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Abstract

Entity structure extraction, which aims to001
extract entities and their associated at-002
tribute–value structures from text, is an essen-003
tial task for text understanding and knowledge004
graph construction. Existing methods based on005
large language models (LLMs) typically rely006
heavily on predefined entity attribute schemas007
or annotated datasets, often leading to incom-008
plete extraction results. To address these chal-009
lenges, we introduce Zero-Shot Open-schema010
Entity Structure Discovery (ZOES), a novel ap-011
proach to entity structure extraction that does012
not require any schema or annotated samples.013
ZOES operates via a principled mechanism of014
enrichment, refinement, and unification, based015
on the insight that an entity and its associ-016
ated structure are mutually reinforcing. Ex-017
periments demonstrate that ZOES consistently018
enhances LLMs’ ability to extract more com-019
plete entity structures across three different do-020
mains, showcasing both the effectiveness and021
generalizability of the method. These findings022
suggest that such an enrichment, refinement,023
and unification mechanism may serve as a prin-024
cipled approach to improving the quality of025
LLM-based entity structure discovery in vari-026
ous scenarios.027

1 Introduction028

Automatic mining of structured entity informa-029

tion is critical for knowledge discovery and man-030

agement (Zhong et al., 2023a; Arsenyan et al.,031

2024). Prior works on entity information extrac-032

tion—including relation extraction (Ding et al.,033

2024; Zhou et al., 2024; Zhang et al., 2025), entity034

typing (Onoe and Durrett, 2020; Tong et al., 2025),035

and named entity recognition (Li et al., 2020; Ker-036

aghel et al., 2024)—have primarily focused on ex-037

tracting isolated aspects of entity knowledge. How-038

ever, modeling only a single aspect of entity in-039

formation may be insufficient for real-world appli-040

cations (Jiao et al., 2023; Dagdelen et al., 2024).041
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...The CE of the cell without the additive is 80.6% at the first 
cycle and increases to 99.1% at the 10th cycle. However, the first 
CE of the cell containing 0.3 wt % TosMlC decreases to 70.1%, 
and the value of this parameter reaches 99% after 30 cycles.in 

subsequent cycles, the CE value of this cell is always significantly 
higher than that of the cell without TosMlC, and their average 

values are 99.53% and 99.37% respectively...
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Figure 1: An example of the entity structure discovery
task with applications. The figure depicts CEs of two
discovered cells with their attributes and values orga-
nized as in the source passage from (Zhu et al., 2023).

For example, in the battery science domain, a bat- 042

tery’s performance is determined by complex con- 043

ditions (Zhou et al., 2023). As shown in Figure 1, 044

even for the same battery, its “Coulombic Effi- 045

ciency” (CE) value varies across different cycles. A 046

single triplet (e.g., ⟨Cell Without the Additive, CE 047

at First Cycle, 80.6% ⟩) conveys limited informa- 048

tion about the battery’s performance. In contrast, 049

unifying performance across different conditions 050

into a structured representation provides a clearer 051

and more comprehensive view. Therefore, there is 052

a need for a unified representation of entity infor- 053

mation—one that integrates multiple aspects rather 054

than focusing on a single one (Lu et al., 2023). 055

Recently, closed-schema entity structure extrac- 056

tion has been proposed to unify various aspects of 057

entity information under predefined type schemas, 058

where each entity type is associated with a fixed set 059

of attributes (Zhong et al., 2023b; Wu et al., 2024). 060

The goal is to extract structured entities represented 061

as the entity along with a set of ⟨attribute, value⟩ 062

pairs. By combining with the entity name to form 063
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⟨entity, attribute, value⟩ triplet, it can capture a spe-064

