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ABSTRACT

We introduce GenomeOcean, a 4-billion-parameter genome foundation model that
natively generates DNA sequences that are adherent to the input context. With
an efficiency-oriented model design, GenomeOcean is 80 times faster than exist-
ing models of similar size in genome generation. Unlike most existing genome
foundation models—such as DNABERT and Nucleotide Transformers—that are
designed for discriminative tasks, GenomeOcean leverages generative modeling
to unlock new potentials in genomics research. Diverging from the traditional
reliance on reference genomes—which possess inherent biases—GenomeOcean is
exclusively trained on large-scale curated environmental samples collected from
diverse ecosystems, including oceans, lakes, forests, and soils. This extensive ge-
nomic diversity, encompassing uncultured and uncharacterized organisms, allows
GenomeOcean to generate sequences that better reflect the true diversity of life. In
a series of automated evaluations, we demonstrate GenomeOcean’s capability to
understand and follow context sequences. Compared to existing models, GenomeO-
cean not only better retains species information but also produces sequences with
more appropriate open reading frame lengths and codon usage bias. We anticipate
the open release of GenomeOcean to open up new possibilities in genomics and
computational biology research. 1

1 INTRODUCTION
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Figure 1: Genome generation through-
put measured by base-pairs per sec-
ond with 1000-bp prompt on a single
NVIDIA A100 80GB GPU.

The rapid advancement of genome sequencing technolo-
gies has triggered an explosion of genomic data, offering
unprecedented opportunities to explore life’s molecular
intricacies (Rhoads & Au, 2015; Hu et al., 2021). Effec-
tively analyzing and interpreting this vast data requires
sophisticated computational models capable of uncovering
previously unattainable patterns and insights. In this con-
text, large language models (LLMs), particularly genome
foundation models (Ji et al., 2021; Dalla-Torre et al., 2023;
Nguyen et al., 2023; Zhou et al., 2023; Schiff et al., 2024),
have emerged as powerful tools in genomics.

Genome foundation models treat DNA as a language com-
posed of 4 nucleotide bases. These models have outper-
formed traditional methods in various discriminative tasks
such as promoter prediction and splice site detection (Le
et al., 2022; Zhang et al., 2022; Wang et al., 2022; Lee et al., 2022). By learning contextual rep-
resentations of genomic sequences, they have enhanced our ability to predict functional elements
and understand gene expression (Avsec et al., 2021; Novakovsky et al., 2023). However, most
genome foundation models focus on discriminative tasks, leaving the potential of generative models
in genomics largely unexplored. Generative genome models hold the promise of synthesizing new
DNA sequences, which could be invaluable in synthetic biology and in designing organisms with
desired traits. For a generative genome model to be valuable and accessible in real-world applications,
it should meet two fundamental criteria: contextual adherence and computational efficiency.

1Model, codes, and data will be publicly available.
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On the one hand, the model should be contextual adherent. Besides ensuring the generated sequences
are biologically plausible, they should faithfully follow the input context (e.g., the given DNA
sequence) instead of producing irrelevant sequences. For instance, the generated sequence should
retain the same species-specific information and demonstrate appropriate functional characteristics.
This context awareness is crucial for maintaining biological relevance and applicability in downstream
analyses. On the other hand, computational efficiency is essential. Generating novel, realistic, and
biologically valid DNA sequences often requires extensive experimentation. For example, in the
study of IS200/IS605 elements, Nguyen et al. (2024) generated over one million candidates using a
large pool of hyperparameters. Efficiency, therefore, plays a key role in enabling real-world-scale
studies and accelerating the iterative experiments that are common in this area of research.

To encourage contextual adherence, the diversity of training data is crucial. By learning from
varied genomic contexts, the model can distinguish underlying patterns and generate sequences
accordingly. Thus, unlike existing models that largely rely on reference genomes of selected species,
we train GenomeOcean exclusively on a large set of curated environmental samples from diverse
ecosystems. Environmental samples provide a more comprehensive representation of Earth’s genetic
diversity, allowing our model to learn from a vastly larger and more varied genetic repertoire. These
microorganisms represent the largest reservoir of genetic and functional diversity on our planet. By
training on this diverse data, GenomeOcean can differentiate closely related species based on subtle
genetic features and synthesize artificial genomes that reflect this fine-grained diversity.

Furthermore, to make an informative model design that encompasses both expressiveness and
efficiency, we conduct a series of preliminary experiments on existing technologies in the genome
foundation model and large language models, including tokenization, model architecture, and training
objectives. Based on those empirical insights, we design GenomeOcean by adapting and integrating
the most suitable techniques. GenomeOcean is built upon a Transformer Decoder architecture
(Vaswani et al., 2017) that integrates a series of efficiency-oriented techniques, including Group-
Query Attention (GQA) (Ainslie et al., 2023), FlashAttention-2 (Dao, 2023), and vLLM (Kwon
et al., 2023). Besides the model architecture, we identify the importance of the tokenizer’s selection
when building a billion-parameter genome foundation model. For example, the compactness of the
tokenizer plays a large role in the model’s inference throughput. As shown in Figure 1, GenomeOcean
achieves 50 times higher throughput than Evo with the same HuggingFace (Wolf et al., 2020)
inference framework, and this efficiency improvement is largely attributed to the more compact input
sequence. We detail the reasoning and empirical results behind our model design in Section 2.

Given the absence of a standardized evaluation method for genome generation, we developed a suite
of automated experiments to compare GenomeOcean with existing models. Our evaluations assess
the coherence of the generated sequences to their input context, along with their similarity to ground
truth data at both the distributional and individual levels. Results show that GenomeOcean generates
sequences with greater context awareness, including more species-specific information, appropriate
open reading frame lengths, and better estimation of codon usage bias. These findings underscore its
capability to produce biologically plausible and contextually relevant genome sequences.

2 BACKGROUND AND PRELIMINARY EXPERIMENTS

Deoxyribonucleic acid (DNA) is a molecular structure composed of two intertwined strands forming
a double helix. Each strand is made up of four fundamental building blocks known as nucleotides:
adenine (A), thymine (T), cytosine (C), and guanine (G), which pair complementarily across the
strands. Genome foundation models (Ji et al., 2021; Dalla-Torre et al., 2023; Nguyen et al., 2023;
Zhou et al., 2023; Schiff et al., 2024; Nguyen et al., 2024; Zvyagin et al., 2022) treat DNA sequences
as text sequences with just four unique characters, applying large language model (LLM) techniques
to analyze them. There are three main design spaces of genome foundation models: tokenization,
training objective, and model architecture. As existing models are often pre-trained on different
datasets and use varied combinations of components, directly comparing their performance does
not necessarily reveal the real impact of each component. To inform the architecture design of
GenomeOcean, we conducted a series of preliminary experiments to assess each component fairly.
In this section, we review existing works and provide new empirical results on genome foundation
models. We discuss tokenization in Section 2.1. As training objectives are highly related to the model
architecture, we discuss them simultaneously in Section 2.2.

