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Abstract
Watermarking techniques offer a promising way
to identify machine-generated content via embed-
ding covert information into the contents gener-
ated from language models. A challenge in the
domain lies in preserving the distribution of orig-
inal generated content after watermarking. Our
research extends and improves upon existing wa-
termarking framework, placing emphasis on the
importance of a Distribution-Preserving (DiP) wa-
termark. Contrary to the current strategies, our
proposed DiPmark simultaneously preserves the
original token distribution during watermarking
(distribution-preserving), is detectable without ac-
cess to the language model API and prompts
(accessible), and is provably robust to moder-
ate changes of tokens (resilient). DiPmark op-
erates by selecting a random set of tokens prior to
the generation of a word, then modifying the to-
ken distribution through a distribution-preserving
reweight function to enhance the probability of
these selected tokens during the sampling pro-
cess. Extensive empirical evaluation on various
language models and tasks demonstrates our ap-
proach’s distribution-preserving property, accessi-
bility, and resilience, making it a effective solution
for watermarking tasks that demand impeccable
quality preservation. Code is available at1.

1. Introduction
In the current era, artificial intelligence has attained the ca-
pability to generate text remarkably indistinguishable from
human authorship (Google, 2023; OpenAI, 2023). This ad-
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vancement has raised concerns regarding the discernment
of authenticity in content, questioning whether it originates
from human intellect or AI models. In particular, the profi-
ciency of large language models (LLMs) in imitating human
writing style brings a series of implications. While these
models facilitate the simplification of complex tasks and en-
hance human capabilities, they simultaneously harbor risks
of misuse, evident in instances of academic dishonesty and
the spread of misinformation via online platforms.

The challenge of distinguishing machine-generated content
from that authored by humans is escalating, with conven-
tional detection tools often proving inadequate (Krishna
et al., 2023). To address this issue, watermarking emerges
as a nuanced solution (Kirchenbauer et al., 2023). This type
of approach involves embedding discreet yet identifiable
watermarks in AI-generated text, signifying its artificial ori-
gin. Beyond the widely held notion that watermarks should
be identifiable via a secret key (Kirchenbauer et al., 2023),
there are additional fundamental characteristics necessary
for an efficient watermark within language models:

• (Distribution-preserving) The watermark should prov-
ably preserving the distribution of the original language
model.

• (Accessible) Detecting watermark within the content
should be efficient and straightforward without access-
ing the language models and prompts.

• (Resilient) The watermark should remain identifiable if
the content undergoes moderate modifications. Further-
more, we define a watermark as ‘provably resilient’ if
it can be provably identified under such modifications.

To the best of our knowledge, there is no watermark tech-
nique adhere to the aforementioned three key properties
simultaneously (see Table 1 for an overall comparison).
Existing methods either impact the model’s sampling distri-
bution (Kirchenbauer et al., 2023; Zhao et al., 2023), lack
resilience against text alterations such as editing or cropping
(Christ et al., 2023), require thousands of inference step
during the detection process (Kuditipudi et al., 2023), or
require the prompt and the token logits of language model
API during detection (Hu et al., 2023a).
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Table 1. Existing watermarking techniques do not adhere to all three key properties (distribution-preserving, accessible, resilient).
Distribution-preserving: Kirchenbauer et al. (2023) impacts the distribution of the generated tokens. Accessible: During detection,
Kuditipudi et al. (2023) necessitates thousands of inference steps, and Hu et al. (2023a) requires the token logits of language model API
and the prompt, which could result in huge computational costs and hurt the accessibility. Resilient and Provably Resilient: DiPmark is
provably resilient against arbitrary text modifications with a guaranteed false positive rate, whereas other methods lack corresponding
discussions.

Properties Kirchenbauer et al. (2023) Kuditipudi et al. (2023) Hu et al. (2023a) DiPmark

Distribution-preserving (Sec. 4& 7.1) % ! ! !

Accessible (Sec. 5& 7.2) ! % % !

Resilient and Provably Resilient (Sec. 6& 7.3) % % % !

Our watermarking framework (i.e., DiPmark), in alignment
with pre-existing schema (Kirchenbauer et al., 2023), is
comprised of two components: (1.) a generating function ,
which transforms a prompt and a secret watermark key into
the content from the language model; and (2.) a detecting
function that identifies a potential watermarked text through
the secret key. During the text generation process, language
model providers will adjust the output probability of the
generated tokens using a secret key. We design a novel
distribution-preserving generating function, ensuring that
each instance of text generation consists with the original
language model’s distribution. As for the detection phase,
the user can detect the presence of watermark efficiently by
solely using the secret key and the watermarked text without
accessing prompts and language model API. Through ex-
perimental assessments on widely-studied language models,
including BART-large model (Liu et al., 2020), LLaMA-
2 (Touvron et al., 2023), and GPT-4 (OpenAI, 2023); our
approach is demonstrated possessing above mentioned three
fundamental properties.

Our contributions. Our work tackles the problem of design-
ing watermarks for large language models without affecting
its overall performance and advances the state-of-the-art in
multiple ways.

• We propose a novel watermarking framework, DiP-
mark, that introduces a provably distribution-
preserving watermarking scheme for language models.
Comparing with existing methods, DiPmark is simulta-
neously distribution-preserving, efficient, and provable
resilient.

• We identify the existing watermark detector (Kirchen-
bauer et al., 2023) cannot precisely guarantee the false
positive rate of detection. To solve this problem, we
develop an well-defined watermark detection statistic
for DiPmark, which can reliably detect the watermark
within generated contents while maintaining a guaran-
teed false positive rate. Furthermore, we also show our
detect algorithm is provably robust against arbitrary
text modifications.

• Through extensive experiments on widely-adopted lan-
guage models , we validate the distribution-preserving

property of DiPmark. Notably, the detection time for
1,000 watermarked sequences produced by LLaMA-
2 stands at a mere 90 seconds without the need of
API access and prompts (at least 4X faster compared
with current distribution-preserving watermark detec-
tion (Hu et al., 2023a; Kuditipudi et al., 2023)). Fur-
thermore, DiPmark exhibits robustness even when sub-
jected to 20% to 30% random text modifications and
paraphrasing attacks. Finally, in a case study, we show
the effectiveness of DiPmark on GPT-4.

2. Related Work
In a recent seminal work, Kirchenbauer et al. (2023) in-
troduced a pioneering watermarking scheme tailored for
LLMs. However, this approach inevitably leads to a pivotal
change in the distribution of the generated text, potentially
compromising the quality of the generated content. To
maintain the output distribution in watermarked content, al-
ternative strategies have been explored. Christ et al. (2023)
and Kuditipudi et al. (2023) employed the inverse sampling
method to generate watermarked token distributions. No-
tably, Christ et al. (2023)’s method faces resilience issues
under modifications or changes and lacks empirical valida-
tion for detectability. Meanwhile, Kuditipudi et al. (2023)’s
approach requires the secret key distribution during detec-
tion, potentially compromising data security and watermark
stealthiness. Moreover, their detection process involves
thousands of resampling steps from the secret key distribu-
tion, which is inefficient for lengthy texts. Hu et al. (2023a)
also used inverse sampling and permutation based reweight
for watermarking, but the detector requires the token logits
of language model API and the prompt for generating the
content, undermining its operational efficiency. A detailed
discussion of watermarking LLMs is in Appendix B.

Our research aligns closely with Kirchenbauer et al. (2023).
In their settings, they employed watermarking for text de-
rived from a language model by separating the token set
into ‘red’ and ‘green’ lists. Building on this foundation, we
introduce an evolved family of reweight strategies. This ap-
proach ensures equivalency in distribution between the wa-
termarked language model and the original language model.
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3. Preliminary
Notations. We first introduce a few essential notations.
Let us represent the vocabulary (or token) set by V and its
size or volume by N = |V |. We further introduce the set
V , defined as an aggregation of all string sequences, even
accounting for those of zero length. In the context of a
language model, it produces a token sequence based on a
given prompt. For a single step of this process, the likeli-
hood of generating the next token xn+1 ∈ V conditioned on
the current context x1, ..., xn is represented as PM (xn+1 |
x1, x2, ..., xn). For the sake of brevity and clarity, we opt
for the condensed notation: PM (xn+1:n+m | x1:n), where
xn+1:n+m = (xn+1, . . . , xn+m). Note that the prompt is
deliberately omitted in this representation.

In the context of watermarking, the server provider will
use a set of i.i.d. watermark cipher {θi ∈ Θ, i ∈ N} on
the cipher space Θ to generate the text. The cipher θi is
usually generated by a secret key k ∈ K and a fragment of
the previous context, named texture key, si. Instances of
texture keys include xt−1, xt−3:t−1, x1:t−1, etc. Each θi is
independent and following the same distribution PΘ. We
now provide the formal definition of the reweight strategy.

Definition 3.1 (Reweight strategy). Denote by P the set of
all distributions on the token set V . A reweight strategy is a
mapping PW : P ×Θ → P . Given the original distribution
PM (xn+1 | x1:n) ∈ P , the watermarked distribution with
cipher θi is given by PW (PM (xn+1 | x1:n), θi). For brevity,
we represent it as PW (xn+1|x1:n, θi).

The reweight strategy stands as the foundation of the water-
mark algorithm by shaping the distribution of watermarked
text. As introduced in (Kirchenbauer et al., 2023), the au-
thors propose a red-green list reweight technique, where the
vocabulary set is separated into the red and green lists and
the probability of green tokens is promoted during the sam-
pling process. Specifically, given an initial token probability
p(t), the watermarked probability for the token, denoted by
pW (t), is formulated as:

pW (t) =


p(t)∑

t∈red p(t) +
∑

t∈green e
δp(t)

, t ∈ red list;

eδp(t)∑
t∈red p(t) +

∑
t∈green e

δp(t)
, t ∈ green list,

where δ > 0 is a predetermined constant. This strategy
reveals an inherent bias in the watermarked distribution.
For example, consider γ = 0.5, suggesting that half of
V comprises the red list. With V = {a, b}, and given
probabilities p(a) = 0.99 and p(b) = 0.01, there are two
equivalent permutations of V with congruent appearance
likelihoods. An analysis for any value of δ > 0 yields
pW (a) = 0.5( eδp(a)

eδp(a)+p(b)
+ p(a)

eδp(b)+p(a)
) < p(a). This indi-

cates that the red-green list watermark does not preserve the

original text’s probability. Below we introduce the formal
definition of distribution-preserving reweight strategy and
distribution-preserving watermark.

Definition 3.2 (Distribution-preserving reweight strategy).
A reweight strategy, denoted PW , is said to be distribution-
preserving at an individual generation step if, for all
x1:n ∈ V and any i ≤ n, it holds that PM (xi|x1:i−1) =
Eθi∼PΘ [PW (xi|x1:i−1, θi)].

Definition 3.3 (Distribution-preserving watermark). If
a watermark framework preserves the text distribu-
tion throughout all generation steps, i.e., ∀n > 0,
for all sequences x1:n ∈ V we have PM (x1:n) =
Eθ1,...,θn [PW (x1:n|θ1, ..., θn)], then the watermark is
distribution-preserving.

A distribution-preserving reweight strategy can naturally
lead to a distribution-preserving watermark, as illustrated
by:

Eθ1:n [PW (x1:n|θ1:n)] = Eθ1:n

[
n∏

i=1

PW (xi|x1:i−1, θi)

]

=

n∏
i=1

Eθi [PW (xi|x1:i−1, θi)] = PM (x1:n).

The above equality stems from the independence prop-
erty of the set {θi}. Therefore, to establish a distribution-
preserving watermark, it is essential to incorporate both: a)
a distribution-preserving reweight strategy and b) an i.i.d.
set of ciphers, {θi}.

