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ABSTRACT

Poor generalization is one symptom of models that learn to predict target variables
using spuriously-correlated image features present only in the training distribution
instead of the true image features that denote a class. It is often thought that this
can be diagnosed visually using attribution (aka saliency) maps. We study if this
assumption is correct. In some prediction tasks, such as for medical images, one
may have some images with masks drawn by a human expert, indicating a region
of the image containing relevant information to make the prediction. We study
multiple methods that take advantage of such auxiliary labels, by training net-
works to ignore distracting features which may be found outside of the region of
interest. This mask information is only used during training and has an impact on
generalization accuracy depending on the severity of the shift between the training
and test distributions. Surprisingly, while these methods improve generalization
performance in the presence of a covariate shift, there is no strong correspondence
between the correction of attribution towards the features a human expert has la-
belled as important and generalization performance. These results suggest that the
root cause of poor generalization may not always be spatially defined, and raise
questions about the utility of masks as “attribution priors” as well as saliency maps
for explainable predictions.

1 INTRODUCTION
A fundamental challenge when applying deep learning models stems from poor generalization due to
covariate shift (Moreno-Torres et al., 2012) when the probably approximately correct (PAC) learning
i.i.d. assumption is invalid (Valiant, 1984) i.e. the training distribution is different from the test
distribution. One explanation for this is shortcut learning or incorrect feature attribution, where the
model during training overfits to a set of training-data specific decision rules to explain the training
data instead of modelling the more general causative factors that generated the data (Goodfellow
et al., 2016; Reed & Marks, 1999; Geirhos et al., 2020; Hermann & Lampinen, 2020; Parascandolo
et al., 2020; Arjovsky et al., 2019; Zhang et al., 2016).

In medical imaging, poor generalization due to test-set distribution shifts are common and this prob-
lem is exacerbated by small cohorts. Previous work has hypothesized that this poor generalization
is in part due to the presence of confounding variables in the training data such as acquisition site
or other image acquisition parameters because attribution maps (aka saliency maps; Simonyan et al.
(2014)) produced by the trained model do not highlight features that a human expert would use
to make a diagnosis (Zech et al., 2018; DeGrave et al., 2020; Badgeley et al., 2019; Zhao et al.,
2019; Young et al., 2019). Previous researchers have made the assumption that saliency maps can
demonstrate that the model is not overfit or behaving unexpectedly (Pasa et al., 2019; Tschandl
et al., 2020). We started this work under the same assumption only to find the contradictory evi-
dence we present in this paper. In this work, we set out to test the hypothesis that models with good
generalization properties have attribution maps which only utilize the class-discriminative features
to make predictions, by explicitly regularizing the models to ignore confounders using attribution
priors (Erion et al., 2019; Ross et al., 2017), i.e., to make predictions using the correct anatomy
(as a doctor would). We evaluated whether this regularization would A) improve out of distribution
generalization, and B) change feature attribution to be more like the attribution priors. If there exists
a relationship between the attribution map and generalization performance, we would expect these
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regularizations to positively impact both generalization and attribution quality simultaneously. To
evaluate attribution quality, we define good attribution to be an attribution map that agrees strongly
with expert knowledge in the form of a binary mask on the input data.

We show that the existing and proposed feature-attribution-aware methods help facilitate general-
ization in the presence of a train-test distribution shift. However, while feature-attribution-aware
methods change the attribution maps relative to baseline, there is no strong correlation between
generalization performance and good attribution. This in turn challenges the assumption made in
previous works that the “incorrect” attribution maps were indicative of poor generalization perfor-
mance. This suggests that A) efforts to validate model correctness using attribution maps may not be
reliable, and B) that efforts to control feature attribution using masks on the input may not function
as expected. All code and datasets for this paper are publicly available1. Our contributions include:

• A synthetic dataset that encourages models to overfit to an easy to represent confounder instead
of a more complicated counting task.
• Two new tasks constructed from open medical datasets which have a correlation between the

pathology and either imaging site (site pathology correlation; SPC) or view (view pathology
correlation; VPC), and we manipulate the nature of this correlation differently in the training
and test distributions to create a distribution shift (Figure 5), introducing confounding variables
as observed in previous work (Zhao et al., 2019; DeGrave et al., 2020).
• Evaluation of existing methods for controlling feature attribution using mask information; right

for the right reasons (RRR; Ross et al. (2017)), GradMask (Simpson et al., 2019), and adver-
sarial domain invariance (Tzeng et al., 2017; Ganin & Lempitsky, 2015).
• A new method for controlling feature attribution based on minimizing activation differences

between masked and unmasked images (ActDiff ).
• Evaluate the relationship between generalization improvement and feature attribution in real-

life out of distribution generalization tasks with traditional classifiers.

2 RELATED WORK
It is a well-documented phenomenon that convolutional neural networks (CNNs), instead of building
object-level representations of the input data, tend to find convenient surface-level statistics in the
training data that are predictive of class (Jo & Bengio, 2017). Previous work has attempted to
reduce the model’s proclivity to use confounding features by randomly masking out regions of the
input (DeVries & Taylor, 2017), forcing the network to learn representations that aren’t dependent
on a single input feature. However, this regularization approach gives no control over the kinds of
representations learned by the model, so we do not include it in our study.

Recently, multiple approaches have proposed to control feature representations by penalizing
the model for producing saliency gradients outside of a regions of interest indicating the class-
discriminative feature (Simpson et al., 2019; Zhuang et al., 2019; Rieger et al., 2019). These ap-
proaches were introduced by Right for the Right Reasons (RRR), which showed impressive im-
provements in attribution correctness on synthetic data (Ross et al., 2017). The follow-up work
has generally demonstrated a small improvement in generalization accuracy on real data, and much
more impressive results on synthetic data. Another feature attribution-aware regularization approach
additionally dealt with class imbalances by increasing the impact of the gradients inside the region
of interest of the under-represented class Zhuang et al. (2019).

