbf{R}_{\omega_d p_t}$ is a rotation matrix, ω_i is a rotation frequency for the corresponding pair. We use the convention that real-valued queries and keys will have dimension N and the number of sub-vectors (pairs) is dimension D.

For images, where positions are two-dimensional, RoPE is often extended with Axial RoPE [56], where each position rotates independent sub-vectors. However, because the horizontal and vertical directions are treated independently, this method struggles with representing oblique attention patterns [22]. One rotate the same pair by both positional coordinates where the amount of rotation caused by each is a parameterized for each pair. This is known as Mixed RoPE [22]. Alternatively, one can take the Lie algebra perspective and learn a skew-symmetric generator matrix for each positional coordinate. This known as LieRE [46] and has the benefit of rotating beyond 2D sub-vectors.

49 3 The Generality of Learned RoPE and Mixed RoPE

While RoPE is proposed by rotating 2D sub-vectors of the querys and keys, LieRE can perform the full *N*D rotation. However, by taking the spectral decomposition of the generators, LieRE can be reparameterized into RoPE. For proofs see Appendix K.

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned frequencies.

3.1 Extending RoPE to more than one dimension

- While this proof works for 1D positions, it does not generalize to M-D without introducing extra inductive biases or giving up equivariance. By imposing constraints on \mathcal{A}_x and \mathcal{A}_y , we can categorize the other RoPE methods based on the assumptions made.
- Generators rotate independent subspaces. For example, one can impose the assumption that p_x and p_y rotate independent subspaces in \mathbb{R}^N . Mathematically, this assumption would imply that

$$\forall d \in [1, D] : \lambda_d^{(x)} = 0 \text{ or } \lambda_d^{(y)} = 0, \tag{2}$$

- where $\lambda_d^{(x)}$ and $\lambda_d^{(y)}$ are the eigenvalues of \mathcal{A}_x and \mathcal{A}_y , respectively. This is equivalent to rotating independent components of the query/key as done by Axial-RoPE.
- Commutative generators. For LieRE to be equivariant, we only need to ensure that the generators commute. If we make this assumption, then we arrive at Mixed RoPE.

Proposition 2. Any M-dimensional LieRE with commutative generators can be parameterized by Mixed RoPE.

This means that any of the more recent extensions that assume commutativity in the generating matrices of LieRE such as ComRoPE [76] or STRING [53], ultimately are alternative implementations of Mixed RoPE. However, it is not clear that requiring commutativity is necessary or even beneficial. We propose an ablation to the need of equivariance in the form of Spherical RoPE which strictly removes commutativity of the generators.

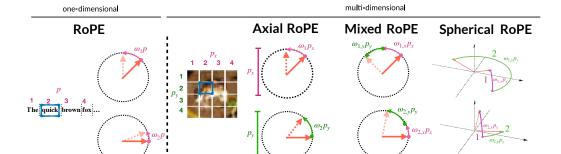


Figure 1: Diagram of each rotary embedding's effect on z_d. While Mixed RoPE effect 2D vector pairs, Spherical RoPE effects 3D vector triplets. Axial RoPE rotates independent dimensions for p_x , thus containing pairs of pairs, or effectively quadruples. Each z contains D sub-vectors rotating at different frequencies. While the order in which the rotations are applied does not matter for Axial or Mixed RoPE, order matters for Spherical RoPE. Explicitly, the triplet is first rotated around the axis associated with p_x and then rotated around the axis associated with p_y .

Experiments 68

78

79

80

81

82

83

84

85 86

87 88

89

90

91

92

93

94

95

When extending RoPE to more than one dimension, we must either constrain ourselves to commuting Lie algebras or give up relativity. We therefore ask the question: Why does RoPE work? Which 70 71 properties should be preserved for generalizing RoPE to vision? To explore this question, we propose two new RoPE variants: Spherical RoPE, which takes an non-commutative assumption, and 72 Uniform-Frequency RoPE, which uses a single fixed rotation frequency across all dimensions. 73

Spherical RoPE We propose Spherical RoPE as a method between Mixed RoPE and LieRE that 74 minimally changes 2D RoPE to break equivariance. Spherical RoPE embeds position as

$$\varphi(\mathbf{z}_d, \mathbf{p}) = \mathcal{Y}_{\omega_{dx}x} \mathcal{R}_{\omega_{dy}y} \mathbf{z}_d, \tag{3}$$

where $\mathbf{z}_d \in \mathbb{R}^3$ is now a triplet instead of a pair, and \mathcal{Y} is a block diagonal of 3×3 yaw matrices and ${\cal R}$ is a block diagonal of ${\it roll}$ matrices.

$$\mathcal{Y}_{\omega_{dx}x} = \begin{bmatrix} \cos(\omega_{dx}x) & -\sin(\omega_{dx}x) & 0\\ \sin(\omega_{dx}x) & \cos(\omega_{dx}x) & 0\\ 0 & 0 & 1 \end{bmatrix} \qquad \mathcal{R}_{\omega_{dy}y} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\omega_{dy}y) & -\sin(\omega_{dy}y)\\ 0 & \sin(\omega_{dy}y) & \cos(\omega_{dy}y) \end{bmatrix}. \quad (4)$$

ing around a circle, Spherical RoPE based methods. rotates around a sphere using Euler angles. Importantly, spherical rotations like LieRE are non-commutative making them not equivariant. In fact, their generators are strictly noncommutative, $A_xA_y \neq A_yA_x$. While this does not mean Spherical RoPE is incapable of learning or approximating equivariance throughout the network, it is the component of LieRE removed by Mixed RoPE.

Intuitively, rather than RoPE rotat- Table 1: Table listing the properties of each of the rotary-

Positional Encoding	Vision	Strictly Equivariant		Requires Learning
Rotary (RoPE) [61]	Х	✓	N/A	Х
Axial RoPE [60] Mixed RoPE [22]	1	1	×	×
LieRE [46]	✓	×		√
Spherical RoPE Uniform RoPE	√ √	×	✓ ×	×

Uniform-Frequency RoPE. For an initial evaluation on the impact of relative position, we propose Uniform-Frequency RoPE. For this method, we perform Axial RoPE with a single frequency shared across all rotation matrices. While still being relative, this serves as a more restricted version of RoPE. If this method performs significantly worse than other methods, it indicates more importance of having a range of frequencies than equivariance. We implement uniform frequencies for Axial RoPE to gauge against relative importance of equivariance.

Table 2: Performance comparison (top-1 accuracy) across datasets and methods.

	Top-1 Accuracy (%)			
Fixed Encoding	CIFAR100	ImageNet		
Learned APE	64.2±0.9	68.8		
Axial RoPE	72.1 ± 0.6	70.7		
Uniform RoPE (Our Ablation)	$70.5_{\pm 0.2}$	70.0		
Spherical RoPE (Our Ablation)	$73.2{\scriptstyle\pm0.4}$	70.9		
Learned Encoding				
Learned Axial RoPE	72.9±0.6	70.4		
Mixed RoPE	74.7 \pm 0.3	70.3		
Learned Spherical RoPE (Our Ablation)	$74.1_{\pm 0.4}$	70.4		
LieRE	74.2			

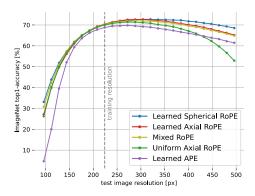


Figure 2: Dependence of accuracy on image resolution for ViT-S with various positional embedding methods on ImageNet1k.

5 Results

To evaluate the importance of different properties of positional embeddings in vision transformers, 98 we trained the same ViT with different positional embeddings on CIFAR100 and ImageNet-1K. We 99 start by evaluating the models on images of the same resolution as during training. If equivariance 100 is important, we would see Axial and Mixed RoPE to perform better than Spherical RoPE, which 101 lacks equivariance. On the other hand, if oblique frequencies are important, then we would obeserve 102 Mixed and Spherical RoPE to do better than Axial RoPE, which does not capture oblique directions. 103 We do not find either of the two to be the case: All three methods perform similarly in terms of top-1 accuracy both on CIFAR-100 and ImageNet (Table 1), suggesting that neither equivariance nor 105 capturing oblique directions is important. 106

The results from training on smaller subsets of the CIFAR100 training data and for the VOC segmentation task can be found in Appendix I. Intuitively, these tasks should favor shift-equivariance since less data favors stronger inductive biases. However, even in these settings Spherical RoPE performs on-par or better.