We emphasize the significance of preserving the distribution
of text during watermarking, motivated by the following
justifications: a) Stealthy Watermarking: A watermark that
disrupts the original distribution of a language model lacks
the attribute of stealthiness. Such alterations make it rela-
tively straightforward to distinguish between watermarked
and unwatermarked LMs through multiple instances of sam-
pling. b) Industry-Level LLM Application: When contem-
plating the application of a watermark to industry-standard
LLMs like ChatGPT and Bard, the primary consideration is
to ensure that the watermark does not compromise the per-
formance of these foundational LLMs. Any watermark that
interferes with the original text distribution will inevitably
impact the quality of generated text, an outcome that is
unacceptable by industry stakeholders.

In the next section, we introduce a reweight strategy with a
distribution-preserving characteristic. This attribute guaran-
tees that the text distribution remains unaltered even as we
enhance the utilization of tokens from the green list during
the watermarking process.
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Figure 1. Illustration of the Pα
W -reweight and DiP-reweight. Top.

In Pα
W -reweight, the token probabilities within the interval [0, α]

are adjusted to 0, while the rest are adjust to 1. Bottom. In DiP-
reweight, the probability mass within [0, α] is transferred to the
probability mass within [1− α, 1].

4. DiPmark
Motivation. The reweight strategy presented in Kirchen-
bauer et al. (2023) disrupts the inherent text distribution
when promoting the use of the green tokens during the
sampling process. Such disruption would lead to biased
sampling, seriously affecting the quality of the generated
text. To address this issue, we design a novel reweight strat-
egy that ensures the token distribution remains unaltered
during the watermarking process. Contrary to the approach
in (Kirchenbauer et al., 2023) that promotes the use of all
tokens from the green list, we emphasize increasing the sum
of the probability of the green-list tokens. In this way, the
watermarked text, when exposed to the secret key, will still
exhibit a bias towards the green-list tokens. Motivated by
that, we design a reweight function, which preserves the
text distribution during watermarking process.

Cipher space for watermarking. Our considered water-
mark cipher space encompasses the permutations of the
vocabulary set, denoted as Θ = {V p

1 , ..., V
p
N !}, wherein V p

i

represents a permutation of V . As for the cipher distribution
PΘ, we employ a uniform distribution over Θ, ensuring that
each permutation is equally probable for selection.

Reweight strategy. Let θ ∈ Θ be a cipher, constituting a
permutation of V . The probabilities of individual tokens
can be arranged within the interval [0, 1] according to their
respective positions in θ. Given a fixed constant α in [0, 1],
the token probabilities within the interval [0, α] are adjusted
to 0, while those in the interval [α, 1] are scaled by a fac-
tor of 1

1−α . Let γ ∈ [0, 1] be the red-green list separator
for the permuted token list, which is in accordance with
the definition in Kirchenbauer et al. (2023). Through this

reweight strategy, we can increase the sum of the probability
of green-list tokens for arbitrary permutation separator γ,
as the green-list tokens consistently appear towards the end
of the ordered set θ. Below we present the formal definition
of our reweight strategy.

Definition 4.1 (Pα
W -reweight strategy). Let θ =

{t1, ..., tN}, which represents a permutation of V , and
denote PM (·|x) as the original token distribution. Let
Fα(i|θ) := 1

1−α max{
∑i

j=1 PM (tj |x) − α, 0}. The
Pα
W -reweight probability distribution is Pα

W (ti|x, θ) =
Fα(i|θ)− Fα(i− 1|θ).

It is easy to show that Pα
W (ti|x, θ) is a distribution on V for

arbitrary α. Firstly, as Fα(i|θ) is monotonously increasing
with i, we have Pα

W (ti|x, θ) = Fα(i|θ) − Fα(i − 1|θ) ≥
0. Secondly, the sum of the probability of all tokens is∑N

i=1 P
α
W (ti|x, θ) =

∑N
i=1(F

α(i|θ) − Fα(i − 1|θ)) =
Fα(N |θ) = 1.

We wish to highlight the distinction between the probabil-
ity quantile α and the red-green list separator γ. γ serves
as the partition for the permuted token list. In contrast,
α separates the probability interval [0, 1] of the permuted
token list. Thus, both the Pα

W -reweight and DiP-reweight
(as subsequently defined) remain oblivious to γ, while still
effectively promoting the probability of green list tokens.

Leveraging the symmetry of permutations, we can prove
that a weighted combination of Pα

W -reweight and P 1−α
W -

reweight yields a distribution-preserving reweight strategy.
It is pivotal to recognize that both Pα

W -reweight and P 1−α
W -

reweight increase the sum of the probability of green-list
tokens. Therefore, the combined effect of these reweight
functions still exhibits a preference for the green list to-
kens. The formal definition of our distribution-preserving
reweight strategy is presented subsequently.

Definition 4.2 (DiP-reweight strategy). Denote by θ =
{t1, ..., tN} the cipher, which is a permutation of V . Given
the original token distribution PM (t|x),∀t ∈ V , where
x ∈ Σ is the previous token sequence, the DiP-reweight
strategy is represented by

PW (ti|x, θ) := (1− α)Pα
W (ti|x, θ) + αP 1−α

W (ti|x, θ).

As both Pα
W and P 1−α

W are distributions on V and
PW (ti|x, θ) is a convex combination of them, PW (ti|x, θ)
is also a distribution on V .

Theorem 4.3. DiP-reweight is a distribution-preserving
reweight strategy, i.e., for all x1:n ∈ V and any i ≤ n, it
holds that PM (xi|x1:i−1) = Eθi∼PΘ

[PW (xi|x1:i−1, θi)].

We defer the proof of Theorem 4.3 to Appendix C. With
the DiP-reweight approach, the generation of i.i.d. ciphers,
denoted as θi, becomes essential for crafting a distribution-
preserving watermark. Let k represent a stochastic secret
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Algorithm 1 DiPmark generator

1: Input: watermark key k, reweight parameter α, prompt
x−m:0, generate length n ∈ N, context window length
a, and permutation generation function h.

2: Initialize texture key history hist.
3: for i = 1, . . . , n do
4: Calculate the LM distribution for generating the i-th

token PM (· | x−m:i−1).
5: Generate a texture key si from xi−a:i−1.
6: if si ∈ hist then
7: Sample the next token xi using distribution

PM (· | x−m:i−1).
8: else
9: Update key history hist.append(si)

10: Generate the cipher θi = h(k, si).
11: Sample the next token xi using distribution

PW (·|x−m:i−1, h(k, si)).
12: return x1:n.

key derived from the key space K following the distribution
PK , let s ∈ V be a texture key, which is a sub-sequence of
the previously generated context. Denoted by x1:t−1 the
context generated prior to time step t , instances of texture
keys encompass xt−1, xt−3:t−1, and x1:t−1. We introduce
a hash function, h(k, s) : K × V → Θ, orchestrating the
mapping of a secret key in conjunction with a texture key.
s ∈ V to a permutation of the token set V . In order to
achieve distribution-preserving watermarking, the chosen
hash function h should adhere to the following conditions:
a) For distinct (secret key, texture key) pairs, i.e., (k1, s1) ̸=
(k2, s2), h(k1, s1) ought to be statistically independent from
h(k2, s2), and b) Upon holding s constant, every V p

i ∈ Σ
should exhibit a uniform likelihood of being selected given a
random key, specifically, ∀V p

i ∈ Σ,Ek∼PK
[1h(k,s)=V p

i
] =

1/N !.

There exists hash functions meeting the above criteria, one
example being the hash function introduced in Kirchenbauer
et al. (2023). Under such conditions, the cipher θi can be
deemed i.i.d. if the texture key si is distinctive for each
instance. To ensure this uniqueness, a historical log is em-
ployed to retain texture keys generated in prior steps. If a
texture key is identified in the historical log, another secret
key will be utilized with the texture key to generate the
cipher. The detailed methodology is shown in Alg. 1.

Corollary 4.4. DiPmark (Alg. 1) is a distribution-
preserving watermark, i.e., for all sequences x1:n ∈
V and any positive integer n, we have PM (x1:n) =
Eθ1,...,θn [PW (x1:n|θ1, ..., θn)].

This can be easily validated by combining the distribution-
preserving property of DiP-reweight and the independence
of ciphers θi.

Algorithm 2 DiPmark detector

1: Input: text x1:n, watermark key k, volume of the token
set N , permutation generation function h, green list
separator γ, context window length a, and threshold z.

2: Initialize the green token indexer of γ: LG(γ) = 0.
3: for i = 2, ..., n do
4: Generate a texture key si based on xi−a:i−1.
5: Generate the permutation of token set θi = h(k, si).
6: Calculate the list of green tokens via G = θi[⌈γN⌉ :

N ].
7: if xi ∈ G then
8: LG(γ) = LG(γ) + 1.
9: Calculate the score: Φ(γ,x1:n) =

LG(γ)
n − (1− γ).

10: return Φ(γ,x1:n) > z.

5. DiPmark Detection
We leverage a hypothesis test to identify the presence of
DiPmark. In the context of a predetermined red-green list
separator γ ∈ [0, 1], we classify the initial ⌈γN⌉ tokens
within the token set permutation as belonging to the red list,
while the remaining tokens are categorized as part of the
green list. Given a text sequence x1:n, we establish the null
hypothesis H0: x1:n is generated without any awareness of
DiPmark. Below we design a statistic, named “green token
ratio”, for conducting the hypothesis test.

Definition 5.1 (Green token ratio). Let LG(γ) be the count
of green tokens within x1:n, where γ is the predetermined
red-green list separator. The green token ratio is give by
Φ(γ,x1:n) := LG(γ)/n− (1− γ).

The green token ratio quantifies the bias towards green
tokens within the text sequence. The term LG(γ)/n sig-
nifies the proportion of green tokens within a sequence
of tokens, while 1 − γ denotes the expected green to-
ken proportion in an unwatermarked sequence. Under the
null hypothesis H0, LG(γ) follows a binomial distribu-
tion with parameters p = (1 − γ) and n total trials, i.e.,
LG(γ) ∼ Binomial(n, 1 − γ). The reason for this is that
each token is randomly assigned to either the red or green
list in the absence of our watermarking rule. We derive the
subsequent concentration bound of the green token ratio
Φ(γ,x1:n):

Theorem 5.2 (Concentration bound of Φ(γ,x1:n)). Let
Φ(γ,x1:n) := LG(γ)/n − (1 − γ), where LG(γ) ∼
Binomial(n, 1− γ). We have ∀t ∈ R,

Pr(Φ(γ,x1:n) ≥ t) ≤ exp(−nKL(t+ 1− γ||1− γ)),

where KL(p||q) := p log p
q+(1−p) log 1−p

1−q is the Kullback-
Leibler divergence.

We proceed to reject the null hypothesis and detect the water-
mark if Φ(γ,x1:n) surpasses a predefined threshold. For in-
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Table 2. Comparison of different test statistics on theoretical FPR
(false positive rate) and empirical FPR with 500 non-watermarked
sentences. We can see clearly the empirical FPR of z-test is con-
tinuously greater than its theoretical guarantee.

False positive samples/All samples p < 0.10 (10%FPR) p < 0.01 (1%FPR)

z-test (Kirchenbauer et al., 2023) 56/500 (11.2% FPR) 12/500 (2.4% FPR)
DiPmark statistic 13/500 (2.6% FPR) 4/500 (0.5% FPR)

stance, setting the threshold as Φ(γ,x1:n) ≥ 1.517/
√
n re-

sults in rejecting H0 (indicating watermark presence) while
maintaining a false positive rate below 1%. Our detection
algorithm is shown in Alg. 2. Noting that the concentration
bound of Φ(γ,x1:n) scales proportionally with n times the
green token ratio. With a fixed green token ratio Φ(γ,x1:n),
detecting longer sequences becomes more straightforward
because they will show a lower false positive rate. The
validity of this analysis is also confirmed in Section F.2.