cific property of the entity, as illustrated in Figure 1.065

However, like other closed-schema information ex-066

traction tasks (Li et al., 2021; Zhou et al., 2023),067

entity type schemas confine the extraction on a lim-068

ited set of attributes, which fail to capture diverse069

and unseen attributes in fast-evolving real-world070

scenarios (Pai et al., 2024).071

To enable entity structure extraction to cap-072

ture more diverse and dynamic information, we073

extend traditional closed-schema entity structure074

extraction to an open information extraction set-075

ting (Mausam, 2016), which we term Open-076

Schema Entity Structure Discovery (OpenESD).077

In OpenESD, we want to identify entities within078

user interests and their ⟨attribute, value⟩ structures079

without any predefined attribute sets as a schema.080

OpenESD can benefit many downstream tasks such081

as information retrieval (Kang et al., 2024) and082

question answering (Edge et al., 2025; Gutiérrez083

et al., 2025; Jiang et al., 2025).084

With an open-schema setting, OpenESD goes085

beyond straightforward extraction: it demands dis-086

covering (Jiao et al., 2023), organizing (Wu et al.,087

2024), and inferring (Ding et al., 2024) the most088

appropriate attributes and values for each entity.089

Large language models (LLMs) with exten-090

sive parametric knowledge have demonstrated091

promising performance in open information ex-092

traction (Jiao et al., 2022; Lu et al., 2023), offer-093

ing a promising solution for OpenESD. However,094

fully harnessing this capability remains challeng-095

ing. (i) Extraction Coverage: An LLM tends096

to capture coarse-grained facts that are more fre-097

quent in its parametric knowledge while missing098

rare, fine-grained information from the context. (ii)099

Extraction Granularity: When the context con-100

tains rich details, LLMs may fail to identify the101

appropriate level of granularity for representing the102

extracted information, resulting in incomplete or103

ambiguous structures. For example, as illustrated in104

Figure 1, if the extracted “CE” attributes fail to cap-105

ture contextual conditions, multiple “CE” values106

may be incorrectly mapped to the same attribute,107

leading to inaccurate results.108

To enhance LLMs’ capability on OpenESD,109

we introducing ZOES, a zero-shot open-schema110

entity structure discovery framework. By em-111

ploying a principled mechanism of enrichment, re-112

finement, and unification, ZOES effectively extracts113

structured entity information without supervision.114

Specifically, ZOES starts with the LLM’s zero-shot115

⟨attribute, value⟩ triplets results, then gradually dis- 116

covers new triplets to enrich it. Next, ZOES lever- 117

ages mutual dependencies among triplet elements 118

to identify and refine inferior triplets. Finally, the 119

refined triplets are aggregated into entity structures 120

as coherent representations of the entities based on 121

user interest. 122

We evaluate ZOES using different backbone mod- 123

els on one long-tail domain: Battery Science and 124

two general domains: Economics and Politics. 125

The results demonstrate that ZOES can consistently 126

outperform baselines with different backbone mod- 127

els in all domains. ZOES achieves an absolute im- 128

provement of +10.64% in the F1 score. These 129

results demonstrate the effectiveness and generaliz- 130

ability of our method for OpenESD. 131

Our contributions are summarized as follows. 132

1. We introduce open-schema entity structure dis- 133

covery, a task to automatically identify entities 134

within user interest along with their contextual 135

⟨attribute, value⟩ structures without any prede- 136

fined schema, which can benefit several knowl- 137

edge intensive tasks. 138

2. We propose ZOES, a zero-shot open-schema 139

entity structure discovery method. By enrich- 140

refine-unify strategy, ZOES substantially im- 141

proves LLMs’ performance on OpenESD. 142

3. We construct labeled datasets on three very dif- 143

ferent domains and comprehensively evaluate 144

ZOES and baselines to further studies LLMs’ 145

capabilities on OpenESD. 146

2 Related Work 147

2.1 Open Information Extraction 148

Open Information Extraction (OpenIE) aims to 149

extract structured information from unstructured 150

text without relying on predefined schemas (Zhou 151

et al., 2022; Pai et al., 2024). Early OpenIE relied 152

on rule-based methods (Del Corro and Gemulla, 153

2013; Mausam, 2016), sequence labeling (Ro et al., 154

2020; Vasilkovsky et al., 2022; Yu et al., 2021), 155

or sequence-to-sequence models (Kolluru et al., 156

2022) to extract relational triplets from individual 157

sentences. However, sentence-level relation ex- 158

tractions cannot capture cross-sentence relational 159

information (Dunn et al., 2022; Wu et al., 2024), 160

which leads to low information extraction coverage 161

and limited representation quality (Li et al., 2021; 162

Dagdelen et al., 2024). 163

Recent advances in OpenIE focus on lever- 164

aging LLMs to perform more expressive and 165
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instruction-following extractions (Jiao et al., 2023;166