2
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DNA Sequence          

AATGAATGCAACTCAGGT

Character-level     

A  A  T  G  A  A  T  G C  A  A  C  T  C  A  G  G  T

Byte-pair Encoding     

AATG AATG  CAACTCA  GG T 

Overlapping K-mer     

AATGAA  ATGAAT  TGAATG  GAATGC …

Non-overlapping K-mer     

AATGAA  TGCAAC  TCAGGT

(a) Visualization of different
tokenizer.
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with char and BPE tokenizers.

Figure 2: Visualization and empirical results of each tokenizer in the context of genome modeling.

2.1 TOKENIZATION

Tokenization serves as the first step of vectorizing a DNA sequence. Figure 2a visualizes different
DNA tokenizers. DNABERT (Ji et al., 2021) uses a commonly applied method in genomics called
overlapping k-mer tokenization. This technique converts a DNA sequence into a series of tokens
by scanning the sequence with a fixed-size sliding window, typically with a stride of 1. However,
as highlighted by Zhou et al. (2023), this method suffers from information leakage in the context
of language modeling, as overlapping tokens share a significant portion of identical characters. To
address this, they propose the Byte-Pair-Encoding (BPE) (Sennrich et al., 2016) tokenization for DNA
sequence, which compresses a DNA sequence into a set of non-overlapping high-frequency fragments.
Moreover, non-overlapping k-mer tokenization is explored in Nucleotide Transformers (Dalla-Torre
et al., 2023) and GenSLMs (Zvyagin et al., 2022), where sequences are divided into non-overlapping
tokens of length k. BPE and non-overlapping k-mer naturally avoid the information leakage issue
in overlapping k-mer tokenization while effectively reducing the input sequence length. To achieve
base-level resolution, character-level tokenization, which splits each sequence by characters, is
employed by HyenaDNA (Nguyen et al., 2023) and Caduceus (Schiff et al., 2024).

We evaluate different tokenization methods based on two criteria: compactness and expressiveness.
Compactness refers to the method’s ability to compress the input sequence, which is important
given that computational efficiency depends heavily on input sequence length as foundation models
scale. Expressiveness measures how well the tokenized sequence captures the necessary information,
helping the model to understand the context and generate accurate sequences. To measure the
compactness, we use the compression rate, which indicates how many times the tokenizer reduces
the sequence length. For example, the compression rate is 5 if the DNA sequence has 100 base
pairs and the tokenized sequence contains 20 tokens. To evaluate the expressiveness, we view each
tokenizer as a DNA feature extractor and use the discriminativeness of the feature as the estimation
of its expressiveness. Specifically, for an input DNA sequence, we respectively tokenize it with a
tokenizer and use the token frequency as the feature of the DNA sequence. We assess the features on
the GUE benchmark (Zhou et al., 2023), which includes 28 genome classification datasets covering
both mammalian and microbial genomes. We train a multi-layer perceptron (MLP) on the features
using the training data of each dataset and evaluate it on the test set.

Details results are presented in Section A.2 in the Appendix. Figure 2b summarized the average
performance of the tokenizers on the GUE benchmark. The results show that the overlapping 6-mer
tokenizer has the highest expressiveness, aligning with its frequent use as a feature extractor in
genomics. However, its information leakage makes it unsuitable for language modeling tasks. BPE,
which has similar compression rates to non-overlapping k-mer tokenization, demonstrates better
expressiveness, likely because it learns high-frequency tokens from the corpus rather than relying
on all possible k-mer combinations. In contrast, character-level tokenization performs worse, likely
since its too few feature dimensions impair the expressiveness.

As the previous experiments may be unfair to the character-level tokenizer, we conduct further
experiments to compare it with BPE, the winning candidate of the first experiment. Specifically,
we sought to understand whether the base-level resolution provided by the character-level tokenizer
justifies the increased computational complexity from longer input sequences. To do so, we train
two masked language models from scratch, one using a BPE tokenizer and the other a character-
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Figure 3: Preliminary experiments on different model architecture and training objectives. We
compare them by the pre-training loss and averaged performance on 28 downstream datasets.

level tokenizer, keeping the architecture, hyperparameters, and training data identical. We use the
BPE tokenizer from DNABERT-2 and the character-level tokenizer from HyenaDNA, following
DNABERT-2’s model architecture and pre-training dataset. After pre-training, we fine-tune both
models on the GUE benchmark and compare their performance using average performance and the
number of datasets where each model performs better. As shown in Figure 2, the model trained with
the character-level tokenizer performs slightly worse than the BPE-based model, despite requiring
six times more FLOPs to process a 1000-base pair sequence. The increased sequence length could
significantly impair a model’s training and inference efficiency. Consequently, we select BPE as the
tokenizer for GenomeOcean.

2.2 MODEL ARCHITECTURE AND TRAINING OBJECTIVE

In genome modeling, two primary types of architectures are commonly employed: Transformers
(Vaswani et al., 2017) and State Space Models (SSMs) (Gu & Dao, 2024). Models such as DNABERT,
DNABERT-2, Nucleotide Transformers, and GenSLMs utilize Transformer-based architectures, while
HyenaDNA, Caduceus, and Evo adopt SSM architectures. Both Transformer and SSM architectures
were considered as candidates for GenomeOcean. Additionally, Mixture-of-Experts (MoE) models
(Rajbhandari et al., 2022; Jiang et al., 2024), which have shown promising performance in language
modeling, were also explored. MoE models contain a large number of parameters, but only a small
subset is activated during inference. This allows them to retain strong representational capabilities
while remaining computationally efficient through sparse activation. Given these advantages, we also
investigate their applicability to genome modeling. Most existing genome models are trained with
either a BERT-style (Devlin et al., 2018) masked language modeling (MLM) objective (Ji et al., 2021;
Zhou et al., 2023; Dalla-Torre et al., 2023; Schiff et al., 2024), or a GPT-style (Radford et al., 2019)
causal language modeling (CLM) objective (Zvyagin et al., 2022; Nguyen et al., 2023; 2024). Since
GenomeOcean is designed for genome generation, CLM is the natural choice. However, we wanted
to rigorously assess the relative effectiveness of these training objectives in genome modeling.

To ensure a fair comparison of different architectures, we selected three representative models.
Mamba (Gu & Dao, 2024) was chosen to represent SSMs, Mistral (Jiang et al., 2023) for dense
Transformers, and Mixtral (Jiang et al., 2024) for Transformers with MoE. For Mamba, which is a
unidirectional model, we used causal language modeling. For the dense and MoE-based Transformers,
we made them unidirectional and bidirectional by adjusting attention masks and trained them with
both causal and masked language modeling, respectively. All models used the same BPE tokenizer
and pre-training corpus from DNABERT-2 and were trained with identical setups for 3 epochs. The
specific hyperparameters are detailed in Table 5 in the Appendix. To maintain similar computational
efficiency (measured as the time taken per training step) across models, we adjusted the hidden size
and number of layers for the Mamba model to match its dense Transformer counterpart. For the MoE-
based Transformer, we kept most hyperparaters the same as the dense Transformer but increased the
number of experts to 8, activating 2 experts during both pre-training and fine-tuning. The models were
compared based on pre-training time (using 8 NVIDIA A100 80GB GPUs), training loss, and their
average performance on the GUE benchmark. Given that unidirectional models perform significantly
better on Epigenetic Marks Prediction (EMP) tasks, which could bias the overall benchmark results,
we also exclude the EMP datasets and compare models in the rest ones. We further compared these
models against the official DNABERT-2 checkpoint to validate our pre-training.

