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Abstract

Vision–Language–Action (VLA) models have advanced robotic capabilities
but remain challenging to deploy on resource-limited hardware. Pruning
has enabled efficient compression of large language models (LLMs), yet it
is largely understudied in robotics. Surprisingly, we observe that pruning
VLA models leads to drastic degradation and increased safety violations.
We introduce GLUESTICK, a post-pruning recovery method that re-
stores much of the original model’s functionality while retaining sparsity
benefits. Our method performs a one-time interpolation between the dense
and pruned models in weight-space to compute a corrective term. This
correction is used during inference by each pruned layer to recover lost
capabilities with minimal overhead. GLUESTICK requires no additional
training, is agnostic to the pruning algorithm, and introduces a single hy-
perparameter that controls the tradeoff between efficiency and accuracy.
Across diverse VLA architectures and tasks in manipulation and naviga-
tion, GLUESTICK achieves competitive memory efficiency while substan-
tially recovering success rates and reducing safety violations. Videos, code,
and additional materials are in: https://gluestick-vla.github.io/.

Task: Enter the dining room and walk to the other end. Task: Put the bowl on top of the cabinet.

Pruned VLA  GLUESTICK

Figure 1: VLAs break under pruning, and GLUESTICK fixes them. Pruning
methods unexpectedly cause task and safety failures in VLAs: colliding with an object in
a navigation task (left), or dropping a bowl in a manipulation task (right). Our post-
pruning method, GLUESTICK, restores the lost functionality of the original model.

1 Introduction

Vision-Language-Action (VLA) models mark a new era in robotics. Earlier approaches to
robot control used pipelines that separated perception, planning, and control into distinct
subsystems. VLAs instead integrate these components into a single end-to-end framework,
leveraging large language models (LLMs) to connect perception and natural language in-
structions directly to action (Kim et al., 2024; Li et al., 2024; Lee et al., 2025; Black et al.,
2024; Bjorck et al., 2025; Brohan et al., 2022; Zitkovich et al., 2023). VLAs learn generalized
action policies from internet-scale robotics data, enabling them to transfer across diverse

1

https://gluestick-vla.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tasks and environments (O’Neill et al., 2024). VLAs can also take advantage of pretrained
vision and language models, giving them rich semantic knowledge while grounding behavior
in real-world observations (Achiam et al., 2023; Team et al., 2023; Betker et al., 2023).
The growing capabilities of VLAs come at a cost. As in LLMs, VLAs follow a scaling trend
wherein their capabilities grow as the size of the model grows larger (Kaplan et al., 2020).
In robotics, this scaling is especially consequential because deployment typically occurs on
hardware with strict limits on memory, power, and throughput. For example, an industry-
standard Jetson Orin NX provides only 8–16GB of shared CPU-GPU memory (Liu et al.,
2024b; Rey et al., 2025), far below server-grade GPUs used for foundation models, such as
the NVIDIA HGX B200 with 180GB of memory (NVIDIA, 2025). Such limitations make
compression necessary to fit models on resource-constrained hardware. Yet a clear gap
remains in understanding how efficiency gains from compression intersect with VLA model
success and safety—a gap this work directly seeks to answer, specifically about pruning.
Pruning is a key compression technique for large language models (Frantar & Alistarh,
2023; Sun et al., 2023a;b). It produces smaller models and more efficient GPU execution
with optimized sparse kernels by removing unnecessary weights and enforcing structured
sparsity. However, we surprisingly observe that pruning introduces unique challenges for
VLAs. Whereas pruning techniques are effective for LLMs, applying the same methods to
VLAs leads to catastrophic degradation. In our experiments, recent pruning algorithms
reduced task success rate on manipulation tasks from 85.2% to 0.0% and on a navigation
task from 43.0% to 0.0%, while also increasing the frequency of safety violations.
We recover success rates and reduce safety violations by introducing GLUESTICK, a new
post-pruning recovery method that recovers signal lost during pruning while preserving the
efficiency benefits of sparsity. GLUESTICK operates entirely in weight space, using the
information discarded by pruning to nudge the model back toward more performant regions
without any retraining. This is achieved by adding a lightweight correction term, computed
from singular values in the gap between the dense and pruned weights.
Our approach is pruning-agnostic and can be applied on top of any existing pruning algo-
rithm. In doing so, GLUESTICK restores up to 100% of performance in navigation tasks
and as much as 60% in dexterous manipulation domains, while maintaining the efficiency
gains of structured sparsity (Figure 1). Finally, GLUESTICK introduces a single inter-
pretable hyperparameter that allows practitioners to directly control the trade-off between
accuracy and efficiency, making it adaptable to diverse application requirements. We demon-
strate that our method consistently recovers performance and improves safety across three
VLA architectures, two widely used robotics benchmarks, and multiple robot embodiments.

Our contributions.
• Empirical evidence of pruning collapse in VLAs. We present the first systematic
study showing that pruning, which is effective for LLMs, causes near-complete collapse of
the success rate in embodied VLA models, and an increase in safety violations.
• Study of why VLAs differ from LLMs under pruning. Through spectral analysis,
we identify structural properties of VLA architectures that could make them more fragile
to pruning than language-only models.
• An effective, training-free recovery method. We propose GLUESTICK, a post-
pruning recovery algorithm that restores lost signal after pruning using a low-rank,
lightweight correction in weight space. GLUESTICK is pruning-algorithm-agnostic, re-
quires no retraining, and introduces only a single interpretable hyperparameter.