When comparing to absolute positional encodings, we observe that all forms of RoPE perform better than learned APE (Table 1). This includes Uniform RoPE, the variant that uses only a single frequency. Moreover, all forms of RoPE using diverse frequencies outperform Uniform RoPE and have similar performance (whether they are learned or not), suggesting that diversity of frequencies is important.

Lastly, we asked how well different PEs generalize across image sizes. Equivariance is often thought to aid model generalization. However, when evaluating each model using higher resolutions images, i. e. increasing the number of patches, we found Spherical RoPE to be the most effective method (Fig. 2), suggesting equivariance may not be the reason for RoPE's generalization.

6 Conclusion

120

127

128

129

130

Because we see very little variation between Spherical RoPE and the equivariant methods, we conclude that equivariance is only a minor contributor to the increased performance seen by RoPE for vision. In fact, Spherical RoPE appeared to extrapolate to higher resolutions better than other methods. This could suggest that oblique frequencies are important for extrapolation. However, Mixed RoPE can also represent oblique directions, but did not outperform Axial RoPE. Thus, neither equivariance nor oblique directions appear to be significant for vision transformers.

References

[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

- [2] Meta AI. Llama 4: Multimodal language models, 2025. URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/. Accessed: 2025-05-15.
- [3] Giorgio Angelotti. Hype: Attention with hyperbolic biases for relative positional encoding. arXiv preprint arXiv:2310.19676, 2023.
- [4] Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Veličković. Round and round we go! what makes rotary positional encodings useful? *arXiv* preprint arXiv:2410.06205, 2024.
- 138 [5] Erik J Bekkers, Sharvaree Vadgama, Rob D Hesselink, Putri A Van der Linden, and David W Romero. Fast, expressive se (n) equivariant networks through weight-sharing in position-140 orientation space. arXiv preprint arXiv:2310.02970, 2023.
- [6] Stella Biderman, Sid Black, Charles Foster, Leo Gao, Eric Hallahan, Horace He, Ben Wang, and Phil Wang. Rotary embeddings: A relative revolution. blog.eleuther.ai/, 2021. [Online; accessed].
- 144 [7] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.

 Geometric and physical quantities improve e (3) equivariant message passing. *arXiv* preprint arXiv:2110.02905, 2021.
- [8] Johann Brehmer, Sönke Behrends, Pim de Haan, and Taco Cohen. Does equivariance matter at scale? *arXiv preprint arXiv:2410.23179*, 2024.
- [9] Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernel ized relative positional embedding for length extrapolation. Advances in Neural Information
 Processing Systems, 35:8386–8399, 2022.
- 152 [10] Ta-Chung Chi, Ting-Han Fan, Alexander I Rudnicky, and Peter J Ramadge. Dissecting transformer length extrapolation via the lens of receptive field analysis. *arXiv preprint* arXiv:2212.10356, 2022.
- Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
 Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
 attention with performers. arXiv preprint arXiv:2009.14794, 2020.
- 158 [12] Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional encodings for vision transformers. *arXiv preprint arXiv:2102.10882*, 2021.
- 160 [13] Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama interface for vision tasks. *arXiv e-prints*, pages arXiv–2403, 2024.
- [14] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
 memory-efficient exact attention with io-awareness. Advances in neural information processing
 systems, 35:16344–16359, 2022.
- [15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
 An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
 arXiv:2010.11929, 2020.
- [16] Gamaleldin Elsayed, Prajit Ramachandran, Jonathon Shlens, and Simon Kornblith. Revisiting
 spatial invariance with low-rank local connectivity. In *International Conference on Machine Learning*, pages 2868–2879. PMLR, 2020.
- 172 [17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural 173 message passing for quantum chemistry. In *International conference on machine learning*, 174 pages 1263–1272. PMLR, 2017.
- [18] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
- 178 [19] D.J. Griffiths. Introduction to Quantum Mechanics. CUP, 2018.
- 179 [20] Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without positional encodings still learn positional information. *arXiv preprint arXiv:2203.16634*, 2022.

- 182 [21] Yu He, Cristian Bodnar, and Pietro Lio. Sheaf-based positional encodings for graph neural networks. In *NeurIPS 2023 Workshop on Symmetry and Geometry in Neural Representations*, volume 9, 2023.
- [22] Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision transformer. In *European Conference on Computer Vision*, pages 289–305. Springer, 2024.
- 188 [23] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 189 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
 190 et al. Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.
- [24] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
 Highly accurate protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
- 194 [25] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed 195 representation with high-dimensional random vectors. *Cognitive computation*, 1:139–159, 2009.
- [26] Pentti Kanerva. Hyperdimensional computing: An algebra for computing with vectors. Advances
 in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS, pages 25–42,
 2022.
- 199 [27] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers 200 are rnns: Fast autoregressive transformers with linear attention. In *International conference on* 201 *machine learning*, pages 5156–5165. PMLR, 2020.
- [28] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
 Reddy. The impact of positional encoding on length generalization in transformers. *Advances in Neural Information Processing Systems*, 36:24892–24928, 2023.
- [29] T Anderson Keller and Max Welling. Topographic vaes learn equivariant capsules. Advances in
 Neural Information Processing Systems, 34:28585–28597, 2021.
- T Anderson Keller and Max Welling. Neural wave machines: learning spatiotemporally structured representations with locally coupled oscillatory recurrent neural networks. In *International Conference on Machine Learning*, pages 16168–16189. PMLR, 2023.
- 210 [31] David Knigge, David Wessels, Riccardo Valperga, Samuele Papa, Jan-Jakob Sonke, Erik 211 Bekkers, and Efstratios Gavves. Space-time continuous pde forecasting using equivariant neural 212 fields. *Advances in Neural Information Processing Systems*, 37:76553–76577, 2024.
- 213 [32] Miltiadis Kofinas, Naveen Nagaraja, and Efstratios Gavves. Roto-translated local coordinate 214 frames for interacting dynamical systems. *Advances in Neural Information Processing Systems*, 215 34:6417–6429, 2021.
- [33] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 Rethinking graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34:21618–21629, 2021.
- [34] Christopher J Kymn, Denis Kleyko, E Paxon Frady, Connor Bybee, Pentti Kanerva, Friedrich T
 Sommer, and Bruno A Olshausen. Computing with residue numbers in high-dimensional
 representation. *Neural Computation*, 37(1):1–37, 2024.
- 222 [35] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with fourier transforms. *arXiv preprint arXiv:2105.03824*, 2021.
- [36] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more powerful neural networks for graph representation learning. Advances in Neural Information Processing Systems, 33:4465–4478, 2020.
- 227 [37] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, 228 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint* 229 *arXiv:2412.19437*, 2024.
- 230 [38] Haiping Liu and Hongpeng Zhou. Rethinking rope: A mathematical blueprint for n-dimensional positional encoding. *arXiv* preprint arXiv:2504.06308, 2025.
- 232 [39] Xuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui Hsieh. Learning to encode position for transformer with continuous dynamical model. *CoRR*, abs/2003.09229, 2020. URL https://arxiv.org/abs/2003.09229.