One alternative to saliency-based methods, which can be noisy due to the ReLU activations allowing
irrelevant features to pass through the activation function (Kim et al., 2019), would be to leverage
methods that aim to produce domain invariant features in the latent space of the network. These
methods regularize the network such that the latent representations of two or more “domains” are
encouraged to be as similar as possible, often by minimizing a distance metric or by employing an
adversary that is trained to distinguish between the different domains (Kouw & Loog, 2019; Ganin
& Lempitsky, 2015; Tzeng et al., 2015; Liu & Tuzel, 2016). In this work, we view the masked
version of the input as the training domain and the unmasked version of the input as the test domain,
and compare these approaches with saliency-based approaches for the task of reducing the model’s
reliance on confounding features. To the best of our knowledge, these strategies have not been tried
to control feature attribution.

1https://github.com/josephdviviano/saliency-red-herring
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3 METHODS
Domain Invariance with the Activation Difference and Adversarial Loss: Leveraging ideas from
domain adaptation, we introduce two methods designed to make the model invariant to features
arising from outside of the attribution priors. The first is the embarrassingly simple Activation
Difference (ActDiff ) approach, which simply penalizes, for each input, the L2-normed distance
between the masked and unmasked input’s latent representations. This loss is most similar to a
style transfer approach which transforms a random noise image into one containing the same layer-
wise activations as some target image (Gatys et al., 2015) to apply a visual aesthetic to some input
semantic contents, and encourages the network to build features which appear inside the masked
regions even though it always sees the full image during training. Therefore we minimize

Lact =
∑

(Xmasked,x)∈D

Lclf + λact||ol(xmasked)− ol(x)||2, (1)

Domain Invariance
loss

Classification loss

Saliency
loss

S
hared W

eights

Figure 1: Schematic of the model used in all ex-
periments. The backbone is an 18-layer ResNet.
The domain invariance penalties, ActDiff and Ad-
versarial, are applied to the linear layer after aver-
age pooling (although they could be applied at any
location in the network). In contrast, the saliency
penalties, GradMask and Right for the Right Rea-
sons, are applied on the input space. All losses are
denoted using standard dashed lines.

where ol(x) are the pre-activation outputs for
layer l of the n-layer encoder f(x) when the
network is presented with the original data
x, ol(xmasked) are the pre-activations outputs
for layer l when presented with masked data
xmasked, and Lclf is the standard cross entropy
loss. We define xmasked = x·xseg+shuffle(x)·
(1 − xseg) where background pixels are shuf-
fled uniquely for each presentation to the net-
work in order to destroy any spatial information
available in those regions of the image without
introducing any consistent artefacts into the im-
age or shifts in the distribution of input intensi-
ties.

This method is at a high level similar to using
maximum mean discrepancy (MMD) for do-
main adaptation (Baktashmotlagh et al., 2016;
2013) where instead of minimizing the distance
between the means of the two domain distri-
butions, we instead minimize the distance be-
tween the features directly. One could replace
the L2 norm with any Lk norm, and choices of
k < 2 might be useful when regularizing larger
latent representations as L2 distances collapse to a constant value in extremely high dimensional
spaces due to the curse of dimensionality (Aggarwal et al., 2001). We found during experimentation
that regularizing the pre-activations led to better results at the cost of longer time to convergence,
perhaps because the L2 norm is more effective when the feature vectors are not sparse, but we leave
this conjecture to future work.

The second approach we explore employs a discriminator D(·) optimized to distinguish between
latent representations arising from passing xmasked or x through the encoder f(·) (Tzeng et al.,
2017; Goodfellow et al., 2014). Simultaneously, we optimize the encoder f(·) to fool the discrim-
inator and still produce representations that are predictive of the output class. Therefore, D and f
are optimized using the LD and Lf respectively:

LD = λdisc
(
Exmasked

[logD(f(xmasked))] + Exmasked
[log(1−D(f(x)))]

)
(2)

Lf = Lclf + λdisc
(
Ex[log(1−D(f(xmasked)))] + Ex[logD(f(x))]

)
(3)

This approach is similar to the one employed in (Janizek et al., 2020), where the authors encouraged
the model to be invariant to the view of the X-Ray (Lateral vs PA), and here ‘view’ denotes whether
the image is masked or not. D(·) had three fully-connected hidden layers of size 1024 before out-
putting a binary prediction. To facilitate the stability of training, we updated D(·) more frequently
than the encoder treating this ratio as a hyperparameter. We optimized D(·) independently using
Adam with a distinct learning rate, and applied spectral normalization to the hidden layers of D(·).
Direct Attribution Control with the Right for the Right Reasons and GradMask Loss: These
input gradient attribution regularizers directly control which regions of the input are desirable for
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determining the class label by penalizing saliency outside of a defined input mask. The most basic
gradient based “input feature attribution” can be calculated as ∂|ŷi|∂x for each input x (Simonyan et al.,
2014; Lo et al., 2015). In the binary classification case, RRR (Ross et al., 2017) calculates saliency
of the summed log probabilities of the 2 output classes with respect to the input x,

Lrrr =
∑

(xseg,x)∈D

Lclf + λrrr ·
∂ (log(p̂0) + log(p̂1))

2

∂x
· (1− xseg), (4)

where (1 − xseg) is a binary mask that covers everything outside the defined regions of interest.
The numerator in the RRR loss can be extended to the multi-class case by substituting

∑K
k log(p̂k).

GradMask (Simpson et al., 2019) similarly calculates saliency using the contrast between the two
output logits, and is only defined for the binary classification case,

Lgradmask =
∑

(xseg,x)∈D

Lclf + λgradmask ·
∣∣∣∣∂ |ŷ0 − ŷ1|∂x

· (1− xseg)

∣∣∣∣
2

, (5)

where ŷ0 and ŷ1 are the predicted outputs for our two classes.

Classify Masked: We evaluated the effect imposing the attribution prior by simply training a model
using masked data (and evaluating it using unmasked data) as a control experiment. The data was
masked by shuffling the pixels outside of the mask during training, as was done for the domain
invariance experiments to produce xmasked. We refer to these experiments as Masked.