Qi et al., 2024). These models support more flex-167

ible and user-guided information extraction, mov-168

ing beyond fixed triplet formats toward on-demand169

schemas (Qi et al., 2024). While these approaches170

significantly improve the coverage and adaptability171

of OpenIE, they typically require substantial anno-172

tated training data or task-specific instruction tun-173

ing (Lu et al., 2023), which constrains their applica-174

bility in low-resource or specialized domains (Wei175

et al., 2023). Compared with previous works, ZOES176

focuses on a generalizable approach to guide LLMs177

to unify document-level entity information into178

structured representations by leveraging internal179

structural consistency, rather than relying on exten-180

sive training or annotations.181

2.2 Zero-shot Relation Extraction182

Zero-shot relation extraction (ZSRE) aims to iden-183

tify semantic relations between entities without184

relying on labeled training instances (Levy et al.,185

2017). Prior work has predominantly approached186

this task by leveraging semantic representations to187

generalize to unseen relations (Chen and Li, 2021;188

Tran et al., 2022; Zhao et al., 2023). For exam-189

ple, Chen and Li (2021) proposed ZS-BERT, a190

supervised model that learns relation embeddings191

from attribute descriptions. Similarly, Zhao et al.192

(2023) introduced a fine-grained matching frame-193

work that integrates both entity and context embed-194

dings to enhance zero-shot prediction. However,195

such embedding-based methods are sensitive to the196

exact wording of relation labels, limiting their ro-197

bustness and generalizability in real-world settings.198

More recently, LLMs have enabled a new199

paradigm in zero-shot relation extraction (Li et al.,200

2023; Xue et al., 2024; Zhou et al., 2024). One line201

of work explores using LLMs to generate relational202

statements directly from entity mentions, rather203

than extracting from predefined relation schemas204

or sentence-level contexts (Jiang et al., 2024; Ding205

et al., 2024). For instance, Ding et al. (2024) lever-206

age LLMs’ implicit understanding of entity types207

to generate topic-specific relations by aggregat-208

ing corpus-level evidence. While these methods209

demonstrate strong generalization capabilities, they210

often produce high-level or generic relations. Our211

work explores utilizing LLMs to extract highly con-212

textualized entity structures directly from input con-213

text without external knowledge.214

3 Method 215

In this section, we start with the task formulation of 216

open-schema entity structure discovery, and then 217

delve into ZOES, a three stages approach for per- 218

forming the task of OpenESD in detail. An illus- 219

trated overview of ZOES is in Figure 2. 220

3.1 Task Formulation 221

Open-schema entity structure discovery aims to au- 222

tomatically identify entities and their correspond- 223

ing structures, from an input document and a given 224

set of entity types of interest, without relying on 225

any pre-defined schemas (e.g., pre-defined attribute 226

names). The structure of each entity is represented 227

as a set of ⟨attribute, value⟩ pairs, where entities 228

and their associated structures are derived from the 229

document. As an example, Figure 1 contains a bat- 230

tery science domain document discussing multiple 231

properties regarding the entities “Cell Without the 232

Additive” and “Cell Containing 0.3wt% TosMIC”. 233

The discovered entity structures should organize 234

those properties as a set of attribute-value pairs, like 235

attribute: “CE at First Cycle” with value: “80.6%” 236

for “Cell Without the Additive”. 237

Formally, given a document d and a set of entity 238

types of interest T , the goal is to identify a set of 239

entities E within T such that E = {e1, . . . , em} 240

and extract the structure of each entity. For an 241

entity ei ∈ E , let Ai = {ai,1, . . . , ai,m} be the 242

set of attributes and Vi = {vi,1, . . . , vi,m} be the 243

corresponding set of values. We then define the 244

structure Si as the mapping Si : Ai → Vi, which 245

can be represented alternatively as 246

Si =
{
(a, v) | a ∈ Ai, v ∈ Vi

}
. 247

Each pair
(
a, v

)
in Si captures a property of ei that 248

can be inferred from the document d. 249

3.2 Triplet Candidates Extraction 250

Zero-shot triplet extraction using LLMs often suf- 251

fers from limited knowledge coverage, as LLMs 252

tend to prioritize extracting explicitly mentioned 253

and high-frequency attribute-value pairs. Edge et al. 254

(2025) attempt to improve coverage by prompting 255

LLMs for multiple extraction rounds. However, 256

without targeted guidance, such multi-round gener- 257

ation frequently yields redundant or noisy triplets, 258

while still failing to recover low-salience but se- 259

mantically meaningful triplets. 260

To address this challenge, ZOES first induces root 261

attributes from an LLM’s initial extracted triplets 262
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Figure 2: Methodology Overview of ZOES. ZOES operates in three stages: (1) Triplet Candidates Extraction
expands the initial zero-shot EAV triplet set by leveraging generalized root attributes induced from initial extractions
as guidance to uncover additional triplets; (2) Triplet Granularity Refinement applies the triplet mutual dependency
principle to detect and revise under-specified or inconsistent triplets; and (3) Entity Structure Construction
assembles refined triplets into entity structures, which are filtered based on user-specified target entity types.

Tinitial. These root attributes serve as semantic263

guidance that clarify what kinds of values are valid264

or expected from the context, which assists the265

LLM to revisit the document context to discover266

missing triplets.267

Root Attribute Induction. The initial zero-shot268

extraction yields a set of ⟨entity, attribute, value⟩269

triplets Tinitial, where some attributes are specific270

(e.g., “CE at first cycle”, “initial CE”). Such fine-271

grained attributes often correspond to only one272

triplet. In contrast, a general attribute such as273

“Coulombic Efficiency” can mapping to a set of274

potential values. We can utilize more general at-275

tributes to identify those previously missing values,276

thus identifying missing triplets.277

Motivated by this observation, we induce root278

attributes that abstract over semantically similar279

attributes to further guide the triplet enrichment in280

the following stage. We first embed all extracted at-281

tributes using a dense encoder (Wang et al., 2022),282

and then we cluster them based on semantic simi-283

larity by agglomerative clustering (Ward Jr, 1963).284

This clustering step can groups attributes that ex-285

press the same underlying general attribute. For286

each cluster, we prompt the LLM to summarize its287

members into a coarse-grained root attribute (e.g.,288

“Coulombic Efficiency” from “CE at first cycle”,289

“CE at the 10th cycle”).290

Value-Anchored Enrichment. Once root at- 291

tributes are identified, we use them to guide the 292

discovery of additional value mentions. For each 293

root attribute, we prompt the LLM to revisit the 294

document and list all corresponding values. This 295

step often recovers contextually grounded values 296

(e.g., “higher” a value comparing the CE among 297

two cells) that align with the root attribute but were 298

missed initially. 299

Although some entities may lack explicitly 300

stated attribute–value structures in the context, 301

each semantically meaningful value (e.g., “80.6%”) 302

should correspond to at least one valid triplet. 303

Based on this intuition, each newly discovered 304

value is treated as an anchor to elicit a missing 305

triplet. We then prompt the LLM to infer the cor- 306

responding entity and attribute, constrained by the 307

associated root attribute. This targeted prompting 308

enables the recovery of under-expressed or indi- 309

rectly stated facts, significantly improving extrac- 310

tion coverage. 311

By using root attributes as interpretable guides 312

and values as anchors, this enrichment process 313

helps the LLM uncover a more complete and se- 314

mantically coherent ⟨entity, attribute, value⟩ triplet 315

set Tenrich. 316
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3.3 Triplets Granularity Refinement317