- Yunwu Liu, Ruisheng Zhang, Tongfeng Li, Jing Jiang, Jun Ma, and Ping Wang. Molrope-bert:
 An enhanced molecular representation with rotary position embedding for molecular property prediction. *Journal of Molecular Graphics and Modelling*, 118:108344, 2023.
- Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
 Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings* of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.
- Zikang Liu, Longteng Guo, Yepeng Tang, Junxian Cai, Kai Ma, Xi Chen, and Jing Liu. Vrope:
 Rotary position embedding for video large language models. arXiv preprint arXiv:2502.11664,
 2025.
- [43] Sindy Löwe, Phillip Lippe, Maja Rudolph, and Max Welling. Complex-valued autoencoders
 for object discovery. arXiv preprint arXiv:2204.02075, 2022.
- 246 [44] Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating features for object discovery. *Advances in Neural Information Processing Systems*, 36:59606–59635, 2023.
- ²⁴⁸ [45] Takeru Miyato, Sindy Löwe, Andreas Geiger, and Max Welling. Artificial kuramoto oscillatory neurons. *arXiv preprint arXiv:2410.13821*, 2024.
- [46] Sophie Ostmeier, Brian Axelrod, Michael E Moseley, Akshay Chaudhari, and Curtis Langlotz.
 Liere: Generalizing rotary position encodings. arXiv preprint arXiv:2406.10322, 2024.
- Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung-won Hwang. Grpe: Relative positional encoding for graph transformer. *arXiv preprint arXiv:2201.12787*, 2022.
- [48] Ngoc-Quan Pham, Thanh-Le Ha, Tuan-Nam Nguyen, Thai-Son Nguyen, Elizabeth Salesky,
 Sebastian Stüker, Jan Niehues, and Alexander Waibel. Relative positional encoding for speech
 recognition and direct translation. arXiv preprint arXiv:2005.09940, 2020.
- ²⁵⁷ [49] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.
- [50] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
 text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- [51] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
 in neural information processing systems, 20, 2007.
- ²⁶⁴ [52] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In *International conference on machine learning*, pages 9323–9332. PMLR, 2021.
- ²⁶⁶ [53] Connor Schenck, Isaac Reid, Mithun George Jacob, Alex Bewley, Joshua Ainslie, David Rendleman, Deepali Jain, Mohit Sharma, Avinava Dubey, Ayzaan Wahid, et al. Learning the ropes: Better 2d and 3d position encodings with string. *arXiv preprint arXiv:2502.02562*, 2025.
- [54] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
 prediction of tensorial properties and molecular spectra. In *International Conference on Machine Learning*, pages 9377–9388. PMLR, 2021.
- [55] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. *arXiv preprint arXiv:1803.02155*, 2018.
- [56] Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo
 Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3.
 arXiv preprint arXiv:2508.10104, 2025.
- Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Implicit neural representations with periodic activation functions. In *Advances in Neural Information Processing Systems (NeurIPS)*. Curran Associates, Inc., 2020. URL http://arxiv.org/abs/2006.09661v1.
- [58] Ben Sorscher, Gabriel C Mel, Samuel A Ocko, Lisa M Giocomo, and Surya Ganguli. A unified
 theory for the computational and mechanistic origins of grid cells. *Neuron*, 111(1):121–137,
 2023.
- [59] Steven H Strogatz and Ian Stewart. Coupled oscillators and biological synchronization. *Scientific american*, 269(6):102–109, 1993.
- [60] Jianlin Su. Transformer upgrade road: 4. rotating position coding of two-dimensional position,
 May 2021. URL https://kexue.fm/archives/8397. Accessed: 2025-04-28.

- ²⁸⁸ [61] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
- [62] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
 networks learn high frequency functions in low dimensional domains. Advances in neural
 information processing systems, 33:7537–7547, 2020.
- [63] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.
- ²⁹⁷ [64] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In *European* conference on computer vision, pages 516–533. Springer, 2022.
- [65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
 processing systems, 30, 2017.
- [66] Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang, and Xiaoling
 Wang. Length generalization of causal transformers without position encoding. arXiv preprint
 arXiv:2404.12224, 2024.
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.
- 308 [68] Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong Duan, Qipeng Guo, Jiaqi Wang, et al. Videorope: What makes for good video rotary position embedding? *arXiv preprint arXiv:2502.05173*, 2025.
- David R Wessels, David M Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves, and Erik J Bekkers. Grounding continuous representations in geometry: Equivariant neural fields. *arXiv preprint arXiv:2406.05753*, 2024.
- 714 [70] Ross Wightman. Pytorch image models. https://github.com/rwightman/ 715 pytorch-image-models, 2019.
- Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
 Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
 computing and beyond. *Computer Graphics Forum*, 2022. ISSN 1467-8659. doi: 10.1111/cgf.
 14505.
- [72] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? *arXiv preprint arXiv:1810.00826*, 2018.
- Bowen Yang, Bharat Venkitesh, Dwarak Talupuru, Hangyu Lin, David Cairuz, Phil Blunsom, and Acyr Locatelli. Rope to nope and back again: A new hybrid attention strategy. *arXiv* preprint arXiv:2501.18795, 2025.
- ³²⁵ [74] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In *International conference on machine learning*, pages 7134–7143. PMLR, 2019.
- Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training bert in 76 minutes. *arXiv preprint arXiv:1904.00962*, 2019.
- Hao Yu, Tangyu Jiang, Shuning Jia, Shannan Yan, Shunning Liu, Haolong Qian, Guanghao Li, Shuting Dong, Huaisong Zhang, and Chun Yuan. Comrope: Scalable and robust rotary position embedding parameterized by trainable commuting angle matrices, 2025. URL https://arxiv.org/abs/2506.03737.
- Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
 Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
 Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,
 2019.
- Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

340 A Broader Impact

This work is fundamental research. While this work could lead to the discovery of better positional encodings and higher performing visual foundation models, the positivity or negativity of this impact is determined by the downstream task and not this work.

44 B Limitations

- While our results do not show relative embeddings to be detrimental, we believe them to be evidence that equivariance is not the reason for RoPE's success. However, our experiments were performed in Vision where the number of tokens is limited compared to the long context lengths of NLP. Moreover, the datasets are not what many believe to be "at scale". While Spherical RoPE and LieRE would intuitively favored at scale over Axial RoPE, as they have less inductive bias, it is unclear whether inductive bias and equivariance is favored at scale [8].
- It has also been shown that vision is *not* a purely equivariant task and benefits from relaxed equivariance [16]. Our results do not show that equivariance is not useful in tasks that are grounded in physics and obey strict symmetries.

354 C Literature Review

355

374

C.1 Natural Langauge Processing

In natural language, positional encoding has been used to break the permutation, "bag of words". symmetry [65]. Although this could be done by learning a vector per position, this is both memory-357 expensive for large context sizes making it practical to apply to only the first layer. Moreover, it 358 does not allow for extrapolation at test time to context sizes beyond training. Thus, it is favorable 359 to perform positional embeddings with a predictable deterministic function. One way of doing this 360 is to make the attention relative with local receptive fields, as is done implicitly in convolutional 361 neural networks [10]. Sinusoidal positional embeddings were proposed due to approximate local 362 and shift-invariant properties of Random Fourier Features [51]. Since sinusoidal, other methods have been proposed to get guaranteed shift invariance by explicitly parameterizing based on distance [55, 48, 49]. However, these methods require a positional embedding for every pair of positions 365 which is not supported by many of the efficient attention optimizations such as Flash attention [14] 366 [3]. 367

- Rotary Positional Embeddings (RoPE) have become the staple in NLP having recently been adopted by many of the large language models [67, 18, 63, 37, 23]. However, these methods also use causal masking, which has been shown to allow models with no positional embedding to recover absolute position [20, 73, 66, 28]. This has lead to questions on the importance of relative position [4].
- In language, there has also been extensions to RoPE proposed through NTKs and kernel methods [9]. However, these methods have not, to our knowledge, seen use in vision.

C.2 Vision and Video

Vision transformers were introduced in Dosovitskiy et al. [15] and, though they tried sinusoidal 375 position encodings, found learnable position encodings to perform best. For convolution-esque 376 models such as SWin transformers, relative positional encodings have been popular [41, 12]. More 377 378 recently, RoPE has been shown to be an efficient and simple way to have relative embeddings and has been extended to 2D using Axial and Mixed RoPE. Going beyond 2D to Video data, Axial RoPE has 379 become increasingly popular. The extension was first attributed to Wang et al. [67] as 3D-RoPE or M-RoPE, leading to two separate Video-RoPE papers from Wei et al. [68] and Liu et al. [42]. Both 381 of these focus on the order of the position enumeration and interleaving positions. However, this 382 should not be a problem if frequencies are not deterministic, or if frequencies are indexed by both d 383 and modality m as done in Eq??. We highly recommend using either Mixed RoPE or LieRE which 384 extend naturally for videos. 385

LieRE embeddings have thus far been the most general form of RoPE to N-D. However, Schenck et al. [53] has claimed the method to have a large memory footprint and proposed STRING. This

paper, a preprint released concurrently with the writing of this manuscript, follows much of the same math as this paper. However, they did not recognize that an orthogonal matrix is implicitly learned by the query and key matrix. Moreover, their method relies on commuting Lie algebras. From our insights in Section 3, their method can likely be viewed as a slower implementation of N-D Mixed-RoPE.