Figure 3 illustrates the performance of all models. Each circle represents a model, with the circle
size corresponding to the model’s relative number of parameters. While BERT-style bidirectional
models are typically better suited for discriminative tasks, we found no significant benefit from using
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bidirectional models in the context of genome foundation models. In both dense and MoE archi-
tectures, Transformer models with causal language modeling achieved slightly better performance,
suggesting that generative pre-training better encourages the discovery of underlying patterns in
genome sequences. When compared to a Transformer model with similar computational efficiency
and the same training objective, Mamba exhibited slightly worse performance in both pre-training
and fine-tuning phases. Furthermore, while MoE architectures consistently improved training loss
and fine-tuning results for both masked and causal language modeling, the improvements were
marginal considering the associated costs. Specifically, MoE training incurred a threefold increase in
pre-training time, a twofold increase in active parameters, a sevenfold increase in total parameters,
and significantly higher resource requirements when scaling to (tens of) billions of parameters.

3 MODEL

In this section, we introduce the architecture and implementation of GenomeOcean.

3.1 MODEL ARCHITECTURE

Based on the above findings, we implement GenomeOcean using an optimized Transformer Decoder
architecture (Vaswani et al., 2017) with the causal language modeling objective. We leverage several
recent techniques to improve the efficiency and representation capability.

Group-Query Attention (Ainslie et al., 2023). To alleviate the memory bandwidth demands of
the Transformer model, we substitute the standard multi-head attention with group-query attention
(GQA). GQA reduces the number of key and value heads to improve the inference scalability.

FlashAttention-2 (Dao, 2023). We employ FlashAttention-2 to address the memory and computa-
tional inefficiencies of the vanilla attention implementation. FlashAttention-2 optimizes the attention
mechanism by leveraging the GPU’s memory hierarchy. This approach accelerates the attention
computation while preserving exact attention results.

We also replace the ReLU activation function and standard layer normalization with Sigmoid Linear
Unit (SiLU) activation function Elfwing et al. (2018) and RMSnorm (Zhang & Sennrich, 2019)
to stabilize model training and improve the model’s representation capability. We adapt Rotary
Positional Embedding (Su et al., 2023) for better positional representation and more flexibility in
length extrapolation. GenomeOcean has 4 billion parameters. It contains 24 Transformer layers with
3072 hidden size, 16384 intermediate size, 12 query attention heads, and 4 key-value attention heads.

3.2 IMPLEMENTATION

GenomeOcean is pre-trained on curated environmental samples from a variety of ecosystems, in-
cluding lakes, oceans, and forests. After removing the low-quality and duplicated sequences, we
achieve a pre-training dataset with around 700 billion base pairs. We train a BPE tokenizer with 4096
tokens (including special tokens) on this pre-training dataset as the tokenizer of GenomeOcean. The
pre-training of GenomeOcean consists of two stages. In the first stage, we train it with a max sequence
length of 1024 tokens, a batch size of 4 million tokens, and a peak learning rate of 4e-4. The learning
rate linearly increases from 0 to 4e-4 in the first 2000 steps and decreases to 4e-5 at the end of
training. We train GenomeOcean for 59000 steps in the first stage, which is equivalent to 1.8 epochs
on the training data. In the second stage, we increase the max sequence length to 10240 tokens, keep
the batch size of 4 million tokens, and use a learning rate of 1e-4. We train GenomeOcean for 1600
steps in the second stage. As a result, the max sequence length of GenomeOcean is 10240 tokens,
which is equivalent to around 51000 base pairs. This max sequence length can be further extended by
tens of times through interpolations (Peng et al., 2023). We leave this to future versions as the current
context length is enough for most tasks. On 64 NVIDIA A100 GPUs across 16 compute nodes,
the first stage costs 14 days, and the second stage costs 1 day. We implement efficient multi-node
training with DeepSpeed (Rajbhandari et al., 2020). In inference, we deploy GenomeOcean to vLLM
(Kwon et al., 2023), a framework that optimizes memory usage and increases the throughput for large
language models (LLMs) inference. It uses PagedAttention to reduce memory waste, share memory
across requests, and improve inference speed. As shown in Figure 1, GenomeOcean achieves 3×
more throughput with vLLM compared to the HuggingFace implementation.

4 EXPERIMENTS

In this section, we conduct empirical analyses on the models’ genome generation capability. Quanti-
fying the goodness of a generated genome sequence is a vastly understudied problem. Most metrics
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commonly used in natural language generation do not apply to this domain. For example, matching-
based metrics such as BLEU (Papineni et al., 2002) are ineffective for genome evaluation. Due to the
immense genomic diversity in nature and the absence of strict grammar and syntax rules in genome
sequences (with the exception of known functional regions like coding sequences or regulatory
elements), discrepancies between a generated sequence and a reference sequence do not necessarily
imply errors. Besides, human evaluations (Ouyang et al., 2022) are not suitable for generated genome
sequences. Genome sequences are not readily interpretable by non-experts; only specialists equipped
with professional tools can evaluate generated sequences from several perspectives, such as structural
validity, functional plausibility, adherence to known biological patterns, and the presence of conserved
motifs. However, even these expert evaluations may not be fully conclusive.

Therefore, we design a suite of automated evaluations. We assess the generated sequences (i.e.,
outputs) along two dimensions: 1) adherence to the context sequence (i.e., input), and 2) similarity to
ground-truth sequences (i.e., real sequences following the input). The first dimension ensures that
the model maintains genomic coherence and produces contextually appropriate output, while the
second dimension measures the model’s ability to capture the statistical and functional properties
of real genome sequences. To examine the adherence of the generated sequence to the prompt, we
employ existing discriminative genome foundation models (e.g., Nucleotide Transformers) as the
judges. To estimate the similarity between the ground-truth and generated sequences, we compared
the sequences on biological properties, including codon usage bias and the lengths of open reading
frames (ORFs). We present the experiment on context adherence in Section 4.1 and the experiments
on ground-truth similarity in Section 4.2. We compare the generated sequences with real data at both
the distributional level and the individual sequence level. At the distributional level, we examine
whether the models can understand the underlying distributions of input data and generate sequences
with matching distributions. At the individual sequence level, we perform pairwise comparisons
between each generated sequence and its corresponding context or ground-truth sequence to assess
the generation at a finer granularity. Evaluation metrics are selected task by task.