4 EXPERIMENTS
Feature Attribution Analysis and Visualization: We evaluated our ability to control feature attri-
bution using three methods. We first calculated the input gradient as the absolute gradient G of the
input with respect to the prediction made for all images of the positive class G = |∂ŷ1∂x | (Simonyan
et al., 2014; Ancona et al., 2018). We also calculated integrated gradients, which produces attribu-
tion maps that are invariant to the specific model trained (or function f(·)) and are sensitive to all
input features that drive the prediction (Sundararajan et al., 2017). This is done by integrating the
gradients along the straightline path between the input image xi and an all-zero baseline image x′i,
IGx ::= (xi − x′i) ×

∫ 1

α=0
∂f(x′+α×(x−x′))

∂xi
∂α. The integral was approximated over 200 steps for

each image using GaussLegendre quadrature. We finally evaluated a non gradient-based attribution
method occlusion where we divided the input image into a 15 × 15 grid, and for each element of
the grid, recorded the magnitude of the change to the model’s output logits if that region is removed
from the input (by setting these regions to zero) (Zeiler & Fergus, 2014). For the two gradient-based
attribution methods, we smoothed the resulting saliency map with a small Gaussian kernel (σ = 1)
to remove pixel-wise variance in the attribution values that amount to noise. The attribution maps
were then carried forward to calculate a binarized version such that the top p percentile attribution
values were set to 1, where p is dynamically set to the number of pixels in the mask that it is being
compared to. These binarized values were used to calculate the localization accuracy between bi-
narized attribution map and the ground-truth segmentation using the intersection over union (IoU;
Iu(A,B) = A∩B

A∪B ) for all images in the test sets for all models trained. To aid in visualization, we
also thresholded these attribution maps arbitrarily at the 50th percentile so that the most attributed
regions of the image are easily seen when overlaid on the anatomy. We present visualizations of the
results for all three methods in the Appendix. These methods were implemented using the Captum
library (Kokhlikyan et al., 2020).

Model, Optimization, Hyperparameters, and Search Parameters: The backbone of all exper-
iments was the ResNet-18 model from Torchvision (He et al., 2016; Marcel & Rodriguez, 2010).
For medical dataloaders we use the TorchXRayVision library (Cohen et al., 2020b;a). To see an
overview of how the losses described above relate to the architecture, see Figure 1. All models were
trained using the Adam optimizer (Kingma & Ba, 2014) using early stopping on the validation loss.

Hyperparamters were selected for all models using a Bayesian hyperparameter search with a single
seed, 5 random initializations, 20 iterations, and trained for a maximum of 100 epochs with a pa-
tience of 20. Final models were trained using the best hyperparameters found for 100 epochs on 10
seeds.The learning rate for all models was searched on a log uniform scale between [10−5 10−2].
The ActDiff, Adversarial, GradMask, and RRR lambdas were all searched between [10−4 10], each
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Figure 2: Example images from Dtrain and Dvalid from both classes. In both distributions, cross
size can vary between samples. In Dtrain, two crosses (denoting class 0) are always accompanied
by a box xc in the bottom right-hand corner, while a single cross (denoting class 1) is always accom-
panied by a confounder in the bottom left-hand corner. In Dvalid, the relationship between classes
and crosses remains the same, but the logic governing the location of the counfounder is reversed.
The confounder is indicated with a red arrow.

on a log uniform scale. For Adversarial, we searched for the optimal discriminator : encoder train-
ing ratio of [2 : 1 10 : 1], and the discriminator learning rate was searched on a log uniform scale
between [10−4 10−2]. To retain context around the masked region in the Synthetic dataset, we di-
lated the mask by applying a Gaussian blur with a hyperparameter σ to the mask and then binarize
the result; σ was searched on a uniform scale between [0 2]. For all experiments, the batch size
was 16, weight of the classification cross entropy loss was 1. In performing our hyperparameter
searches, we found that certain algorithms were much easier to tune than others. We present the
final best validation AUCs encountered for all iterations for all experiments in Appendix Figure A.1
and Table 3.

4.1 SYNTHETIC DATASET

Protocol: Consider a classification problem where there exists some confounder feature xc in the
data (a vector of variables x) that is perfectly correlated with one of the output classes y in the
training distribution Dtrain such that p(y = 1|xc) = 1, while in the validation distribution Dvalid,
p(y = 0|xc) = 1 (Figure 2). In this scenario, predicting using xc is easier than predicting using the
true features that would denote class membership and a classifier trained on Dtrain with traditional
classification loss would predict the incorrect class with 100% probability on Dvalid.

We generated a dataset with these conditions where class membership is denoted by the number of
crosses present in the image (1 vs. 2 crosses) that can appear in any position, but there exists in
all Dtrain images a confounder that always appears in the same position and is perfectly correlated
with y (Figure 2). The logic governing the position of the confounder was inverted for Dvalid. This
dataset had 500 training, 128 validation, and 128 test examples respectively. Segmentations were
generated for all crosses in the dataset to facilitate all feature-attribution controlling losses. In cases
where the model relies on the confounder to make a class prediction, we expected 0.0 AUC for the
validation and test sets.

Figure 3: Synthetic Dataset Valid AUC over 100
epochs, averaged over 10 seeds.

Results: The mean and standard deviation of
the validation AUC over all 10 models for the
100 epochs of training for the best-performing
hyperparameters are shown in Figure 3, show-
ing the variance in performance over model ini-
tializations and data splits. We demonstrate
the effect of controlling feature attribution by
showing the mean integrated gradient map cal-
culated for 500 positive examples in the test set
in Figure 4.