It is also worth noting that positional encodings have also been explored within vision through the area of Neural Fields [71]. Traditional coordinate MLPs have been found to be biased toward low-frequency functions [62] leading to more advanced positional encodings such as Random Fourier Features [51] or sinusoidal activation functions [57]. These implicit functions have been used to encode attention and message passing in graph neural networks with recent work being put in to make these functions equivariant to symmetry transformations [52, 7, 31].

C.3 Graphs and AI in Science

399

Positional encodings are well studied within graph neural networks [36, 47]. Graphs are limited in their expressivity up to the Weisfeiler-Lehman (WL) graph isomorphism test [72], so positional encodings can break the isomorphism symmetry [21, 74]. Within this community, they propose spectral attention and graph Laplacians for positional encoding [33]. These methods seem extremely close to our analysis of RoPE, but from a very different perspective. We show that the frequencies of RoPE can be interpreted as the eigenvalues of an orthogonal transformation by taking the spectral decomposition.

In an overlapping vein, relative position encodings have been studied in terms of equivariant graph neural networks, often for scientific disciplines such as molecular physics [7, 54] or drug discovery [24]. One method to achieve equivariance is through defining relative coordinate frames [32]. This corresponds to the learned relative positional method described in Shaw et al. [55], but can be generalized to higher dimensions and different transformation using bi-invariant distance functions [5, 31, 69]. The message-passing functions of these works correspond to a generalization of attention scores [17].

However, even in these tasks with physics-grounded symmetries, the need for equivariance is hotly debated. While AlphaFold [24] was originally touted as the example of the success of equivariant inductive biases in science, AlphaFold 3 [1] explicitly stated that they benefited from removing this inductive bias at scale. However, while the harm of inductive bias at scale is the prevalent zeitgeist, it is not an established fact [8].

419 C.4 Computational Neuroscience

Coupled oscillators have become a growing area of interest within computational neuroscience [29, 30, 59]. By observing the projection of the RoPE circles onto the real axis, one can interpret RoPE as time progression in *D* uncoupled, undamped harmonic oscillators. This perspective naturally connects RoPE to Löwe et al. [43]'s series of papers on complex autoencoders and their extensions [44, 45].

In another, vein of research, there has been some work in hyper-dimensional computing[25, 26] in Phasor and Residue VSAs [34] which represent concepts as rotations around unit circles in high-dimensional spaces. These representations have strong connections with RoPE. Additionally, progress has been made in hypothesizing how biological neural networks encode positional knowledge with hexagonal grid cells, which can be represented as a discrete sum of three periodic functions oriented at the cubic roots of unity[58].

431 C.5 Generality of RoPE

The generality of RoPE has been found by others. Schenck et al. [53], Su [60], and Liu and Zhou [38] all propose proofs similar to Proposition 1. However, Schenck et al. [53] miss that the orthogonal transformation can be incorporated into key matrix. Liu and Zhou [38] and Su [60] take the assumption of *reversibility*, which leads to the independent eigenvalue assumptions of Axial RoPE. All three works take the assumption of an abelian subgroup –ie commutative generators, – but miss the generality of Mixed RoPE. While Su [60] propose quaternions – i. e. spherical rotations – as a direction, they immediately dismiss it as a *no-go* because they lack equivariance. This exemplifies the

- "circular argument," where equivariance is assumed to be necessary because work will not investigate non-equivariant positional encodings because equivariance is necessary.
- Because our derivation was found independently of these works and the previous works are, to our
- knowledge, not published, we have left in Proposition 1. We would like to acknowledge their work,
- but retain the flow of this paper.

444 D Notation

Symbol / Term	Dimension	Meaning	Notes		
\mathbf{x}_i	\mathbb{R}^D	Patch/token/content vector of token i	Raw input embedding		
x_i	\mathcal{X}	Abstract content of token i	Raw input embedding		
p_i	\mathbb{R}^M or \mathcal{P}	Position of token i , can be M -D or abstract \mathcal{P}	Scalar (1D) or vector (2D)		
m	\mathbb{Z}	Modality index	e.g., x , y , time		
M	\mathbb{Z}	Number, or space, of Modalities			
D	\mathbb{Z}	Hidden dimension	Number of pairs/triples/quadruples		
T	\mathbb{Z}	Number of Tokens			
$\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$	$\mathbb{R}^{\mathcal{X} \times D}$	Query, Key, Value Matrices			
q	\mathbb{R}^N	$\mathbf{q}_i = \mathbf{W}_q x_i$	Query vector		
k	\mathbb{R}^N	$\mathbf{k}_j = \mathbf{W}_k x_j$	Key vector		
v	\mathbb{R}^N	$\mathbf{v}_j = \mathbf{W}_v x_j$	Value vector		
$\mathbf{Q}, \mathbf{K}, \mathbf{V}$	$\mathbb{R}^{T \times N}$	Query, Key, Values	T tokens, D latent dimensions		
$\varphi(x,p)$	$\mathcal{X} imes \mathcal{P} o \mathbb{R}^D$	Positional Encoding function			
\mathbf{Z}	$\mathbb{R}^{T \times N}$	Output of Attention	Z = Attention(Q, K, V)		
a(i,j)	\mathbb{R}	Attention weight	Softmax of attention scores		
$\alpha(\mathbf{q}, \mathbf{k})$	\mathbb{R}	Attention score	Inner product $\mathbf{q}^{T}\mathbf{k}$		
ω_d/λ_d	\mathbb{R}	Rotation frequency for dimension d	Equivalent to eigenvalue of generator		
\mathbf{q}_d	$\mathbb{R}^{2/3/4}$	Query pair/triple/quadruple at dimension d	After RoPE or LieRE applied		
$\mathbf{R}_{\omega_d p}$	$\mathbb{R}^{2 \times 2}$	2×2 rotation matrix	Rotation based on frequency and position		

Table 3: Summary of Notations and Key Concepts

Positional Encoding	Vision	Learned	Extrapolation	QK Separable	Relative	Linear Flow	Used In
Absolute (Sinusoidal)	Х	√ /X	1	1	/	Х	Transformer[65]
Absolute (Learned)	/	/	X	✓	/	Х	BERT, GPT, ViT[15]
Absolute (Random-Fourier)	X	X	/	✓	Х	/	FNet[35], Performer [11]
Relative (Learned)	X	/	X	X	Х	Х	Transformer-XL, T5 [50]
ALiBi	X	√/X	/	✓	/	/	LLaMA 2 [18], ALiBi [49]
NoPE	X *	X	/ *	√ *	√ ∗	√ *	LLaMA 4 [2]
Rotary (RoPE)	Х	Х	1	✓	✓	/	Contemporary LLMs [67, 18, 63, 23]
Axial RoPE	/	√/X	/	/	/	/	VisionLLaMA[13], Qwen2[67], VideoRoPE[68]
Mixed RoPE	/	/	/	✓	/	/	Heo et al. [22]
LieRE	1	✓	1	✓	Х	/	[46]
Spherical RoPE	/	√ /X	/	/	Х	1	Ours
Uniform RoPE	/	√/X	/	✓	/	/	Ours

Table 4: Comparison of positional encoding methods in transformer models. *NoPE makes some properties trivially true.

5 E Positional Encoding Properties

Rotary positional embeddings were derived in Su et al. [61] by drawing equations from assumed properties. While these appear as arithmetic assumptions and equations in their work, we formalize what properties these assumptions imply and why we may choose these assumptions in this section. In their paper, to derive their equations, they use equivariance (relativity), query-key separability of the positional encoding, linearity and incompressability, locality, and query-key symmetry.