Difference between our detection algorithm and Kirchen-
bauer et al. (2023). It is noteworthy that we diverge
from Kirchenbauer et al. (2023) by avoiding the use of
the z-test statistic (LG(γ)− (1− γ)n)/

√
nγ(1− γ). The

z-test assumes a normal distribution for the test statistic.
This approximation is imprecise, which could lead to an
inaccurate estimation of the p-value, consequently result-
ing in the wrongful classification of sentences not gener-
ated by LMs as being LM-produced. For example, given
n = 100, γ = 0.5, LG(γ) = 57, the p-value of the z-test
statistic is about 0.08, indicating that this sentence would be
identified as watermarked at 10% FPR (false positive rate).
However, in our case, the p-value is around 0.37, suggest-
ing that we cannot determine this sentence as watermarked.
In Table 2, we compare the empirical FPR of the two test
statistics with their theoretical guaranteed FPR on 500 non-
watermarked sentences. We can see clearly the empirical
FPR is larger than its theoretical guarantee, which validates
our assertion that z-test is imprecise on watermark detection.
A detailed discussion can be found in Section D.

Detecting efficiency discussion. Similar to the detection
algorithms presented in (Kirchenbauer et al., 2023), our wa-
termark detection process is highly efficient, requiring only
a single pass through the provided text sequence. However,
it is worth noting that the detection algorithm outlined in
Kuditipudi et al. (2023) necessitates iterating through the se-
quence a staggering 5000 times, which is notably inefficient
when compared to our approach. Besides, Hu et al. (2023a)
requires prompt and language model API during detection,
which is also not practical or efficient. A detailed empirical
comparison is in Section 7.2.

6. DiPmark is Provably Resilient Against Text
Modification

In this section, we show that DiPmark possesses provable ro-
bustness against arbitrary textual modification attacks with

a guaranteed fixed false positive rate. Notably, the existing
watermarking approaches are not provable resilient with a
guaranteed FPR. Kirchenbauer et al. (2023) and Zhao et al.
(2023) assume that the test statistic follows a normal distri-
bution, leading to imprecise guarantee of FPR according to
our discussion in Section 5.

Problem formulation. Let x1:n represent a watermarked
sentence. To generate the cipher θ at the i-th iteration, we
employ a hash function h, a confidential key k, and a texture
key s := xi−a:i−1, a ≥ 1. This indicates that the preceding
a tokens serve as the texture key for the watermarking of
the token situated at position i. During the detection phase,
the formula Φ(γ,x1:n) := LG(γ)/n − (1 − γ) coupled
with a threshold z is applied to ascertain if the text has been
watermarked. Notably, within Φ(γ,x1:n), the sole vari-
able associated with textual modification assaults is LG(γ).
Consequently, our primary objective is to discern the most
severe reduction in LG(γ) for a single token alteration.

Worst-case perturbation analysis. Supposing the token
xi in x1:n undergoes modification, this will lead to a reduc-
tion in LG(γ) through two ways: a) Initially, the token xi

may be categorized as a green token, but post-alteration, it
either gets eliminated or transitions into a red token, lead-
ing to a potential decline in the number of green tokens
LG(γ) by at most 1. b) Since the list of red-green tokens
for xi+1, ..., xi+a is generated by hashing the token xi, its
subsequent alteration could cause xi+1, ..., xi+a to turn into
red tokens. In this scenario, the number of green tokens
LG(γ) may shrink by a maximum of a. As a result, the
greatest decline in LG(γ) for a single token modification
stands at a+ 1.

Definition 6.1 (Certified radius). Let ϵ ∈ [0, 1] denote the
fraction of altered tokens. The certified radius of a wa-
termarked sequence is ϵ0, if for all perturbations confined
within the budget ϵ ≤ ϵ0, the altered watermarked sequence
can still be recognized as watermarked.

Theorem 6.2. Given Φ(γ,x1:n) := LG(γ)/n − (1 − γ)
and a threshold z, the certified radius of the watermarked
sequence x1:n is ϵ0 = Φ(γ,x1:n)−z

2+a−γ+z .

7. Experiments
Our experimental section consists of five parts. In the first
three parts, we compare the distribution-preserving prop-
erty, accessibility, and resilience of DiPmark with the SOTA
watermark methods (Kirchenbauer et al., 2023; Kuditipudi
et al., 2023; Hu et al., 2023a). In the fourth part, we compare
the detectability of DiPmark with the Soft watermark intro-
duced in (Kirchenbauer et al., 2023). In the final part, we
validate the practicality of DiPmark by conducting a case
study on GPT-4 (OpenAI, 2023). Detailed experimental
settings are in Appendix E.
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Figure 2. Empirical verification of distribution-preserving property of DiPmark. Top: Violin plot of Machine Translation BLEU. Bottom:
Violin plot of Text Summarization Perplexity. We can see the Soft watermarks (Kirchenbauer et al., 2023) significantly degrade the text
quality, while DiPmarks preserve the text quality.

Table 3. Distribution-preserving performance of different water-
marking methods on machine translation and text summarization.
We use F1 scores of BERTScore and scale BERTScore with a
factor of 100.

Machine Translation Text Summarization

BERTScore↑ BLEU↑ BERTScore↑ Perplexity↓
No Watermark 55.9±0.3 21.8±0.3 32.73±0.08 5.021±0.018

Soft (δ=0.0) 56.0±0.3 21.8±0.3 32.73±0.08 5.021±0.018
Soft (δ=1.0) 55.7±0.3 21.2±0.3 32.37±0.08 5.309±0.019
Soft (δ=1.5) 55.0±0.3 20.4±0.3 32.09±0.08 5.660±0.021
Soft (δ=2.0) 53.9±0.3 19.4±0.3 31.46±0.08 6.241±0.023

Kuditipudi et al. (2023) 56.0±0.3 21.7±0.3 32.70±0.08 5.021±0.021
Hu et al. (2023a) 56.3±0.3 21.8±0.3 32.71±0.08 5.023±0.018

DiPmark (α=0.3) 56.1±0.3 22.0±0.3 32.79±0.08 5.014±0.018
DiPmark (α=0.35) 56.2±0.3 22.1±0.3 32.74±0.08 4.998±0.018
DiPmark (α=0.4) 56.1±0.3 21.9±0.3 32.77±0.08 5.001±0.018
DiPmark (α=0.45) 56.2±0.3 21.9±0.3 32.69±0.08 5.024±0.018
DiPmark (α=0.5) 56.2±0.3 21.8±0.3 32.72±0.08 5.014±0.018

General experimental observation. We find that our DiP-
mark, configured with α = 0.45, exhibits comparable levels
of detectability and robustness comparing with the Soft wa-
termark (δ = 1.5) (Kirchenbauer et al., 2023). Importantly,
our DiPmark maintains the same level of text quality as the
original language model, owing to its inherent distribution-
preserving property.

7.1. Distribution-preserving Property
We will empirically verify the distribution-preserving prop-
erty of different watermarks. Since DiPmark is provably
distribution-preserving (Corollary 4.4), we use this experi-
ment as a support for the theorem.

We follow the evaluation process of (Hu et al., 2023a), where
we assess the performance of DiPmark with two seq2seq
tasks: text summarization (TS) and machine translation
(MT). For the TS task, we employ the BART-large model
(Liu et al., 2020). For MT task, we focus on English-to-
Romanian translation. We employ the Multilingual BART
(MBart) model (Liu et al., 2020) on the WMT’14 En-Ro
corpus. Specifically for DiPmark, we select values for α
from the set {0.3, 0.35, 0.4, 0.45, 0.5}, while for the Soft

watermark (Kirchenbauer et al., 2023), we choose green list
bias values δ from the set {0.0, 1.0, 1.5, 2.0} alongside a
fixed green list separator γ = 0.5, indicating that 50% of
tokens are green while the remainder are red. Notice, Soft
watermark with δ = 0.0 is equivalent to no watermark since
it does not promote the probability of green list tokens.

Upon examining Figure 2 and Table 3, we find across all
α values in the range {0.3, 0.35, 0.4, 0.45, 0.5}, the BLEU
scores in the machine translation tasks and the perplexity
values in the text summarization tasks remain consistently
similar between DiPmark and the original language model.
However, as we increase the δ values in the Soft water-
mark, a notable degradation in text quality becomes evident.
A more comprehensive set of results is provided in Ap-
pendix F.1.

7.2. Accessibility
We compare the time for detecting 1 and 1,000 watermarked
sequences with different detection algorithm. The task is
text generation with LLaMA-2 (chat, 7B). We use the same
GPU (NVIDIA A6000) for all experiments. From Table 4
we see the detecting algorithms of DiPmark are efficient
without accessing LMs, while Hu et al. (2023a) requires
additional access to LMs and prompts, and Kuditipudi et al.
(2023) needs significantly longer time.

Table 4. Comparison of accessibility of different watermarks.
Number of samples 1 1,000 LM & prompt access

Soft watermark 0.3s 92s No
Kuditipudi et al. (2023) 80s 12h No
Hu et al. (2023a) 3.4s 412s Yes
DiPmark 0.3s 90s No

7.3. Resilience and provable resilience

We compare the resilience of the DiPmark (α = 0.45) with
the SOTA watermark approaches (Kirchenbauer et al., 2023;
Kuditipudi et al., 2023; Hu et al., 2023a). In this context, we
use the text generation task with 1,000 generated sequences

7
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Table 5. AUC score of different watermarks under varying attack
strength ϵ on text generation task. Each row is evaluated over
around 500 watermarked and 500 non-watermarked sequences of
length n = 260 ± 5.

AUC Random text modification

ϵ = 0.0 ϵ = 0.1 ϵ = 0.2 ϵ= 0.3

Soft watermark 0.9990 0.9883 0.9521 0.8033
Kuditipudi et al. (2023) 0.9951 0.9461 0.8979 0.7815
Hu et al. (2023a) 0.9936 0.9297 0.8391 0.7574
DiPmark (α=0.45) 0.9990 0.9859 0.9515 0.8060

AUC Paraphrasing attack

ϵ = 0.0 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

Soft watermark 0.9990 0.9894 0.9469 0.8157
Kuditipudi et al. (2023) 0.9951 0.9529. 0.9013 0.7711
Hu et al. (2023a) 0.9936 0.9368 0.8325 0.7661
DiPmark (α=0.45) 0.9990 0.9871 0.9503 0.8216
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Figure 3. Certified radius ϵ0 of DiPmark with text modification
with FPR smaller than 1%. The x-axis refers the certified radius
and the y-axis refers the percentage of watermarked sequences that
are resilience under any text modification attacks with budget ϵ0.

on LLaMA-2. The texture key generation relies on the most
recent one token, i.e., a = 1. For resilience evaluation, we
manipulate ϵ ∈ {0.1, 0.2, 0.3} portion of the text tokens
through random text modifications and paraphrasing attacks.
We also evaluate the provable resilience of the DiPmark
under 1% FPR, where we use the above mentioned 1,000
generated sequences on LLaMA-2 to calculate the certified
radius (Theorem 6.2).

In Table 5, we report the AUC score of different watermarks
under varying attack strength ϵ. The analysis underscores
that, when ϵ remains below 0.3, DiPmark demonstrates
robust performance in effectively detecting watermarked
sentences. In Figure 3, we also show the certified radius of
the watermarked sequences of DiPmark with FPR smaller
than 1% under the text modification.

3.2 3.4 3.6 3.8
Perplexity 

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Gr
ee

n 
to

ke
n 

ra
tio

 

Model:
Dipmark
Soft
Parameter:
Dipmark( =0.3)
Dipmark( =0.35)
Dipmark( =0.4)
Dipmark( =0.45)
Dipmark( =0.5)
Soft( =0.0)
Soft( =1.0)
Soft( =1.5)
Soft( =2.0)

0.2 0.4 0.6 0.8

0.00

0.05

0.10

0.15

0.20

Gr
ee

n 
to

ke
n 

ra
tio

 

Model:
Dipmark( =0.3)
Dipmark( =0.35)
Dipmark( =0.4)
Dipmark( =0.45)
Dipmark( =0.5)
Soft( =0.0)
Soft( =1.0)
Soft( =1.5)
Soft( =2.0)

Figure 4. Top: Average perplexity vs green token ratio with γ =
0.5 on text generation tasks. Bottom: Average green token ratio
with different γ.