The validation curves (Figure 3), demonstrate that the baseline model quickly learns the shortcut in
the training set and shows below-chance generalization (AUC=0). The Masked approach is never
given the opportunity to build a representation of the confounder and is therefore able to general-
ize while still giving attribution to the confounder. The domain invariance approaches, ActDiff and
Adversarial also learn the task, although convergence is much more difficult for the Adversarial ap-
proach. The two saliency-based feature-attribution regularizers, GradMask, and RRR, show unstable
training and never reach optimal performance, although they do prevent the model from overfitting
to the confounder. The saliency maps for these models (Figure 4) show that all feature attribution
controlling approaches (C-F) successfully refocus the model’s attention away from the confounder,
unlike the baseline and Masked models (A-B), leading to improved generalization. This strong re-
lationship between IoU and AUC for this dataset can be observed for all seeds in Figure 8. As we
will see, this relationship does not hold for real world data.
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Figure 4: The average integrated gradients (IG) saliency maps from 500 randomly-selected Dtest

images for the Synthetic dataset. The first image shows the mean of the samples, with the mean of
the masks superimposed in red. The remainder of the panels show the mean of the gradients after
taking the absolute value, smoothing, and thresholding at the 50th percentile.

4.2 X-RAY DATASET WITH SITE-PATHOLOGY CORRELATION

Protocol: We introduced a covariate-shift into a joint dataset of X-Rays drawn from two different
imaging centres: the PadChest (Bustos et al., 2019) sample and the NIH Chestx-Ray8 (Wang et al.,
2017) sample. In Figure 5, we can see examples of the distribution shift between imaging site
(top) and imaging view (bottom; used in the following section). In the case that the prevalence of
disease is in any way correlated with either of these confounders, the model is likely to learn to
use these differences to make a prediction regardless of their medical relevance (rightmost column).
In this dataset, models were required to predict the presence of Cardiomegaly (enlarged heart). A
site-driven overfitting signal has previously been reported when combining these datasets (Zech
et al., 2018), where the model often attributes importance to the patient’s shoulder when making
a prediction. We also observed site-driven differences in regions far from the lungs (see the mean
X-Ray from each dataset in Figure 5), and therefore hypothesized we could improve overfitting
performance by masking out the edges of the image using a circular mask. To induce the covariate
shift, we preferentially sampled the positive class from one of the two imaging centres in the training
set to produce a site-pathology correlation (SPC), and then produce validation and test set where the
reverse relationship is true.

Figure 5: Illustration of the effect of Site-
Pathology Correlations (SPC; top row) and View-
Pathology Correlations (VPC; bottom row). The
first two columns contain the mean of all X-
Rays collected from a particular site/view. The
third column shows the class-conditional mean
difference between images taken from sick and
healthy patients when pathology is uncorrelated
with site/view, and the fourth column shows the
same when pathology is correlated with site/view.

In the training set, 90% of the unhealthy pa-
tients were drawn from the PadChest dataset
and the remaining 10% of the unhealthy pa-
tients were drawn from the NIH dataset, and
the reverse logic was followed for the validation
and test sets. In all splits the classes and site
distributions were always balanced, making it
tempting for the classifier to use a site-specific
feature when predicting the class in the pres-
ence of site-pathology correlation (Ntrain =
5542, Nvalid = 2770, Ntest = 2770). We also
constructed a version of this dataset where the
classes are drawn equally from both sites for the
training, validation, and test sets, i.e., a dataset
where there exists no site pathology correlation
(No SPC). All images were 224× 224 pixels.

Results: We trained each model on both the
SPC (90%) and No SPC datasets (Table 1). A
ResNet trained on the No SPC dataset scores a
test AUC of 0.93 ± 0.01, while one trained in
the presence of a strong SPC scores a test AUC
of 0.70 ± 0.05, indicating poorer generalization under a SPC. Validation curves across seeds show
that model optimization was much easier and more consistent for all models when trained on the
No SPC dataset (Appendix Figure A.2). The ActDiff, Masked, and GradMask approaches only im-
proved classification performance over the baseline model in the presence of an SPC (GradMask
performed only slightly better than baseline for the No SPC dataset). For ActDiff and GradMask, an
improvement in classification performance was associated with an improvement in attribution (mea-
sured as an improvement in the IoU between the binarized saliency map and the masks), but this
pattern was not observed for the masked experiment, even though the Masked experiment produced
superior generalization (it is worth noting that the Masked performance was more variable across
seeds). Furthermore, the GradMask approach improved attribution in the No SPC case, but this was
not associated with a meaningful improvement in generalization performance. Figure 6 shows the
mean saliency map calculated from a subset of all test images from all 10 models. Differences in the
baseline model’s attribution (A) in the SPC and No SPC case are apparent: in particular, the SPC
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Figure 6: Mean integrated gradients (IG) saliency maps from 500 randomly-selected Dtest images
in the X-Ray dataset with a site-pathology correlation (SPC; top), and without (No SPC; bottom)
after taking the absolute value, smoothing, and thresholding at the 50th percentile across all 10
seeds. The first image shows the mean input image of the model over all examples shown, with the
mask overlaid in red.

With SPC
Experiment AUC IoU Input Grad IoU Integrated IoU Occlude

Baseline Classification 0.70± 0.05 0.40± 0.03 0.33± 0.03 0.41± 0.04
Masked 0.77± 0.09 0.38± 0.04 0.38± 0.05 0.38± 0.04

Domain Invariance ActDiff 0.73± 0.03 0.62± 0.04 0.58± 0.04 0.62± 0.02
Adversarial 0.68± 0.07 0.36± 0.02 0.32± 0.02 0.40± 0.04

Saliency Based GradMask 0.74± 0.03 0.57± 0.02 0.50± 0.04 0.50± 0.04
RRR 0.57± 0.09 0.38± 0.02 0.33± 0.03 0.43± 0.04

No SPC
Experiment AUC IoU Input Grad IoU Integrated IoU Occlude

Baseline Classification 0.93± 0.01 0.48± 0.03 0.42± 0.03 0.49± 0.02
Masked 0.90± 0.01 0.42± 0.02 0.39± 0.03 0.46± 0.03

Domain Invariance ActDiff 0.63± 0.20 0.21± 0.25 0.26± 0.24 0.21± 0.26
Adversarial 0.92± 0.01 0.44± 0.03 0.40± 0.04 0.46± 0.03

Saliency Based GradMask 0.94± 0.00 0.55± 0.02 0.48± 0.03 0.53± 0.02
RRR 0.93± 0.01 0.46± 0.03 0.42± 0.04 0.48± 0.04