Directly prompting LLMs to produce triplets in a318

zero-shot setting often yields suboptimal results to319

capture complex conditions, since LLMs lack an320

explicit understanding of the granularity required321

to represent entity structures unambiguously. To322

address this, we propose a refinement mechanism323

grounded in the Mutual Dependency Principle:324

For a triplet t = ⟨e, a, v⟩, we assume325

that appropriate granularity is achieved326

when any one component can be reliably327

inferred from the other two within the328

context d.329

Based on this principle, given a triplet t = ⟨e, a, v⟩330

from context d, we generate three questions, each331

aims to recover one component based on the other332

two and the context. Specifically, for each triplet333

ti = ⟨ei, ai, vi⟩ ∈ Tenrich, we construct:334

QA(ti, d) =
{
⟨qc, ansc⟩

∣∣ ansc ∈ {ei, ai, vi},335

qc ∈ LLM(ti, d)
}

336

For example, regarding a triplet ⟨Cell without the337

Additive, CE, higher ⟩, can construct questions:338

• Which cell shows a higher CE?339

• What is higher for the cell without the additive?340

• What is the CE of the cell without the additive?341

The LLM is then prompted to answer these ques-342

tions based on context d. We compare the predicted343

answer ansp with the masked ground-truth compo-344

nent ansc. A triplet is considered mutually con-345

sistent if all three components can be accurately346

recovered. Otherwise, it is flagged for refinement.347

For instance, if the original triplet is ⟨Cell without348

the Additive, CE, higher ⟩, by giving only the entity349

and attribute, multiple values can be inferred from350

the context, which are not necessarily “higher”.351

This indicates that the attribute lacks specificity352

and needs refinement. To perform refinement, we353

treat the value vi as an anchor and prompt the LLM354

to revise the entity and attribute conditioned on vi355

and context d.356

This dependency-driven refinement helps iden-357

tify and correct coarse or under-specified triplets,358

ensuring that only mutually-consistent triplets are359

retained. We denote the final set of refined triplets360

as Trefine, which serves as the input to the subse-361

quent structure construction phase.362

3.4 Entity Structure Construction363

The final step of ZOES is to merge refined triplets364

into coherent entity structures, as illustrated in Fig-365

ure 1. Since the refinement step (Section 3.3) uti- 366

lizes the mutual dependency principle, the resulting 367

triplets possess better granularity to accurately con- 368

vey meaningful information unambiguously. To 369

construct entity structures, we directly prompt the 370

LLM with both the document context d and the 371

refined triplet set Trefine to merge triplets discussing 372

the same entity to form entity structures Einitial. 373

Structure-Aware Filtering In real-world appli- 374

cations, users often have specific types of entities 375

of interest, denoted as a target type set T . For each 376

structured entity ei ∈ Einitial, we use the LLM to 377

determine whether it belongs to the desired types, 378

based on its attributes, values, and the document 379

context: 380

LLM(ei, T | d) → {True,False} 381

This structure-aware filtering enables ZOES to uti- 382

lize entity structures to augment entity names’ se- 383

mantics. In many domains, entity names alone are 384

insufficient to determine their relevance or type. 385

For instance, in battery science, entities such as 386

“fluoroethylene carbonate” may not clearly indicate 387

its entity types even with context. However, if we 388

know it has an attribute as a function in battery 389

electrolyte, the LLM can directly know its type is 390

“electrolyte addictive”. Finally, by construction and 391

filtration, ZOES can produce contextually grounded 392

entity structures E in a zero-shot setting. 393

4 Experiments 394

We begin with the experimental setup, including 395

dataset construction, evaluation metrics, and im- 396

plementation details. We then present our main 397

results, followed by ablation studies evaluating the 398

effectiveness of each component in ZOES. 399

4.1 Dataset Construction 400

We construct an entity structure extraction 401

dataset spanning one long-tail domain, Battery 402

Science, and two general domains, Economics 403

and Politics. The dataset specifically focuses on 404

evaluating two challenges of OpenESD: extraction 405

coverage and extraction granularity introduced in 406

Section 1. For each domain, the dataset contains a 407

set of documents and a set of interested entity types. 408

We will later release the dataset publicly. The statis- 409

tics of the dataset can be found in Table 2. 410

Long-Tail Domain. For the Battery Science 411

domain, we curate paragraphs from top-tier peer- 412
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Model Method Battery Science Economics Politics

Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama-3.2-3B Text2Triple (SFT) 0.2634 0.1718 0.2083 0.7312 0.6538 0.6903 0.8416 0.7852 0.8124

GPT-4o
CoT 0.6087 0.4275 0.5022 0.8880 0.6619 0.7585 0.8214 0.1593 0.2669

Few-Shot 0.7911 0.4771 0.5952 0.9046 0.7149 0.7986 0.9295 0.6397 0.7579
Zoes (Ours) 0.7758 0.6844 0.7287 0.8994 0.9104 0.9049 0.8534 0.9007 0.8764