7.4. Ablation study: watermark detectability

We evaluate the detectability of our watermark on text gen-
eration task using LLaMA-2. We generate 1,000 exam-
ples for each tasks. We select α ∈ {0.45, 0.5} for DiP-
mark, and δ ∈ {1.0, 1.5, 2.0} and γ = 0.5 for Soft water-
mark (Kirchenbauer et al., 2023). During detection, we use
γ = 0.5. We report the Type I (FPR) and II (FNR) errors.
We set the threshold z = 1.073/

√
n (FPR p ≤ 0.1) and

z = 1.517/
√
n (FPR p ≤ 0.01). We also report the aver-

aged green token ratio (5.1) vs. text perplexity and token list
separator γ of DiPmark and Soft watermark. The averaged
green token ratio quantifies the bias towards green tokens
within the text sequence (see Section 5). Notice, as the z-test
in Kirchenbauer et al. (2023) is imprecise (see Section 5),
we use DiPmark detector for all models.

The results for text generation are visually depicted in Fig-
ure 4. In Figure 4 (top), it is evident that our DiPmark
variants with α = 0.45 and 0.5 yield green token ratios akin
to those of the Soft watermark with δ = 1.5 without any
discernible degradation in text quality. Figure 4 (bottom)
delves into the impact of different green list separators γ,
revealing that, for most watermark models, γ = 0.5 yields
the highest green token ratio, underscoring its suitability as
a reasonable choice for watermark detection. The empiri-
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Table 6. Empirical error rates for watermark detection on text gen-
eration. Each row is averaged over around 500 watermarked and
500 non-watermarked sequences of length n = 260±5. We select
the threshold z = 1.073/

√
n (false positive rate p ≤ 0.1) and

z = 1.517/
√
n (false positive rate p ≤ 0.01).

z = 1.073/
√
n, p ≤ 0.1

FPR↓ TNR↑ TPR↑ FNR↓ PPL↓
Soft (δ=1.0) 0.0545 0.9455 0.8919 0.2686 3.38±0.06
Soft (δ=1.5) 0.0545 0.9455 0.9961 0.0796 3.56±0.06
Soft (δ=2.0) 0.0545 0.9455 1.0000 0.0000 3.92±0.07

DiPmark (α=0.45) 0.0545 0.9455 1.0000 0.0000 3.14±0.06
DiPmark (α=0.5) 0.0545 0.9455 1.0000 0.0000 3.17±0.05

z = 1.517/
√
n, p ≤ 0.01

FPR↓ TNR↑ TPR↑ FNR↓ PPL↓
Soft (δ=1.0) 0.0080 0.9920 0.8255 0.1745 3.38±0.06
Soft (δ=1.5) 0.0080 0.9920 0.9724 0.0276 3.56±0.06
Soft (δ=2.0) 0.0080 0.9920 0.9981 0.0019 3.92±0.07

DiPmark (α=0.45) 0.0080 0.9920 0.9794 0.0206 3.14±0.06
DiPmark (α=0.5) 0.0080 0.9920 0.9827 0.0173 3.17±0.05

cal error rates for watermark detection in text generation
are reported in Table 6, showcasing the commendable per-
formance of DiPmark with low false positive rates while
maintaining a high true positive rate. Broadly speaking,
DiPmark with α = 0.45 and 0.5 exhibit performance com-
parable to that of the Soft watermark with δ = 1.5 and 2.0.
For more experimental results regarding the detectability,
please refer to Appendix F.2.

7.5. Case study: watermarking GPT-4 by DiPmark

Recently, GPT-4 released the log-probability of the top-5
tokens during the generation process. This advancement
enables us to modify and apply our DiPmark approach to
GPT-4’s framework. As we only know the probability of
the top-5 tokens, we treat the probability of the rest tokens
as 0. Given a prompt, we will first use GPT-4 to generate
the top-5 log-probability of the next token. Then we adapt
DiPmark to the log-probability and sampling the next token
based on the reweighted distribution. Finally, we merge the
generated token into the prompt, and repeat the above steps.
In our experiments, we use gpt-4-0613 on 100 different
fiction writing prompts and restrict the number of generated
token to 200. We set α = 0.45 in our DiPmark model.

In Figure 5, we show the cumulative histogram of the num-
ber of green tokens in the 100 watermarked GPT-4 generated
sequences. As all generated sequences have 200 tokens, any
sequence with greater than 122 green tokens can be detected
as watermarked content with FPR less than 1%. From the
plot, we see 97 out of 100 generated sequences can be de-
tected by our algorithm, which validate the applicablity of
our watermark on the industry-level LLMs.
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Figure 5. Cumulative histogram of the number of green tokens in
the 100 watermarked gpt-4 generated sequences. The green line
represents the threshold with FPR smaller than 1%.

8. Conclusion
In summary, we present DiPmark, a novel watermarking
solution tailored for LLMs. DiPmark exhibits the crucial
attributes of distribution-preserving, accessibility, and re-
silience, which we rigorously substantiate through a combi-
nation of theoretical analysis and empirical investigations.
Our work not only strengthens the theoretical foundations,
but also imparts practical insights that are valuable for the
industrial deployment of LLM watermarking technologies.

Impact Statement
Machine learning holds significant potential to enhance hu-
man life, however, its malicious applications could substan-
tially jeopardize safety (Wu et al., 2022; Hong et al., 2024;
Hu et al., 2023b; Wang et al., 2023b;a; Wu et al., 2023; Chen
et al., 2024). This research focuses on advancing watermark
techniques to effectively identify AI-generated sentences.
In an era where AI’s role in content creation is expanding
rapidly, our work gains significance in preserving the authen-
ticity and integrity of digital text. This innovation is pivotal
in distinguishing human-authored content from that pro-
duced by AI, a distinction that holds substantial value across
various societal and technological domains, e.g., enhancing
digital content authenticity, combating misinformation, and
empowering content creators.
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A. Future Work
Future endeavors should focus on enhancing the detectability of distribution-preserving watermarks. This could be realized
by assigning greater weight to the green-list tokens during the watermarking process. Additionally, a promising avenue
for exploration involves the design of a more robust distribution-preserving watermark, potentially through the integration
of multiple detectors. These directions represent promising opportunities for advancing the efficacy and applicability of
watermarking techniques on large language models.

B. Related Work
Reweight-based watermarking framework. In a recent seminal work, (Kirchenbauer et al., 2023) introduced a pioneering
watermarking scheme tailored for LLMs, backed by formal guarantees. Their work demonstrated that watermark embedding
could be accomplished by altering the token distribution during generation, targeting outputs with substantial entropy.
However, this approach inevitably leads to a pivotal change in the distribution of the generated text, potentially compromising
the quality of the generated content.

To maintain an unaltered output distribution in watermarked content, alternative strategies have been explored. (Christ et al.,
2023) and (Kuditipudi et al., 2023) employed the inverse sampling method to generate watermarked token distributions.
Notably, (Christ et al., 2023)’s method faces resilience issues under modifications and lacks empirical validation for
detectability. Meanwhile, (Kuditipudi et al., 2023)’s approach necessitates the secret key distribution during detection,
potentially compromising data security and watermark stealthiness. Moreover, their detection process involves hundreds
of resampling steps from the secret key distribution, which is inefficient for lengthy texts. (Hu et al., 2023a) used inverse
sampling and permutation based reweight methods for watermarking, but the detector requires access of the language model
API, undermining its operational efficiency. Aaronson’s ongoing watermarking project (Aaronson, 2022) employs n-gram
hashing for reweighting the next-token distribution, though specific details are currently unavailable.

The landscape also includes several schemes (Abdelnabi & Fritz, 2021; Qiang et al., 2023; Yoo et al., 2023; Munyer &
Zhong, 2023) that incorporate an ML model within the watermarking algorithm itself. However, these constructions lack
formal assurances and rely on heuristic arguments for satisfying the criteria of Stealthiness, Efficiency, and Resilience.

Our research aligns closely with the findings presented in (Kirchenbauer et al., 2023). In their methodology, they employed
watermarking for text derived from a language model by bifurcating the token set into designated ‘red’ and ‘green’ lists.
The division is determined by a random seed that is contingent on the secret key coupled with a hash of priorly generated
tokens. The authors accentuated the prominence of green tokens during the sampling phase by reweighting the token
log-probabilities. Building on this foundation, our research retains the red-green list configuration, but introduces an evolved
family of permutation-based reweight strategies. This dual approach ensures: 1) a promoted utilization of green tokens, and
2) equivalency in distribution between a sample from the watermarked language model and one from the original language
model.

Post-hoc detectors. Post-hoc detection stands as a notable alternative to watermarking, focusing on the retrospective analysis
of machine-generated text. This could be achieved through leveraging features inherent to language models or by refining
pre-existing, expansive language models to function as detectors, as elaborated by (Zellers et al., 2019). Notably, specific
implementation nuances, such as sampling methodologies, can be discerned through reverse engineering the generated text,
a process detailed by (Tay et al., 2020). There are also post-hoc detectors designed for the modern large language models
(Mitchell et al., 2023; Tian, 2023; Kirchner et al., 2023), which are models specifically trained for the binary detection task.
However, there is a growing sentiment that those detection methodologies are diminishing in efficacy in tandem with the
evolution of language model capabilities. As (Gambini et al., 2022) observed, detection mechanisms that were adept with
GPT-2 have encountered challenges with GPT-3. Besides, the text rephrasing model in (Krishna et al., 2023) bypassing
prevalent post-hoc detectors like GPTZero (Tian, 2023), DetectGPT (Mitchell et al., 2023), and OpenAI’s proprietary
detector (Kirchner et al., 2023). Additionally, a pertinent observation made by (Chakraborty et al., 2023) suggests that as
AI-generated content becomes increasingly indistinguishable from human-produced text, the demands on post-hoc detectors
to analyze more extended text segments will escalate.

Steganography. Steganography involves embedding concealed messages in channels such as natural language or images,
ensuring only intended recipients can discern the message while others remain unaware (Hopper et al., 2002). When
applied to watermarking, the aim is stealthy. Yet, known steganography techniques might not achieve this without certain
entropy-related assumptions. In scenarios where language model prompts can be chosen adversarially, the need for stealthy
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persists. This discrepancy arises due to differences in access levels that watermarking and steganography have to the
model’s output distribution. In steganography, there’s only oracle access to this distribution. Conversely, our watermarking
approach gets a detailed view of the token’s probability distribution. Hence, while steganography either relies on entropy
assumptions (Hopper et al., 2002) or compromises security with low entropy channels (Dedić et al., 2009), our watermark
remains stealthy irrespective of the text’s entropy. This is achieved by leveraging the full distribution access and using it as a
foundation for embedding watermarks. (Kaptchuk et al., 2021) offers encoding similar access. However, it presupposes
equal decoding access, which is impractical for watermarking as the detection algorithm won’t typically have the initiating
prompt, thus remaining ignorant of the distribution.

C. Missing Proofs
C.1. Proof of Theorem 4.3

Proof. We need to show ∀t ∈ V,Eθ[PW (t|x, θ)] = PM (t|x). Recall θ is uniformly distributed on Θ, we have

Eθ∼PΘ
[PW (t|x, θ)] =

∑
V p∈Θ

Eθ∼PΘ
[PW (t|x, V p)1θ=V p ]

=
∑

V p∈Θ

[PW (t|x, V p)]Eθ∼PΘ [1θ=V p ]

=
1

N !

∑
V p∈Θ

PW (t|x, V p).

(1)

Given an token t and a permutation of the token list V p, denote by EV p(t) the position of t in the ordered token set V p. Let
V pr

be the reversed permutation of V p, notice t is the (N +1−EV p(t))-th element in V pr

. Given an arbitrary permutation
pair (V p, V pr

), V p := {t1, ..., tN}. We will show

PW (t|x, V p) + PW (t|x, V pr

) = 2PM (t|x).