Baselines. We compare GenomeOcean with state-of-the-art generative genome foundation models
Evo and GenSLMs. Evo (Nguyen et al., 2024) is a generative genome foundation model contains 7
billion parameters that are trained on the OpenGenome dataset with 300 billion nucleotide bases. It is
built on the StripedHyena architecture, which hybridizes attention and hyena operators. GenSLMs
(Zvyagin et al., 2022) is a collection of generative genome foundation models ranging from 25M,
250M, 2.5B, to 25B parameters, which are originally designed to learn the evolutionary landscape
of SARS-CoV-2 genomes. It is trained on over 110 million prokaryotic gene sequences with causal
language modeling. As shown in Figure 1, GenSLMs suffer from low generation throughput. In
our preliminary experiments, generating all the sequences required for our evaluation pipeline took
over 30 days on a single NVIDIA A100 GPU when using the 25B parameter GenSLMs model.
Due to the immense computational cost of this model, we only compare it with the second-largest
GenSLMs model with 2.5B parameters. Overall, the number of parameters and the size of pre-training
datasets for Evo, GenSLMs, and GenomeOcean are comparable. For all the models, we generate
one sequence per input. For baselines, we use their default inference hyperparameters from their
official GitHub repositories. Evo uses a temperature of 1.0 and a top-p of 1.0, while GenSLMs uses a
temperature of 1.0 and a top-p of 0.95. For a fair comparison, we maintain the same hyperparameters
for GenomeOcean in all tasks, including a temperature of 1.0 and a top-p of 0.95.

4.1 ADHERENCE TO CONTEXT

TGCAACC...

ACTCAGG...

TGAATGC...

GGGAATT...

CTTTTCA...

AATGAAT...

GCAACTC...

AATGCAA...

CAACTCA...

TTCAGGG...

.. ..

Real 

Sequence

Generated 

Sequence

Train

Val .. ..

Test

Train

Val

Test

Figure 4: Visualization of data
construction for context adher-
ence evaluation.

In this section, we examine how well the generated sequence
adherent to the given context. As existing generative genome
foundation models are all pre-trained on microbial genomes,
where huge amount of distinct species exist, we evaluate this
by validating whether the generated sequences from each model
retains the species-related characteristics of the given context.

Data Construction. We construct 5 datasets for this task. Each
dataset contains 1000 non-overlapping genome sequences with
2000 base pairs from 10 unique species. As illustrated in Figure
4, we generate one sequence from each real sequence and use
the same split to split the real and generated sequence into train,
validation, and test sets with a ratio of 5 ∶ 2 ∶ 3. To evaluate the generalizability of the models, among
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Table 1: Species classification results of training on the real sequence and Val & Test on the generated sequences.

Real (Train) → Generated (Val & Test) Real → Real
Judge GenomeOcean GenSLM Evo Reorder

Unknown

DNABERT-2 70.40 ± 4.68 35.59 ± 2.85 5.33 ± 0.47 27.40 ± 0.85 100.00 ± 0.00
HyenaDNA 72.80 ± 1.30 43.34 ± 1.78 6.45 ± 1.76 45.62 ± 2.42 99.95 ± 0.11
NT-v2 75.08 ± 2.16 34.95 ± 3.82 5.55 ± 0.62 11.34 ± 0.88 99.89 ± 0.22
Caduceus 52.63 ± 5.92 27.83 ± 2.61 5.15 ± 1.09 22.85 ± 4.04 100.00 ± 0.00

Known

DNABERT-2 68.11 ± 1.56 34.39 ± 1.79 7.24 ± 1.49 17.85 ± 1.99 90.03 ± 0.59
HyenaDNA 62.81 ± 0.95 35.47 ± 1.57 5.07 ± 0.75 29.85 ± 2.85 86.01 ± 0.72
NT-v2 66.63 ± 1.43 32.67 ± 3.66 5.61 ± 0.83 12.60 ± 1.75 88.61 ± 0.89
Caduceus 62.87 ± 1.74 28.88 ± 0.96 7.02 ± 1.00 22.43 ± 2.90 81.30 ± 3.24

the 5 datasets, 2 contains all unknown or uncharacterized species, and the rest 3 contains all known
species. We acquire all the genome sequences from the CAMI2 benchmark (Meyer et al., 2022).

We perform two complementary experiments using these datasets. In the first experiment, we train a
model for species classification using the real sequences, while validating and testing on the generated
sequences. This experiment evaluates how well the generated sequences retain the species-specific
characteristics at the individual level. Specially, how many generated sequences retain the same
species characteristics that the model discovered from the real sequences. In the complementary
experiment, we examine the context adherence and characteristics retained at a distribution level. We
instead train the species classification model using the generated sequences, while validating and
testing on the real sequence. This experiment estimates how well we can classify the real sequences
by aggregating the species-specific information. We also train, validate, and test each model on the
real sequences to form the control group. Since sequences from the same species often have a similar
composition (e.g., a similar ratio of A/T/C/G), in this task, we also use a simple baseline Reorder,
which reorder all the characters of the input real sequence to produce a fake generated sequence.

Real GenomeOcean Evo GenSLM Reorder
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Figure 5: TNF similarity between
context and generated sequence.

One flaw of this evaluation method is that when the sequence
generated by the model is highly close to or even copied from the
given context, the model can achieve very good results. To rule
out this possibility, we first visualize the closeness between the
sequence generated by each model and the given context. As a
comparison, we also calculate the closeness between the context
and the real ground truth as a control group. Following previous
works (Kang et al., 2015; Nissen et al., 2021), we measure the
closeness of two sequences with the cosine similarity of their tetra-
nucleotide frequency (TNF). TNF computes the frequency of
each unique 4-mer as the sequence representation, so a generated
sequence that copies from the context will have a very high closeness with the context. Figure 5
shows the similarity distribution between 1000 pairs of context and generated sequences. As shown in
the figure, GenomeOcean displays a similar pattern to the real data, except for a few outliers. We do
not observe abnormally high closenesses of all the models from the figure. We take 4 discriminative
genome foundation models as the judge of this task, including Nucleotide Transformers-V2 (Dalla-
Torre et al., 2023), HyenaDNA (Nguyen et al., 2023), DNABERT-2 (Zhou et al., 2023), and Caduceus
(Schiff et al., 2024). These models utilize different tokenization methods and model architecture so
they may identify signals from diverse perspectives. We train each model on each set of real/generated
sequences with 3 random seeds and report the mean and std of the 3 runs.

Table 1 shows the judges’ macro F1 score when trained on the real sequences and tested on the
generated sequence. The results of the complementary experiments are shown in Table 2. We
aggregate the results on the 2 datasets with unknown species and 3 datasets with known species,
respectively. Results on each dataset are presented in Section A.3. As shown in the table, based on the
evaluation of all the judges, GenomeOcean generated sequences that contain better species-related
information than the baselines. Over 60% of GenomeOcean-generated sequences can be correctly
recognized with classifiers trained on the real sequences, showing its good capability in retaining
species-relative information in each individual generation. When training the classifiers on the
sequences generated by GenomeOcean, we achieve around 90% F1 scores compared to the ones
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Table 2: Species classification results of training on the generated sequence and Val & Test on the real sequences.

