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Abstract

Entity structure extraction, which aims to
extract entities and their associated at-
tribute—value structures from text, is an essen-
tial task for text understanding and knowledge
graph construction. Existing methods based on
large language models (LLMs) typically rely
heavily on predefined entity attribute schemas
or annotated datasets, often leading to incom-
plete extraction results. To address these chal-
lenges, we introduce Zero-Shot Open-schema
Entity Structure Discovery (ZOES), a novel ap-
proach to entity structure extraction that does
not require any schema or annotated samples.
ZOES operates via a principled mechanism of
enrichment, refinement, and unification, based
on the insight that an entity and its associ-
ated structure are mutually reinforcing. Ex-
periments demonstrate that ZOES consistently
enhances LLMs’ ability to extract more com-
plete entity structures across three different do-
mains, showcasing both the effectiveness and
generalizability of the method. These findings
suggest that such an enrichment, refinement,
and unification mechanism may serve as a prin-
cipled approach to improving the quality of
LLM-based entity structure discovery in vari-
ous scenarios.

1 Introduction

Automatic mining of structured entity informa-
tion is critical for knowledge discovery and man-
agement (Zhong et al., 2023a; Arsenyan et al.,
2024). Prior works on entity information extrac-
tion—including relation extraction (Ding et al.,
2024; Zhou et al., 2024; Zhang et al., 2025), entity
typing (Onoe and Durrett, 2020; Tong et al., 2025),
and named entity recognition (Li et al., 2020; Ker-
aghel et al., 2024)—have primarily focused on ex-
tracting isolated aspects of entity knowledge. How-
ever, modeling only a single aspect of entity in-
formation may be insufficient for real-world appli-
cations (Jiao et al., 2023; Dagdelen et al., 2024).

...The CE of the cell without the additive is 80.6% at the first
cycle and increases to 99.1% at the 10th cycle. However, the first
CE of the cell containing 0.3 wt % TosMIC decreases to 70.1%,
and the value of this parameter reaches 99% after 30 cycles.in
subsequent cycles, the CE value of this cell is always significantly
higher than that of the cell without TosMIC, and their average
values are 99.53% and 99.37% respectively...
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Figure 1: An example of the entity structure discovery
task with applications. The figure depicts CEs of two
discovered cells with their attributes and values orga-
nized as in the source passage from (Zhu et al., 2023).

For example, in the battery science domain, a bat-
tery’s performance is determined by complex con-
ditions (Zhou et al., 2023). As shown in Figure 1,
even for the same battery, its “Coulombic Effi-
ciency” (CE) value varies across different cycles. A
single triplet (e.g., (Cell Without the Additive, CE
at First Cycle, 80.6% )) conveys limited informa-
tion about the battery’s performance. In contrast,
unifying performance across different conditions
into a structured representation provides a clearer
and more comprehensive view. Therefore, there is
a need for a unified representation of entity infor-
mation—one that integrates multiple aspects rather
than focusing on a single one (Lu et al., 2023).

Recently, closed-schema entity structure extrac-
tion has been proposed to unify various aspects of
entity information under predefined type schemas,
where each entity type is associated with a fixed set
of attributes (Zhong et al., 2023b; Wu et al., 2024).
The goal is to extract structured entities represented
as the entity along with a set of (attribute, value)
pairs. By combining with the entity name to form



(entity, attribute, value) triplet, it can capture a spe-
cific property of the entity, as illustrated in Figure 1.
However, like other closed-schema information ex-
traction tasks (Li et al., 2021; Zhou et al., 2023),
entity type schemas confine the extraction on a lim-
ited set of attributes, which fail to capture diverse
and unseen attributes in fast-evolving real-world
scenarios (Pai et al., 2024).

To enable entity structure extraction to cap-
ture more diverse and dynamic information, we
extend traditional closed-schema entity structure
extraction to an open information extraction set-
ting (Mausam, 2016), which we term Open-
Schema Entity Structure Discovery (OpenESD).
In OpenESD, we want to identify entities within
user interests and their (attribute, value) structures
without any predefined attribute sets as a schema.
OpenESD can benefit many downstream tasks such
as information retrieval (Kang et al., 2024) and
question answering (Edge et al., 2025; Gutiérrez
et al., 2025; Jiang et al., 2025).

With an open-schema setting, OpenESD goes
beyond straightforward extraction: it demands dis-
covering (Jiao et al., 2023), organizing (Wu et al.,
2024), and inferring (Ding et al., 2024) the most
appropriate attributes and values for each entity.