2 Related Work & Motivation

VLA Models. Recent work has focused on developing VLA models that unify perception,
language understanding, and decision-making into a single policy mapping multimodal in-
puts directly to robot actions. These models typically consist of three components: a vision
backbone, a multimodal projector, and a language backbone. For instance, given image
observations and natural language instructions, OpenVLA (Kim et al., 2024) outputs end-
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Model Method Succ. Unsafe
OpenVLA Dense 85.2% 33.4%

Magnitude 0.0% 46.4%
Wanda 0.0% 51.6%

NaVILA Dense 43.0% 23.0%
Magnitude 0.0% 100.0%
Wanda 0.0% 46.0%

Table 1: Success and unsafe-episode rate
across pruning strategies. Succ.=% success-
ful episodes; Unsafe=% with a safety violation.
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Figure 2: Singular value spectra of
weights. VLA vs. LLM/VLM showing
that VLA spectra are flatter and signal is
more dispersed across the weight space.

effector poses and gripper commands for manipulation, while NaVILA (Cheng et al., 2025a)
generates velocity commands for navigation. Other prominent systems in this space include
RT (Brohan et al., 2022; Zitkovich et al., 2023), the π series (Black et al., 2024; Intel-
ligence et al., 2025), PaLM-E (Driess et al., 2023), Gr00t N1 (Bjorck et al., 2025), and
CogACT (Li et al., 2024), all of which share the commonality of being large end-to-end
transformer-based policies with billions of parameters. Their size poses a particular chal-
lenge for robotics, which have tight resource contraints (Jabbour & Janapa Reddi, 2024),
making compression techniques such as pruning especially important for deployment. Exac-
erbating this challenge, there is a clear trend toward richer inputs and outputs: for example,
SpatialVLA (Qu et al., 2025) incorporates not only image token inputs but also 3D scene
information, while MolmoAct (Lee et al., 2025) and WorldVLA (Cen et al., 2025) extend
outputs beyond action vectors to include depth predictions or full world models. These
expansions further grow model size and demand, underscoring the importance of studying
efficiency–success trade-offs in compressed VLA models for practical robotic deployment.
Pruning Benefits for Robotics. Pruning is a common technique for compressing LLMs,
where a fraction of weights are set to zero (Zhu et al., 2024). Magnitude (Han et al., 2015)
and Wanda (Sun et al., 2023b) are widely used pruning methods, valued for being training-
free and computationally efficient. Magnitude removes small-magnitude weights, while
Wanda scores connections by activation statistics on calibration inputs and prunes those
deemed less important. Pruning reduces both parameter count and FLOPs while often pre-
serving accuracy, and is especially effective when applied in hardware-friendly patterns such
as structured “N:M” sparsity (e.g., 2:4). Modern GPUs exploit these patterns with special-
ized kernels that reduce memory traffic and multiply-accumulate operations (MACs) (Cheng
et al., 2025b); for example, NVIDIA’s Sparse Tensor Cores and cuSPARSELt accelerate 2:4
sparse general matrix multiplications (Mishra et al., 2021). The reduced computation due
to pruning not only enables acceleration and memory savings but also significantly cuts
power consumption (Han et al., 2016). These benefits are especially attractive for robotics,
where devices operate under strict constraints on compute, memory, and energy, making it
critical to also understand pruning’s broader impact on VLA model success and safety.
Pruning Impacts. When pruning methods are applied to LLMs they achieve strong accu-
racy retention. On LLaMA-2-70B (Touvron et al., 2023), mean accuracy on the EleutherAI
LM Harness (Gao et al., 2021) decreases by only 7.13% with Magnitude pruning and 2.94%
with Wanda (Sun et al., 2023b), despite imposing a strict 2:4 structured sparsity on the
original model and removing 50% of weights. More recent work has investigated the impact
of pruning on Vision-Language Models (VLMs) and has shown a larger accuracy decrease
compared to LLMs. For example, Koike-Akino et al. (2025) reported that on the ScienceQA
dataset, LLaVA-7B experienced a 12.5% accuracy drop after being pruned with Wanda at
50% sparsity on image-based tasks. Similarly, Liang et al. (2025) observed a 9%–30% ac-
curacy drop in LLaVA-SQA-7B and LLaVA-v1.5-7B. These foundational pieces of work
illustrate that pruning has a measurable impact on VLMs, and our work builds on this
observation to explore whether this trend continues or changes for VLA models. Taken

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Compute Lost Dominant 

Weight Space Directions

Compute Gap Matrix

Lightweight 

Correction Terms

U

VT

GLUESTICK      (Offline)

2:4 Pruned LayerVLA Model Dense Layer

Iterate Through 
Linear Layers

Any Pruning
Algorithm

Pruning      (Offline)

Layer Output 

Activation 

2:4 Pruned Layer Input Lightweight 

Correction Terms

U

VT

Input

GLUESTICK      (Online)

Figure 3: Overview of GLUESTICK. (Top) A VLA model is pruned with a standard
algorithm (e.g., Wanda) to enforce 2:4 sparsity in linear layers. (Middle) Offline, we
compute the gap between the dense and pruned weights and extract dominant lost directions
via SVD, yielding lightweight corrections. (Bottom) At inference time, these correction
terms are applied alongside the pruned weights, effectively adding back lost signal.

together, this line of work suggests that while pruning has been validated on LLMs, it can
lead to greater degradation in VLM performance. Therefore, weight adjustments cannot be
assumed to be benign in all contexts. In robotics, where VLAs must balance efficiency with
both task success and safety, the implications of pruning remain unexplored. No prior work
has examined how pruning affects VLA success or safety and how such impacts might be
recovered. Direct weight-space interventions for post-pruned VLAs are similarly underex-
plored. In this paper, we address this gap by analyzing pruning’s effect on VLA models and
introducing a training-free recovery method that restores both success and safety.

3 GLUESTICK

In this section, we first present our surprising finding that pruning can cause catastrophic
degradation in VLA success and safety. We then introduce our new method, GLUESTICK
(sinGular vaLUE STIChing), which glues pruned VLAs back to high task success rates
and safe behaviors as in the original dense models. Additional details and pseudocode are
available in Appendix A.