Generated (Train) → Real (Val & Test) Real → Real
Judge GenomeOcean GenSLM Evo Reorder

Unknown

DNABERT-2 95.71 ± 0.90 73.90 ± 1.75 10.97 ± 1.75 40.10 ± 4.85 100.00 ± 0.00
HyenaDNA 90.05 ± 3.10 67.71 ± 3.97 5.08 ± 1.11 81.83 ± 3.26 99.95 ± 0.11
NT-v2 94.92 ± 1.71 71.64 ± 4.06 12.13 ± 1.65 54.80 ± 4.69 99.89 ± 0.22
Caduceus 78.95 ± 4.70 47.08 ± 4.79 5.63 ± 2.43 55.64 ± 4.68 100.00 ± 0.00

Known

DNABERT-2 81.46 ± 1.07 60.18 ± 2.49 12.32 ± 6.13 24.13 ± 5.03 90.03 ± 0.59
HyenaDNA 73.73 ± 1.84 43.61 ± 3.67 7.05 ± 1.73 35.04 ± 1.97 86.01 ± 0.72
NT-v2 79.13 ± 2.03 57.11 ± 1.35 18.22 ± 2.69 24.08 ± 3.40 88.61 ± 0.89
Caduceus 64.22 ± 5.63 38.07 ± 4.70 5.93 ± 2.28 37.96 ± 2.76 81.30 ± 3.24

trained on real data, suggesting that sequences generated by GenomeOcean effectively preserve
species information at the distribution level. GenomeOcean consistently achieves much better
performance than baselines. Moreover, we analyze the impact of context length on GenomeOcean
to retrain species information in the generated sequences. Figure 6 shows the models’ performance
on the sequences generated from context length ranging from 500 to 16000 base pairs. As shown in
the figure, GenomeOcean generates sequences with better species awareness as the length of context
sequence increases, indicating its capability to understand and utilize long context.

0.5k 1k 2k 4k 8k 16k Real

DNABERT-2

NT-v2

HyenaDNA

Caduceus

50.85 61.03 68.11 70.44 73.22 72.50 90.03

48.81 58.10 66.63 69.24 73.38 73.17 88.61

46.00 55.95 62.81 66.23 71.10 68.66 86.01

44.89 54.42 62.87 64.14 66.07 64.71 81.30

Real (Train) -> Generated (Val/Test)

0.5k 1k 2k 4k 8k 16k Real

DNABERT-2

NT-v2
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Caduceus

73.38 80.53 81.46 81.70 82.66 83.36 90.03

68.63 76.92 79.13 78.48 79.65 80.78 88.61

57.07 70.76 73.73 75.75 77.70 77.73 86.01

44.80 57.09 64.22 65.90 67.61 71.24 81.30
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Figure 6: Impact of context sequence lengths on the species information retaining in GenomeOcean
generation. We use context sequences ranging from 500 base pairs to 16000 base pairs.

4.2 SIMILARITY TO GROUND-TRUTH

In this section, we evaluate the similarity between the sequence generated from an input context and
the real sequence following the context (i.e., ground-truth). We measure the similarity by comparing
the biological properties of the generated sequences and the ground-truth. We consider two properties
of the sequences: length of the longest open reading frame (ORF) and codon usage bias. We present
experiments on these two properties in Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 OPEN READING FRAMES

Open Reading Frames, or ORFs, are important features within genetic sequences that play a crucial
role in the process of protein production. In DNA sequence, each group of three nucleotide bases
(e.g., ATG) is called a codon. An ORF is a continuous stretch of codons that starts with a "start"
signal and ends with a "stop" signal. In between these signals, the ORF contains the instructions
for building a specific protein. The length of an ORF is important because it directly relates to the
size of the protein that could potentially be produced. Longer ORFs generally correspond to larger
proteins, while shorter ORFs may result in smaller proteins or might not be used to make proteins at
all. Genomics researchers often pay special attention to the longest ORF in a given sequence, as this
can provide clues about whether the sequence is likely to be used to make proteins (coding) or serve
other purposes in the cell (non-coding).

In sum, the length of the longest open reading frame serves as an indicator of a DNA sequence’s
functionality. An ideal generative model should produce sequences that demonstrate aligned char-
acteristics in functionalities. Notably, the length of the longest ORFs often differs between coding
and non-coding regions. To examine whether the models can generate sequences that adhere to the
appropriate distribution, we construct two distinct datasets: one containing sequences from coding
regions and the other from non-coding regions.

Data Construction. Consistent with our previous approach, we use a context sequence of 2000-bp
and generate a corresponding 2000-bp sequence from each context. For the non-coding dataset, we
source all available non-coding RNAs from the NONCODE database (Zhao et al., 2016). We apply a
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(b) Distribution on non-coding sequences.

Figure 7: Distribution of the longest ORF length on real and model-generated sequences.

filter to select sequences longer than 4000-bp and randomly choose 500 of them. Each RNA sequence
is then converted to a DNA sequence by substituting U with T. We divide each 4000-bp sequence into
two 2000-bp fragments, designating the first as the context and the second as the ground truth. For the
coding dataset, we download 100 genomes from GenBank (Benson et al., 2012) and randomly select
500 4000-bp sequences containing ORFs. We apply the same sequence-splitting process to these
coding sequences, resulting in 500 pairs of context and ground-truth sequences. These datasets allow
us to estimate the models’ ability to generate functionally appropriate sequences in varied contexts.

Table 3: Pearson correlation of
the generated ones and ground-
truth on the longest ORF length.

Model Corr. ↑

GenomeOcean 12.18
Evo 7.51
GenSLMs 6.78

Figure 7 shows the distribution of the longest ORF length in the cod-
ing (7a) and non-coding (7b) datasets. We compare the distribution
of the generated sequences from GenomeOcean, GenSLMs and Evo
with the distribution of the ground-truth. As shown in the figure,
ground-truth sequences in coding and non-coding datasets demon-
strate distinct distribution of the longest ORF length. Compared to
the coding dataset, shorter ORFs that range from 0 to 500-bp are
much more frequent in the non-coding dataset. GenomeOcean accu-
rately captures the distribution difference in these two dataset. The
distribution of sequences generated by GenomeOcean shows a better alignment to the real distribution
compared to the ones generated by Evo and GenSLMs. In both datasets, Evo and GenSLMs tends to
generate sequences with longer ORFs than the real data. This observation demonstrate that GenomeO-
cean is able to understand the underlying function-related patterns in the context sequence. Moreover,
we evaluate the sequences at the individual-level by computing the Pearson Correlation between the
generated sequence and ground-truth. Table 3 shows the correlation scores. The sequences generated
by all the models show a positive correlation with the real ones. Among the models, GenomeOcean
achieves the best correlation. Yet the correlation is not significant, possibly due to the large difficulty
of predicting the exact longest ORF lengths in the ground-truth, considering that there could be more
than one ground-truth sequence given the same context due to the huge genomics diversity. In sum,
genome foundation models like GenomeOcean can understand the underlying distribution of the
context and produce biologically reasonable sequences at the distribution level. Yet, they are not able
to consistently generate sequences that align with the ground-truth for each input context.