 Equivariance/Relativity: Attention score should be affected only by the relative position of two tokens, i. e. have the form

$$\alpha(x_i, x_j, p_i, p_j) = \hat{\alpha}(x_i, x_j, p_i - p_j). \tag{5}$$

2. Key-query seperability: The positional encoding, φ , of the query should not depend on the position of the key

$$\alpha(x_i, x_j, p_i, p_j) = \bar{\alpha}(\varphi(x_i, p_i), \varphi(x_j, p_j)) \tag{6}$$

3. Linearity: The positional encoding should be a linear flow, see Appendix E.3. Namely,

$$\varphi(\varphi(x, p_i), p_i) = \varphi(x, p_i + p_i). \tag{7}$$

4. Locality: The attention score between two tokens should decay with distance

$$\lim_{|p_i - p_j| \to \infty} \alpha(x_i, x_j, p_i, p_j) = 0$$
(8)

457 E.1 Relativity and Equivariant

451

452

453

454

455

456

466 467

468

469

470

471

472

473

We use the term *equivariant* interchangably with *relative*. Strictly speaking, one should specify the transformation or group you would like to be relative to, e. g. shift/rotation or SO(2). As previous literature always refers to relative positional bias in terms of shifts/translations, in the main text, this is what we mean. We use the term equivariance to be the generalization of relativity beyond language because we would like to refrain from using the term "relativity" to describe the property of being a relative PE too often due to its connotation within theoretical physics. First, we define relative in the case of positional encodings in language as

$$\alpha(x_i, x_j, p_i, p_j) = \hat{\alpha}(x_i, x_j, p_i - p_j). \tag{9}$$

In the rest of this section, we mathematically explore where this equation comes from.

The behavior we are trying to capture is that if we renumber the words in the sentence, it should not affect the attentions score. Intuitively, if a text is padded with spaces at the beginning, that will not have a significant effect on the meaning of the sentences. We can ensure this by colloquially saying that the attention between two words should depend on the distance between them. Notice, that strictly speaking this is not a proper distance, since it can be negative; it is, instead, a *signed* distance function. Though this may seem pedantic in one dimension, in two dimensions defining a distance function is less unique. For example, one may choose \mathbb{L}_1 or \mathbb{L}_2 distance metrics. Because distance functions are more nebulous, it makes more sense to define relative in terms of the transformations that we would like our attention score to be independent of.

$$\alpha(x_i, x_j, p_i, p_j) = \alpha(x_i, x_j, T(p_i), T(p_j)). \tag{10}$$

- These transformations can be combined to generate a set of transformations which leave the attention
- score unchanged, or *symmetric*. This set has the mathematical properties of a group and is known as
- a symmetry group. We can index transformations by elements in the symmetry group, $g \in G$, and let
- 478 the elements act on

$$\alpha(x_i, x_j, p_i, p_j) = \alpha(x_i, x_j, g.p_i, g.p_j). \tag{11}$$

- As an example, g could represent an angle, θ , and it may act on a vector \mathbf{p} as a rotation $g.\mathbf{p} = \mathbf{R}_{\theta}\mathbf{p}$.
- 480 Connecting everything back to Eq. 9, Noether's theorem states that any continuous symmetry can
- be expressed as a conservation law. This allows us to introduce bi-invariant function [31, 69], or
- "Noether charge", $\beta(p_i, p_j)$, that is invariant under the group action,

$$\beta(p_i, p_j) = \beta(g.p_i, g.p_j) \implies \beta(p_i, p_j) - \beta(g.p_i, g.p_j) = 0.$$
(12)

Thus, we can express our symmetry group through isodistances of β ,

$$\alpha(x_i, x_j p_i, p_j) := \hat{\alpha}(x_i, x_j, \beta(p_i, p_j)). \tag{13}$$

484 For example, we can pick the function

$$\beta(p_i, p_i) = p_i - p_i = (p_i - p_0) - (p_i - p_0) = \beta(p_i - o, p_i - p_0)$$
(14)

- If we were to define $\beta(p_i,p_j)=|p_i-p_j|$, then we we would additionally be equivariant to reflection of
- the order of tokens in a sentence. If we trivially define $\beta(p_i, p_j) = C$, then we arrive at bag of words,
- 487 or no positional encoding (NoPE). For a list of common transformations and their corresponding
- bi-invariants see Theorem 1 of Bekkers et al. [5].

489 E.2 Query-Key Separability

Query and key separability is important for efficiency reasons. If we can decompose our positional encoded attention score as,

$$\alpha(x_i, x_j, p_i, p_j) = \alpha(\varphi(x_i, p_i), \varphi(x_j, p_j)) \tag{15}$$

- then we can pre-compute the positional encoding for the queries and keys on time making the
- computation O(T). If the positional encoding is not separable, then it will need to be computed for
- every pair, (i, j)[41, 50, 55]. Although there are many symmetries that can be exploited to make this
- not a quadratic computation, it removes the symmetries exploited by efficient attention mechanisms
- 496 [6, 11, 27].

497 E.3 Linear Flow Property

- The property of being a "flow" was first proposed in Liu et al. [39], however it is not often discussed.
- It is a property inherently present in RoPE[61], LieRE[46] and ALiBi [49] embeddings, specifically
- 500 as a linear flow.

505

506

- 501 We use the term linear flow for this property because the embedding can be found by repeated
- application of a linear function. However, the term "linear" this is a small misnomer because it is
- only *locally* linear. We define a *flow* as function

$$\varphi: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^N \tag{16}$$

such that for all $x \in X$ and $p_1, p_2 \in \mathbb{R}$, the following conditions hold:

1. Initial condition (identity at time zero):

$$\varphi(0,x) = x \tag{17}$$

2. Group property (flow property):

$$\varphi(\varphi(\mathbf{x}, p_1), p_2)) = \varphi(x, p_1 + p_2) \tag{18}$$

3. Continuity (or differentiability): φ is continuous with respect to its variables, depending on the context

Strictly speaking, continuity is not necessary for positional encodings as positions tend to be integer 509

- values. What we really wish to capture with this property is for the positional encoding to be 510
- recursively defined. It may be strange to wish to apply the positional encoding multiple times; 511
- however, by having the positional encoding as an endomorphism it can allow for more predictable 512
- behavior when extrapolating to larger contexts, which we suspect helps the model train. 513
- We define a position embedding to be a *linear flow* if the flow has the form:

$$\varphi(\mathbf{x}, \Delta p) = \mathbf{A}\mathbf{x},\tag{19}$$

for $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{x} \in \mathbb{R}^N$, where Δp is the increment rate for position. By Eq. 18, any position 515

 $p := p_0 \Delta p$ can then be attained by, 516

$$\varphi(\mathbf{x}, p) = \mathbf{A}^{p_0} \mathbf{x}. \tag{20}$$

This can be seen as a *geometric series* if A is a scalar as seen in Press et al. [49]. If we let Δt become 517 infinitesimal, then we can express the recurrence relationship as the ODE, 518

$$\frac{\partial \varphi}{\partial t} = \mathcal{A}\varphi \tag{21}$$

which we can integrate to get, 519

$$\varphi(\mathbf{x}, p) = \exp(\mathcal{A}p)\mathbf{x} \tag{22}$$

520

- This \mathcal{A} is our *generator* of the flow, which is also a generator for a *matrix Lie algebra*, which we focus on in the main text. The matrix exponential, $\exp: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$, can be unstable for long 521
- contexts; similar to the scalar exponential function e^{xp} , the function can quickly become large for 522
- high values of x. However, this can be stable value x = 0, since it always results in one. Similarly, 523
- the matrix exponential can be stable if the divergence of the flow trace of the generator is zero. 524
- We call flow "incompressible" or "divergence-free" if the trace of A is zero, making the determinant 525
- of A unit. If fluid dynamics, this is called *incompressibility*. For fluids, this implies that the flow 526
- conserves mass. 527
- If there are more than one generator of the Lie group, A_1 and A_2 , then Eq. 18 must be modified to, 528

$$\varphi(\varphi(\mathbf{x}, \mathbf{p_1}), \mathbf{p_2})) = \varphi(\mathbf{x}, \mathbf{p_1} \circ \mathbf{p_2}), \tag{23}$$