Large language models (LLMs) with exten-
sive parametric knowledge have demonstrated
promising performance in open information ex-
traction (Jiao et al., 2022; Lu et al., 2023), offer-
ing a promising solution for OpenESD. However,
fully harnessing this capability remains challeng-
ing. (i) Extraction Coverage: An LLM tends
to capture coarse-grained facts that are more fre-
quent in its parametric knowledge while missing
rare, fine-grained information from the context. (ii)
Extraction Granularity: When the context con-
tains rich details, LLMs may fail to identify the
appropriate level of granularity for representing the
extracted information, resulting in incomplete or
ambiguous structures. For example, as illustrated in
Figure 1, if the extracted “CE” attributes fail to cap-
ture contextual conditions, multiple “CE” values
may be incorrectly mapped to the same attribute,
leading to inaccurate results.

To enhance LLMs’ capability on OpenESD,
we introducing ZOES, a zero-shot open-schema
entity structure discovery framework. By em-
ploying a principled mechanism of enrichment, re-
finement, and unification, ZOES effectively extracts
structured entity information without supervision.
Specifically, ZOES starts with the LLM’s zero-shot

(attribute, value) triplets results, then gradually dis-
covers new triplets to enrich it. Next, ZOES lever-
ages mutual dependencies among triplet elements
to identify and refine inferior triplets. Finally, the
refined triplets are aggregated into entity structures
as coherent representations of the entities based on
user interest.

We evaluate ZOES using different backbone mod-
els on one long-tail domain: Battery Science and
two general domains: Economics and Politics.
The results demonstrate that ZOES can consistently
outperform baselines with different backbone mod-
els in all domains. ZOES achieves an absolute im-
provement of +10.64% in the F1 score. These
results demonstrate the effectiveness and generaliz-
ability of our method for OpenESD.

Our contributions are summarized as follows.

1. We introduce open-schema entity structure dis-
covery, a task to automatically identify entities
within user interest along with their contextual
(attribute, value) structures without any prede-
fined schema, which can benefit several knowl-
edge intensive tasks.

2. We propose ZOES, a zero-shot open-schema
entity structure discovery method. By enrich-
refine-unify strategy, ZOES substantially im-
proves LLMs’ performance on OpenESD.

3. We construct labeled datasets on three very dif-
ferent domains and comprehensively evaluate
ZOES and baselines to further studies LLMs’
capabilities on OpenESD.

2 Related Work

2.1 Open Information Extraction

Open Information Extraction (OpenlE) aims to
extract structured information from unstructured
text without relying on predefined schemas (Zhou
et al., 2022; Pai et al., 2024). Early OpenlE relied
on rule-based methods (Del Corro and Gemulla,
2013; Mausam, 2016), sequence labeling (Ro et al.,
2020; Vasilkovsky et al., 2022; Yu et al., 2021),
or sequence-to-sequence models (Kolluru et al.,
2022) to extract relational triplets from individual
sentences. However, sentence-level relation ex-
tractions cannot capture cross-sentence relational
information (Dunn et al., 2022; Wu et al., 2024),
which leads to low information extraction coverage
and limited representation quality (Li et al., 2021;
Dagdelen et al., 2024).

Recent advances in OpenlE focus on lever-
aging LLMs to perform more expressive and



instruction-following extractions (Jiao et al., 2023;
Qi et al., 2024). These models support more flex-
ible and user-guided information extraction, mov-
ing beyond fixed triplet formats toward on-demand
schemas (Qi et al., 2024). While these approaches
significantly improve the coverage and adaptability
of OpenlE, they typically require substantial anno-
tated training data or task-specific instruction tun-
ing (Lu et al., 2023), which constrains their applica-
bility in low-resource or specialized domains (Wei
etal., 2023). Compared with previous works, ZOES
focuses on a generalizable approach to guide LLMs
to unify document-level entity information into
structured representations by leveraging internal
structural consistency, rather than relying on exten-
sive training or annotations.

2.2 Zero-shot Relation Extraction

Zero-shot relation extraction (ZSRE) aims to iden-
tify semantic relations between entities without
relying on labeled training instances (Levy et al.,
2017). Prior work has predominantly approached
this task by leveraging semantic representations to
generalize to unseen relations (Chen and Li, 2021;
Tran et al., 2022; Zhao et al., 2023). For exam-
ple, Chen and Li (2021) proposed ZS-BERT, a
supervised model that learns relation embeddings
from attribute descriptions. Similarly, Zhao et al.
(2023) introduced a fine-grained matching frame-
work that integrates both entity and context embed-
dings to enhance zero-shot prediction. However,
such embedding-based methods are sensitive to the
exact wording of relation labels, limiting their ro-
bustness and generalizability in real-world settings.

More recently, LLMs have enabled a new
paradigm in zero-shot relation extraction (Li et al.,
2023; Xue et al., 2024; Zhou et al., 2024). One line
of work explores using LLMs to generate relational
statements directly from entity mentions, rather
than extracting from predefined relation schemas
or sentence-level contexts (Jiang et al., 2024; Ding
et al., 2024). For instance, Ding et al. (2024) lever-
age LLMs’ implicit understanding of entity types
to generate topic-specific relations by aggregat-
ing corpus-level evidence. While these methods
demonstrate strong generalization capabilities, they
often produce high-level or generic relations. Our
work explores utilizing LLMs to extract highly con-
textualized entity structures directly from input con-
text without external knowledge.