3.1 Impact of Pruning on VLA Models

Pruning has substantially reduced memory usage in language models, with minimal loss in
accuracy (see Section 2). At the same sparsity levels commonly used in LLMs, we observe
surprisingly different outcomes on popular VLAs. Representative VLAs such as Open-
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VLA (Kim et al., 2024) and NaVILA (Cheng et al., 2025a), when pruned with Magnitude
or Wanda, drop in success rate to 0% (from 85.2% and 43.0%, respectively). These come
alongside a rise in their unsafe-episode rates; in the worst case OpenVLA increases from
33.4% to 51.6%, and for NaVILA from 23.0% to 100.0% (see Table 1). These findings show
that text-validated pruning does not directly transfer to embodied control.
To explain why pruning degrades VLAs far more than LLMs or VLMs, we ask whether their
weight-space properties differ. Thus, we examine the singular value spectra of equal-sized
layers within the language backbones of OpenVLA (VLA), LLaMA-2-7B (LLM) (Touvron
et al., 2023), and Qwen2-VL-Instruct-7B (VLM) (Bai et al., 2025). We display these spectra
in Figure 2, where each line corresponds to the singular values of a single layer, obtained by
computing the SVD of that layer’s weight matrix and plotting its full set of singular values.
In LLM and VLM models, the spectra are more anisotropic, evidenced by a steep initial
drop followed by a long tail, which concentrates energy in a few dominant directions. This
profile helps pruning, since removing small coefficients mainly trims low-energy directions
while leaving the principal subspaces intact. In contrast, VLA layers show a noticeably
flatter decay, indicating energy spread across many directions. In this regime, even small-
magnitude coefficients contribute to important subspaces, so pruning discards useful signal
distributed throughout the matrix. Based on this insight, our method in the following
section explores the recovery of this lost information within the weight space.

3.2 Gluesticking Pruned Models

The space of pruning configurations is combinatorial, making optimal selection of weights
to remove intractable. Heuristic methods such as Magnitude and Wanda sidestep the global
optimization by scoring individual weights and pruning by score. While simple and efficient,
these heuristics discard correlated weights under grouped sparsity constraints (e.g., 50%
sparsity with 2:4 or 4:8 groups), which could be especially harmful for VLA models.
We propose GLUESTICK, a post-hoc, training-free recovery method that operates entirely
in weight space and is agnostic to the pruning algorithm (see Figure 3). GLUESTICK
requires only the original dense model and its pruned counterpart, and incurs a one-time
offline cost; no additional training is required.
Specifically, for each linear layer with dense weight matrix Wdense ∈ Rdout×din and its pruned
version Wpruned (fixed, preserving the original 2:4/4:8 pattern), we define the gap matrix:

Wgap = Wdense −Wpruned, (1)

which captures lost information due to pruning. We then compute a truncated singular
value decomposition (SVD) of the gap matrix:

Wgap = UΣV > ≈ UrΣrV
>
r , (2)

keeping the top r singular components. By Eckart & Young (1936), this is the best rank-r
approximation to Wgap in Frobenius norm. For memory and speed, we fold the singular
values into one term so that only two compact matrices need to be stored:

A = UrΣr ∈ Rdout×r, B = Vr ∈ Rdin×r. (3)

During inference, GLUESTICK adds a lightweight correction around each pruned layer:

h(x) = Wprunedx+A(B>x), (4)

which re-injects the dominant lost directions at low cost while leaving Wpruned unchanged,
thereby preserving the efficiency gains of structured sparsity with a minimal overhead ad-
dition from the correction term. The extra compute from this correction is:

Wprunedx︸ ︷︷ ︸
efficient sparse matmul

+ B>x︸︷︷︸
O(din r)

+ A( · )︸ ︷︷ ︸
O(dout r)

, (5)

or O((din + dout)r) on top of the sparse matrix-matrix multiplication (matmul), versus
O(dindout) for the dense layer. Our correction adds only (din + dout)r extra parameters
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per layer, which is small compared to dindout in the dense case. With r � min{din, dout},
GLUESTICK preserves the efficiency gains of structured 50% sparcity.
We refer to our method as GLUESTICK-r to indicate the chosen value of r. We note
that the parameter r provides a dial between memory usage and recovery. Smaller values
of r favor memory savings, while larger values prioritize recovery. In practice, integrating
GLUESTICK into a model, requires only a wrapper around pruned layers (Appendix A).

4 Experimental Setting

Our experimental setup spans two benchmarks covering distinct robotics domains: manipu-
lation and navigation. We evaluate three different VLA models on these tasks, with results
measured using both task performance and safety metrics.

4.1 Environments

We list here short descriptions of our test environments (see Appendix B.1 for more details).

Manipulation. We evaluate on LIBERO (Liu et al., 2023), a benchmark designed to test
embodied manipulation skills inspired by human activities (see Figure 1, right). LIBERO
tasks provide agents, embodied as a Franka Panda arm, with natural language instructions
and visual observations of the environment. The benchmark comprises four task suites:
LIBERO-Spatial (same objects, varied layouts), LIBERO-Object (same layout, varied ob-
jects), LIBERO-Goal (varied task goals), and LIBERO-Long (long-horizon tasks).

Navigation. We evaluate navigation using the VLN-CE-Isaac benchmark (Cheng et al.,
2025a), which simulates legged robots (e.g., the Unitree Go2 quadruped and the H1 hu-
manoid) traversing indoor environments to reach goal locations (see Figure 1, left). Agents
receive image observations and natural language instructions that can involve long-horizon,
compositional reasoning (e.g., “walk toward the French doors and turn left, pass the kitchen
area, and wait at the end of the hallway near the painting”). The robot executes velocity
commands (e.g., move forward 0.75 m, turn right 15°), which are generated by a VLA model.

4.2 Models

We list here descriptions of the VLA models studied. See Appendix B.3 for more details.
OpenVLA (Kim et al., 2024) is a 7B-parameter generalist VLA model for manipulation,
built on the LLaMA-2 7B language backbone (Touvron et al., 2023) with SigLIP (Zhai et al.,
2023) and DINOv2 (Oquab et al., 2023) transformer-based vision encoders. It takes RGB
observations and natural language instructions as input, and autoregressively outputs a 7D
low-level end-effector pose along with gripper open/close commands.
WorldVLA (Cen et al., 2025) is a 7B manipulation-oriented VLA that emphasizes
long-horizon consistency through an autoregressive action world-modeling objective. It is
initialized from the 7B Chameleon vision–language model (Team, 2024) with a convolution-
based VQ-GAN vision encoder (Esser et al., 2021). The model ingests the current RGB
observation, a sequence of history images, and a natural language instruction; generating
7D low-level end-effector poses along with gripper open/close commands in action chunks.
NaVILA (Cheng et al., 2025a) is an 8B-parameter, navigation-focused VLA designed
for legged robots. It is built on the VILA vision–language model (Lin et al., 2024), which
combines a ViT-based visual encoder with a language backbone inspired by LLaVA’s ar-
chitecture (Liu et al., 2024a), but pre-trained on a unique mixture of data. The model
consumes the current egocentric image along with a set of history frames and natural lan-
guage instructions; outputing velocity commands executed by a locomotion controller.
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Method LIBERO (↑) Mean (↑)
Spatial Object Goal Long

Full Dense +0.0 +0.0 +0.0 +0.0 +0.0
Full Sparse −85.2 −72.4 −76.2 −55.8 −72.4
Sparse Lang. BB −69.5 −57.3 −58.5 −49.3 −58.7
% Sparse Lang. BB −71.6 −57.9 −57.8 −49.8 −59.3
GLUESTICK-500 −32.8 −34.9 −32.9 −42.2 −35.7

Table 2: Change in success rate (%) relative to Full Dense. Higher values indicate a
better success rate. Results are averaged across OpenVLA and WorldVLA. % Sparse Lang.
BB uses the same VRAM as GLUESTICK-500.