- where \circ is the group product. By the Baker–Campbell–Hausdorff formula, $\exp A_1 p_1 \exp A_2 p_2 =$ 529
- $\exp A_1 p_1 + A_2 p_2$ iff the commutator of $A_1 p_1$ and $A_2 p_2$ is zero, i. e. the matrices commute. If they 530
- do commute, then

$$\varphi(\varphi(\mathbf{x}, \mathbf{p_1}), \mathbf{p_2})) = \varphi(\varphi(\mathbf{x}, \mathbf{p_2}), \mathbf{p_1})) \implies \varphi(\mathbf{x}, \mathbf{p_1} \circ \mathbf{p_2}) = \varphi(\mathbf{x}, \mathbf{p_2} \circ \mathbf{p_1}) \tag{24}$$

- thus making ∘ commutative and having the same properties as addition, ∘ := "+", and Eq. 18 will 532
- hold. In this case, the group/flow is known as an abelian Lie group, or abelian flow. However, if they 533
- do not commute, then o will not commute and they are known as non-abelian. This also makes the 534
- flow non-integrable. 535

E.4 Locality 536

- Locality is often conflated with relativity. The general idea is that tokens far from each other should 537
- be independent of one another i. e. attention should decay as distance grows. This often motivates 538
- the definition 539

$$\lim_{|p_i - p_j| \to \infty} \alpha(x_i, x_j, p_i, p_j) = 0 \tag{25}$$

 $\lim_{|p_i-p_j|\to\infty}\alpha(x_i,x_j,p_i,p_j)=0 \tag{25}$ for $p_i,p_j\in\mathbb{R}$ and $x_i,x_j\in\mathbb{R}^D$. However, this definition is *both* relative and local. We instead define 540 541

$$\lim_{|p_i - p_0| \to \infty} \alpha(x_i, x_j, p_i, p_0) = 0.$$
 (26)

- The difference being that p_0 is the *origin* position. If an embedding is relative, then the origin is 542
- arbitrary and can be defined as p_i or p_j . In Press et al. [49], they define the origin vector as the next 543
- word. However, they can only do this because of the causal mask. 544
- In general, the most natural way to measure locality is through the concept of the quantum mechanical 545
- concept of the variance of an operator. We will simply use exponential decay, but we point interested 546
- readers to Chapter 3 of Griffiths [19]. This formalism works for RoPE as it is a linear transformation 547
- and the attention mechanism defines a Hilbert space. 548
- To be clear, RoPE and LieRE are *not* relative embeddings. This was shown for RoPE in Barbero et al.
- [4]. Because they are orthogonal matrices, they have unit determinant, which naturally precludes 550
- locality. 551

552 E.5 Other properties

For completeness, there are two additional assumptions that are common.

Adjoint symmetry of the Positional Encoding We implicitly assume that the positional encoding is symmetric for the query and key. That is, we assume that the query and key are from the same domain, so the positional encoding has the same representation. More generally, the positional encoding can act differently on the query and key,

$$\alpha(\bar{\varphi}(x_i, p_i), \varphi(x_j, p_j)) = \alpha(\varphi(x_i, p_i), \varphi(x_j, p_j)), \tag{27}$$

where $\bar{\varphi}$ is the positional encoding function for queries. More generally, we can have a relative embedding by letting $\bar{\varphi}$ act on queries differently from the keys. For example, if we let

$$\varphi(x,p) = \exp(\Lambda p)$$
 $\bar{\varphi}(x,p) = \exp(-\Lambda p),$ (28)

where Λ is a diagonal matrix. We end up with,

$$\alpha(\bar{\varphi}(x_i, p_i), \varphi(x_j, p_j)) = \mathbf{q}_i^{\top} \exp(\Lambda(p_j - p_i)) \mathbf{k}_j, \tag{29}$$

where RoPE can be interpreted as a simple harmonic oscillator, by weakening the symmetry requirement, one could incorporate damping. This can also be used to incorporate graph Laplacian positional encodings into the framework.

Reversibility Reversibility means that the positional encoding is an injective map – that is, every coordinate is mapped to a unique rotation, thus position can be recovered. This property is important in Liu and Zhou [38] and Su [60] to derive Axial RoPE. While it prevents Eq. $\ref{eq:coordinate}$, it is necessary only for the D=1 case. More generally, Mixed RoPE can learn an injective map for large D. Moreover, while having a "lossless" positional encoding is nice mathematically, its practical utility has yet to be soundly justified, especially if the positional encoding is learnable.

F Fast Implementation

We follow a vectorized implementation for Spherical RoPE similar to the "fast implementation" proposed in Su et al. [61].

First, apply the rotation directly on after the other:

$$z_d[1] = \cos(\omega_u p_u) \ z_d[1] - \sin(\omega_u p_u) \ z_d[3] \tag{30}$$

$$z_d[3] = \sin(\omega_u y) \ z_d[1] + \cos(\omega_u) \ z_d[3],$$
 (31)

574 then

576

592

593

594 595

596

$$z_d[2] = \cos(\omega_y p_x) z_d[2] - \sin(\omega_x p_x) z_i[3]$$
(32)

$$z_d[3] = \sin(\omega_x p_x) \ z_d[2] + \cos(\omega_x p_x) \ z_d[3], \tag{33}$$

where steps 30 and 31 happen simultaneously, and steps 32 and 33 occur at the same time.

G Experimental Setup

Models We use the ViT-S backbone from the timm library [70]. The network always has a depth of 12. We keep N as close to constant across models as we can. For CIFAR100, the embedding dimensions are changed from $64 \times N_{\text{heads}}$ to $60 \times N_{\text{heads}}$ to be compatible with pairs, triplets and quadruples. For ImageNet, we make the embedding dimension $63 \times N_{\text{heads}}$ for Spherical RoPE and $64 \times N_{\text{heads}}$ for other methods. For classification, we use a class token to pool the tokens and predict. Unlike the patch tokens, the class token is not affected by any positional encoding.

CIFAR100 All experiments on CIFAR100 were performed on one A100 GPUs with a batch size 256. We use a patch size of 4×4 on the original image size 32×32 . The training uses heavy regularization and augmentations including dropout, MixUp [78] and CutMix [77]. The models are trained for 400 epochs, taking \sim 40 seconds per training loop.

ImageNet All experiments on ImageNet1k were performed on four A100 GPUs with a batch size 256. We used cosine learning rate with a learning rate of 3e-3 for 200 epochs with 5 epochs of linear warm-up. We used a patch size of 16×16 on the cropped and resized 224×224 image after applying 3-Augment [64]. We use the LAMB [75] optimizer. All experiments took \sim 20 hrs with \sim 5 to 8 minutes to complete a training loop depending on method.

Positional Encodings For testing with different resolutions, the images from ImageNet's validation set were normalized, resized and cropped. On training, the patches were assigned position $[-\pi,\pi]$ and for evaluation, the patch positions were extrapolated to the range $[-\frac{P}{P_0}\pi,\frac{P}{P_0}\pi]$. For Learned APE, the positional embeddings are instead interpolated. The fixed frequencies were given by $\omega_d = 1/100^{2d/D}$, where d is the index of the pair/tuple/quadruple. One frequency is shared between both x and y in our implementation of Axial RoPE .