3 Method

In this section, we start with the task formulation of
open-schema entity structure discovery, and then
delve into ZOES, a three stages approach for per-
forming the task of OpenESD in detail. An illus-
trated overview of ZOES is in Figure 2.

3.1 Task Formulation

Open-schema entity structure discovery aims to au-
tomatically identify entities and their correspond-
ing structures, from an input document and a given
set of entity types of interest, without relying on
any pre-defined schemas (e.g., pre-defined attribute
names). The structure of each entity is represented
as a set of (attribute, value) pairs, where entities
and their associated structures are derived from the
document. As an example, Figure 1 contains a bat-
tery science domain document discussing multiple
properties regarding the entities “Cell Without the
Additive” and “Cell Containing 0.3wt% TosMIC”.
The discovered entity structures should organize
those properties as a set of attribute-value pairs, like
attribute: “CE at First Cycle” with value: “80.6%”
for “Cell Without the Additive”.

Formally, given a document d and a set of entity
types of interest 7, the goal is to identify a set of
entities £ within 7 such that £ = {e1,...,emn}
and extract the structure of each entity. For an
entity e; € &, let A; = {a;1,...,a;m} be the
set of attributes and V; = {v; 1,..., v} be the
corresponding set of values. We then define the
structure S; as the mapping .S; : A; — V;, which
can be represented alternatively as

Si={(a,v) | a€ A, veVi}.

Each pair (a, v) in S; captures a property of e; that
can be inferred from the document d.

3.2 Triplet Candidates Extraction

Zero-shot triplet extraction using LLMs often suf-
fers from limited knowledge coverage, as LLMs
tend to prioritize extracting explicitly mentioned
and high-frequency attribute-value pairs. Edge et al.
(2025) attempt to improve coverage by prompting
LLMs for multiple extraction rounds. However,
without targeted guidance, such multi-round gener-
ation frequently yields redundant or noisy triplets,
while still failing to recover low-salience but se-
mantically meaningful triplets.

To address this challenge, ZOES first induces root
attributes from an LLM’s initial extracted triplets
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Figure 2: Methodology Overview of ZOES. ZOES operates in three stages: (1) Triplet Candidates Extraction
expands the initial zero-shot EAV triplet set by leveraging generalized root attributes induced from initial extractions
as guidance to uncover additional triplets; (2) Triplet Granularity Refinement applies the triplet mutual dependency
principle to detect and revise under-specified or inconsistent triplets; and (3) Entity Structure Construction
assembles refined triplets into entity structures, which are filtered based on user-specified target entity types.

Tinitial- These root attributes serve as semantic
guidance that clarify what kinds of values are valid
or expected from the context, which assists the
LLM to revisit the document context to discover
missing triplets.

Root Attribute Induction. The initial zero-shot
extraction yields a set of (entity, attribute, value)
triplets T;,,:4:41, Where some attributes are specific
(e.g., “CE at first cycle”, “initial CE”). Such fine-
grained attributes often correspond to only one
triplet. In contrast, a general attribute such as
“Coulombic Efficiency” can mapping to a set of
potential values. We can utilize more general at-
tributes to identify those previously missing values,
thus identifying missing triplets.

Motivated by this observation, we induce root
attributes that abstract over semantically similar
attributes to further guide the triplet enrichment in
the following stage. We first embed all extracted at-
tributes using a dense encoder (Wang et al., 2022),
and then we cluster them based on semantic simi-
larity by agglomerative clustering (Ward Jr, 1963).
This clustering step can groups attributes that ex-
press the same underlying general attribute. For
each cluster, we prompt the LLM to summarize its
members into a coarse-grained root attribute (e.g.,

“Coulombic Efficiency” from “CE at first cycle”,
“CE at the 10th cycle”).

Value-Anchored Enrichment. Once root at-
tributes are identified, we use them to guide the
discovery of additional value mentions. For each
root attribute, we prompt the LLM to revisit the
document and list all corresponding values. This
step often recovers contextually grounded values
(e.g., “higher” a value comparing the CE among
two cells) that align with the root attribute but were
missed initially.

Although some entities may lack explicitly
stated attribute—value structures in the context,
each semantically meaningful value (e.g., “80.6%")
should correspond to at least one valid triplet.
Based on this intuition, each newly discovered
value is treated as an anchor to elicit a missing
triplet. We then prompt the LLM to infer the cor-
responding entity and attribute, constrained by the
associated root attribute. This targeted prompting
enables the recovery of under-expressed or indi-
rectly stated facts, significantly improving extrac-
tion coverage.