GPT-4o-mini
CoT 0.5562 0.3779 0.4500 0.8493 0.5967 0.7010 0.5952 0.1155 0.1934

Few-Shot 0.5102 0.3816 0.4367 0.8657 0.7352 0.7952 0.8933 0.6767 0.7700
Zoes (Ours) 0.5708 0.6441 0.6104 0.8532 0.8289 0.8409 0.8374 0.7852 0.8105

Granite-8B
CoT 0.6149 0.3473 0.4439 0.7051 0.4236 0.5293 0.7241 0.0970 0.1711

Few-Shot 0.6579 0.3817 0.4831 0.7398 0.5153 0.6074 0.7431 0.4341 0.5481
Zoes (Ours) 0.5708 0.5229 0.5458 0.8017 0.7821 0.7918 0.7790 0.8383 0.8076

Table 1: Evaluation with user interested entity types across different backbone models and methods on Battery
Science, Economics, and Politics. Bold numbers highlight the best results per backbone model in Battery Science.

Domain #Documents #Sentences #(E, A, V)s

BatSci 20 197 428
Finance 50 195 491
Politics 50 208 433

Overall 120 675 1,289

Table 2: Dataset statistics across “Battery Science”,
“Finance”, and “Politics” domains. “BatSci” stands
for “Battery Science,” and “(E,A, V )s” denotes
⟨entity, attribute, value⟩ triplets.

reviewed research articles that discuss the perfor-413

mance and applications of battery components.414

These paragraphs are characterized by diverse ex-415

perimental conditions and frequent comparisons416

across similar components. Missing contextual417

conditions in such cases can result in misleading418

or contradictory information. Furthermore, the419

text contains domain-specific terminology and fine-420

grained technical descriptions, posing significant421

challenges for LLMs to accurately understand and422

extract entity structures. This domain exemplifies423

the long-tail scenario: high knowledge granularity,424

low representation in pretraining corpora, and sub-425

stantial variance in how attributes are expressed.426

General Domain. We collect paragraphs427

from mainstream news agencies, including The428

Economist, Fox News, CNN, and BBC, in the429

Economics and Politics domains to evaluate430

the methods’ performance in general-purpose431

scenarios. In the Economics domain, the selected432

texts contain analyses with rich numerical data433

and fine-grained economic indicators, making it434

challenging for LLMs to identify and associate435

context-specific attribute–value pairs with the436

correct entities. For the Politics domain, all437

documents contain diverse entities whose attributes 438

are scattered across sentences, posing challenges 439

for extraction completeness. Successful extraction 440

in this setting requires models to rely solely on 441

contextual understanding to recognize entities and 442

infer their corresponding attributes and values. 443

4.2 Evaluation 444

To comprehensively evaluate each method’s ability 445

to extract fine-grained information, we follow prior 446

structured entity extraction work (Wu et al., 2024), 447

reporting Precision, Recall, and F1 scores at 448

the ⟨entity, attribute, value⟩ triplet level. To ensure 449

high-quality ground truth annotations, we adopt a 450

pooling-based evaluation strategy: aggregate all 451

extracted triplets across methods and have experi- 452

enced annotators from each domain validate them 453

to construct the reference set. Full details on the 454

evaluation criteria and annotation process are pro- 455

vided in Appendix A. 456

Baselines. Since OpenESD requires contex- 457

tual understanding to induce attributes from 458

text—unlike traditional extractive information ex- 459

traction tasks (Nasar et al., 2021; Zhou et al., 460

2024)—we evaluate LLM-based approaches under 461

both training-based and training-free settings. 462

For the training-based setting, we report results 463

from Text2Triple (Jiang et al., 2025), a 3B lan- 464

guage model fine-tuned on a general-domain open 465

triplet extraction dataset comprising 2 million in- 466

stances curated using Claude-Sonnet-3.5. 467

For training-free methods, we consider three 468

prompting strategies: Chain-of-Thought (CoT) 469

prompting (Wei et al., 2022), Few-Shot prompt- 470

ing (Brown et al., 2020), and our proposed method 471

ZOES. All three are evaluated using the following 472
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backbone models: GPT-4o (OpenAI et al., 2024),473