598 H Hyperparameters

Table 5: Hyperparameters for ImageNet-1K Training

Category	Setting
Model Architecture	
Patch Size	16x16
Heads	6
Latent Dimension	64 (63 for Spherical) × Heads
Depth	12
Pooling	[CLS]
Stochastic Depth	No
Dropout	No
LayerScale	1
Optimization	
Optimizer	LAMB [75]
Base Learning Rate	4e-3
Weight Decay	0.05
Learning Rate Schedule	Cosine Decay
Warmup Schedule	Linear
Warmup Epochs	5
Epochs	200
Batch Size	512
Gradient Clipping	✓
Precision and Backend	
Precision	Mixed (bfloat16)
Backend	torch.autocast
Data Augmentation - Tr	rain
Crop	RandomResizedCrop (192→224)
Flip	✓
3-Augment	\checkmark
Color Jitter	(0.3, 0.3, 0.3, 0.0)
Mixup [78]	Х
Cutmix [77]	Х
Normalization	ImageNet-1K Statistics
Data Augmentation - Te	est
Resize	Resize \rightarrow Resolution
Crop	CenterCrop
Normalize	ImageNet-1K Statistics

Table 6: Hyperparameters for CIFAR100 Training

Category	Setting
Model Architecture	
Patch Size	16x16
Heads	12
Latent Dimension	$60 \times \text{Heads}$
Depth	12
Pooling	[CLS]
Stochastic Depth	0.1
Dropout	0.1
LayerScale	✓
Optimization	
Optimizer	LAMB [75]
Base Learning Rate	4e-3
Weight Decay	0.05
Learning Rate Schedule	
Warmup Schedule	Linear
Warmup Epochs	5
Epochs	400
Batch Size	1024 •
Gradient Clipping	✓
Precision and Backend	
Precision	Mixed (bfloat16)
Backend	torch.autocast
Data Augmentation - Tr	ain
Crop	RandomResizedCrop (32)
Flip	✓
3-Augment	✓
Color Jitter	(0.3, 0.3, 0.3, 0.0)
Mixup [78]	0.8
Cutmix [77]	1.0
Normalization	CIFAR Statistics
Data Augmentation - Te	
Normalize	CIFAR Statistics

99 I Additional Evaluations

600 In this section, we include extra evaluations including, basic data scaling, segmentation and speed.

We also include additional experiments on the effect of rotation frequencies on Uniform RoPE.

602 I.1 Data Scaling

604

608

Below we evaluate the data scaling of each method. We partition the CIFAR100

Table 7: Performance on different portions of CIFAR100.

Dataset Size	Spherical (Learned)	Axial (Learned)	Mixed	Uniform	APE
0.2	56.04 (57.2)	55.3 (56.6)	56.9	52.82	45.9
0.4	63.6 (65.34)	63.3 (62.5)	64.4	59.7	53.4
0.6	67.6 (69.8)	66.0 (66.78)	70.0	64.1	57.7
0.8	69.8 (72.6)	69.9 (69.1)	71.6	65.8	59.0

Equivariance, in theory, should provide better scaling due to its inductive bias. However, we observe that learned Spherical RoPE performs on-par or better than Mixed RoPE with less parameters.

607 J Segmentation

Table 8: Segmentation results (IoU) on VOC with and without augmentation.

	Spherical	Axial (Learned)	Mixed	Uniform
VOC (No Aug.)	0.45	0.42 (0.43)	0.41	0.41
VOC (Simple Aug.)	0.50	0.46 (0.47)	0.50	0.45

Proofs and Lemmas

Axial RoPE Separability

Proposition 3. Axial RoPE is separable in x and y, that is, the attention score can be decom-

$$\alpha(\mathbf{x}_i, \mathbf{x}_j, \mathbf{p}_i, \mathbf{p}_j) = \alpha_{ij}^{(x)} + \alpha_{ij}^{(y)}$$

Proof. Suppose we define the dot-product attention score as

$$\alpha(\mathbf{q}, \mathbf{k}) = \mathbf{q}^{\top} \mathbf{k}.$$

- We incorporate Axial Rotary Positional Embeddings by rotating each 2-dimensional subvector of the 612
- query (and likewise the key). Concretely, if the hidden dimension is 2n, we partition

614
615
$$\mathbf{q} = \begin{bmatrix} \mathbf{q}_{x,1}, \, \mathbf{q}_{y,1}, \, \dots, \, \mathbf{q}_{x,n}, \, \mathbf{q}_{y,n} \end{bmatrix}^{\top}, \quad \mathbf{k} = \begin{bmatrix} \mathbf{k}_{x,1}, \, \mathbf{k}_{y,1}, \, \dots, \, \mathbf{k}_{x,n}, \, \mathbf{k}_{y,n} \end{bmatrix}^{\top}, (34)$$
 where each 616 $\mathbf{q}_{x,d}, \, \mathbf{q}_{y,d}, \, \mathbf{k}_{x,d}, \, \mathbf{k}_{y,d} \in \mathbb{R}^2$. At spatial location $\mathbf{p} = (p_x, p_y)$, we apply rotations

$$\mathbf{q}'_{x,d} = \mathbf{R}(\omega_d p_x) \mathbf{q}_{x,d}, \quad \mathbf{q}'_{y,d} = \mathbf{R}(\omega_d p_y) \mathbf{q}_{y,d},$$

- and similarly for k. Here $\mathbf{R}(\theta) \in \mathbb{R}^{2 \times 2}$ is the planar rotation by angle θ .
- For tokens at positions $\mathbf{p}_i = (p_{i,x}, p_{i,y})$ and $\mathbf{p}_j = (p_{j,x}, p_{j,y})$, their rotated queries and keys yield 618

$$\alpha_{ij} = \sum_{d=1}^{n} \left[(\mathbf{q}_{x,d})^{\top} \mathbf{R} \left(\omega_d \left(p_{j,x} - p_{i,x} \right) \right) \mathbf{k}_{x,d} + (\mathbf{q}_{y,d})^{\top} \mathbf{R} \left(\omega_d \left(p_{j,y} - p_{i,y} \right) \right) \mathbf{k}_{y,d} \right].$$

Define the horizontal and vertical components by

$$\alpha_{ij}^{(x)} := \sum_{d=1}^{n} (\mathbf{q}_{x,d})^{\top} \mathbf{R} \left(\omega_{d} \left(p_{j,x} - p_{i,x} \right) \right) \mathbf{k}_{x,d}, \quad \alpha_{ij}^{(y)} := \sum_{d=1}^{n} (\mathbf{q}_{y,d})^{\top} \mathbf{R} \left(\omega_{d} \left(p_{j,y} - p_{i,y} \right) \right) \mathbf{k}_{y,d}.$$

Hence the total attention decomposes additively:

$$\alpha_{ij} = \alpha_{ij}^{(x)} + \alpha_{ij}^{(y)},$$

- demonstrating that axial rotary embeddings factorize the positional dependence along each axis.
- **Matrix Exponentiation** Computing the matrix exponential by exponentiating the eigenvalues is a common result in linear algebra and numerics, however we provide it here for those unfamiliar.

Lemma 1. Let **A** be a diagonalizable matrix $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{-1}$, then the matrix exponential of **A** is given by

$$\exp(\mathbf{A}) = \mathbf{U} \exp(\boldsymbol{\Lambda}) \; \mathbf{U}^{-1}$$

- Proof. 624
- Recall the power-series definition of the matrix exponential:

$$\exp(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k. \tag{35}$$

Since **A** is diagonalizable,

$$\mathbf{A}^k = \left(\mathbf{U}\,\mathbf{\Lambda}\,\mathbf{U}^{-1}\right)^k = \mathbf{U}\,\mathbf{\Lambda}^k\,\mathbf{U}^{-1}.\tag{36}$$

Substituting into the series gives

$$\exp(\mathbf{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\mathbf{U} \mathbf{\Lambda}^k \mathbf{U}^{-1} \right) = \mathbf{U} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{\Lambda}^k \right) \mathbf{U}^{-1}.$$
 (37)

Because Λ is diagonal, the series $\sum_{k=0}^{\infty} \frac{1}{k!} \Lambda^k$ is itself the diagonal matrix of scalar exponentials,

$$\exp(\mathbf{\Lambda}) = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n}). \tag{38}$$

Hence is well defined, and 629

$$\exp(\mathbf{A}) = \mathbf{U} \exp(\mathbf{\Lambda}) \mathbf{U}^{-1}.$$
 (39)

630

Simultaneous-Diagonalizability The proof that two (diagonalizable) matrixes are simultaneous-631 diagonalizability if and only if they are commutative is also a standard result. However, we once 632 again provide it here: 633

Lemma 2. Let A_x and A_y be skew-symmetric. Then A_x and A_y are simultaneously diagonalizable if and only if $A_x A_y = A_y A_x$.