By using root attributes as interpretable guides
and values as anchors, this enrichment process
helps the LLM uncover a more complete and se-
mantically coherent (entity, attribute, value) triplet
set Tenrich-



3.3 Triplets Granularity Refinement

Directly prompting LLMs to produce triplets in a
zero-shot setting often yields suboptimal results to
capture complex conditions, since LLMs lack an
explicit understanding of the granularity required
to represent entity structures unambiguously. To
address this, we propose a refinement mechanism
grounded in the Mutual Dependency Principle:

For a triplet ¢ = (e, a,v), we assume
that appropriate granularity is achieved
when any one component can be reliably
inferred from the other two within the
context d.

Based on this principle, given a triplet ¢ = (e, a, v)
from context d, we generate three questions, each
aims to recover one component based on the other
two and the context. Specifically, for each triplet
t; = (ei,a;,vi) € Tenrich, We construct:

QA(ti,d) = { (ge, ans) | ans. € {e;, a;, v},
ge € LLM(t;,d) }

For example, regarding a triplet (Cell without the
Additive, CE, higher ), can construct questions:

* Which cell shows a higher CE?

» What is higher for the cell without the additive?
* What is the CE of the cell without the additive?
The LLM is then prompted to answer these ques-
tions based on context d. We compare the predicted
answer ans, with the masked ground-truth compo-
nent ans.. A triplet is considered mutually con-
sistent if all three components can be accurately
recovered. Otherwise, it is flagged for refinement.
For instance, if the original triplet is (Cell without
the Additive, CE, higher ), by giving only the entity
and attribute, multiple values can be inferred from
the context, which are not necessarily “higher”.
This indicates that the attribute lacks specificity
and needs refinement. To perform refinement, we
treat the value v; as an anchor and prompt the LLM
to revise the entity and attribute conditioned on v;
and context d.

This dependency-driven refinement helps iden-
tify and correct coarse or under-specified triplets,
ensuring that only mutually-consistent triplets are
retained. We denote the final set of refined triplets
as Ty fine, Which serves as the input to the subse-
quent structure construction phase.

3.4 Entity Structure Construction

The final step of ZOES is to merge refined triplets
into coherent entity structures, as illustrated in Fig-

ure 1. Since the refinement step (Section 3.3) uti-
lizes the mutual dependency principle, the resulting
triplets possess better granularity to accurately con-
vey meaningful information unambiguously. To
construct entity structures, we directly prompt the
LLM with both the document context d and the
refined triplet set Tiefine to merge triplets discussing
the same entity to form entity structures Einitial.

Structure-Aware Filtering In real-world appli-
cations, users often have specific types of entities
of interest, denoted as a target type set 7. For each
structured entity e; € Einitial, We use the LLM to
determine whether it belongs to the desired types,
based on its attributes, values, and the document
context:

LLM(e;, T | d) — {True, False}

This structure-aware filtering enables ZOES to uti-
lize entity structures to augment entity names’ se-
mantics. In many domains, entity names alone are
insufficient to determine their relevance or type.
For instance, in battery science, entities such as
“fluoroethylene carbonate” may not clearly indicate
its entity types even with context. However, if we
know it has an attribute as a function in battery
electrolyte, the LLM can directly know its type is
“electrolyte addictive”. Finally, by construction and
filtration, ZOES can produce contextually grounded
entity structures £ in a zero-shot setting.

4 Experiments

We begin with the experimental setup, including
dataset construction, evaluation metrics, and im-
plementation details. We then present our main
results, followed by ablation studies evaluating the
effectiveness of each component in ZOES.

4.1 Dataset Construction

We construct an entity structure extraction
dataset spanning one long-tail domain, Battery
Science, and two general domains, Economics
and Politics. The dataset specifically focuses on
evaluating two challenges of OpenESD: extraction
coverage and extraction granularity introduced in
Section 1. For each domain, the dataset contains a
set of documents and a set of interested entity types.
We will later release the dataset publicly. The statis-
tics of the dataset can be found in Table 2.

Long-Tail Domain. For the Battery Science
domain, we curate paragraphs from top-tier peer-