GPT-4o-mini, and Granite-8B (Granite Team,474

2024). Prompting templates are provided in Ta-475

ble 5.476

4.3 Main Results.477

Table 1 summarizes the performance of all eval-478

uated methods across three domains: Battery479

Science, Economics, and Politics with three480

backbone models. We have the following observa-481

tions: ZOES consistently achieves the highest F1482

scores across all domains and backbone models,483

outperforming both CoT and Few-Shot prompting.484

This highlights the effectiveness and generalizabil-485

ity of ZOES in extracting accurate and comprehen-486

sive entity structures without relying on annotated487

data. However, we also observe that ZOES some-488

times exhibits lower precision compared to other489

baselines. This may be because ZOES’s enrichment490

module 3.2 not only recovers potentially missed ex-491

tractions but also introduces noise into the results.492

We further analyze the contribution of each module493

of ZOES in ablation studies 4.4.494

Few-shot prompting generally improves perfor-495

mance, surpassing CoT in most cases in terms of496

precision, recall, and F1 score. This confirms the497

importance of in-context demonstrations in help-498

ing LLMs identify relevant attributes and values499

in open-schema settings. However, in the Battery500

Science domain, the improvement of few-shot501

prompting on recall is less pronounced, suggesting502

that in long-tail or highly specialized domains, few-503

shot examples may be insufficient for uncovering504

latent, context-dependent attributes—particularly505

when those attributes are nested within complex506

experimental conditions. These results highlight507

the benefit of ZOES ’s approach: abstracting at-508

tributes into coarse-grained representations to help509

LLMs uncover missing extractions, followed by a510

granularity refinement step to recover fine-grained511

contextual conditions.512

While supervised fine-tuning can significantly513

enhance model performance on in-distribution514

data, such improvements often fail to general-515

ize to unseen domains. In our experiments,516

Text2Triple (Jiang et al., 2025), a model fine-517

tuned on general domain, achieves strong perfor-518

mance in the Politics domain, with competi-519

tive scores in Precision, Recall, and F1. How-520

ever, its effectiveness becomes less prominent in521

the Economics domain and drops substantially in522

the Battery Science domain. This degradation523

highlights the limited transferability of supervised 524

approaches when faced with domain-specific or 525

out-of-distribution contexts. In contrast, training- 526

free methods, especially ZOES, demonstrate con- 527

sistently robust performance across all domains, 528

underscoring their adaptability and reliability in 529

zero-shot settings. 530

4.4 Ablation Analysis 531

To evaluate the contributions of ZOES’s core com- 532

ponents, we conduct ablation studies by remov- 533

ing two key modules: (1) Value-Anchored Enrich- 534

ment (cf. Section 3.2) and (2) Mutual Dependency- 535

Based Triplet Refinement (cf. Section 3.3). We 536

evaluate each variant using GPT-4o as the back- 537

bone model and report the results in Table 3. 538

Method Precision Recall F1

ZOES 0.8994 0.9104 0.9049
w/o Enrich 0.8465 0.8758 0.8609
w/o Refine 0.8143 0.8839 0.8477

Table 3: Ablation results evaluated by Precision,
Recall, and F1 on the Finance domain using GPT-4o as
the backbone.

As shown in Table 3, removing either component 539

consistently degrades ZOES’s performance, demon- 540

strating the effectiveness of each module’s design. 541

Specifically, the Mutual Dependency-Based Triplet 542

Refinement module is responsible for correcting 543

potentially incorrect or incomplete extraction re- 544

sults. Removing this module noticeably reduces 545

precision, as the model tends to include overgen- 546

eralized or ambiguous triplets that may have been 547

introduced by the enrichment module. 548

These results also show that enrichment and re- 549

finement collaboratively enhance ZOES’s perfor- 550

mance: the enrichment module increases extraction 551

coverage by discovering previously missed infor- 552

mation, though it may also yield incomplete results 553

due to the subtlety of certain implicitly mentioned 554

attributes. Meanwhile, the refinement module helps 555

detect and revise ambiguous or partial extractions, 556

thereby improving the quality of enrichment. 557

4.5 Coverage Win Rate 558

To assess extraction coverage across methods, we 559

compute a coverage win rate for each backbone 560

model (GPT-4o, GPT-4o Mini, Granite-8B) under 561

three prompting strategies (CoT, Few-Shot, ZOES) 562

on a per-document basis in the Economics domain. 563
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Figure 3: Prompting-Based Extraction Coverage Win Rate of different backbone models (GPT-4o, GPT-4o Mini,
Granite-8B) using various prompting methods (CoT, Few-Shot, ZOES) in the Economics domain. Each heat map
shows the pairwise win rate between methods, where the value in row i, column j represents the proportion of
test instances for which method i extracts more correct triplets than method j. For example, with GPT-4o, ZOES
outperforms Chain-of-Thought prompting in 74% of instances (win rate = 0.740).

For each document, two annotators independently564

compare the extraction results of every method pair.565

If both annotators agree that one method extracts566

more complete and informative triplets than the567

other, it is counted as a win; otherwise, the compar-568

ison is marked as a tie. As shown in Figure 3, ZOES569

consistently achieves higher win rates compared to570

both CoT and Few-Shot prompting across all mod-571

els. This indicates that even without training data,572

ZOES is capable of capturing more comprehensive573

information from diverse contexts, reinforcing its574

effectiveness in zero-shot open-schema entity struc-575

ture discovery.576

4.6 Case Studies577

As shown in Table 4, ZOES produces more com-578

plete and contextually faithful extractions than Few-579

Shot prompting. First, ZOES captures more fine-580

grained and semantically rich attributes (e.g., “Cars581

Sold in the US Last Year”, “Close Collaborators”)582

compared to the relatively generic expressions ex-583

tracted by Few-Shot (e.g., “annual car sales in US”).584

This improvement stems from ZOES’s mutual-585

dependency-based triplet refinement, which detects586

and refines ambiguous triplets. Second, ZOES587

demonstrates better coverage by identifying addi-588

tional informative triplets that are absent in Few-589

Shot results, (e.g., “(Toyota, Cars manufactured590

Outside US, 1M)”) This is enabled by the value-591

anchored enrichment mechanism, which revisits592

the document to recover missing triplets under593

guided root attributes.594

Method Extracted Entity Structures (Triplets)