4.3 Evaluation Metrics

We evaluate VLA agents on two axes: task success and safety. Success captures whether
the agent achieves the stated goal. Safety captures whether it does so without causing harm
to itself or the environment. Refer to Appendix B.2 for more detailed metric definitions.
Task Success. We report binary per-episode success: an episode is successful if the agent
completes the objective, and unsuccessful otherwise.
Safety. Following prior robotics safety work (Dulac-Arnold et al., 2019; Geng et al., 2023;
Morton & Pavone, 2025), we operationalize safety as the absence of harm caused to the
robot or its surroundings. For manipulation, we monitor robot- and environment-centered
risks (e.g., joint-limit violations, arm–environment collisions, unsafe object motion, and
end-effector/whole-body containment breaches). For navigation, we track collision events.

4.4 Baselines

We consider three pruning strategies: (i) Full Sparse, where all linear components except
the language model head are pruned with 50% 2:4 structured sparsity using Wanda; (ii)
Sparse Language Backbone, where only the language backbone is pruned; and (iii) a
Memory-Matched Sparse Language Backbone, which prunes a subset of backbone
layers while maintaining 50% 2:4 sparsity in each pruned layer, to provide a fair comparison
to GLUESTICK’s overhead. We use strict 2:4 structured sparsity across all settings, since
this level of pruning is necessary to realize meaningful improvements from hardware-efficient
sparse kernels. We choose to use Wanda as our base pruning algorithm because it represents
the state of the art and is highly practical due to its minimal computational cost during
pruning. See Appendix C for details.

5 Results
We structure our results around key questions, first presenting main findings on GLUE-
STICK then providing analysis through ablations and broader considerations of pruning.

5.1 Main Results

Q1: Does GLUESTICK recover task performance for pruned VLAs on manipulation tasks?
Across all four LIBERO task suites, Full Sparse yields a severe average degradation of
−72.4% (Table 2 shows the average results across OpenVLA and WorldVLA). In contrast,
GLUESTICK–500 degrades by only −35.7%, recovering 50% of the success rate lost to prun-
ing. Recovery is especially strong in the Spatial and Goal suites, where GLUESTICK re-
stores 62% and 57% of lost performance, respectively. Relative to the memory-matched
baseline (–59.3% average LIBERO success), GLUESTICK recovers 40% of lost success,
substantially restoring manipulation performance while retaining pruning efficiency. This
demonstrates that GLUESTICK can effectively recover task performance for pruned VLAs
on dexterous manipulation tasks. See Appendix C.1 for details.
Q2: Does GLUESTICK recover task performance for pruned VLAs on navigation tasks?

7
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Method ∆Succ. (↑) ∆Unsafe (↓) PL (↓) DG (↓) ∆RAM (↓)
Full Dense +0.0 +0.0 11.7 5.9 +0.00
Full Sparse −43.0 +23.0 17.6 9.5 −5.74
Sparse Lang. BB −20.0 +2.0 14.8 8.5 −5.68
% Sparse Lang. BB −18.0 +12.0 14.9 8.4 −4.59
GLUESTICK-200 −2.0 −1.0 12.5 6.5 −5.36
GLUESTICK-500 +1.0 −4.0 11.9 5.9 −4.60

Table 3: Navigation results. ∆ columns are relative to Full Dense; higher ∆Succ. and
lower ∆Unsafe are better. All methods use the NaVILA model. Lang. BB = language
backbone. RAM is peak usage. PL = Path Length. DG = Final Distance to Goal.

Method LIBERO (↓) Mean (↓)
Spatial Object Goal Long

Full Dense +0.0 +0.0 +0.0 +0.0 +0.0
Full Sparse +18.2 +23.0 +1.4 +11.6 +13.6
Sparse Language BB +9.0 +13.2 +1.8 +9.4 +8.4
% Sparse Language BB +5.6 +14.4 +4.6 +5.2 +7.5
GLUESTICK-500 +0.2 +1.2 +0.0 +4.6 +1.5

Table 4: Change in unsafe-episode rate (%) relative to Full Dense. Lower ↓ indicates
fewer episodes with safety violations. % Sparse VRAM is equal to GLUESTICK-500.

On the VLN-CE-Isaac benchmark, the Full Sparse NaVILA model shows a −43.0% change
relative to the dense baseline (see Table 3). This corresponds to a collapse from 43.0%
success to 0%, demonstrating that pruning completely destroys navigational capability. Im-
portantly, this failure is not a matter of taking less efficient paths—the robot’s navigation
behavior is fundamentally altered. After Full Sparse pruning, the mean path length increases
by nearly 50%, from 11.7 meters to 17.6 meters, and the mean distance to goal increases by
more than 40%, from 5.9 meters to 9.5 meters. Rather than approaching the goal, pruned
agents frequently veer into entirely different rooms (see Appendix C.2 for distributions).
In contrast, GLUESTICK–500 fully restores the dense model’s performance, recovering
100% of the lost success rate. Moreover, path length and final distance-to-goal remain
nearly identical to the dense baseline, indicating not only restored success but also restored
efficiency of navigation trajectories. The memory-matched baseline remains far less compet-
itive, showing a −18% drop relative to the dense model. This highlights that for navigation,
GLUESTICK not only mitigates pruning degradation but completely closes the gap to dense
performance across both success and path-quality metrics.
Q3: How well does GLUESTICK restore the safety of pruned VLAs?
Table 3, 4 report changes in unsafe-episode rate relative to the dense baseline in navigation
and manipulation, respectively. Pruning increases unsafe behaviors in both domains. The
Full Sparse model shows the largest degradation, with unsafe episodes rising by +13.6% on
LIBERO and +23.0% on navigation. The Memory-Matched Sparse Backbone also increases
unsafe episodes by +7.5% and +8.4%, respectively.
By contrast, GLUESTICK–500 remains near parity with the dense policy, yielding 89% and
100% fewer unsafe episodes compared to the Full Sparse model for manipulation and navi-
gation, respectively. Overall, GLUESTICK–500 maintains the safety profile of the original
dense models, with only a minimal +0.4% change across domains. These results indicate
that GLUESTICK restores dominant weight-space directions that carry both task-relevant
and safety-critical signal, thereby preserving the safety of VLA models in manipulation and
navigation.