Model Method ‘ Battery Science ‘ Economics ‘ Politics
‘ Precision  Recall F1 ‘ Precision  Recall F1 ‘ Precision  Recall F1
Llama-3.2-3B Text2Triple (SFT) ‘ 0.2634 0.1718  0.2083 ‘ 0.7312 0.6538  0.6903 ‘ 0.8416 0.7852 0.8124
CoT 0.6087 0.4275 0.5022 0.8880 0.6619  0.7585 0.8214 0.1593  0.2669
GPT-40 Few-Shot 0.7911 0.4771  0.5952 0.9046 0.7149  0.7986 0.9295 0.6397 0.7579
Zoes (Ours) 0.7758 0.6844  0.7287 0.8994 0.9104  0.9049 0.8534 0.9007 0.8764
CoT 0.5562 0.3779  0.4500 0.8493 0.5967 0.7010 0.5952 0.1155 0.1934
GPT-40-mini Few-Shot 0.5102 0.3816  0.4367 0.8657 0.7352  0.7952 0.8933 0.6767  0.7700
Zoes (Ours) 0.5708 0.6441 0.6104 0.8532 0.8289  0.8409 0.8374 0.7852 0.8105
CoT 0.6149 0.3473  0.4439 0.7051 0.4236  0.5293 0.7241 0.0970 0.1711
Granite-8B Few-Shot 0.6579 0.3817 0.4831 0.7398 0.5153 0.6074 0.7431 0.4341 0.5481
Zoes (Ours) 0.5708 0.5229  0.5458 0.8017 0.7821 0.7918 0.7790 0.8383 0.8076

Table 1: Evaluation with user interested entity types across different backbone models and methods on Battery
Science, Economics, and Politics. Bold numbers highlight the best results per backbone model in Battery Science.

Domain | #Documents #Sentences #(E, A, V)s
BatSci 20 197 428
Finance 50 195 491
Politics 50 208 433
Overall 120 675 1,289

Table 2: Dataset statistics across “Battery Science”,
“Finance”, and “Politics” domains. “BatSci” stands
for “Battery Science,” and “(E,A,V)s” denotes
(entity, attribute, value) triplets.

reviewed research articles that discuss the perfor-
mance and applications of battery components.
These paragraphs are characterized by diverse ex-
perimental conditions and frequent comparisons
across similar components. Missing contextual
conditions in such cases can result in misleading
or contradictory information. Furthermore, the
text contains domain-specific terminology and fine-
grained technical descriptions, posing significant
challenges for LLMs to accurately understand and
extract entity structures. This domain exemplifies
the long-tail scenario: high knowledge granularity,
low representation in pretraining corpora, and sub-
stantial variance in how attributes are expressed.

General Domain. We collect paragraphs
from mainstream news agencies, including The
Economist, Fox News, CNN, and BBC, in the
Economics and Politics domains to evaluate
the methods’ performance in general-purpose
scenarios. In the Economics domain, the selected
texts contain analyses with rich numerical data
and fine-grained economic indicators, making it
challenging for LLMs to identify and associate
context-specific attribute—value pairs with the
correct entities. For the Politics domain, all

documents contain diverse entities whose attributes
are scattered across sentences, posing challenges
for extraction completeness. Successful extraction
in this setting requires models to rely solely on
contextual understanding to recognize entities and
infer their corresponding attributes and values.

4.2 Evaluation

To comprehensively evaluate each method’s ability
to extract fine-grained information, we follow prior
structured entity extraction work (Wu et al., 2024),
reporting Precision, Recall, and F1 scores at
the (entity, attribute, value) triplet level. To ensure
high-quality ground truth annotations, we adopt a
pooling-based evaluation strategy: aggregate all
extracted triplets across methods and have experi-
enced annotators from each domain validate them
to construct the reference set. Full details on the
evaluation criteria and annotation process are pro-
vided in Appendix A.

Baselines. Since OpenESD requires contex-
tual understanding to induce attributes from
text—unlike traditional extractive information ex-
traction tasks (Nasar et al., 2021; Zhou et al.,
2024)—we evaluate LLM-based approaches under
both training-based and training-free settings.

For the training-based setting, we report results
from Text2Triple (Jiang et al., 2025), a 3B lan-
guage model fine-tuned on a general-domain open
triplet extraction dataset comprising 2 million in-
stances curated using Claude-Sonnet-3.5.

For training-free methods, we consider three
prompting strategies: Chain-of-Thought (CoT)
prompting (Wei et al., 2022), Few-Shot prompt-
ing (Brown et al., 2020), and our proposed method
ZOES. All three are evaluated using the following



backbone models: GPT-40 (OpenAl et al., 2024),
GPT-40-mini, and Granite-8B (Granite Team,
2024). Prompting templates are provided in Ta-
ble 5.

4.3 Main Results.

Table 1 summarizes the performance of all eval-
uated methods across three domains: Battery
Science, Economics, and Politics with three
backbone models. We have the following observa-
tions: ZOES consistently achieves the highest F1
scores across all domains and backbone models,
outperforming both CoT and Few-Shot prompting.
This highlights the effectiveness and generalizabil-
ity of ZOES in extracting accurate and comprehen-
sive entity structures without relying on annotated
data. However, we also observe that ZOES some-
times exhibits lower precision compared to other
baselines. This may be because ZOES’s enrichment
module 3.2 not only recovers potentially missed ex-
tractions but also introduces noise into the results.
We further analyze the contribution of each module
of ZOES in ablation studies 4.4.