Few-shot

(Toyota, largest automaker, world),
(Toyota, annual car sales in US, 2.3 million),
(Toyota, profitability status, profitable),
(Toyota, reputation among analysts, one of the

best-run companies in global auto industry)

ZOES

(Toyota, Cars Sold in the US Last Year, 2.3M),
(Toyota, Close Collaborators, Subaru & Mazda),
(Toyota, Cars manufactured Outside US, 1M),
(Toyota, Position Among Automakers,

World’s Largest),
(Toyota, Profitability, Profitable)

Table 4: Example extracted results on a sample doc-
ument from the Economics domain for “Toyota,” by
ZOES and Few-Shot methods using Granite-8B.

5 Conclusions 595

We introduce ZOES, a zero-shot, training-free 596

framework for open-schema entity structure dis- 597

covery without relying on predefined schemas or 598

annotated data. ZOES achieves high-quality en- 599

tity structure extraction across both long-tail and 600

general domains. Extensive experiments demon- 601

strate that ZOES not only substantially improves 602

the performance of smaller language models in a 603

zero-shot setting, but also outperforms baselines 604

across three diverse domains. Our findings suggest 605

that explicitly structuring the entity discovery pro- 606

cess rather than relying on static prompting alone 607

offers a robust and principled approach to informa- 608

tion extraction in long-tail, open-world scenarios. 609

We believe ZOES is good experimental evidence 610

for schema-free knowledge extraction with LLMs 611

and provides a foundation for future research in 612

context-grounded entity understanding. 613
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Limitations614

This work introduces ZOES, a training-free zero-615

shot entity structure discovery method, and devel-616

ops a dataset on three distinct domains to evaluate617

its performance against zero-shot and supervised618

baselines. We discuss the following limitations:619

Computational Efficiency. Although ZOES sub-620

stantially improves LLM performance on open-621

schema entity structure extraction, it involves mul-622

tiple rounds of generation, enrichment, and refine-623

ment. This pipeline process increases computa-624

tional cost and inference time, which may hinder625

scalability. One potential research direction is to626

utilize ZOES extraction results as demonstrations627

for LLMs’ few-shot learning on open-schema en-628

tity structure discovery.629

Evaluation Metrics. Our evaluation relies on630

human-annotated reference triplets and a weighted631

scoring function to assess the correctness and com-632

pleteness of extracted structures. While this en-633

sures high-quality assessment, the reliance on man-634

ual annotation can introduce subjectivity and may635

not scale efficiently to broader domains. Future636

work could explore more automated and domain-637

agnostic evaluation strategies to improve scalability638

and reproducibility.639

Ethical Statement640

We uphold ethical principles throughout the de-641

sign, development, and evaluation of ZOES. The642

dataset used in this work was curated with care-643

ful attention to exclude any personally identifiable644

or sensitive information. All documents included645

were collected in accordance with their respective646

licensing agreements and terms of use.647

Human-annotated test data were collected with648

informed consent, following ethical research guide-649

lines. To promote fairness and reduce potential650

bias, we curated a diverse dataset across three do-651

mains and verified that entity types and contextual652

structures were broadly representative.653
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A Evaluation923

A.1 Evaluation Metrics924

Let each domain’s dataset be D = {d1, . . . , d|D|}.925

For each document d ∈ D, let Pd denote the set of926

predicted triples and Gd denote the set of ground-927

truth triples.928

Each predicted triple t ∈ Pd is scored by human929

annotators using the following scoring function930

S(t), which measures the correctness and com-931

pleteness of the extracted structure:932

• S(t) = 0, if the triple is incorrect, or if the933

entity is not of an interested type.934

• S(t) = 0.5, if the triple is correct but incom-935

plete, e.g., the entity or value is only partially936

captured.937

• S(t) = 1, if the triple is both correct and938

complete, with all components (entity, at-939

tribute, value) accurately captured.940

To evaluate overall performance, we aggregate941

the scores across all documents. Define:942

P =

|D|⋃
d=1

Pd and G =

|D|⋃
d=1

Gd.943

We compute the evaluation metrics as:944

Precision =

|D|∑
d=1

∑
t∈Pd

S(t)

|D|∑
d=1

|Pd|
(1a)945

Recall =

|D|∑
d=1

∑
t∈Pd

S(t)