Table 1: X-Ray Cardiomegaly test results for the best valid epoch over 100 epochs on the X-Ray
dataset with and without a site-pathology correlation (SPC). Results averaged over 10 seeds with the
standard deviation. Bold indicates better than Classification baseline and chance. IoU scores were
calculated on 100 randomly-selected test-set images for each seed (total of 1000).

model shows a greater reliance on the shoulder for producing a prediction. The Masked experiment
(B) exacerbates this behavior but is accompanied by improved generalization with higher variance
across seeds. In contrast, ActDiff and GradMask appear to refocus the saliency away from the shoul-
der (D-E), reflected in the increased IoU scores for both the ActDiff and GradMask approaches for
the SPC data. The weak relationship between IoU and AUC can be observed for all seeds in Figure
8. These results provide evidence that controlling feature attribution only facilitates generalization in
the presence of a covariate shift, but improves saliency in both the presence or absence of a covariate
shift, implying a weak relationship between good attribution and good generalization.

4.3 X-RAY DATASET WITH VIEW-PATHOLOGY CORRELATION

Protocol: Here we made use of the RSNA Pneumonia challenge (Shih et al., 2019) dataset, which
includes images taken from antero-posterior (AP) and posterior-anterior (PA) views, and where the
task is to predict pneumonia. We introduced a covariate shift into this dataset by sampling the
positive and negative classes during training such that 90% of the positive classes are sampled from
one view in the training set and the opposite view in the validation and test sets. We call this a view-
pathology correlation (VPC). After drawing the samples from both views and balancing the classes,
the data in each split was as follows: Ntrain = 2696, Nvalid = 1348, Ntest = 1348. All images
with Pneumonia have one or more bounding boxes indicating the predictive regions. In Figure 5 we
can see the strong effect of the VPC, such that the lungs, shoulders, and torso show strong interclass
differences in the VPC case. We also constructed a No VPC dataset in the same way as during the
previous experiments, and all images were 224× 224 pixels.

Results: Similarly to the SPC case, baseline AUC in the presence of VPC (0.20± 0.03) is substan-
tially lower than the No VPC baseline (0.76±0.02), and additionally far below chance performance
(0.50), illustrating the strong covariate shift in this dataset. Appendix Figure A.2 shows that valida-
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Figure 7: Mean integrated gradients (IG) saliency maps from 500 randomly-selected Dtest images
in the RSNA dataset with a view-pathology correlation (VPC; top), and without (No VPC; bottom)
after taking the absolute value, smoothing, and thresholding at the 50th percentile across all 10
seeds. The first image shows the mean input image of the model over all examples shown, with the
mask overlaid in red.

With VPC
Experiment AUC IoU Input Grad IoU Integrated IoU Occlude

Baseline Classification 0.20± 0.03 0.10± 0.02 0.05± 0.02 0.08± 0.02
Masked 0.56± 0.16 0.07± 0.03 0.08± 0.02 0.04± 0.01

Domain Invariance ActDiff 0.68± 0.05 0.08± 0.01 0.02± 0.00 0.04± 0.01
Adversarial 0.62± 0.10 0.10± 0.05 0.05± 0.03 0.07± 0.04

Saliency Based GradMask 0.49± 0.06 0.17± 0.06 0.08± 0.02 0.08± 0.03
RRR 0.21± 0.04 0.11± 0.02 0.05± 0.01 0.08± 0.02

No VPC
Experiment AUC IoU Input Grad IoU Integrated IoU Occlude

Baseline Classification 0.76± 0.02 0.17± 0.02 0.10± 0.02 0.11± 0.01
Masked 0.50± 0.02 0.07± 0.03 0.08± 0.02 0.04± 0.02

Domain Invariance ActDiff 0.60± 0.02 0.13± 0.01 0.05± 0.01 0.06± 0.01
Adversarial 0.65± 0.02 0.09± 0.02 0.04± 0.01 0.07± 0.01

Saliency Based GradMask 0.75± 0.01 0.16± 0.03 0.11± 0.02 0.11± 0.01
RRR 0.75± 0.01 0.16± 0.04 0.10± 0.02 0.12± 0.02

Table 2: RSNA Pneumonia test results for the best valid epoch over 100 epochs on the RSNA
dataset with and without a view-pathology correlation (VPC). Results averaged over 10 seeds with
the standard deviation. Bold indicates better than both the Classification baseline and chance. IoU
scores were calculated on 100 randomly-selected test-set images for each seed (total of 1000).

tion performance was more variable in the presence of VPC between models, and that performance
was generally lower. The ActDiff, Masked, and Adversarial approaches improved classification per-
formance over the baseline model and chance performance in the presence of VPC. For only the
GradMask model was an improvement in classification performance associated with an improve-
ment in saliency, and the Masked experiment produced IoU scores substantially worse than baseline
(again, Masked performance was more variable across seeds). No model improved attribution or
generalization performance over baseline in the No VPC case. Figure 7 shows the mean saliency
map calculated from a subset of all test images from all 10 models. Differences in the Baseline
model’s saliency (A) in the VPC and No VPC case are apparent: in particular, the VPC model
shows a greater reliance on the abdomen and shoulders for producing a prediction. The Masked
experiment (B) again exacerbates this behavior but is accompanied by improved generalization over
baseline. The Adversarial, ActDiff, and GradMask models (C-E) appear to refocus the attribution
toward the lungs for for the VPC case, but the mean Adversarial IoU score dropped over the full
dataset, and ActDiff resulted in a minor IoU score increase. The GradMask approach produced the
best attribution as measured by IoU but does not produce a model that outperforms random guessing
on the test set. Again, these results suggest that the use of attribution priors can have a substantial
effect on generalization performance in the absence of meaningful changes to the saliency towards
what would be expected from the attribution priors, and vice versa. The weak relationship between
IoU and AUC can be observed for all seeds in Figure 8.