4.2.2 CODON USAGE BIAS

Codon usage bias refers to the phenomenon where certain codons (triplets of nucleotides that code
for amino acids) are used more frequently than others, even though multiple codons can code for the
same amino acid. This bias exists because different organisms, and even different genes within the
same organism, have preferences for particular codons. Comparing the generated sequences to real
genomes on codon usage bias helps us understand whether the generated sequence mirrors the natural
patterns of codon choice. It estimates whether the generated sequence would function similarly to a
real one. We quantify the codon usage bias of a sequence with a widely used method called Codon
Adaptation Index (CAI) (Sharp & Li, 1987).

Data Construction. We randomly select 6 well-characterized microbial species for this evaluation.
We compile 1 dataset with each species. For each species, we download all its strains that were
published in 2024 from NCBI2 to ensure they are not covered in the training data of all the models.

2https://www.ncbi.nlm.nih.gov/
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Figure 8: Distribution of codon usage bias measured by codon adaptation index (CAI). We compare
all the models with the ground-truth on 6 different datasets.

We then randomly select 100 ORFs longer than 4200-bp from each species. The first 2100-bp of
each ORF is used as the prompt, and the following 2100-bp is used as the ground truth. This data
construction ensures the entire prompt and ground truth are inside an ORF, allowing a more accurate
estimation of codon usage bias.

Table 4: Pearson correlation of
the generated ones and ground-
truth on codon usage bias.

Model Corr. ↑

GenomeOcean 32.06
Evo 14.18
GenSLMs -5.83

Figure 8 shows the models’ results on 6 different species. Though
different species has distinct codon usage bias as shown in the figure,
the models are able to recognize the patterns from the context and
generate sequences with similar bias. Among the models, sequences
generated by GenomeOcean demonstrate codon usage bias patterns
that are more similar to the ground truth, showing it capability of
understanding the context and produce corresponding sequences.
Furthermore, Table 4 shows the correlation between codon usage
bias of the generated and ground-truth sequences. GenSLMs obtain a
negative correlation coefficient, showing that it may not consider codon usage biased when generating
sequences. Aligning with our previous observation, GenomeOcean demonstrates a good capability to
generate sequences with appropriated codon usage bias.

5 CONCLUSION

We present GenomeOcean, an open and efficient generative genome foundation model capable of
producing context-adherent genome sequences. Through a suite of automated experiments, we
demonstrate its ability to discern the underlying distribution of context sequences and generate
sequences that retain species-specific characteristics, contain appropriate open reading frames, and
incorporate desired codon usage bias. Our efficiency-oriented design, encompassing tokenization,
model architecture, and inference framework, enables GenomeOcean to generate over 12,000 base
pairs per second on a single NVIDIA A100 80GB GPU. This represents an approximately 80×
increase in inference throughput compared to existing models of similar size. The combination
of highly optimized efficiency and high-quality genome generation opens up new possibilities for
previously infeasible research involving genome generation.

Limitation and future works. Our evaluation primarily relies on automated experiments utilizing
existing genome foundation models and quantitative metrics. While these experiments demonstrate
GenomeOcean’s advantages over existing models, they do not fully assess its efficacy in real-world
applications. More rigorous and comprehensive evaluations, in collaboration with biologists, are
essential to assess the model’s performance in fine-grained genome understanding and synthesis of
novel sequences with desired traits. As a manuscript targeting the machine learning community, we
leave these in-depth biological evaluations to future studies.
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A APPENDIX

A.1 MODEL ARCHITECTURE IN PRELIMINARY EXPERIMENTS

Table 5 shows the hyperparameters of the Mamba, Transformer, and MoE Transformers model we
used in our preliminary experiments. We create the Mamba and Transformer in this way to allow
similar training costs. We also make the Transformer and MoE Transformer have the same hidden
size and number of layers.

Table 5: Hyperparameters of Models in Preliminary Experiments.

Model Size Mamba Transformer MoE Transformer

hidden size 768 768 768
intermediate size 1536 3072 3072
num. attention heads N/A 12 12
num. query and key heads N/A 6 6
num. layers 24 12 22
num. experts N/A N/A 8
num. experts activate N/A N/A 2
num. parameters 93M 112M 702M

A.2 RESULTS OF DIFFERENT TOKENIZATION METHODS

In this section, we present the detailed results of each tokenizer as the DNA feature extractor. We use
the token frequency as the DNA feature and train a multi-layer perceptron (MLP) as the classifier. This
evaluation examines each tokenizer’s expressiveness. We use the F1 score and Matthews correlation
coefficient as the measures for different datasets, following (Zhou et al., 2023). We summarize the
results with the used measure in Table 6.

A.3 DETAILED RESULTS ON SPECIES CLASSIFICATION

In this section, we present the detailed species classification results of all judges in each dataset. We
run each experiments with 3 random seeds and report the mean and std of the 3 runs. We summarize
the results in Table 7 and 8. We observe a consistent pattern on all 5 datasets with distinct species.

A.4 IMPACT OF CONTEXT SEQUENCE LENGTH ON SPECIES CLASSIFICATION

In this section, we present the models’ performance on the problem of species classification. To
understand the impact of context length on GenomeOcean in generating species-aware sequences,
for each dataset, we respectively use the last 500, 1000, 2000, 4000, 8000, and 16000 base pairs of
each context sequence as the input for model generation. We present the model’s results on the 3
datasets with known species, as the sequence lengths are not long enough for this experiment in the
datasets with unknown species. We also aggregate the results on the three datasets in Table 9 and 10.
We observe consistent performance improvement as the context sequence becomes longer, indicating
GenomeOcean’s capability to understand and utilize longer contexts.
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Table 6: Performance of different tokenization methods on GUE benchmark. Here is the list of
abbreviations: (1) Char.-level: Character-level; (2) Overlap. 6-mer: Overlapping 6-mer; (3) Non. 6-
mer: Non-overlapping 6-mer; (4) Non. 3-mer: Non-overlapping 3-mer; (5) BPE: Byte-pair Encoding;
(6) E.M.P.: Epigenetic Marks Prediction; (7) P.D.: Promoter Detection; (8) C.P.D.: Core Promoter
Detection; (9) T.F.P. (H.): Transcription Factor Prediction (Human); (10) T.F.P. (M.): Transcription
Factor Prediction (Mouse); (11) F1: F1 score; (12) MCC: Matthews correlation coefficient.