For the ease of notation we denote by i = EV p(t), we have ti = t. From the definition of DiP-reweight we know
PW (t|x, V p) = F (EV p(t)|V p)− F (EV p(t)− 1|V p) = F (i|V p)− F (i− 1|V p), where

F (i|V p) := max


i∑

j=1

PM (tj |x)− α, 0

+max


i∑

j=1

PM (tj |x)− (1− α), 0

 , i ∈ [1, N ], (2)

So we need to show

F (i|V p)− F (i− 1|V p) + F (N + 1− i|V pr

)− F (N − i|V pr

) = 2PM (t|x).

As
∑N

j=1 PM (tj |x) = 1, we have

F (N + 1− i|V pr

) = max


N+1−i∑
j=1

PM (tN+1−j |x)− α, 0

+max


N+1−i∑
j=1

PM (tN+1−j |x)− (1− α), 0


= max


N∑
j=i

PM (tj |x)− α, 0

+max


N∑
j=i

PM (tj |x)− (1− α), 0


= max

(1− α)−
i−1∑
j=i

PM (tj |x), 0

+max

α−
i−1∑
j=1

PM (tj |x), 0

 ,

(3)

and

F (i− 1|V p) = max


i−1∑
j=1

PM (tj |x)− α, 0

+max


i−1∑
j=1

PM (tj |x)− (1− α), 0

 . (4)
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By (max{A, 0} −max{−A, 0}) = A,∀A ∈ R, we have

F (N + 1− i|V pr

)− F (i− 1|V p) = (1− α)−
i−1∑
j=i

PM (tj |x) + α−
i−1∑
j=1

PM (tj |x)

= 1− 2

i−1∑
j=i

PM (tj |x).

(5)

Analogously, we have

F (N − i|V pr

)− F (i|V p) = 1− 2

i∑
j=i

PM (tj |x). (6)

Thus,

PW (t|x, V p) + PW (t|x, V pr

) =F (i|V p)− F (i− 1|V p) + F (N + 1− i|V pr

)− F (N − i|V pr

)

=(1− 2

i−1∑
j=i

PM (tj |x))− (1− 2

i∑
j=i

PM (tj |x))

=2PM (ti|x) = 2PM (t|x).

(7)

By the symmetric of permutation we have

2Eθ∼Θ[PW (t|x, θ)] = 1

N !

∑
V p∈Σ

PW (t|x, V p)

=
1

N !

∑
V p∈Σ

[PW (t|x, V p) + PW (t|x, V pr

)]

=
1

N !

∑
V p∈Σ

2PM (t|x)

=2PM (t|x).

(8)

Therefore, Eθ∼Θ[PW (t|x, θ)] = PM (t|x), which concludes the proof.

C.2. Proof of Theorem 5.2

Proof. As LG(γ) =
∑n

i=1 Bi(γ), where Bi(γ) ∼ Bernoulli(1− γ). By Markov’s inequality we have ∀h > 0,

Pr(LG(γ)− (1− γ)n ≥ nt) ≤ E[eh(LG(γ)−(1−γ)n)]

ehnt
,

as Bi is independent from each other, we have

E[eh(LG(γ)−(1−γ)n)]

ehnt
=

n∏
i=1

E[eh(Bi−(1−γ))]

eht
.

Since Bi follows Bernoulli distribution, we have

E[eh(Bi−(1−γ))]/eht = (1− γ)eh(γ−t) + γe−h(1−γ+t).

Thus
Pr(LG(γ)− (1− γ)n ≥ nt) ≤ [(1− γ)eh(γ−t) + γe−h(1−γ+t)]n (9)

holds for arbitrary h > 0. Denote by m(h) = (1− γ)eh(γ−t) + γe−h(1−γ+t), taking derivative w.r.t. h yields

dm(h)

dh
= (1− γ)(γ − t)eh(γ−t) + γ(1− γ + t)e−h(1−γ+t).
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Let dm(h)
dh = 0, we have h = ln γ(1−γ+t)

(1−γ)(γ−t) . Combining it with Equation 9 yields

Pr(LG(γ)− (1− γ)n ≥ nt) ≤ inf
h>0

[(1− γ)eh(γ−t) + γe−h(1−γ+t)]n

≤ [e(γ−t) ln
γ(1−γ+t)

(1−γ)(γ−t) (1− γ + γe− ln
γ(1−γ+t)

(1−γ)(γ−t) )]n

= [e(γ−t) ln
γ(1−γ+t)

(1−γ)(γ−t)
1− γ

1− γ + t
]n

= [e(γ−t) ln
γ(1−γ+t)

(1−γ)(γ−t)
+ln 1−γ

1−γ+t ]n

= e−n((1−γ+t) ln 1−γ+t
1−γ +(γ−t) ln γ−t

γ )

= e−nKL(1−γ+t||1−γ)

(10)

C.3. Proof of Theorem 6.2 and discussion

Proof. Notice based on above discussion, the worst-case decrease on LG(γ) per token modification is a + 1. If we are
allowed to perturbed ϵ portion of the text, the worst-case decrease on LG(γ) will be (a + 1)ϵn. Denoted by x1:n′ the
perturbed text. Assume we can still correctly detect the watermarked sequence, which means

(LG(γ)− (a+ 1)ϵn)/n′ − (1− γ) ≥ z.

Notice, the left hand side of the above equation is decreasing with n′, as we perturbed ϵ portion of the text, the maximum of
the possible n′ is n′ = (1 + ϵ)n, i.e., all modifications are text insertion. In this case, we need to solve

LG(γ)− (a+ 1)ϵn

(1 + ϵ)n
− (1− γ) ≥ z.

we have

ϵ ≤ LG(γ)− (1− γ)n− zn

(2 + a− γ + z)n
.

Therefore, for any text modification with budget ϵ ≤ LG(γ)−(1−γ)n−zn
(2+a−γ+z)n , our algorithm can still detect the watermarked

sequence.

In the following theorem, we provide a more simple certified radius assuming the text length is not changed by perturbations.

Theorem C.1. Assuming the sequence length n is not changed through text modifications. Given Φ(γ,x1:n) := LG(γ)/n−
(1− γ) and a threshold z, the certified radius of the watermarked sequence x1:n is ϵ0 = Φ(γ,x1:n)−z

a+1 .

Proof. Notice based on above discussion, the worst-case decrease on LG(γ) per token modification is a + 1. If we are
allowed to perturbed ϵ portion of the text, the worst-case decrease on LG(γ) will be (a+1)ϵn. Assume we can still correctly
detect the watermarked sequence, which means

(LG(γ)− (1− γ)n− (a+ 1)ϵn)/
√
n ≥ z,

we have ϵ ≤ Φ(γ,x1:n)−z
(a+1)

√
n

. Therefore, for any text modification with budget ϵ ≤ Φ(γ,x1:n)−z
(a+1)

√
n

, our algorithm can still detect
the watermarked sequence.

D. Comparison of the test statistic
In this section, we provide a detailed comparison of our test statistic and the z-test statistic proposed in (Kirchenbauer et al.,
2023). In Figure 6, we show number of green tokens vs p-value (false positive rate), where we set the number of tokens
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Figure 6. Number of green tokens vs p-value (false positive rate), where we set the number of tokens n = 200, green list separator
γ = 0.5. We see that given the same number of green tokens, the z-test always has lower p-value than DiPmark test statistic. Given the
fact that the z-test statistic is only an approximation of the green token distribution, we conclude that this approximation is not proper for
watermark detection, as it will wrongly classify the sentences not generated by LMs as being LM-produced.

Table 7. Comparison of test statistics: Theoretical FPR vs Empirical FPR. We can see clearly the empirical FPR of z-test is continuously
greater than its theoretical guarantee, which indicates z-test statistic may not be suitable for watermark detection.

p < 0.10 (10%FPR) p < 0.05 (5%FPR) p < 0.01 (1%FPR)

z-test (Kirchenbauer et al., 2023) 56/500 (11.2% FPR) 34/500 (6.8% FPR) 12/500 (2.4% FPR)
DiPmark statistic 13/500 (2.6% FPR) 10/500 (2% FPR) 4/500 (0.5% FPR)

n = 200, green list separator γ = 0.5. We see that given the same number of green tokens, the z-test statistic always leads
to lower p-value than DiPmark test statistic. Given the fact that the z-test statistic is only an approximation of the green
token distribution, we conclude that this approximation is not proper for watermark detection, as it will wrongly classify the
sentences not generated by LMs as being LM-produced. In Table 7, we show the detecting result based on DiPmark detector
and the detector in Kirchenbauer et al. (2023) on 500 non-watermarked sentences with length 260. We can see clearly the
empirical FPR of z-test is continuously greater than its theoretical guarantee, which indicates z-test statistic may not be
suitable for watermark detection.

E. Detailed Experiment Setup
We assess the performance of DiPmark across three critical applications of seq2seq models: text summarization, machine
translation, and text generation. The experiments are implemented using the Huggingface library (Wolf et al., 2019), a
widely adopted platform for model development and sharing within the NLP community. All experiments are conducted
on three Nvidia A6000 GPUs with 48GB of memory. Detecting 1,000 watermarked sentences generated from LLaMA-2
requires only 90 seconds.

Machine Translation. For the machine translation task, we utilize the WMT’14 English (En) to Romanian (Ro) dataset,
comprising 1,999 examples in the test set. We employ the Multilingual Bart (MBart) model (Liu et al., 2020) along with its
official tokenizer.

Text Summarization. In the text summarization task, we use the test set from the CNN-DM corpus (Hermann et al., 2015),
consisting of 11,490 examples. Our model of choice is BART-large, which encompasses 400 million parameters, and
LLaMA-2 with 7 billion parameters.

Text Generation. For text generation, we incorporate the test set from the CNN-DM corpus as part of the generation prompt.
We use LLaMA-2 which has 7 billion parameters.

Watermark Setup. Our experiments primarily compare DiPmark with the Soft watermark introduced by (Kirchenbauer
et al., 2023). In the case of DiPmark, we consider various values of α from the set {0.3, 0.35, 0.4, 0.45, 0.5}. For the Soft
watermark (Kirchenbauer et al., 2023), we explore green list bias δ values from {0.0, 1.0, 1.5, 2.0} with a fixed green list
separator γ = 0.5. Texture key generation relies on the most recent five tokens as texture key. For instance, when generating
x4 in response to (x1, x2, x3) as the current input to the decoder, the texture key includes (x1, x2, x3), considering the
availability of only three tokens. The texture key history resets before generating each batch. To generate the cipher, we
employ SHA-256 as the hash function and a set of 1024-bit random bitstrings as the key set K. The cipher θ is sampled
from Θ using hash(k, s) as the random seed. We compare DiPmark with ITS (Kuditipudi et al., 2023) and δ-watermark (Hu
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Table 8. Performance of Machine Translation.
BERT-F1 BERT-Precision BERT-Recall BLEU

No Watermark 0.559±0.003 0.545±0.004 0.574±0.003 21.8±0.3

DiPmark(α=0.3) 0.561±0.003 0.547±0.004 0.575±0.003 22.0±0.3
DiPmark(α=0.35) 0.562±0.003 0.548±0.004 0.575±0.003 22.1±0.3
DiPmark(α=0.4) 0.561±0.003 0.547±0.004 0.576±0.003 21.9±0.3
DiPmark(α=0.45) 0.562±0.003 0.548±0.004 0.576±0.003 21.9±0.3
DiPmark(α=0.5) 0.562±0.003 0.548±0.004 0.576±0.003 21.8±0.3

Soft(δ=0.0) 0.560±0.003 0.545±0.004 0.574±0.003 21.8±0.3
Soft(δ=1.0) 0.557±0.003 0.543±0.004 0.572±0.003 21.2±0.3
Soft(δ=1.5) 0.550±0.003 0.534±0.004 0.565±0.003 20.4±0.3
Soft(δ=2.0) 0.539±0.003 0.523±0.004 0.555±0.003 19.4±0.3

et al., 2023a), where we follow the setting in their open sourced code23.

Evaluation metrics for text quality. In this part, we introduce the evaluation metrics we used for evaluating the text quality
(Section. 7.1).

• ROUGE score. For the summarization task, we utilize the ROUGE score (Lin, 2004), which measures n-gram overlap
to assess the summary’s effectiveness in capturing essential content from reference summaries.