5 LIMITATIONS AND CONCLUSIONS
Limitations: Our results show that models explicitly regularized to not use features constructed
from outside of the mask still attribute features outside of the mask at test time. This is likely due to
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the fact that convolutional models are still able to construct discriminative filters from inside of the
mask which might share properties with features found outside of the mask. The model is free to use
any aspect of the input image to make a prediction during test time. In particular, the methods we
explored are not guaranteed to negate any confounding variables that exist within the mask, which
could explain these results, and might additionally give rise to underspecified trained models, as
evidenced by the models with high test set variability across seeds (D’Amour et al., 2020). This is
particularly true for the Masked models, for which the representations constructed from inside of the
masks were not regularized in any way. Methods that address this underspecification would make
for valuable future work. Furthermore, while the results suggest that attribution maps are a mislead-
ing indicator of generalization performance, we only evaluated these algorithms using small sample
sizes with large covariate shifts between the training and test distributions in a medical context. Fu-
ture work should more thoroughly evaluate the relationship between generalization performance and
feature attribution in other settings before we can draw strong conclusions about the non-existence
of this relationship. Furthermore, methods which control feature attribution without using masks for
enforcing domain knowledge might show a stronger relationship between IoU and AUC, and future
work should explore this possibility. These methods would also be more general, as input masks are
only available in specific domains and can be expensive to obtain.

Conclusions: We hypothesized that poor generalization performance could be partially attributable
to classifiers exploiting spatially-distinct confounding features (or shortcuts) as have been previously
diagnosed using saliency maps (Badgeley et al., 2019; Zech et al., 2018). We evaluated the perfor-
mance of multiple mitigation strategies on a synthetic dataset and two real-world datasets exhibiting
covariate shift, using attribution priors in the form of a segmentation of the discriminative features.

Figure 8: Test AUC vs. Test IoU (good saliency)
for all seeds evaluated with covariate shift. Models
presented grouped by “Approaches”: baseline, input
masking, domain-invariance, and saliency-based ap-
proaches. All localizations were computed using in-
tegrated gradients, see Appendix Figure A.13 for all
attribution methods.

In our synthetic dataset, we defined a
spatially-distinct confounder that prevented
generalization for standard classifiers, and
demonstrated that imposing an attribution
prior would facilitate generalization and im-
prove attribution maps. In real data, we
found that attribution priors also facilitate
generalization when there exists a covariate
shift between the training and testing distri-
bution, but these methods hurt generaliza-
tion when there was not a covariate shift.
Surprisingly, improvement in generalization
performance was not reliably accompanied
by improvement in attribution: this is partic-
ularly apparent for the ActDiff model on the
RSNA VPC dataset, which had a meaning-
ful positive impact on AUC and a very nega-
tive impact on attribution. Figure 8 summa-
rizes the relationship between generalization
(AUC) and feature attribution (IoU) across
all seeds for all experiments with a covariate
shift: the positive correlation between AUC
and IoU apparent for the synthetic data was
not present in the real world datasets.

In summary, we find a tenuous relationship between good saliency and generalization performance
in real datasets. Many models that exhibit good generalization performance do not obtain good at-
tribution, and vice-versa. While our methods exert influence on the features the model constructs
from the data, in real data we found no evidence of a relationship between improved generalization
and improved feature attribution. We now doubt the validity of using saliency maps for diagnosing
whether a model is overfit because improving generalization using attribution priors is not accom-
panied by improved attribution.
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A APPENDIX

A.1 ARCHITECTURE OF THE RESNET-18 MODEL

The backbone of the model used for all experiments was the 18-layer resnet available from torchvi-
sion (Marcel & Rodriguez, 2010) with a small architecture adjustment near the input of the network.
The official model’s input convolutional layer had a kernel size of 7, stride of 2, and padding of 3.
In our experiments, we found this larger kernel size on the inputs led to less specific saliency maps
(data not shown), and we therefore changed the kernel size to 3, stride to 1, and padding to 1 for this
layer. Immediately following this layer, the official model employed a maxpooling operation. We
found this operation to produce unusable noisy saliency maps, so we also disabled this operation for
all experiments.

A.2 HYPERPARAMETER SENSITIVITY

Figure A.1: The best validation AUC for all hyperparameter settings tested during the model tuning.
On the synthetic dataset, domain-adaptation approaches were able to solve the task, as did the model
that simply observed masked versions of the data. The saliency-based approaches were generally
more sensitive to hyperparameters. In the presence of a covariate shift (SPC / VPC), hyperparameter
tuning was more difficult on all real-world data.

13



Published as a conference paper at ICLR 2021

A.3 VALIDATION CURVES FOR THE REAL WORLD DATASETS

Figure A.2: All real dataset (X-Ray and RSNA) valid AUC across the 100 epochs of training. Mean
and standard deviation presented over 10 seeds.

A.4 BEST HYPERPARAMETERS FOR ALL EXPERIMENTS

Dataset Experiment Learning Rate Lambda Disc Iteration Ratio Disc Learning Rate

Synthetic Classification 3.11× 10−4 – – –
Masked 3× 10−5 – – –
Actdiff 3.11× 10−4 1.15× 10−1 – –
Adversarial 3.71× 10−4 10 10:1 0.01
GradMask 1× 10−2 2.03× 10−1 – –
RRR 1× 10−5 7.56 – –

X-Ray SPC Classification 9.99× 10−3 – – –
Masked 1× 10−2 – – –
Actdiff 5.38× 10−4 1× 10−1 – –
Adversarial 9.83× 10−4 1.93× 10−2 2:1 1× 10−2

GradMask 9.24× 10−3 3.85× 10−1 – –
RRR 7.98× 10−4 1× 10−4 – –

X-Ray No SPC Classification 1× 10−2 – – –
Masked 6.87× 10−4 – – –
Actdiff 8.92× 10−3 5.78× 10−1 – –
Adversarial 3.82× 10−3 5.66× 10−4 4:1 4.27× 10−3

GradMask 1× 10−2 9.8× 10−2 – –
RRR 2.35× 10−4 9.57 – –

RSNA VPC Classification 9.99× 10−3 – – –
Masked 2.8× 10−3 – – –
Actdiff 4.1× 10−5 1.6 – –
Adversarial 9.83× 10−4 10 10:1 1.16× 10−4