Tokenization

Dataset Char.-level Overlap. 6-mer Non. 6-mer Non. 3-mer BPE

E.M.P. (MCC)

H3 52.87 69.74 52.84 62.45 60.04
H3K14ac 7.14 50.80 27.63 35.12 42.92
H3K36me3 10.90 49.76 34.94 41.19 46.89
H3K4me1 15.54 38.61 22.64 29.02 37.04
H3K4me2 27.12 36.79 19.92 22.64 35.77
H3K4me3 7.98 41.19 18.61 20.39 40.49
H3K79me3 24.33 61.79 44.08 50.81 55.39
H3K9ac 28.89 51.42 31.06 39.08 47.01
H4 39.68 71.88 55.96 69.69 61.49
H4ac 17.62 48.40 27.57 32.84 44.98

P.D. (MCC)
all 50.66 74.71 28.68 29.59 21.33
notata 57.68 85.63 77.67 78.26 77.83
tata 30.31 38.01 68.24 69.04 67.81

C.P.D. (MCC)
all 42.98 54.34 45.82 50.99 45.90
notata 47.62 57.61 49.45 55.18 50.37
tata 38.40 39.59 50.88 40.34 39.59

T.F.P. (H.) (MCC)

0 11.69 58.60 44.84 49.85 50.78
1 13.70 61.53 49.72 52.93 53.14
2 9.38 58.93 39.17 37.00 41.22
3 12.03 41.94 29.18 37.00 32.46
4 18.74 66.30 47.14 46.15 49.13

T.F.P. (M.) (MCC)

0 -4.18 50.18 22.66 14.01 28.48
1 0.00 71.31 53.92 41.18 60.89
2 -9.11 71.85 50.13 35.77 52.34
3 -8.39 63.24 33.63 13.93 45.64
4 -2.34 36.02 16.62 12.75 17.97

Virus (F1) Covid 14.27 65.90 51.96 44.73 68.52

Splice (F1) Reconstruct 2.93 35.52 32.15 20.56 30.16

Mean 19.94 55.41 40.25 39.92 46.46
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Table 7: Species classification results of training on the generated sequence and Val & Test on the
real sequences. Datasets 1 and 2 contain all unknown or uncharacterized species, and the other 3
datasets contain all known species. The measure is the F1 score.

Generated (Train) → Real (Val & Test) Real → Real
Dataset Judge GenomeOcean GenSLM Evo Reorder

1

DNABERT-2 94.40 ± 1.04 67.52 ± 2.40 8.25 ± 2.29 41.47 ± 5.89 100.00 ± 0.00
HyenaDNA 85.76 ± 4.32 68.72 ± 5.47 4.63 ± 0.89 75.84 ± 3.66 100.00 ± 0.00
NT-v2 91.96 ± 2.22 69.33 ± 3.91 11.73 ± 0.52 45.63 ± 3.32 99.78 ± 0.31
Caduceus 77.49 ± 5.13 45.64 ± 2.71 3.64 ± 1.35 60.28 ± 6.43 100.00 ± 0.00

2

DNABERT-2 97.02 ± 0.73 80.28 ± 0.61 13.69 ± 0.95 54.72 ± 3.52 100.00 ± 0.00
HyenaDNA 98.33 ± 0.72 66.70 ± 1.24 5.53 ± 1.29 87.82 ± 2.80 99.89 ± 0.16
NT-v2 97.88 ± 0.96 73.95 ± 4.20 12.52 ± 2.27 63.97 ± 5.75 100.00 ± 0.00
Caduceus 80.41 ± 4.22 48.52 ± 6.21 7.61 ± 3.16 50.99 ± 1.59 100.00 ± 0.00

3

DNABERT-2 90.86 ± 0.53 64.59 ± 3.76 14.00 ± 8.62 24.47 ± 5.64 96.21 ± 0.84
HyenaDNA 82.26 ± 2.82 43.52 ± 5.88 5.25 ± 1.41 34.12 ± 0.76 91.04 ± 1.02
NT-v2 89.30 ± 3.10 66.34 ± 1.19 17.92 ± 2.90 25.57 ± 0.15 95.57 ± 0.78
Caduceus 60.94 ± 8.61 40.36 ± 5.78 5.11 ± 2.36 36.18 ± 1.14 90.55 ± 0.44

4

DNABERT-2 61.87 ± 0.40 46.94 ± 1.92 13.27 ± 2.57 18.59 ± 1.32 78.40 ± 0.41
HyenaDNA 50.06 ± 0.45 30.58 ± 2.31 7.43 ± 0.29 34.40 ± 1.09 71.44 ± 0.40
NT-v2 57.36 ± 1.66 41.05 ± 0.57 14.94 ± 0.45 22.03 ± 4.91 74.72 ± 0.85
Caduceus 50.80 ± 1.63 27.09 ± 0.52 6.38 ± 2.10 37.93 ± 4.09 60.63 ± 5.53

5

DNABERT-2 91.66 ± 1.73 69.00 ± 0.91 9.70 ± 5.63 29.33 ± 6.51 95.48 ± 0.41
HyenaDNA 88.86 ± 1.40 56.73 ± 0.66 8.46 ± 2.63 36.60 ± 3.15 95.54 ± 0.61
NT-v2 90.73 ± 0.15 63.94 ± 1.93 21.80 ± 3.62 24.65 ± 3.24 95.54 ± 1.03
Caduceus 80.92 ± 4.26 46.76 ± 5.72 6.29 ± 2.38 39.76 ± 2.20 92.72 ± 0.84

Table 8: Species classification results of training on the real sequences and Val & Test on the generated
sequence. Datasets 1 and 2 contain all unknown or uncharacterized species, and the other 3 datasets
contain all known species. The measure is the F1 score.

Real (Train) → Generated (Val & Test) Real → Real
Dataset Judge GenomeOcean GenSLM Evo Reorder

1
DNABERT-2 75.75 ± 0.15 37.44 ± 3.67 4.65 ± 0.38 31.11 ± 1.09 100.00 ± 0.00
HyenaDNA 76.86 ± 0.67 41.60 ± 0.92 6.76 ± 1.54 41.44 ± 1.40 100.00 ± 0.00
NT-v2 74.45 ± 1.66 34.96 ± 3.82 5.55 ± 0.62 11.34 ± 0.88 99.78 ± 0.31
Caduceus 55.85 ± 5.98 27.39 ± 2.22 5.39 ± 0.98 25.39 ± 4.80 100.00 ± 0.00

2
DNABERT-2 65.04 ± 6.61 33.74 ± 1.68 6.00 ± 0.54 23.69 ± 0.52 100.00 ± 0.00
HyenaDNA 68.73 ± 1.71 45.07 ± 2.34 6.13 ± 1.95 49.80 ± 3.13 99.89 ± 0.16
NT-v2 75.71 ± 2.56 34.94 ± 3.82 5.55 ± 0.62 11.34 ± 0.88 100.00 ± 0.00
Caduceus 49.41 ± 5.85 28.27 ± 2.95 4.90 ± 1.19 20.31 ± 3.10 100.00 ± 0.00