• BLEU score. For the machine translation task, we rely on the BLEU score (Papineni et al., 2002), emphasizing the
lexical similarity between machine-generated translations and human reference translations.

• BERTScore. BERTScore (Zhang et al., 2019) computes the similarity of two sentences as a sum of cosine similarities
between their tokens’ embeddings. We use BERTScore-F1, BERTScore-Precision, and BERTScore-Recall for
evaluating both text summarization and machine translation tasks.

• Perplexity. In information theory, perplexity is a measurement of how well a probability distribution or probability
model predicts a sample. It may be used to compare probability models. A low perplexity indicates the probability
distribution is good at predicting the sample. We use perplexity for evaluating both text summarization and machine
translation tasks.

Evaluation metrics for detectability of watermarks. In this part, we introduce the evaluation metrics we used for
evaluating the detectability of watermarks (Sections 7.4 and 7.3).

• Green token ratio. Denoted by LG(γ) the number of green tokens in a text sequence with green list separator γ. The
green token ratio is given by LG(γ)/n− (1− γ). This ratio quantifies the bias towards green tokens within the text
sequence (see Section 5).

• z-score. The z-score of a text sequence x1:n is (LG(γ)− (1−γ)n)/
√
n. A higher z-score will reduce the false positive

rate, where a non-watermarked sequence is detected as watermarked (see Section 5).

• Type I and II errors. We generally use true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), and
false negative rate (FNR) to evaluate the performance of watermarks on a mixture of watermarked and non-watermarked
sentence. FPR measures the Type I error of the hypothesis testing, in which the null hypothesis got rejected when it is
actually true. FNR measures the type II error, in which one fails to reject a null hypothesis that is actually false.
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Table 9. Performance of Text Summarization.
BERT-F1 BERT-Precision BERT-Recall Perplexity Rouge-1 Rouge-2 Rouge-L

No Watermark 0.3273±0.0008 0.3181±0.0009 0.3366±0.0010 5.021±0.018 0.3855±0.0009 0.1387±0.0008 0.2444±0.0008

DiPmark(α=0.3) 0.3279±0.0008 0.3187±0.0009 0.3372±0.0010 5.014±0.018 0.3861±0.0009 0.1390±0.0008 0.2450±0.0008
DiPmark(α=0.35) 0.3274±0.0008 0.3183±0.0009 0.3367±0.0010 4.998±0.018 0.3856±0.0009 0.1389±0.0008 0.2449±0.0008
DiPmark(α=0.4) 0.3277±0.0008 0.3187±0.0009 0.3370±0.0010 5.001±0.018 0.3862±0.0009 0.1392±0.0008 0.2449±0.0007
DiPmark(α=0.45) 0.3269±0.0008 0.3178±0.0009 0.3361±0.0010 5.024±0.018 0.3852±0.0009 0.1391±0.0008 0.2447±0.0008
DiPmark(α=0.5) 0.3272±0.0008 0.3181±0.0009 0.3364±0.0010 5.014±0.018 0.3859±0.0009 0.1396±0.0008 0.2450±0.0008

Soft(δ=0.0) 0.3273±0.0008 0.3181±0.0009 0.3366±0.0010 5.021±0.018 0.3855±0.0009 0.1387±0.0008 0.2444±0.0008
Soft(δ=1.0) 0.3237±0.0008 0.3137±0.0009 0.3338±0.0009 5.309±0.019 0.3816±0.0009 0.1348±0.0008 0.2411±0.0007
Soft(δ=1.5) 0.3209±0.0008 0.3097±0.0009 0.3323±0.0010 5.660±0.021 0.3793±0.0009 0.1317±0.0007 0.2379±0.0007
Soft(δ=2.0) 0.3146±0.0008 0.3027±0.0009 0.3266±0.0009 6.241±0.023 0.3725±0.0009 0.1252±0.0007 0.2321±0.0007
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Figure 7. Violin plot of Machine Translation performance .

18



A Resilient and Accessible Distribution-Preserving Watermark for Large Language Models

0.1

0.2

0.3

0.4

0.5

0.6

F1

Mean performace w/o watermark

0.2

0.3

0.4

0.5

Pr
ec

isi
on

Mean performace w/o watermark

0.2

0.3

0.4

0.5

Re
ca

ll

Mean performace w/o watermark

0.25

0.30

0.35

0.40

0.45

0.50

RO
UG

E-
1

Mean performace w/o watermark

0.0

0.1

0.2

0.3

RO
UG

E-
2

Mean performace w/o watermark

0.10

0.15

0.20

0.25

0.30

0.35

RO
UG

E-
L

Mean performace w/o watermark

No Watermark
Dipmark( =0.3)

Dipmark( =0.35)
Dipmark( =0.4)

Dipmark( =0.45)
Dipmark( =0.5)

Soft( =0.0)
Soft( =1.0)

Soft( =1.5)
Soft( =2.0)

5

10

Pe
rp

le
xi

ty

Mean performace w/o watermark

Figure 8. Violin plot of Text Summarization performance.
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Figure 9. Left: Average z-score vs token sequence length with γ = 0.5 on text generation tasks. Right: Watermark detection accuracy vs
token sequence length with γ = 0.5 and threshold z = 1.517 (false positive rate less than 0.01) on text generation tasks.
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Figure 10. Left. Average Perplexity vs Green token rate with γ = 0.5 on the text summarization task. Right. Avg. Green token ratio with
different γ on the text summarization task.

F. Additional Experiments
F.1. Distribution-preserving

Settings. In our evaluation, we assess the distribution-preserving performance of DiPmark within the context of two
significant applications involving seq2seq models: machine translation (MT) and text summarization (TS). We follow the
settings in (Hu et al., 2023a). For the TS task, our experimentation employs the BART-large model (Liu et al., 2020) in
conjunction with the CNN-DM corpus (Hermann et al., 2015) as our designated testing dataset. The MT task, on the other
hand, revolves around English-to-Romanian translation. For this purpose, we employ the Multilingual BART (MBart)
model (Liu et al., 2020) on the WMT’14 En-Ro corpus. Specifically for DiPmark, we select values for α from the set
{0.3, 0.35, 0.4, 0.45, 0.5}, while for the Soft watermark (Kirchenbauer et al., 2023), we choose green list bias values δ from
the set {0.0, 1.0, 1.5, 2.0} alongside a fixed green list separator γ = 0.5, indicating that 50% of tokens are green while the
remainder are red. It is important to note that the Soft watermark with δ = 0.0 is essentially equivalent to no watermark
since it does not promote the probability of green list tokens.

A thorough examination of Figure 7, Figure 8, Table 8, and Table 9 reveals a discernible trend. Throughout the range of α
values spanning {0.3, 0.35, 0.4, 0.45, 0.5}, all the metrics associated with machine translation tasks and text summarization
tasks maintain a consistent alignment between DiPmark and the original language model. Conversely, an upward adjustment
in the δ values of the Soft watermark distinctly impacts the quality of the text output.

2https://github.com/jthickstun/watermark
3https://github.com/xiaoniu-578fa6bff964d005/UnbiasedWatermark
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Figure 11. Left. Average z-score vs token sequence length with γ = 0.5 on the text summarization task. Right.Avg. best p-score with
text length with γ = 0.5 on the text summarization task.

F.2. Detectability comparison

Settings. We evaluate the detectability of our watermark on text summarization tasks using LLaMA-2. We generate
1,000 examples for each tasks. We also select α ∈ {0.3, 0.35, 0.4, 0.45, 0.5} for DiPmark, and δ ∈ {0.0, 1.0, 1.5, 2.0} and
γ = 0.5 for Soft watermark (Kirchenbauer et al., 2023). During detection, we also use γ = 0.5. We report the green token
ratio (defined in 5), the score of Φ(γ,x) (z-score), and the detect accuracy.

Result analysis. The results for text generation are visually depicted in Figure 4 and Figure 9. Broadly speaking, our
DiPmark variants with α = 0.45 and 0.5 exhibit performance comparable to that of the Soft watermark with δ = 1.5, where
δ = 1.5 corresponds to an augmentation of 1.5 to the green token logits. In Figure 4 (left), it is evident that our DiPmark
variants with α = 0.45 and 0.5 yield green token ratios akin to those of the Soft watermark with δ = 1.5 without any
discernible degradation in text quality. Figure 4 (right) delves into the impact of different green list separators γ, revealing
that, for most watermark models, γ = 0.5 yields the highest green token ratio, underscoring its suitability as a reasonable
choice for watermark detection. In Figure 9 (left) and Figure 9 (right), we present the average z-scores and accuracy metrics
relative to sequence length. It is conspicuously observable that longer token sequences tend to facilitate easier detection,
in line with our earlier analysis in Section 5. The results for text summarization are visually depicted in Figure 10 and
Figure 11. Broadly speaking, our DiPmark variants with α = 0.45 and 0.5 exhibit performance comparable to that of the
Soft watermark with δ = 1.5, where δ = 1.5 corresponds to an augmentation of 1.5 to the green token logits. In Figure 10
(left), it is evident that our DiPmark variants with α = 0.45 and 0.5 yield green token ratios akin to those of the Soft
watermark with δ = 1.5 without any discernible degradation in text quality. Figure 10 (right) delves into the impact of
different green list separators γ. Interestingly, for most watermark models, γ = 0.3 yields the highest green token ratio
instead of γ = 0.5, which may be due to the low entropy characteristic of the text summarization task. In Figure 11 (left)
and Figure 11 (right), we present the average z-scores and accuracy metrics relative to sequence length. It is conspicuously
observable that longer token sequences tend to facilitate easier detection, in line with our earlier analysis in Section 5.

F.3. Resilience

We conduct experiments to test the resiliency of the our DiPmark and the Soft watermark in (Kirchenbauer et al., 2023). In
this context, we use the text summarization tasks with 1,000 generated sequences on LLaMA-2. For resilience evaluation,
we manipulating about ϵ ∈ {0.05, 0.1, 0.2, 0.3} portion of the text tokens through text insertion, text substitution, and text
deletion.

Result Analysis. Figure 13 elucidates the evolution of the average green token ratio and the average z-score concerning the
attack strength parameter ϵ. Notably, both metrics exhibit a diminishing trend as ϵ increases.
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Figure 12. Robustness evaluation of DiPmark on text generation task. Left. Average green token ratio w.r.t. portion of perturbation ϵ.
Right. Average z-score w.r.t. portion of perturbation ϵ.
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Figure 13. Robustness evaluation of DiPmark on text summarization task. Left. Average green token ratio w.r.t. portion of perturbation ϵ.
Right. Average z-score w.r.t. portion of perturbation ϵ.

Algorithm 3 DiPmark detector

1: Input: text x1:n, watermark key k, volume of the token set N , permutation generation function h, list of separator
Γ = {γ1, ..., γl}, threshold z.

2: for γ ∈ Γ do
3: Initialize the green token indexer of γ with 0: LG(γ) = 0.
4: for i = 2, ..., n do
5: Generate a texture key si based on x1:i−1.
6: Generate the permutation of token set θi = h(k, si).
7: Calculate the list of green tokens via G = θi[⌈γN⌉ : N ].
8: if xi ∈ G then
9: Increase the number of green token indexer by 1: LG(γ) = LG(γ) + 1.

10: Calculate the score: Φ(γ,x1:n) =
LG(γ)−(1−γ)n√

n
.

11: return 1maxγ∈Γ Φ(γ,x1:n)>z .
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G. An alternative detector for DiPmark.
Because our objective involves detecting watermarked text, we aim to choose γ to maximize the likelihood of null hypothesis
rejection. Based on this rationale, we develop a novel detector for watermark detection. Our approach entails a grid search
over γ ∈ [0, 1] to identify the optimal z-score, i.e., maxγ∈Γ Φ(γ,x1:n) serves as the definitive detection score for x, where
Γ = {γ1, ..., γl}. This process is outlined in Algorithm 3. For the hypothesis test statistic maxγ∈Γ Φ(γ,x1:n), we can
establish the following concentration bound:

Theorem G.1. Given Γ = {γ1, ..., γl}, under the null hypothesis H0, we have

Pr

(
max
γ∈Γ

Φ(γ,x1:n) ≥ t

)
≤ le−2t2 , ∀t ∈ R.