Few-shot prompting generally improves perfor-
mance, surpassing CoT in most cases in terms of
precision, recall, and F1 score. This confirms the
importance of in-context demonstrations in help-
ing LLMs identify relevant attributes and values
in open-schema settings. However, in the Battery
Science domain, the improvement of few-shot
prompting on recall is less pronounced, suggesting
that in long-tail or highly specialized domains, few-
shot examples may be insufficient for uncovering
latent, context-dependent attributes—particularly
when those attributes are nested within complex
experimental conditions. These results highlight
the benefit of ZOES ’s approach: abstracting at-
tributes into coarse-grained representations to help
LLMs uncover missing extractions, followed by a
granularity refinement step to recover fine-grained
contextual conditions.

While supervised fine-tuning can significantly
enhance model performance on in-distribution
data, such improvements often fail to general-
ize to unseen domains. In our experiments,
Text2Triple (Jiang et al., 2025), a model fine-
tuned on general domain, achieves strong perfor-
mance in the Politics domain, with competi-
tive scores in Precision, Recall, and F1. How-
ever, its effectiveness becomes less prominent in
the Economics domain and drops substantially in
the Battery Science domain. This degradation

highlights the limited transferability of supervised
approaches when faced with domain-specific or
out-of-distribution contexts. In contrast, training-
free methods, especially ZOES, demonstrate con-
sistently robust performance across all domains,
underscoring their adaptability and reliability in
zero-shot settings.

4.4 Ablation Analysis

To evaluate the contributions of ZOES’s core com-
ponents, we conduct ablation studies by remov-
ing two key modules: (1) Value-Anchored Enrich-
ment (cf. Section 3.2) and (2) Mutual Dependency-
Based Triplet Refinement (cf. Section 3.3). We
evaluate each variant using GPT-40 as the back-
bone model and report the results in Table 3.

Method Precision Recall F1

ZOES 0.8994 0.9104 0.9049
w/o Enrich 0.8465 0.8758 0.8609
w/o Refine 0.8143 0.8839 0.8477

Table 3: Ablation results evaluated by Precision,
Recall, and F1 on the Finance domain using GPT-4o0 as
the backbone.

As shown in Table 3, removing either component
consistently degrades ZOES’s performance, demon-
strating the effectiveness of each module’s design.
Specifically, the Mutual Dependency-Based Triplet
Refinement module is responsible for correcting
potentially incorrect or incomplete extraction re-
sults. Removing this module noticeably reduces
precision, as the model tends to include overgen-
eralized or ambiguous triplets that may have been
introduced by the enrichment module.

These results also show that enrichment and re-
finement collaboratively enhance ZOES’s perfor-
mance: the enrichment module increases extraction
coverage by discovering previously missed infor-
mation, though it may also yield incomplete results
due to the subtlety of certain implicitly mentioned
attributes. Meanwhile, the refinement module helps
detect and revise ambiguous or partial extractions,
thereby improving the quality of enrichment.

4.5 Coverage Win Rate

To assess extraction coverage across methods, we
compute a coverage win rate for each backbone
model (GPT-40, GPT-40 Mini, Granite-8B) under
three prompting strategies (CoT, Few-Shot, ZOES)
on a per-document basis in the Economics domain.
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Figure 3: Prompting-Based Extraction Coverage Win Rate of different backbone models (GPT-40, GPT-40 Mini,
Granite-8B) using various prompting methods (CoT, Few-Shot, ZOES) in the Economics domain. Each heat map
shows the pairwise win rate between methods, where the value in row ¢, column j represents the proportion of
test instances for which method 7 extracts more correct triplets than method j. For example, with GPT-40, ZOES
outperforms Chain-of-Thought prompting in 74% of instances (win rate = 0.740).

For each document, two annotators independently
compare the extraction results of every method pair.
If both annotators agree that one method extracts
more complete and informative triplets than the
other, it is counted as a win; otherwise, the compar-
ison is marked as a tie. As shown in Figure 3, ZOES
consistently achieves higher win rates compared to
both CoT and Few-Shot prompting across all mod-
els. This indicates that even without training data,
ZOES is capable of capturing more comprehensive
information from diverse contexts, reinforcing its
effectiveness in zero-shot open-schema entity struc-
ture discovery.

4.6 Case Studies

As shown in Table 4, ZOES produces more com-
plete and contextually faithful extractions than Few-
Shot prompting. First, ZOES captures more fine-
grained and semantically rich attributes (e.g., “Cars
Sold in the US Last Year”, “Close Collaborators’)
compared to the relatively generic expressions ex-
tracted by Few-Shot (e.g., “annual car sales in US”).
This improvement stems from ZOES’s mutual-
dependency-based triplet refinement, which detects
and refines ambiguous triplets. Second, ZOES
demonstrates better coverage by identifying addi-
tional informative triplets that are absent in Few-
Shot results, (e.g., “(Toyota, Cars manufactured
Outside US, 1M)”) This is enabled by the value-
anchored enrichment mechanism, which revisits
the document to recover missing triplets under
guided root attributes.