5.2 Analysis

Q4: How does the rank (r) affect GLUESTICK’s recovery–memory trade-off?
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Figure 4: Ablation study. Rank ablation (left) and component sensitivity (right).

Method 0% 30% 50% 70%
W 85.2 80.8 31.8 1.2
W+GS – 85.8 60.2 24.6

Table 5: GLUESTICK-500’s (GS) re-
covery of VLA success rates across
sparsity ratios. Evaluated on LIBERO
Spatial. Results for the pruned language
backbone of OpenVLA using Wanda (W).

Method 0% 30% 50% 70%
W 93.88 93.38 88.16 21.3
W+GS – – 92.95 90.89

Table 6: GLUESTICK-500’s (GS) gen-
erality to recover pruned VLM perfor-
mance. Evaluated on 1000 examples from
DocVQA using Wanda (W) pruned Qwen2-
VL-7B-Instruct VLM. Values show ANLS.

We observe that increasing the rank r improves success-rate recovery, as shown in Figure 4,
but at the cost of additional memory. Table 3 illustrates this trade-off: a fully sparse
NaVILA model achieves the maximum memory savings of 5.74GB but suffers a −43% drop
in success rate. By contrast, GLUESTICK–200 recovers nearly the full dense success rate
while saving 5.36GB of VRAM (offering memory savings within 0.38GB of Full Sparse).
Thus, GLUESTICK exposes a single hyperparameter r that controls the trade off between
memory efficiency and task recovery. See Appendix C.1 for full GLUESTICK-200 results.
Q5: Which VLA components are most sensitive to pruning?
To understand VLA component sensitivity, we selectively prune either the language back-
bone or the vision backbone while keeping the rest of the model dense. For OpenVLA (7.5B
total parameters: 89.4% in the language backbone, 9.7% in the vision backbone, and 0.9%
in the projector), pruning the language backbone reduces the LIBERO Spatial benchmark
success by −54.0%, while pruning the vision backbone reduces success by −27.8%. When
normalized per million parameters, pruning the vision backbone is 4.75× more damaging
than pruning the language backbone. We observe the same phenomenon in NaVILA (8.5B
total parameters: 94.5% in the language backbone, 5.0% in the vision encoder, and 0.4%
in the projector). Here, pruning the language backbone reduces success by −20.0%, while
pruning the vision backbone reduces success by −40.0%. On a per-parameter basis, vision
pruning is 37.5× more damaging than language pruning. We find that vision backbones
are disproportionately sensitive to pruning while offering little memory benefit, since they
comprise less than 10% of total parameters. Because pruning vision components causes out-
sized harm relative to their limited contribution to overall model size, our main evaluations
include a focus on pruning the language backbone.
Q6: Why not compress weights directly with SVD and avoid pruning altogether?
A natural question is why pruning is necessary at all if weight matrices could instead be
compressed directly through low-rank decomposition. In principle, one could replace each
dense layer with an SVD approximation, storing only the top-r singular components. To
test this, we conducted experiments where OpenVLA weights were approximated various
SVD ranks (without pruning). On LIBERO Spatial, this setting achieved a 0% success rate
across nearly all experiemnts (see Appendix D.6), indicating that low-rank approximations
alone are insufficient to preserve the functionality of VLA models. This suggests that the
pruned weight matrix itself retains valuable structure that cannot be captured by low-rank
SVD alone. GLUESTICK leverages this by preserving the pruned weights (and structured

9
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Task: Enter the kitchen from the office and walk to the sofa on the left side of the kitchen.

Full Dense Full Pruned GLUESTICK-500
Trajectory Deviation (↓) 0.00 +10.26 +5.12

Figure 5: Real-world Demonstration. (Top) Our real-world Boston Dynamics Spot
robot navigating in a real office environment. (Bottom) Trajectory Deviation is the cumula-
tive L1 difference in linear and angular velocity commands relative to the Full Dense model.

sparsity benefits) while using SVD only to reintroduce lost directions, nudging the model
back toward a more performant region of weight space.
Q7: How does GLUESTICK perform when VLAs are pruned at different sparsity levels?
We evaluate GLUESTICK’s capability to recover pruned VLA models under different spar-
sity ratios in Table 5. In this experiment, we prune the language-backbone in OpenVLA
and observe that GLUESTICK recovers performance effectively across sparsity levels.
Q8: How does GLUESTICK generalize to restore pruned VLM performance?
We evaluate GLUESTICK’s capability to recover the performance of a pruned VLM under
various sparsity ratios in Table 6. We find strong generality, as GLUESTICK recovers VLM
performance even at 70% sparsity, improving ANLS from 21.30 to 90.89.
Q9: How does GLUESTICK perform in real-world robotic deployments?
We conduct a small real-world experiment to assess whether GLUESTICK transfers to
physical robotic settings. Using a Spot robot navigating in an office environment, we mea-
sure the trajectory deviation of the pruned VLA relative to the dense VLA and find that
GLUESTICK reduces deviation by 50%, showing effective real-world transfer (Figure 5).

6 Discussion
We begin by clarifying the relationship between GLUESTICK and LoRA. While both intro-
duce low-rank components, they are designed for fundamentally different purposes and op-
erate in distinct ways (detailed comparison in Appendix E.1). We apply GLUESTICK only
to linear layers because they constitute the overwhelming majority (93–98%) of parameters
in modern VLA architectures, as shown in Appendix D.3. Finally, we observe that GLUE-
STICK recovers a larger fraction of performance in navigation than in manipulation. This
stems from the different error tolerances of the two domains (discussed in Appendix D.5).