Proof.

Pr(max
γ∈Γ

Φ(γ,x1:n) < t) =

l∏
i=1

Pr(max
γ∈Γ

Φ(γ,x1:n) < t)

=

l∏
i=1

(1− Pr(max
γ∈Γ

Φ(γ,x1:n) ≥ t))

≥ (1− e−2t2)l

≥ 1− le−2t2 .

(11)

Thus, Pr(maxγ∈Γ Φ(γ,x1:n) ≥ t) = 1− Pr(maxγ∈Γ Φ(γ,x1:n) < t) ≤ le−2t2 .

Compared to the hypothesis test with a single γ and a threshold z, our new hypothesis test can achieve the same probability
guarantee with a new threshold z′ =

√
z2 + log(l)/2.

H. Examples of the watermarked text
We list several examples of the watermarked text generated by LLaMA-2 on the text summarization task. We also report the
p-value of the statistal testing using Φ(γ,x1:n).
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'David Cameron, the Prime Minister of the United Kingdom, was seen wearing an 
unusual outfit consisting of jeans, smart shoes, and a navy jacket as he stepped 
off a sleeper train in Penzance, Cornwall. This comes as he embarks on a campaign 
trail in the South West, where the Conservatives are trying to regain control from 
the Liberal Democrats. The outfit choice has been likened to that of US President 
Barack Obama, who is also known for sporting a similar navy and dark blue 
ensemble. Cameron also discussed his reputation for lacking passion on the 
campaign trail, attributing it to his hectic schedule and the need to project a 
calm image.

"David Cameron, the Prime Minister of the UK, wore an unusual outfit (jeans, 
loafers, and a navy jacket) while campaigning in Cornwall, leading some to 
question his 'calm smoothness' persona. He also discussed his love of navy outfits 
and joked that he thinks William Hague would make a good James Bond.

'David Cameron, the Prime Minister of the UK, wore an unusual outfit (jeans, 
loafers, and a navy jacket) while campaigning in Cornwall, which seemed to reflect 
his exhausted state. He also claimed to always manage to portray a calm smoothness 
publicly, although he appeared to be anything but smooth today. Additionally, he 
expressed support for William Hague as the next James Bond and admitted to 
enjoying Game of Thrones.

"David Cameron, the Prime Minister of the UK, wore an unusual outfit (jeans and 
loafers) while traveling from London to Cornwall, where he gave a speech about his 
party's plans for the region. He also talked about his love for navy blue clothing 
and joked about William Hague becoming the next James Bond.

"David Cameron, the Prime Minister of the UK, wore an unusual outfit (jeans and 
smart shoes) while traveling on a sleeper train to Cornwall for a campaign event. 
He also used a selfie stick during a visit to a radio station and took photos with 
staff. In his speech, he mentioned that he had a rough night's sleep on the train 
and that he always tries to portray a calm, smooth image.\nMr. Cameron has been 
known for his love of navy outfits and often wears dark blue when off duty. He has 
also backed his colleague William Hague to be the next James Bond, citing his 
fitness and yoga abilities.

"David Cameron, the Prime Minister of the UK, wore an unusual outfit (jeans and 
smart shoes) while traveling on a sleeper train to Cornwall for a campaign event. 
He also used a selfie stick during a visit to a radio station and took photos with 
staff. In his speech, he mentioned that he had a rough night's sleep on the train 
and that he always tries to portray a calm, smooth image.\nMr. Cameron has been 
known for his love of navy outfits and often wears dark blue when off duty. He has 
also backed his colleague William Hague to be the next James Bond, citing his 
fitness and yoga abilities.
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David Cameron likes to project an image as the 'chillaxing' statesman unruffled by 
political troubles - but this morning his usual demeanour seemed to desert him as 
he donned a bizarre outfit on the campaign trail. The Prime Minister looked  
exhausted as he stepped off the sleeper train at Penzance today, ahead of a speech 
in which he delivered his 'plan for Cornwall'. The Conservatives are battling 
against their Coalition partners in the South-West as they seek to wrest control 
of key constituencies from the Liberal Democrats. But Mr Cameron is still trailing 
Ed Miliband's Labour Party nationally, with just 14 days to go until polling day. 
Get-up: David Cameron stepped off the sleeper train at Penzance this morning 
wearing jeans, smart shoes and a navy jacket . Journey: The Prime Minister 
travelled for eight hours from Paddington station to reach Cornwall . Tired out: 
The Tory leader did not appear to have enjoyed a good night's sleep on the train 
and was wearing an unusual combination of solely dark colours . A YouGov poll 
published this morning put Labour on 34 per cent - one point ahead of the Tories. 
The Lib Dems trail on 7 per cent with Ukip in third on 14 per cent. Mr Cameron 
said in an interview this week that he 'always manages to portray a calm 
smoothness' - however, he looked anything but smooth at Penzance station. The 
Prime Minister seemed as if he had had trouble sleeping on the eight-hour journey 
from London's Paddington station. His hair was unkempt and he was wearing an 
unusual combination of jeans with shiny loafers which might be considered more 
appropriate for a smart business suit. Destination: He apparently chose the 
sleeper to avoid taking time out of his schedule to travel . Outfit: Mr Cameron 
wore a navy jacket, dark blue shirt, jeans and smart black shoes - as well as a 
red box . Inspiration? Mr Cameron may have been trying to channel the style sense 
of US President Barack Obama . Mr Cameron sported a navy jacket with a dark blue 
polo shirt, and set off his outfit with the ultimate status symbol - a red box 
holding ministerial papers, which only a few dozen people are entitled to carry…

Figure 14. Examples of the watermarked text generated by LLaMA-2 on text summarization tasks.
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Leonardo Jardim believes Monaco's Champions League success is proof that clubs 
don't have to spend big to succeed in Europe. Monaco have reached the quarter-
finals without making any big signings, instead relying on developing young 
talent. Jardim is proud of what he has achieved in his 10 months at the helm, and 
believes the team has shown they can go far in the competition without big 
investments. Monaco face Juventus in the quarter-finals, and will be without 
striker Lacina Traore and midfielder Tiemoue Bakayoko due to injury.

Monaco coach Leonardo Jardim has credited the clubs ability to achieve European 
success without splashing the cash on big-name signings. Despite the club's 
financial constraints, Jardim has been able to nurture young talent and lead the 
team to the Champions League quarter-finals. Monaco host Juventus in the second 
leg of the quarter-finals on Wednesday, with the principality club looking to 
overturn a 1-0 deficit. The teams have met once before in the competition, with 
Monaco winning 2-0 in the 2004 semi-finals.

Monaco coach Leonardo Jardim has expressed pride in his team's performance in the 
Champions League quarter-finals after overcoming Arsenal and now facing Juventus, 
despite the club's financial constraints and lack of big name signings. Jardim 
believes that his team has shown that they don't need to spend big to achieve 
success in the competition, and he has been able to nurture young talent at the 
club. Monaco will be without two key players for the match against Juventus, but 
Jardim remains optimistic about his team's chances.

Monaco coach Leonardo Jardim credits the team's success in the Champions League to 
developing young talent rather than overspending in the transfer market, resulting 
in the club reaching the quarterfinals without relying heavily on big-name 
signings.

Monaco coach Leonardo Jardim has expressed pride in his team's performance in 
reaching the Champions League quarter-finals without investing heavily in big-name 
signings. Despite the club's Russian owner Dmitry Rybolovlev tightening the purse 
strings in recent seasons, Jardim has been able to nurture young talent and 
achieve success with limited resources. Monaco face Juventus in the quarter-finals 
and will need to overcome a 1-0 deficit from the first leg to progress to the 
semi-finals.

Monaco coach Leonardo Jardim has expressed pride in his team's performance in 
reaching the Champions League quarter-finals without investing heavily in big-name 
signings. Despite the club's Russian owner Dmitry Rybolovlev tightening the purse 
strings in recent seasons, Jardim has been able to nurture young talent and 
achieve success with limited resources. Monaco face Juventus in the quarter-finals 
and will need to overcome a 1-0 deficit from the first leg to progress to the 
semi-finals.
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Coach Leonardo Jardim believes Monaco's march to the Champions League quarter-
finals is proof that clubs do not have to splash the cash in order to achieve 
European success. Four years have passed since Dmitry Rybolovlev's takeover 
prompted a slew of big-name arrivals at the Stade Louis II, with the likes of 
Radamel Falcao, James Rodriguez and Joao Moutinho signed for hefty transfer fees. 
But the Russian billionaire has tightened the purse strings in recent seasons and, 
with most of Monaco's expensive signings subsequently moving on, Jardim has been 
forced to nurture young talent after finding his options in the transfer market 
somewhat restricted. Leonardo Jardim addresses his players at training  ahead of 
Champions League match with Juventus . The Monaco coach insists he is proud after 
his side reached the quarter-finals without big investment . Big money signings 
James Rodriguez and Radamel Falcao (right) have left the Stade Louis II . Monaco's 
new-found financial prudence is beginning to yield results, however, with Les 
Rouges et Blancs third in Ligue 1 and still in with a chance of qualifying for the 
semi-finals of European football's premier club competition for the first time in 
11 years. The principality club host Juventus at the Stade Louis II on Wednesday 
looking to overturn a 1-0 deficit from the quarter-final first leg and Jardim, who 
replaced Claudio Ranieri last June, is proud of what he has achieved in his 10 
months at the helm. 'We went from the worst qualified team in the fourth pot, to 
winning the group, to knocking out a European giant in Arsenal (in the last 16),' 
he told BeIN Sports' The Ligue 1 Show. 'Right now, you could say that Monaco's 
coach is very proud of his players. We've shown that we don't need to make big 
investments to go far in this competition. Dimitar Berbatov is convinced Monaco 
can reach Champions League semi-final at the expense of Juventus…

Figure 15. Examples of the watermarked text generated by LLaMA-2 on text summarization tasks.
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According to a new survey, almost a fifth of American women are willing to undergo 
dangerous beauty treatments despite the risks to their health. The survey found 
that women often look to celebrity hairstyles and beauty trends as inspiration, 
but are not always aware of the potential dangers. Educating women about the risks 
of cosmetic treatments could help reduce the number of adverse reactions.

According to a survey, 1 in 5 American women are willing to undergo dangerous 
beauty treatments despite the risks to their health. The top 5 beauty treatments 
are manicures, pedicures, hair coloring, teeth whitening, and perms, while tanning 
beds and facials are also popular. Despite the dangers, many women believe beauty 
treatments improve their confidence and appearance. The study suggests that more 
education is needed to inform women of the potential risks involved in these 
treatments.

According to a survey, 1 in 5 American women are willing to undergo dangerous 
beauty treatments despite the risks to their health. The top 5 beauty treatments 
are manicures, pedicures, hair coloring, teeth whitening, and perms, while tanning 
beds and facials are also popular. Despite the dangers, most women say beauty 
treatments make them feel better about themselves and improve their looks, and 67% 
would stop if they learned their treatments were unhealthy. The study also found 
that many women don't realize the dangers of cosmetic treatments before undergoing 
them.

According to a survey, 1 in 5 American women are willing to undergo dangerous 
beauty treatments despite the risks to their health, with Jennifer Aniston and 
Sandra Bullock being the top two celebrity hairstyles emulated. Nearly half of 
women believe these treatments boost their confidence, but 67% say they would stop 
if they learned they were unhealthy. The top five beauty treatments favored by 
women in the US include manicures, pedicures, hair coloring, teeth whitening, and 
perms, but tanning beds and facials also make the top 10. Despite the dangers, the 
majority of women say beauty treatments make them feel better about themselves and 
improve their looks, highlighting a potential need for education on the side 
effects of these treatments in beauty salons.