634

Suppose A_x and A_y are simultaneously diagonalizable. Then, because they are skew-symmetric, 635

there exists a unitary matrix U such that 636

$$\mathbf{U}\Lambda_x\mathbf{U}^{\top} = \mathcal{A}_x \quad \text{and} \quad \mathbf{U}\Lambda_y\mathbf{U}^{\top} = \mathcal{A}_y,$$
 (40)

where Λ_x and Λ_y are diagonal matrices. 637

638

$$\mathcal{A}_x \mathcal{A}_y = \mathbf{U} \Lambda_x \mathbf{U}^\top \mathbf{U} \Lambda_y \mathbf{U}^\top = \mathbf{U} \Lambda_x \Lambda_y \mathbf{U}^\top = \mathbf{U} \Lambda_y \Lambda_x \mathbf{U}^\top = \mathcal{A}_x \mathcal{A}_y$$
(41)

- Hence, A_x and A_y commute. 639
- Now suppose A_x and A_y commute, $A_xA_y=A_yA_x$. Since A_x and A_y are skew-symmetric, they 640
- are diagonalizable in $\mathbb{C}^{D_x^rD}$, thus there exists a basis of eigenvectors of \mathcal{A}_x . Because \mathcal{A}_y commutes 641
- with A_x , the eigenspaces of A_x are invariant under A_y . That is, for any eigenvalue λ of A_x , the 642
- corresponding eigenspace 643

$$E_{\lambda} = \{ v \in \mathbb{C}^D : \mathcal{A}_x v = \lambda v \} \tag{42}$$

is A_v -invariant: if $v \in E_\lambda$, then

$$\mathcal{A}_x(\mathcal{A}_y v) = \mathcal{A}_y(\mathcal{A}_x v) = \mathcal{A}_y(\lambda v) = \lambda \mathcal{A}_y v \Rightarrow \mathcal{A}_y v \in E_\lambda. \tag{43}$$

- Now, restrict A_x to each eigenspace E_λ . Since $\mathbb C$ is algebraically closed and $A_y|_{E_\lambda}$ is a linear operator on a finite-dimensional space, A_y is diagonalizable on E_λ . Thus, we can choose a basis of 646
- eigenvectors for A_y in each E_{λ} . 647
- Putting these together, we get a basis for \mathbb{C}^N consisting of vectors that are eigenvectors for both \mathcal{A}_x 648
- and A_y . Therefore, A_x and A_y are simultaneously diagonalizable. 649

1-D LieRE is equivalent to RoPE In this section, we will more formally prove that the traditional 651 RoPE with learned rotation frequencies is equivalent to 1-D RoPE as proposed in Section 3. 652

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned frequencies.

Proof. 653

650

- We define a rotation to be an orthogonal matrix with positive determinant; that is, it is an element 654
- of $\mathbf{R} \in SO(N)$. We can write any element of SO(N) via the exponential map $\mathbf{R} = e^{A}$ where
- $\mathcal{A} \in \mathfrak{so}(N)$, i.e. \mathcal{A} is a skew-symmetric matrix. It is well-known that the eigenvalues of a real, skew-656
- symmetric matrix are purely imaginary (or zero), and such a matrix is unitarily (i.e. orthogonally) 657
- diagonalizable over \mathbb{C} , resulting in a spectral decomposition with a purely imaginary eigenvalue 658
- matrix. Thus, 659

$$\mathcal{A} = \mathbf{U}\mathbf{\Lambda}i\mathbf{U}^{\dagger} \tag{44}$$

and, by Lemma 1, 660

$$\exp\left(\mathcal{A}\right) = \mathbf{U}\exp\left(\mathbf{\Lambda}i\right)\mathbf{U}^{\dagger}.\tag{45}$$

where, because Λ is diagonal, $\exp(\Lambda)$ is simply the scalar-exponential of each element. The positional 661 encoding of a token to a query can be written as, 662

$$\varphi(\mathbf{x}, p) = \exp(Ap)\mathbf{W}_{q}\mathbf{x} = \mathbf{U}\exp(\mathbf{\Lambda}i\ p)\mathbf{W}_{q}'\mathbf{x}$$
(46)

where $\mathbf{W}'_q = \mathbf{W}_q \mathbf{U}$. We assume the same encoding for the key with a different matrix, \mathbf{W}'_k and 663

- the same generator, A. This equation can be rewritten as $\varphi(\mathbf{x},p) = \mathbf{U}RoPE(\mathbf{x},p)$ by Eq.1. If 664
- the attention score is given by $\alpha(\mathbf{q}, \mathbf{k}) = \mathbf{q}^{\dagger} \mathbf{k}$, where \dagger denotes the Hermitian transpose, then the 665
- attention score can be expanded into, 666

$$\alpha(\mathbf{x}_i, \mathbf{x}_j, p_i, p_j) = RoPE(\mathbf{x}_i, p_i)^{\dagger} \mathbf{U}^{\dagger} \mathbf{U} RoPE(\mathbf{x}_j, p_j)$$
(47)

$$= RoPE(\mathbf{x}_i, p_i)^{\dagger} RoPE(\mathbf{x}_i, p_i). \tag{48}$$

- Hence, any LieRE of one generator can be expressed as RoPE with learned rotation frequencies. □ 667
- Any commutative LieRE is equivalent to Mixed RoPE We now prove that multi-dimensional 668 LieRE with commutative generators generalizes directly to Mixed RoPE. 669

Proposition 2. Any M-dimensional LieRE with commutative generators can be parameterized by Mixed RoPE.

- Proof. 670
- Let $A_1, \ldots, A_M \subset \mathfrak{so}(N)$ be skew-symmetric generators such that $[A_m, A_n] = \mathbf{0}$ for all m, n. By 671
- Lemma 2, commuting normal matrices are simultaneously unitarily diagonalizable. Thus, there exists 672
- a unitary U and diagonal matrices $\Lambda_1, \ldots, \Lambda_M$ such that

$$\mathcal{A}_m = \mathbf{U} \mathbf{\Lambda}_m i \mathbf{U}^{\dagger} \quad \text{for all } m = 1, \dots, M.$$
 (49)

For a position vector $\mathbf{p} = (p_1, \dots, p_M) \in \mathbb{R}^M$, the LieRE positional encoding is

$$LieRE(\mathbf{x}, \mathbf{p}) = \exp\left(\sum_{m=1}^{M} \mathcal{A}_m p_m\right) \mathbf{W} q \mathbf{x}, \tag{50}$$

which, using Lemmas 1 and 2, can be written as

$$LieRE(\mathbf{x}, \mathbf{p}) = \mathbf{U} \exp \left(\sum_{m=1}^{M} \mathbf{\Lambda}_{m} i, p_{m} \right) \mathbf{U}^{\dagger} \mathbf{W}_{q} \mathbf{x}.$$
 (51)

Let $\mathbf{W}_q' = \mathbf{U}^{\dagger} \mathbf{W}_q$. Then

$$LieRE(\mathbf{x}, \mathbf{p}) = UMixedRoPE(\mathbf{x}, \mathbf{p}), \tag{52}$$

where MixedRoPE applies elementwise complex rotations

$$e^{i(\lambda_1^{(k)}p_1 + \dots + \lambda_M^{(k)}p_M)} \tag{53}$$

- to each channel k, with frequencies $\lambda_m^{(k)}$ learned from Λ_m . If the attention score is given by $\alpha(\mathbf{q},\mathbf{k})=\mathbf{q}^{\dagger}\mathbf{k}$, then

$$\alpha(\mathbf{x}_i, \mathbf{x}_j, \mathbf{p}_i, \mathbf{p}_i) = \text{MixedRoPE}(\mathbf{x}_i, \mathbf{p}_i)^{\dagger} \mathbf{U}^{\dagger} \mathbf{U} \text{MixedRoPE}(\mathbf{x}_i, \mathbf{p}_i)$$
(54)

$$= \text{MixedRoPE}(\mathbf{x}_i, \mathbf{p}_i)^{\dagger} \text{MixedRoPE}(\mathbf{x}_i \mathbf{p}_j). \tag{55}$$

Hence, any M-dimensional LieRE with commutative generators is equivalent to a Mixed RoPE

parameterization with learned rotation frequencies.