7 Conclusion and Future Work
We presented the first systematic study of pruning VLA models and showed that pruning
severely degrades both task success and safety. To address this, we introduced GLUESTICK,
a training-free, pruning-agnostic, and easily integrable post-pruning recovery method that
reintroduces lost directions due to pruning, restoring performance and safety while retaining
efficiency. Importantly, because our approach is independent of the pruning algorithm, it can
be applied as a universal recovery step as new pruning strategies continue to emerge. Looking
forward, several promising directions remain such as prioritizing safety-critical directions in
weight space and exploring other low-rank matrix approximation techniques. Additionally,
a per-layer rank-scheduling algorithm is a compelling next step, as GLUESTICK naturally
accommodates this through independently computed layer-wise corrections. We hope this
work lays the foundation for developing compression techniques that make powerful VLA
models practical for real-world deployment on resource-constrained robotic platforms.

10
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Appendix

A GLUESTICK Details

Our method can be implemented in just a few lines of code.

Algorithm 1: PyTorch code for GLUESTICK (Offline)

# Compute and Store GLUESTICK Correction terms for every linear layer

def prime_gluestick(W_dense, W_pruned , r):
# W_dense: layer (l) dense weights (d_out, d_in)
# W_pruned: layer (l) pruned weights (d_out, d_in)
# r: target rank

W_gap = W_dense - W_pruned
U, S, Vh = torch.linalg.svd(W_gap)

U_r = U[:, :r]
S_r = S[:r]
V_r = Vh[:r, :].T
A = U_r * S_r.unsqueeze(0)
B = V_r

return {"A": A, "B": B}

In the offline stage (Algorithm 1), we iterate through the dense and pruned weights of each
linear layer, compute the correction terms, and store them.

Algorithm 2: PyTorch code for GLUESTICK (Online)

class GLUESTICKWrap(nn.Module):
def __init__(self, pruned_linear_layer , A, B):

super().__init__()
self.pruned_linear = pruned_linear_layer
self.A = A
self.B = B

def forward(self, x):
# Efficient Sparse MatMul
y = F.linear(

x,
self.pruned_linear_layer.weight,
self.pruned_linear_layer.bias

)
# Compute GLUESTICK Correction
correction = self.A @ (self.B.T @ x)
return torch.add(y, correction)

# Load Pruned Model
model = load_pruned_model()
# Load GLUESTICK correction terms for every linear layer
correction_terms = load_correction_terms()
# Apply GLUESTICK to all pruned linaer layers in the model
model = apply_gluestick(model, correction_terms)

In the online stage (Algorithm 2), we load the pruned model along with the saved correction
terms and wrap each pruned linear layer with GLUESTICK to enable corrected inference.
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B Experimental Setting

B.1 Environments

Manipulation Our manipulation evaluation covers all 10 tasks from each of the four
LIBERO suites, with each task repeated 50 times, resulting in 2,000 total episodes.

Navigation VLN-CE-Isaac builds on VLN-CE (Krantz et al., 2020), which itself is based
on the Habitat simulator (Savva et al., 2019). Habitat provides photorealistic 3D environ-
ments and physics-based simulation for embodied AI, moving beyond the original VLN task
that used MatterPort3D panoramas represented as discrete navigation graphs (Anderson
et al., 2018). Unlike the graph-based setting, Habitat supports continuous actions and real-
istic perception, allowing agents to navigate freely in 3D space. However, Habitat does not
simulate robot embodiment—for instance, agents can move through unrealistic gaps (e.g.,
10 cm between two sofas) that would be infeasible for legged robots. VLN-CE-Isaac in-
herits this Habitat-based formulation but extends it to physically simulated robots in Isaac
Sim, enabling evaluation on platforms such as the Unitree Go2 quadruped and Unitree H1
humanoid. This provides a comprehensive benchmark of the full navigation pipeline, from
high-level language understanding to low-level motor control. We evaluate on 100 randomly
selected scenes from the 1,077 available in the VLN-CE-Isaac benchmark.

Hardware In all experiments, we use an NVIDIA L40S GPU with 48 GB of VRAM.

B.2 Safety Definitions

Safety in Navigation. For navigation tasks, we use collisions as the primary safety
metric. A collision is recorded whenever the agent outputs actions that cause the robot to
make unintended contact with objects in the environment. This measures the agent’s ability
to move purposefully without endangering itself or its surroundings.

Safety in Manipulation. For manipulation tasks, we introduce a set of five safety metrics
that capture risks to both the robot and the environment:

• Joint limit violations: Occur when the agent outputs actions that drive joint
angles close to or beyond their mechanical limits, which can cause long-term wear
or physical damage to the robot’s actuators.

• Arm collisions: Measured when any part of the robot arm (excluding the end
effector) makes unintended contact with the environment, potentially harming both
the robot and external objects.

• Object velocities: We track the velocities of manipulated objects as a proxy
for physical stability, penalizing outcomes where objects are flung, dropped, or
otherwise move unsafely.

• End-effector containment: We enforce that the end effector remains within a
bounded three-dimensional workspace region. This ensures that the robot’s ac-
tions stay localized and prevents dangerous or uncontrolled motions outside of its
designated operating zone.

• Whole-body containment: Similarly, we verify that the robot’s entire body
remains within a global containment region. Exiting this region can represent unsafe
configurations or uncontrolled movement, posing risk to both the platform and its
environment.

An episode is deemed unsafe whenever it violates one or more of the defined safety metrics.
We use the following thresholds: joint limit violations occur if a joint exceeds 0.1% of its
range; object motion is unsafe if velocity exceeds 1.0 m/s; the robot body is unsafe if more
than 1% extends outside the containment region; and the end effector is unsafe if more than
5% extends beyond containment. Containment regions are computed from the ground-truth
dataset.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 Models

OpenVLA. We use four officially released OpenVLA checkpoints, each fine-tuned on one
of the four LIBERO task suites.
WorldVLA. We use four officially released WorldVLA checkpoints, each fine-tuned on one
of the four LIBERO task suites. We ran experiments with the default action chunking of
25; however, we observe that pruning leads to sometimes meaningless token outputs under
this setting causing invalid actions for the robot to execute. For fairness, we instead set
the action chunk size to 1, which increases evaluation time but provides a more reliable
comparison. WorldVLA also allows varying the number of history images; we adopt the
default configuration of one history image together with the current image.