Method ‘ Extracted Entity Structures (Triplets)

(Toyota, largest automaker, world),

(Toyota, annual car sales in US, 2.3 million),

(Toyota, profitability status, profitable),

(Toyota, reputation among analysts, one of the
best-run companies in global auto industry)

Few-shot

(Toyota, Cars Sold in the US Last Year, 2.3M),
(Toyota, Close Collaborators, Subaru & Mazda),
(Toyota, Cars manufactured Outside US, 1M),
(Toyota, Position Among Automakers,

World’s Largest),
(Toyota, Profitability, Profitable)

ZOES

Table 4: Example extracted results on a sample doc-
ument from the Economics domain for “Toyota,” by
ZOES and Few-Shot methods using Granite-8B.

5 Conclusions

We introduce ZOES, a zero-shot, training-free
framework for open-schema entity structure dis-
covery without relying on predefined schemas or
annotated data. ZOES achieves high-quality en-
tity structure extraction across both long-tail and
general domains. Extensive experiments demon-
strate that ZOES not only substantially improves
the performance of smaller language models in a
zero-shot setting, but also outperforms baselines
across three diverse domains. Our findings suggest
that explicitly structuring the entity discovery pro-
cess rather than relying on static prompting alone
offers a robust and principled approach to informa-
tion extraction in long-tail, open-world scenarios.
We believe ZOES is good experimental evidence
for schema-free knowledge extraction with LLMs
and provides a foundation for future research in
context-grounded entity understanding.



Limitations

This work introduces ZOES, a training-free zero-
shot entity structure discovery method, and devel-
ops a dataset on three distinct domains to evaluate
its performance against zero-shot and supervised
baselines. We discuss the following limitations:

Computational Efficiency. Although ZOES sub-
stantially improves LLM performance on open-
schema entity structure extraction, it involves mul-
tiple rounds of generation, enrichment, and refine-
ment. This pipeline process increases computa-
tional cost and inference time, which may hinder
scalability. One potential research direction is to
utilize ZOES extraction results as demonstrations
for LLMs’ few-shot learning on open-schema en-
tity structure discovery.

Evaluation Metrics. Our evaluation relies on
human-annotated reference triplets and a weighted
scoring function to assess the correctness and com-
pleteness of extracted structures. While this en-
sures high-quality assessment, the reliance on man-
ual annotation can introduce subjectivity and may
not scale efficiently to broader domains. Future
work could explore more automated and domain-
agnostic evaluation strategies to improve scalability
and reproducibility.

Ethical Statement

We uphold ethical principles throughout the de-
sign, development, and evaluation of ZOES. The
dataset used in this work was curated with care-
ful attention to exclude any personally identifiable
or sensitive information. All documents included
were collected in accordance with their respective
licensing agreements and terms of use.

Human-annotated test data were collected with
informed consent, following ethical research guide-
lines. To promote fairness and reduce potential
bias, we curated a diverse dataset across three do-
mains and verified that entity types and contextual
structures were broadly representative.
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A Evaluation

A.1 Evaluation Metrics

Let each domain’s dataset be D = {dy, ..., dp|}.
For each document d € D, let P; denote the set of
predicted triples and G4 denote the set of ground-
truth triples.

Each predicted triple ¢ € P, is scored by human
annotators using the following scoring function
S(t), which measures the correctness and com-
pleteness of the extracted structure:

* S(t) = 0, if the triple is incorrect, or if the
entity is not of an interested type.

* S(t) = 0.5, if the triple is correct but incom-
plete, e.g., the entity or value is only partially
captured.

» S(t) = 1, if the triple is both correct and
complete, with all components (entity, at-
tribute, value) accurately captured.

To evaluate overall performance, we aggregate
the scores across all documents. Define:

ID| ID|
P = UPd and G = UGd.
d=1 d=1

We compute the evaluation metrics as:
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Precision =

(1a)

Recall = (1b)

F1=2

" Precision + Recall (le)
Precision measures the proportion of predicted
triples that are judged as correct or partially correct.
High precision indicates the model produces rele-
vant and accurate triples, minimizing hallucinated
or noisy outputs.

Recall quantifies how many ground-truth triples
were successfully recovered. High recall implies
strong extraction coverage over the true structured
information.
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F1 Score is the harmonic mean of precision and
recall, balancing both correctness and coverage.

A.2 Human Annotation Protocol

To ensure rigorous evaluation, we divided the an-
notation task into two teams based on domain ex-
pertise:

Battery Science Domain. Two domain-expert
researchers with Ph.D. degrees in science fields
were recruited.:

* One annotator collected all baseline outputs
and corrected extraction errors to construct
the ground-truth triplets.