GradMask 1× 10−2 6.57 – –
RRR 9.99× 10−3 1× 10−4 – –

RSNA No VPC Classification 5.5× 10−4 – – –
Masked 2.84× 10−3 – – –
Actdiff 1× 10−4 3.88 – –
Adversarial 3.4× 10−5 1× 10−4 6:1 2.35× 10−4

GradMask 1× 10−2 1× 10−4 – –
RRR 3.11× 10−4 2.3× 10−1 – –

Table 3: Best hyperparameters found using for each hyperparameter search. Discriminator iteration
ratios presented as the update ratios of the discriminator : encoder.
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A.5 VISUALIZATIONS OF INPUT GRADIENTS, INTEGRATED GRADIENTS, AND
OCCLUSION-BASED ATTRIBUTION MAPS

Figure A.3: Mean input gradients (G; top), integrated gradients (IG; middle), and occlusion-based
(O; bottom) saliency maps from 500 randomly-selected Dtest images in the Synthetic dataset after
taking the absolute value, smoothing, and thresholding at the 50th percentile across all 10 seeds.
The first image shows the mean input image of the model over all examples shown, with the mask
overlaid in red.

Figure A.4: Mean input gradients (G; top), integrated gradients (IG; middle), and occlusion-based
(O; bottom) saliency maps from 500 randomly-selected Dtest images in the X-Ray dataset with a
site-pathology correlation (SPC) after taking the absolute value, smoothing, and thresholding at the
50th percentile across all 10 seeds. The first image shows the mean input image of the model over
all examples shown, with the mask overlaid in red.
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Figure A.5: Mean input gradients (G; top), integrated gradients (IG; middle), and occlusion-based
(O; bottom) saliency maps from 500 randomly-selected Dtest images in the X-Ray dataset without
a site-pathology correlation (No SPC) after taking the absolute value, smoothing, and thresholding
at the 50th percentile across all 10 seeds. The first image shows the mean input image of the model
over all examples shown, with the mask overlaid in red.

Figure A.6: Mean input gradients (G; top), integrated gradients (IG; middle), and occlusion-based
(O; bottom) saliency maps from 500 randomly-selected Dtest images in the RSNA dataset with a
view-pathology correlation (VPC) after taking the absolute value, smoothing, and thresholding at
the 50th percentile across all 10 seeds. The first image shows the mean input image of the model
over all examples shown, with the mask overlaid in red.
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Figure A.7: Mean input gradients (G; top), integrated gradients (IG; middle), and occlusion-based
(O; bottom) saliency maps from 500 randomly-selectedDtest images in the RSNA dataset with a no
view-pathology correlation (No VPC) after taking the absolute value, smoothing, and thresholding
at the 50th percentile across all 10 seeds. The first image shows the mean input image of the model
over all examples shown, with the mask overlaid in red.
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A.6 SALIENCY MAPS FOR INCORRECT AND CORRECT PREDICTIONS

Here, we visualize the mean gradients from samples the model gets correct (top) vs. incorrect
(bottom) for 100 samples from each seed for a total of 1000 samples. While the synthetic dataset
shows obvious differences for correct and incorrect samples, no such pattern is obvious for the real
world datasets.
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Figure A.8: Mean integrated gradients attribution maps from 500 randomly-selected Dtest images
in the synthetic dataset, showing correct predictions (top) separately from incorrect predictions (bot-
tom), after taking the absolute value, smoothing, and thresholding at the 50th percentile across all
10 seeds. The first image shows the mean input image of the model over all examples shown, with
the mask overlaid in red.
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Figure A.9: Mean integrated gradients attribution maps from 500 randomly-selected Dtest images
in the X-Ray SPC dataset, showing correct predictions (top) separately from incorrect predictions
(bottom), after taking the absolute value, smoothing, and thresholding at the 50th percentile across
all 10 seeds. The first image shows the mean input image of the model over all examples shown,
with the mask overlaid in red.
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Figure A.10: Mean integrated gradients attribution maps from 500 randomly-selected Dtest images
in the X-Ray No SPC dataset, showing correct predictions (top) separately from incorrect predictions
(bottom), after taking the absolute value, smoothing, and thresholding at the 50th percentile across
all 10 seeds. The first image shows the mean input image of the model over all examples shown,
with the mask overlaid in red.
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Figure A.11: Mean integrated gradients attribution maps from 500 randomly-selected Dtest images
in the RSNA VPC dataset, showing correct predictions (top) separately from incorrect predictions
(bottom), after taking the absolute value, smoothing, and thresholding at the 50th percentile across
all 10 seeds. The first image shows the mean input image of the model over all examples shown,
with the mask overlaid in red.
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Figure A.12: Mean integrated gradients attribution maps from 500 randomly-selected Dtest images
in the RSNA No VPC dataset, showing correct predictions (top) separately from incorrect predic-
tions (bottom), after taking the absolute value, smoothing, and thresholding at the 50th percentile
across all 10 seeds. The first image shows the mean input image of the model over all examples
shown, with the mask overlaid in red.
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A.7 GENERALIZATION ABILITY VS ATTRIBUTION QUALITY FOR ALL ATTRIBUTION
METHODS

Figure A.13: Test AUC vs. Test IoU (good saliency) for all seeds evaluated with covariate shift.
Models presented grouped by “Approaches”: baseline, input masking, domain-invariance, and
saliency-based approaches. We present the relationship between classification performance and lo-
calization performance using input gradients (top left), integrated gradients (top right) and occlusion
methods (bottom) for comparison.