C Main Results
For LIBERO benchmarks, models are pruned with Wanda using a 15K calibration dataset
drawn from the LIBERO fine-tuning corpus. For NAVILA, we use a 1K calibration dataset.
The Memory-Matched Sparse Backbone prunes 75% of layers for OpenVLA and WorldVLA,
and 81.3% of layers for NaVILA. It is important to note that in the Memory-Matched
setting, although only a fraction of layers are pruned, the pruned layers still maintain 50%
structured 2:4 sparsity. Since WorldVLA uses a convolution-based vision encoder, we do
not apply pruning to that component of the model.

C.1 GLUESTICK Manipulation Task Performance Recovery

Model Method Succ. (%) RAM (GB) ∆Succ. ∆RAM
OpenVLA Full Dense 85.2 16.12 +0.0 +0.00

Full Sparse 0.0 10.17 -85.2 -5.95
Sparse Lang. BB 31.2 10.56 -54.0 -5.56
75% Sparse Lang. BB 25.4 11.96 -59.8 -4.16
GLUESTICK-200 49.0 11.18 -36.2 -4.94
GLUESTICK-500 60.2 11.97 -25.0 -4.15

WorldVLA Full Dense 88.4 16.24 +0.0 +0.00
Sparse Lang. BB 3.4 10.16 -85.0 -6.08
75% Sparse Lang. BB 5.0 12.16 -83.4 -4.08
GLUESTICK-500 47.8 12.14 -40.6 -4.10

Table 7: LIBERO Spatial: Performance. ∆ columns are relative to each model’s Full
Dense baseline on this benchmark. Lang. BB = language backbone; Succ = Success. RAM
is peak during inference on same hardware.

Model Method Succ. (%) RAM (GB) ∆Succ. ∆RAM
OpenVLA Full Dense 85.8 16.12 +0.0 +0.00

Full Sparse 13.4 10.17 -72.4 -5.95
Sparse Lang. BB 50.8 10.56 -35.0 -5.56
75% Sparse Lang. BB 49.0 11.96 -36.8 -4.16
GLUESTICK-200 66.7 11.18 -19.1 -4.94
GLUESTICK-500 71.2 11.97 -14.6 -4.15

WorldVLA Full Dense 80.4 16.24 +0.0 +0.00
Sparse Lang. BB 0.8 10.16 -79.6 -6.08
75% Sparse Lang. BB 1.4 12.16 -79.0 -4.08
GLUESTICK-500 25.2 12.14 -55.2 -4.10

Table 8: LIBERO Object: Performance. ∆ columns are relative to each model’s Full
Dense baseline on this benchmark. Lang. BB = language backbone; Succ = Success. RAM
is peak during inference on same hardware.
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Model Method Succ. (%) RAM (GB) ∆Succ. ∆RAM
OpenVLA Full Dense 77.0 16.12 +0.0 +0.00

Full Sparse 0.8 10.17 -76.2 -5.95
Sparse Lang. BB 20.0 10.56 -57.0 -5.56
75% Sparse Lang. BB 20.8 11.96 -56.2 -4.16
GLUESTICK-200 30.4 11.18 -46.6 -4.94
GLUESTICK-500 47.0 11.97 -30.0 -4.15

WorldVLA Full Dense 81.0 16.24 +0.0 +0.00
Sparse Lang. BB 21.0 10.16 -60.0 -6.08
75% Sparse Lang. BB 21.6 12.16 -59.4 -4.08
GLUESTICK-500 45.2 12.14 -35.8 -4.10

Table 9: LIBERO Goal: Performance. ∆ columns are relative to each model’s Full
Dense baseline on this benchmark. Lang. BB = language backbone; Succ = Success. RAM
is peak during inference on same hardware.

Model Method Succ. (%) RAM (GB) ∆Succ. ∆RAM
OpenVLA Full Dense 55.8 16.12 +0.0 +0.00

Full Sparse 0.0 10.17 -55.8 -5.95
Sparse Lang. BB 12.4 10.56 -43.4 -5.56
75% Sparse Lang. BB 11.4 11.96 -44.4 -4.16
GLUESTICK-200 16.2 11.18 -39.6 -4.94
GLUESTICK-500 26.6 11.97 -29.2 -4.15

WorldVLA Full Dense 55.2 16.24 +0.0 +0.00
Sparse Lang. BB 0.0 10.16 -55.2 -6.08
75% Sparse Lang. BB 0.0 12.16 -55.2 -4.08
GLUESTICK-500 0.0 12.14 -55.2 -4.10

Table 10: LIBERO Long: Performance. ∆ columns are relative to each model’s Full
Dense baseline on this benchmark. Lang. BB = language backbone; Succ = Success. RAM
is peak during inference on same hardware.

It is worth noting that WorldVLA completely collapsed after pruning on LIBERO Long,
producing invalid action tokens and failing to generate meaningful outputs. Although task
success rates did not improve, GLUESTICK was able to restore the model to producing
more valid outputs.
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Figure 6: Navigation Trajectory Quality. Distribution of path lengths (left) and final
distances to goal (right) for pruned NaVILA models and GLUESTICK on VLN-CE-Isaac.
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C.2 GLUESTICK Navigation Task Performance Recovery

Full Dense trajectories remain short and goal-directed, while Full Sparse trajectories are
substantially longer and terminate farther from the goal, reflecting severe degradation in
navigational ability (See Figure 6). In contrast, GLUESTICK–500 closely matches the Full
Dense distribution, indicating that it restores not only success rates but also the efficiency
and precision of navigation behavior.

D Analysis

D.1 Calibration Set Selection

Figure 7: Calibration Set Visualization. LIBERO Spatial calibration trajectories. full
trajectories (left) 5% window around the first gripper-closing event, with red segments mark-
ing closed-gripper states (right).