|D|∑
d=1

|Gd|
(1b)946

F1 = 2 · Precision · Recall
Precision + Recall

(1c)947

Precision measures the proportion of predicted948

triples that are judged as correct or partially correct.949

High precision indicates the model produces rele-950

vant and accurate triples, minimizing hallucinated951

or noisy outputs.952

Recall quantifies how many ground-truth triples953

were successfully recovered. High recall implies954

strong extraction coverage over the true structured955

information.956

F1 Score is the harmonic mean of precision and 957

recall, balancing both correctness and coverage. 958

A.2 Human Annotation Protocol 959

To ensure rigorous evaluation, we divided the an- 960

notation task into two teams based on domain ex- 961

pertise: 962

Battery Science Domain. Two domain-expert 963

researchers with Ph.D. degrees in science fields 964

were recruited.: 965

• One annotator collected all baseline outputs 966

and corrected extraction errors to construct 967

the ground-truth triplets. 968

• The another annotator independently received 969

anonymized extraction results from each 970

method and judged them as correct, partially 971

correct, or incorrect using the scoring rubric. 972

General Domain. Three annotators participated: 973

• A master’s and an undergraduate student in 974

computer science collaboratively constructed 975

ground-truth triples from model outputs, fol- 976

lowing the same procedure. 977

• A third annotator (a senior undergraduate stu- 978

dent) independently evaluated the model pre- 979

dictions in a blind review setting using the 980

scoring function. 981

This process ensures that the evaluation is both 982

context-sensitive and unbiased. 983

B Prompting Templates & Pseudocode of 984

ZOES 985

Table 5 lists all prompting templates used in this 986

study. For completeness, we also include the pseu- 987

docode of ZOES in Algorithm 1. 988
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Prompt Name Prompt Template

0-shot Triplet Extraction You are an expert in information extraction. Extract all (entity, attribute, value) triplets from the
document. Here is the Provided Document: [document]

0-shot Root Attribute Induc-
tion

You are a helpful information extraction assistant. Can you summarize a category name for the
following values?

0-shot Value Extraction You are a helpful information extraction assistant. Can you extract all values (exact text spans, with
units) under [document] for each attribute in [root attribute]?

0-shot Value-Guided Triplet
Extraction

You are an expert information extraction assistant. Given Document: [document] and value types,
extract all values (exact text spans, with units) under each type.

Mutual Dependency QA
(Question Generation)

You are a helpful question answering assistant. Given a <entity, attribute, value> triplet, generate three
questions where each question asks for one component using only the other two as context. Do not
infer or hallucinate new information.

Mutual Dependency QA
(Question Answering)

You are a helpful question answering assistant. Please answer the following questions using answers
extracted from the context. Context: [context] Question 1: Q_entity Question 2: Q_attribute Question
3: Q_value

Triplet Refinement There is a <entity, attribute, value> triplet extracted from the context. The original triplet may cause
ambiguity due to an incomplete entity or a non-informative attribute. Refine the given triplet by
extracting exact information from the context, such that the attribute is a clear property of the entity.
Context: [context] Triplet: <entity, attribute, value>

Entity Structure Construc-
tion

For a given list of (entity, attribute, value) triplets and a context, merge triplets referring to the same
entity into structured objects. Follow this format: "entity name": "attribute": "value", ..., ... Context:
[document] Triplets: [triplets]

Entity Type Filtration You are a helpful assistant. For a given entity with its attribute and values, can you decide whether the
entity belongs to any given entity types based on the context. The given context is: [Context]. The
given triplets are [Triplets]. The given entity types are: [Entity Type]. Response “Yes” or “No”.

Chain-of-Thought Triplet
Extraction

You are an expert in information extraction. Instructions: (1) Identify all precise entities of types in [T]
that have associated characteristics. (2) For each entity, extract: - Entity: The name or title - Attribute:
The key property - Value: The associated value (numerical, adjective, or noun phrase) Formatting: -
Output only results - Format exactly: [entity, attribute, value] Document: [document]

Few-Shot Triplet Extraction You are an expert in information extraction. Instructions: same as Chain-of-Thought Triplet Extraction.
In addition, you are given: Demonstrations: [Demonstrations] Document: [document]

Table 5: Prompt templates used in this work. [ ] and < > denote placeholders.
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Algorithm 1: ZOES: Zero-Shot Open-Schema Entity Structure Discovery
Input: Document d, Target entity types T
Output: Structured entities E
Step 1: Triplet Candidates Extraction
Tinit ← LLM_ZeroShotExtract(d)
Eemb ← {f(t) | t ∈ Tinit} // Embed triplets
C ← AgglomerativeClustering(Eemb, α)
R← ∅
foreach Ci ∈ C do

ri ← LLM_SummarizeAttributes(Ci)
R← R∪ {ri}

Tenrich ← Tinit
foreach r ∈ R do
Vr ← LLM_ExtractValues(r, d)
foreach v ∈ Vr do

tnew ← LLM_InferTripletByValue(v, r, d)
if tnew ̸= ∅ then

Tenrich ← Tenrich ∪ {tnew}

Step 2: Triplet Granularity Refinement
Trefine ← ∅
foreach t = ⟨e, a, v⟩ ∈ Tenrich do

is_consistent← True
foreach c ∈ {e, a, v} do

qc ← GenerateQuestion(t \ {c})
ac ← LLM_Answer(qc, d)
if ac ̸= c then

is_consistent← False; break

if is_consistent then
Trefine ← Trefine ∪ {t}

else
t′ ← LLM_RefineTriplet(v, d)
if t′ ̸= ∅ then

Trefine ← Trefine ∪ {t′}

Step 3: Entity Structure Construction
Einit ← LLM_ConstructEntities(Trefine, d)
E ← ∅
foreach e ∈ Einit do

if LLM_IsTypeMatch(e, T , d) then
E ← E ∪ {e}

return E
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