According to a survey of 1,000 American women, nearly one in five are willing to 
undergo dangerous beauty treatments to achieve the ideal look, despite the risks 
to their health. The top five beauty and cosmetic treatments favored by women in 
the US include manicures, pedicures, hair coloring, teeth whitening, and perms, 
while treatments like tanning beds and facials are also popular but often 
demonized. Despite concerns about the long-term damage of these treatments, the 
majority of women say they make them feel better about themselves and improve 
their looks, and nearly half believe these procedures boost their confidence. 
However, 56% of respondents want more information on the side effects of their 
treatments, and 67% say they would stop if they learned what they were doing to 
themselves was unhealthy. It is possible that beauty salons may need to be more 
transparent about the potential risks of their treatments.

According to a survey of 1,000 American women, nearly one in five are willing to 
undergo dangerous beauty treatments to achieve the ideal look, despite the risks 
to their health. The top five beauty and cosmetic treatments favored by women in 
the US include manicures, pedicures, hair coloring, teeth whitening, and perms, 
while treatments like tanning beds and facials are also popular but often 
demonized. Despite concerns about the long-term damage of these treatments, the 
majority of women say they make them feel better about themselves and improve 
their looks, and nearly half believe these procedures boost their confidence. 
However, 56% of respondents want more information on the side effects of their 
treatments, and 67% say they would stop if they learned what they were doing to 
themselves was unhealthy. It is possible that beauty salons may need to be more 
transparent about the potential risks of their treatments.
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One in five American women are willing to undergo dangerous beauty treatments in 
order to achieve the ideal look, despite the risks that these procedures pose to 
their health. According to a new study, while just over half of women worry about 
the long term damage of beauty treatments, nearly a fifth would still pursue a 
treatment to get the right look - even it it proved hazardous to their health. 
Seven per cent, meanwhile, have actually had allergic reactions. The survey, 
conducted by beauty research organization\xa0LQS and Associates, looked at the 
lengths 1,000 American women go to in order to enhance their appearances or copy a 
celebrity, and the potentially disastrous consequences they might face in doing 
so, including hair loss, skin swelling, and overly painful procedures. The cost of 
beauty: Women often don't realize the dangers of salon treatments before sitting 
in the styling chair . Respondents cited the hairstyles of actresses Jennifer 
Aniston and Sandra Bullock, as well as signer Jennifer Lopez, as celebrity 
favorites, with 53 per cent also noting that they get skin, beauty, and hair ideas 
from pictures and videos of famous personalities. But LQS and Associates warns 
against attempts to emulate these looks on a regular basis. A-listers like 
Beyonce, Paris Hilton, and Selena Gomez all sport weaves and extensions, but their 
beauty regimen is not always adaptable to the average person. 'Many of those 
glamorous looks can do more harm than good, leading to long term problems,' said 
LaQue Gushon-Harris, president of LQS and Associates. 'Unfortunately, most women 
are not even aware of the repercussions.'…

Figure 16. Examples of the watermarked text generated by LLaMA-2 on text summarization tasks.
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A 14-year-old girl is accused of conspiring with her 20-year-old boyfriend to kill 
her mother, and the judge has denied her petition to return to a juvenile facility 
while awaiting trial. The girl's attorney claims she was under the control of her 
boyfriend and is seeking a psychological evaluation to determine if she should be 
tried in juvenile court

A 14-year-old girl is accused of conspiring with her 20-year-old soldier boyfriend 
to kill her mother after the mother discovered their relationship, which was 
illegal because the girl was underage.\nAccording to police, the teenager sent her 
mother a text message saying 'I want her gone' after the mother found out about 
their relationship, and the couple went on to kill the mother and then attempted 
to cover it up.\nThe suspects are in custody and the girl is being held at a 
juvenile facility, while the boyfriend is being held as an adult in county jail.

A 14-year-old girl is accused of conspiring with her 20-year-old soldier boyfriend 
to have her mother killed. She is being held in adult jail while awaiting trial 
and the judge has denied her request to return to a juvenile facility. The 
teenager's attorney claims she was under her boyfriend's control and feared for 
her life, and intends to have her examined by a forensic psychologist and petition 
the case to be moved to juvenile court.

A 14-year-old girl is accused of conspiring with her 20-year-old soldier boyfriend 
to have her mother killed. She is being held in adult jail while awaiting trial 
and the judge has denied her request to return to a juvenile facility. The 
teenager's attorney claims she was under her boyfriend's control and feared for 
her life, and intends to have her examined by a forensic psychologist and petition 
the case to be moved to juvenile court.

A 14-year-old girl is accused of conspiring with her 20-year-old soldier boyfriend 
to kill her mother by text message. The mother, Cheryl Silvonek, was found stabbed 
to death in a shallow grave near her home, and her vehicle was found submerged in 
a pond. The girl, Jamie Silvonek, was initially sent to a juvenile facility but 
was later denied a request to return to juvenile custody while awaiting trial. A 
judge ruled that she must remain in adult jail while awaiting trial.

A 14-year-old girl is accused of conspiring with her 20-year-old soldier boyfriend 
to kill her mother by text message. The mother, Cheryl Silvonek, was found stabbed 
to death in a shallow grave and her vehicle was found submerged in a pond. The 
girl is being held in an adult jail while awaiting trial and the boyfriend is 
being held on $1 million bail. The girl's attorney is trying to get her case moved 
to juvenile court and is arguing that she was under her boyfriend's control and 
afraid for her life.
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An eight-grade girl accused of conspiring with her soldier boyfriend by text 
message to have her mother killed must remain in adult jail while awaiting trial, 
a judge. A defense petition to return 14-year-old Jamie Silvonek to the juvenile 
facility where she was initially sent after the body of 54-year-old Cheryl 
Silvonek was discovered last month was denied by Lehigh County Judge Maria Dantos 
on Friday. District Attorney Jim Martin had opposed the petition on behalf of the 
teenager, who is charged as an adult with homicide and criminal conspiracy. Her 
boyfriend, Caleb Barnes, 20, who is from El Paso, Texas, but was stationed at Fort 
Meade, Maryland, is charged with homicide. JamieSilvonek, the eighth-grader 
accused of conspiring with her soldier boyfriend by text message to have her 
mother killed must remain in an adult jail while awaiting trial, it was ruled on 
Friday . Cheryl Silvonek's body was found with stab wounds in a shallow grave 
about 50 miles northwest of Philadelphia, and her vehicle partially submerged in a 
pond a few miles from the family home. Jamie Silvonek was sent to the county jail 
this month after she was charged as an adult and is in the women's housing unit, 
away from older inmates, county officials said. Authorities said Barnes and the 
teenager met in October, when she was 13, but she told him she was 17. Records 
show the 14-year-old was upset that her mother had shown her boyfriend her 
passport as proof that Silvonek was not 17. The teen's mother found out about 
their relationship in early March and ordered them to end it. A day later, the 
teen told Barnes in a text message, 'I want her gone,' police said. On March 14, 
Cheryl Silvonek learned that Barnes intended to take her daughter to a concert in 
Scranton. 'He is not coming to this house,' Cheryl Silvonek texted to her 
daughter, who had taken the SAT college entrance exam that morning, according to a 
police affidavit. The eighth-grader sent her mother a text in response begging her 
to let them go. 'Mom, if I can't go I'm going to have a mental breakdown,' she 
said, according to the affidavit. 'I need to go and I need to be with my friends…

Figure 17. Examples of the watermarked text generated by LLaMA-2 on text summarization tasks.
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A hotel owner in Folkestone, Kent, UK, is looking to transform his hotel into a 
swingers\' paradise, in an attempt to revitalize his business. He plans to install 
sex swings, bondage rooms, and dungeons, and cater to guests from the gay and 
swinging communities. Locals are not happy about the proposal, with some 
expressing concerns about noise and anti-social behavior. The hotel owner believes 
that the "Fifty Shades of Grey effect" will help drive business to his hotel

A hotel owner in Folkestone, Kent, UK, is looking to transform his hotel into a 
swingers' paradise, in an attempt to revitalize his business. He plans to install 
sex swings, bondage rooms, and dungeons, and cater to guests from the gay and 
swinging communities. Locals are unclear how to feel about the proposal, and the 
hotel owner is aware that he will need to obtain the necessary licenses and 
consent from the council.

A hotel owner in the UK is planning to turn his hotel into a swingers\' paradise, 
complete with bondage rooms, dungeons, and sex swings. He hopes to cash in on the 
"Fifty Shades of Grey" effect and attract guests from the gay and swinging 
communities. The hotel is a Grade-II listed building, and the owner will need to 
obtain licenses and approvals from the local council before making any changes. 
The plans have generated controversy and mixed reactions from local residents, 
with some expressing concern about the potential impact on the community.

A hotel owner in the UK is planning to renovate his hotel to cater specifically to 
swingers and the gay and swinging communities, complete with bondage rooms, 
dungeons, and sex swings. This follows the success of the Fifty Shades of Grey 
movie franchise, which has fuelled interest in bondage and BDSM.\nThe move is 
intended to breathe new life into the hotel's flagging business, but it remains to 
be seen how the local community will react to this unconventional plan. The hotel 
owner is aware of the potential controversy and has sought to assuage concerns by 
pointing out that guests will be required to make advance bookings and that 
privacy will be ensured. However, it is unclear how the hotel's neighbors and 
local authorities will react to this unique venture.

A hotel owner is looking to convert his hotel into a swingers\' paradise, complete 
with bondage rooms, dungeons, and "red room of pain". He hopes to cash in on the 
popularity of Fifty Shades of Grey and attract guests from the gay and swinging 
communities. However, the local council has given him a hard time over the 
proposal and he may need to secure additional licenses and permits.

A hotel owner is looking to convert his hotel into a swingers\' paradise, complete 
with bondage rooms, dungeons, and "red room of pain". He hopes to cash in on the 
popularity of Fifty Shades of Grey and attract guests from the gay and swinging 
communities. However, the local council has given him permission to use the 
building as a hotel but has not granted him a premises licence to sell alcohol, 
and he will need to obtain listed building consent for any internal works.\nFirst 
of all, I love the fact that the owner is so optimistic about his business idea, 
but at the same time, I also feel a bit worried for him. This is just a weird and 
risky idea, and I\'m not sure how well it will go over with the locals or with 
other guests at the hotel. I mean, I can see how some people might be interested 
in this kind of thing, but I also think that a lot of people might be put off by 
it. And then there\'s the issue of the legality of it all, which seems pretty 
complicated. I think the owner might have bitten off more than he can chew with 
this one.
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A hotel owner believes he has found the perfect solution for revitalising his 
flagging business - by converting it into a swingers' paradise. Jon Huxley, 46, 
hopes to cash in on the Fifty Shades of Grey effect and attract guests from the 
gay and swinging communities at his hotel Westward Ho! in Folkestone, Kent. He 
plans to install sex swings, bondage rooms and dungeons and have rooms of 
differing sizes to cater for couples and multiple groups. Jon Huxley, standing 
outside his hotel Westward Ho! in Folkestone, Kent, is looking at 'developing' his 
premises to cater for swingers . He hopes the craze in Fifty Shades of Grey, 
starring Jamie Dornan as Christian Grey and Dakota Johnson as his object of 
affection Anastasia Steele, can help transform his business. He said: 'We have 
plans to attract tourists from the gay and swinging community for short breaks and 
weekends of adult fun. 'Obviously a lot of equipment will need to be installed 
like swings, bondage rooms, red room of pain and dungeons of delight. 'We would be 
having these events each weekend and accepting tourist guests during the week. 
'Food and drink will be provided as part of an all-inclusive hotel package and it 
would be a civilised and friendly environment.' Mr Huxley will be hoping to 
recreate scenes like this from the hit film Fifty Shades of Grey . Clothing will 
be optional and privacy for our guests will therefore need to be ensured. 'It is 
not intended to be a seedy or dirty business. It is a respected clientele who 
enjoy taking their clothes off.' Mr Huxley said he has decided to appeal to the 
swinging community after rowing with the council over the…

Figure 18. Examples of the watermarked text generated by LLaMA-2 on text summarization tasks.
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