The influence of calibration data on pruning outcomes in robotics remains largely underex-
plored. To investigate its impact, we studied how the calibration set choice affects Wanda’s
baseline pruning performance before applying GLUESTICK. Specifically, we pruned the lan-
guage backbone of OpenVLA with Wanda and evaluated on LIBERO Spatial. We provided
Wanda with 15K states from the LIBERO fine-tuning corpus. We then constructed a smaller
but more targeted calibration set consisting of 3.5K states within a 5% window around the
first gripper-closing event (Figure 7). Our experiments show that the more targeted cali-
bration set improved the pruned language backbone’s success rate on LIBERO Spatial from
31.2% to 33.4%, a gain of about 2%. We adopt this strategy as part of GLUESTICK.
Interestingly, the smaller calibration set yielded a slightly higher success rate.

D.2 Singular Value Selection

We ask whether there is an optimal criterion for selecting singular values. All results reported
in this paper use the top-r singular components ranked by magnitude. To test alternatives,
we conducted an experiment where, for GLUESTICK-200 on a fully sparse language back-
bone, singular values were instead chosen uniformly at random. In this setting, the model
recovered only ∼10% of the task success achieved by the magnitude-based selection. This
indicates that the choice of singular values is highly influential, with selecting the largest
components by magnitude playing a central role in effective recovery. However, different
singular values may capture complementary subspaces in weight space, and future work
could explore whether alternative selection criteria better preserve metrics such as safety.
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D.3 Model Parameter Analysis

We apply GLUESTICK to linear layers because linear layers generally make up the vast
majority of parameters in recent VLA models as shown in Table 11.

Model Total Parameters Linear Parameters Conv. Parameters
OpenVLA 7,541,237,184 7,407,513,280 (98.23%) 1,281,664 (0.02%)
WorldVLA 7,042,582,528 6,744,440,832 (95.77%) 27,310,848 (0.39%)
NaVILA 8,494,180,416 7,962,922,816 (93.75%) 678,528 (0.01%)

Table 11: Parameter composition of recent VLA models. Across OpenVLA, World-
VLA, and NaVILA, the vast majority of parameters (93–98%) are contained in linear
layers, while convolutional components represent well under 1% of total model size.

D.4 Compatibility with other Compression Methods

GLUESTICK is compatible with other compression techniques. To demonstrate this, we
conducted an additional ablation experiment of Int8 quantization and GLUESTICK on
OpenVLA evaluated on LIBERO Spatial.

Method D D/Int8 S S/Int8 S/Int8/GLUESTICK
Success Rate (%) 85.2 84.8 31.2 31.8 62.2

Table 12: Effect of combining pruning, quantization, and GLUESTICK. Success
rates under five configurations: dense baseline (D), sparse language backbone (S), Int8
quantized dense model, Int8 quantized sparse backbone, and GLUESTICK applied on top
of Int8–sparse weights. Evaluated on LIBERO Spatial.

The results in Table 12 show that quantization has a minor impact on the success rate of both
dense and sparse models. However, the pruning degradation remains severe for quantized
models. GLUESTICK provides a substantial recovery +31% even under quantization.

D.5 Manipulation vs Navigation Tolerance

In the navigation domain, small deviations in the robot’s trajectory often have minimal
impact on final success. By contrast, manipulation tasks require fine-grained, centimeter-
level control. As a result, even tiny trajectory deviations can cause complete task failure in
manipulation tasks (e.g., slightly off from the grasp point of an object). This fundamental
difference results in significantly different error tolerances between the two domains. To
make this intuition more concrete, we compared the average difference in trajectory length
between successful and unsuccessful episodes in each domain.

Domain Avg. Path-Length Differences
Manipulation 0.018 m
Navigation 3.292 m

Table 13: Average path-length difference between successful and failed episodes
in manipulation and navigation tasks. Manipulation failures occur with deviations as small
as centimeters, whereas navigation tolerates multi-meter deviations.

The measurements in Table 13 demonstrate that manipulation success relies on precise
control, where deviations as small as a centimeter can lead to failure. In contrast, navigation
operates in a low-precision control regime, where deviations up to several meters in size can
still lead to successful outcomes.
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D.6 Weight Only Decomposition

In Table 14, all entries are computed without applying any pruning. These results show that
directly applying SVD to the dense weights discards too much task-relevant information,
causing the model to fail. However, the pruned weight matrix retains essential structural in-
formation that SVD-based corrections can build upon, explaining why our approach requires
starting from the pruned model rather than a purely low-rank one.

Rank 200 400 500 800 1000 2000 2500
Success Rate (%) 0 0 0 0 0 0.4 21.0

Table 14: Effect of replacing VLA weights with a lower rank approximation using SVD
without pruning.

D.7 FLOP Analysis

As displayed in Table 15 sparse models reduce compute substantially, and GLUESTICK
introduces only a modest FLOP increase relative to the sparse baseline.

Method Total FLOPs (T)
Full Dense 29.32
50% 2:4 Pruned OpenVLA 16.54
50% 2:4 Pruned OpenVLA + GLUESTICK-200 18.51
50% 2:4 Pruned OpenVLA + GLUESTICK-500 21.47

Table 15: FLOP analysis for a single inference pass through OpenVLA.
FLOP counters for the following operations: aten.convolution, aten.add, aten.addmm,
aten._scaled_dot_product_flash_attention, aten.mm, and aten.bmm. In these experiments
the language backbone of OpenVLA was pruned with Wanda.

E Discussion

E.1 GLUESTICK and LoRA Differences

While both GLUESTICK and LoRA introduce low-rank matrices, they address fundamen-
tally different problems and operate in distinct ways. LoRA is designed for efficient fine-
tuning, whereas GLUESTICK is designed for post-pruning recovery. Although both meth-
ods use low-rank matrices, these components are derived very differently. LoRA’s low-rank
matrices must be learned through gradient-based training over a dataset, while GLUE-
STICK requires no training at all. Instead of learning parameters, GLUESTICK computes
the exact gap between the dense and pruned weight matrices and constructs a low-rank
approximation of this gap. Although both methods add a term to the layer’s output at
inference time, the source of the information they inject is entirely different. LoRA injects
information learned from data during fine-tuning, whereas GLUESTICK injects information
derived analytically from the dense–pruned gap. There is no overlap in how the low-rank
components are obtained or what problems they are intended to solve.

F Use of LLMs

LLMs were used to assist with grammar checking and correcting typos during the prepara-
tion of this paper.
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