A.8 ACTDIFF LAMBDA EVALUATION

In real-world experiments without a covariate shift, we found the ActDiff method performed worse
than baseline. We suspected this was due to the minimum lambda value in the range considered
during hyperparameter tuning ([1× 10−410] being too large: the ActDiff model should perform
equivalently to the baseline if this lambda value is small enough. We tested this on both datasets by
running a new hyperparamater search with an expanded range for the actdiff lambda [1× 10−1610]
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which we call the wide search, and report the test set values over 10 seeds in Table 4. While we
recovered the baseline performance for the No SPC dataset, we were unable to do so on the No VPC
dataset. We suspect that the ActDiff penalty is quite strong in the RSNA data due to the smaller
input masks, making even very small lambda values of ActDiff a powerful regularizer of the model,
and making the hyperparameter search difficult given a fixed compute budget. We conclude that the
difficulty of tuning the hyperparamaters in situations where no covariate shift exists in the data is a
potential downside of this approach.

Dataset Experiment Search Learning Rate Lambda AUC
X-Ray SPC Baseline – – 0.70± 0.05

Normal 5.38× 10−4 1× 10−1 0.73± 0.03
Wide 5.64× 10−4 1× 10−16 0.71± 0.04

No SPC Baseline – – 0.93± 0.01
Normal 8.92× 10−3 5.78× 10−1 0.63± 0.20
Wide 4.77× 10−4 1× 10−16 0.93± 0.01

RSNA VPC Baseline – – 0.20± 0.03
Normal 4.1× 10−5 1.6 0.68± 0.05
Wide 1.7× 10−5 9.26× 10−13 0.71± 0.04

No VPC Baseline – – 0.76± 0.02
Normal 1× 10−4 3.88 0.60± 0.02
Wide 1× 10−5 1.7× 10−15 0.61± 0.02

Table 4: Hyperparamaters and Test AUC (mean ± standard deviation) for the actdiff models with a
wide hyperparameter search range on the X-Ray SPC and RSNA VPC datasets across 10 seeds.

A.9 INDIVIDUAL SAMPLES

Figure A.14: Randomly-selected images for the synthetic dataset from 5 trained models (1 per row)
for each training method, computed using integrated gradients.
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Figure A.15: Randomly-selected images for the X-Ray SPC dataset from 5 trained models (1 per
row) for each training method, computed using integrated gradients.

Figure A.16: Randomly-selected images for the X-Ray No SPC dataset from 5 trained models (1
per row) for each training method, computed using integrated gradients.
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Figure A.17: Randomly-selected images for the RSNA VPC dataset from 5 trained models (1 per
row) for each training method, computed using integrated gradients.

Figure A.18: Randomly-selected images for the RSNA No VPC dataset from 5 trained models (1
per row) for each training method, computed using integrated gradients.
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A.10 ANALYSIS OF MODEL PERFORMANCE WITH EQUIVALENT SKEW IN TRAIN AND
VALIDATION SETS

The hyperparameter searches in this paper rely on the existence of a covariate shift between the train-
ing and validation distributions: generalization performance to the validation set is used to select the
regularization lambdas which encourage the model to ignore the confounder. In the typical machine
learning setup, the training and validation set are drawn IID from the same distribution. As we saw
on the baseline experiments, where there was no covariate shift in the data and the train/valid distri-
butions were the same, the regularization terms can hurt performance and a hyperparamater search
will seek to reduce their impact (since building representations of any confounders will produce
good validation performance). This is why in our original experiments it was important that the
covariate shift not be equivalent for the train and validation sets, and it is what we recommend in
practice (this is easy to accomplish because the exact sources of the covariate shift do not need to
be known, so the data can simply be sampled from some different environment where many back-
ground variables are likely to differ from the training distribution). Here, we present the results of
5 seeds run for all models on both the X-Ray SPC and RSNA VPC datasets, where the train and
validation sets both exhibited a 90/10 skew (exactly matching the skew of the training sets in the
original paper), and the test set exhibits a 10/90 skew. We set all hyperparamaters to be the same as
found during the search made for the main paper, except for setting the regularization term’s lambda
to 1 for all methods (where applicable) since this number cannot be searched for because there is no
covariate shift in the validation set to determine which lambda works (also see the results in Table
4).

In all cases we observe high validation performance and poor test performance. Interestingly, the
method which performs best in both cases is the Masked approach, which has no lambda to tune.
For both datasets, it reduces the validation performance in exchange for improved test performance.
The gradmask approach also improves test performance in the X-Ray SPC dataset. In total we take
these results to suggest that these methods must be used in cases where there exists some known or
unknown distribution shift between the training and validation sets to set the correct lambda: they
should not both be drawn IID from the same underlying distribution.

X-Ray: SPC
Experiment Valid AUC Test AUC

Baseline Classification 0.96± 0.00 0.64± 0.07
Masked 0.93± 0.04 0.78± 0.03

Domain Invariance ActDiff 0.97± 0.00 0.69± 0.03
Adversarial 0.96± 0.01 0.63± 0.03

Saliency Based GradMask 0.98± 0.00 0.74± 0.03
RRR 0.96± 0.01 0.59± 0.06

RSNA: VPC
Experiment Valid AUC Test AUC

Baseline Classification 0.92± 0.01 0.37± 0.02
Masked 0.57± 0.12 0.43± 0.06

Domain Invariance ActDiff 0.83± 0.02 0.33± 0.02
Adversarial 0.82± 0.06 0.34± 0.02

Saliency Based GradMask 0.92± 0.00 0.37± 0.01
RRR 0.92± 0.00 0.36± 0.01

Table 5: Mean and standard deviation Valid and Test AUC for all methods tested on the X-Ray SPC
and RSNA VPC datasets across 5 seeds.

25


	Introduction
	Related work
	Methods
	Experiments
	Synthetic Dataset
	X-Ray Dataset with Site-Pathology Correlation
	X-Ray Dataset with View-Pathology Correlation

	Limitations and Conclusions
	appendix
	Architecture of the ResNet-18 Model
	Hyperparameter Sensitivity
	Validation Curves for the Real World Datasets
	Best Hyperparameters for All Experiments
	Visualizations of Input Gradients, Integrated Gradients, and Occlusion-based Attribution Maps
	Saliency Maps for Incorrect and Correct Predictions
	Generalization Ability vs Attribution Quality for All Attribution Methods
	Actdiff Lambda Evaluation
	Individual Samples
	Analysis of Model Performance With Equivalent Skew in Train and Validation Sets