3
DNABERT-2 76.56 ± 0.53 35.55 ± 2.35 6.14 ± 1.42 20.12 ± 1.86 96.21 ± 0.84
HyenaDNA 71.90 ± 0.25 38.86 ± 1.48 5.52 ± 0.64 22.44 ± 2.80 91.04 ± 1.02
NT-v2 73.70 ± 1.96 33.83 ± 3.51 6.39 ± 0.65 14.37 ± 1.44 95.57 ± 0.78
Caduceus 71.53 ± 2.48 30.81 ± 0.27 7.73 ± 0.73 21.34 ± 3.49 90.55 ± 0.44

4
DNABERT-2 52.98 ± 1.29 31.30 ± 1.80 6.97 ± 0.81 17.59 ± 2.34 78.40 ± 0.41
HyenaDNA 44.63 ± 1.26 28.27 ± 1.45 4.55 ± 1.07 30.50 ± 2.56 71.44 ± 0.40
NT-v2 50.88 ± 0.19 25.52 ± 1.82 4.69 ± 1.21 13.48 ± 2.61 74.72 ± 0.85
Caduceus 44.28 ± 1.52 21.25 ± 1.04 4.27 ± 1.22 25.54 ± 0.39 60.63 ± 5.53

5
DNABERT-2 74.80 ± 2.32 36.33 ± 0.93 8.60 ± 2.00 15.84 ± 1.71 95.48 ± 0.41
HyenaDNA 71.91 ± 1.03 39.28 ± 1.76 5.13 ± 0.36 36.60 ± 3.15 95.54 ± 0.61
NT-v2 75.30 ± 1.51 38.66 ± 4.96 5.76 ± 0.40 9.95 ± 0.57 95.54 ± 1.03
Caduceus 72.81 ± 0.77 34.57 ± 1.28 9.07 ± 1.00 20.41 ± 3.58 92.72 ± 0.84
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Table 9: Impact of Context Length: We train on the generated sequence by GenomeOcean and Val
& Test on the real sequences with the species classification task. We use the context length of 500,
1000, 2000, 4000, 8000, and 16000. The measure is the F1 score.

Generated (Train) → Real (Val & Test)

Dataset Judge 500 1000 2000 4000 8000 16000

3
DNABERT-2 80.68 ± 0.19 91.18 ± 0.82 90.86 ± 0.53 90.39 ± 0.50 91.21 ± 1.61 92.98 ± 1.49
HyenaDNA 62.91 ± 4.31 80.45 ± 1.00 82.26 ± 2.82 83.60 ± 1.06 87.35 ± 0.63 86.96 ± 0.49
NT-v2 78.11 ± 3.02 88.27 ± 2.27 89.30 ± 3.10 90.24 ± 0.83 90.39 ± 0.34 91.69 ± 0.41
Caduceus 42.26 ± 7.80 61.48 ± 8.37 60.94 ± 8.61 73.90 ± 1.48 70.45 ± 4.54 76.80 ± 2.51

4
DNABERT-2 57.06 ± 0.67 59.38 ± 2.20 61.87 ± 0.40 62.08 ± 2.11 64.26 ± 2.79 66.90 ± 1.76
HyenaDNA 46.53 ± 5.13 51.11 ± 0.76 50.06 ± 0.45 52.17 ± 2.37 54.70 ± 1.55 54.90 ± 2.43
NT-v2 49.72 ± 1.95 57.37 ± 3.59 57.36 ± 1.66 56.46 ± 1.38 59.04 ± 3.81 61.39 ± 0.33
Caduceus 42.66 ± 2.11 46.00 ± 2.11 50.80 ± 0.16 46.62 ± 2.95 46.82 ± 3.04 48.03 ± 2.96

5
DNABERT-2 82.40 ± 0.83 91.02 ± 0.46 91.66 ± 1.73 92.63 ± 0.56 92.52 ± 0.11 90.19 ± 0.79
HyenaDNA 61.76 ± 6.20 80.71 ± 3.23 88.86 ± 1.40 91.47 ± 0.39 91.05 ± 1.25 91.34 ± 1.03
NT-v2 78.06 ± 1.45 85.12 ± 2.06 90.73 ± 0.15 88.74 ± 2.34 89.51 ± 0.74 89.25 ± 2.17
Caduceus 49.47 ± 5.08 63.79 ± 6.03 80.92 ± 4.26 77.17 ± 1.22 85.55 ± 3.36 88.90 ± 1.29

Table 10: Impact of Context Length: We train on the real sequences and Val & Test on the generated
sequence by GenomeOcean with the species classification task. We use the context length of 500,
1000, 2000, 4000, 8000, and 16000. The measure is the F1 score.

Real (Train) → Generated (Val & Test)

Dataset Judge 500 1000 2000 4000 8000 16000

3
DNABERT-2 56.46 ± 0.75 68.45 ± 2.76 76.56 ± 0.53 79.31 ± 2.66 82.43 ± 0.43 84.08 ± 1.08
HyenaDNA 49.44 ± 1.96 63.92 ± 0.37 71.90 ± 0.25 76.18 ± 0.45 80.16 ± 0.88 77.73 ± 1.07
NT-v2 50.44 ± 1.98 63.97 ± 2.46 73.70 ± 1.96 80.33 ± 0.48 81.57 ± 1.67 81.09 ± 2.62
Caduceus 48.55 ± 2.42 59.36 ± 1.69 71.53 ± 2.48 75.32 ± 4.22 71.26 ± 2.41 72.31 ± 2.34

4
DNABERT-2 40.87 ± 0.32 49.76 ± 2.01 52.98 ± 1.29 52.31 ± 1.77 53.75 ± 3.27 53.73 ± 0.42
HyenaDNA 38.54 ± 1.23 42.98 ± 3.70 44.63 ± 1.26 48.69 ± 1.25 51.24 ± 1.88 50.65 ± 1.50
NT-v2 39.63 ± 3.12 45.35 ± 2.19 50.88 ± 0.19 52.90 ± 3.76 54.04 ± 5.14 55.64 ± 2.13
Caduceus 34.77 ± 1.47 43.13 ± 2.27 44.28 ± 1.52 45.80 ± 1.75 50.69 ± 2.67 47.74 ± 2.52

5
DNABERT-2 55.22 ± 2.89 64.87 ± 2.33 74.80 ± 2.32 79.71 ± 0.89 83.49 ± 1.21 79.68 ± 1.15
HyenaDNA 50.02 ± 3.34 60.94 ± 0.65 71.91 ± 1.03 73.82 ± 1.25 81.89 ± 1.24 77.61 ± 2.05
NT-v2 56.36 ± 1.05 64.98 ± 1.50 75.30 ± 1.51 74.50 ± 0.75 84.53 ± 1.52 82.79 ± 1.22
Caduceus 51.36 ± 1.80 60.77 ± 0.93 72.81 ± 0.77 71.30 ± 1.04 76.25 ± 4.61 74.09 ± 1.00
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