* The another annotator independently received
anonymized extraction results from each
method and judged them as correct, partially
correct, or incorrect using the scoring rubric.

General Domain. Three annotators participated:

* A master’s and an undergraduate student in
computer science collaboratively constructed
ground-truth triples from model outputs, fol-
lowing the same procedure.

* A third annotator (a senior undergraduate stu-
dent) independently evaluated the model pre-
dictions in a blind review setting using the
scoring function.

This process ensures that the evaluation is both
context-sensitive and unbiased.

B Prompting Templates & Pseudocode of
ZOES

Table 5 lists all prompting templates used in this
study. For completeness, we also include the pseu-
docode of ZOES in Algorithm 1.



Prompt Name

Prompt Template

0-shot Triplet Extraction

0-shot Root Attribute Induc-
tion

0-shot Value Extraction
0-shot Value-Guided Triplet

Extraction

Mutual Dependency QA
(Question Generation)

Mutual Dependency QA
(Question Answering)

Triplet Refinement

Entity Structure Construc-
tion

Entity Type Filtration

Chain-of-Thought
Extraction

Triplet

Few-Shot Triplet Extraction

You are an expert in information extraction. Extract all (entity, attribute, value) triplets from the
document. Here is the Provided Document: [document]

You are a helpful information extraction assistant. Can you summarize a category name for the
following values?

You are a helpful information extraction assistant. Can you extract all values (exact text spans, with
units) under [document] for each attribute in [root attribute]?

You are an expert information extraction assistant. Given Document: [document] and value types,
extract all values (exact text spans, with units) under each type.

You are a helpful question answering assistant. Given a <entity, attribute, value> triplet, generate three
questions where each question asks for one component using only the other two as context. Do not
infer or hallucinate new information.

You are a helpful question answering assistant. Please answer the following questions using answers
extracted from the context. Context: [context] Question 1: Q_entity Question 2: Q_attribute Question
3: Q_value

There is a <entity, attribute, value> triplet extracted from the context. The original triplet may cause
ambiguity due to an incomplete entity or a non-informative attribute. Refine the given triplet by
extracting exact information from the context, such that the attribute is a clear property of the entity.
Context: [context] Triplet: <entity, attribute, value>

For a given list of (entity, attribute, value) triplets and a context, merge triplets referring to the same
entity into structured objects. Follow this format: "entity name": "attribute": "value", ..., ... Context:

[document] Triplets: [triplets]

You are a helpful assistant. For a given entity with its attribute and values, can you decide whether the
entity belongs to any given entity types based on the context. The given context is: [Context]. The
given triplets are [Triplets]. The given entity types are: [Entity Type]. Response “Yes” or “No”.

You are an expert in information extraction. Instructions: (1) Identify all precise entities of types in [T]
that have associated characteristics. (2) For each entity, extract: - Entity: The name or title - Attribute:
The key property - Value: The associated value (numerical, adjective, or noun phrase) Formatting: -
Output only results - Format exactly: [entity, attribute, value] Document: [document]

You are an expert in information extraction. Instructions: same as Chain-of-Thought Triplet Extraction.
In addition, you are given: Demonstrations: [Demonstrations] Document: [document]

Table 5: Prompt templates used in this work. [ ] and < > denote placeholders.
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Algorithm 1: ZOES: Zero-Shot Open-Schema Entity Structure Discovery

Input: Document d, Target entity types 7
Output: Structured entities £
Step 1: Triplet Candidates Extraction
Tinit < LLM_ZeroShotExtract(d)
Eemb < {f(t) | t € Tinic} // Embed triplets
C + AgglomerativeClustering(Eemp, @)
R+ 0
foreach C; € C do
r; < LLM_SummarizeAttributes(C;)

| R+ RU {7”1}
Tenrich — 71inil
foreach r € R do
VYV, < LLM_ExtractValues(r, d)
foreach v € V, do

thew < LLM_InferTripletByValue(v,r, d)

if tyew # () then

L ﬂnrich — Tenrich U {tnew}

Step 2: Triplet Granularity Refinement
T;'eﬁne — @
foreach t = (e, a,v) € Tonicy do
1s_consistent < True
foreach c € {e,a,v} do

ge + GenerateQuestion(t \ {c})

ac < LLM_Answer(qc, d)

if ac # c then

| is_consistent < False; break

if 7s_consistent then
‘ T‘reﬁne — T‘reﬁne U {t}
else
t' + LLM_RefineTriplet(v, d)
if t' # 0 then
L T}cﬁnc — T}cﬁnc U {t/}

Step 3: Entity Structure Construction
Einit < LLM_ConstructEntities(Tiefine, d)
E«— 0
foreach e € &, do
if LLM_IsTypeMatch(e, T, d) then
| €+ Eude}

return £
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