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ABSTRACT

Relational databases, organized into tables connected by primary-foreign key re-
lationships, are widely used in industry. Companies leverage this data to build
highly accurate, feature-engineered tabular models—often using boosted decision
trees—to predict key metrics such as customer transactions and product revenues.
However, these models need frequent retraining as new data is introduced, which
is both expensive and time-consuming. Despite this, by being the result of ex-
tensive engineering effort, they remain difficult to outperform using generalist
methods, like Temporal Graph Neural Networks (TGNNs) trained over the same
relational data. Rather than attempting to replace tabular models with general-
ist approaches, we propose to combine the strengths of tabular models and static
Graph Neural Networks (GNNs). GNNs offer better speed and scalability than
TGNNs, and, as we argue, the primary strength of graph representation learning
for these tasks does not lie in modeling temporal dynamics—something highly-
engineered tabular models excel at—but in capturing complex relationships within
the database, which are hard to featurize. Our approach integrates all predictive
embeddings of all tabular models developed for various tasks into a single static
GNN framework. Experimental results on the RelBench benchmark show that
our approach achieves a performance improvement of up to 33% and an inference
speedup of up to 1050x, making it highly suitable for real-time inference.

1 INTRODUCTION

Relational databases are extensively used in industry due to their flexibility, extensibility, and
speed (Wheeler et al., 2000; Kremer, 2006; Johnson et al., 2016). The information, organized into ta-
bles, not only record entities, their features, and their relations (via primary and foreign key relation-
ships), but also records events, such as transactions, with their associated timestamps. The tabular
format simplifies data maintenance and enhances data accessibility and retrieval through query lan-
guages like SQL (Codd, 1970; Chamberlin & Boyce, 1974). Due to the presence of both timestepped
events and relations, tasks over relational databases tend to be both temporal and relational, such
as forecasting future product sales and predicting future customer purchases and churn (Robinson
et al., 2024). For decades, companies have been building in-house predictive models over rela-
tional databases by creating meticulously engineered relational and temporal features (Dong & Liu,
2018; Ganguli & Thakur, 2020) that flatten the complex temporal-relational data into a single table,
which is then used as input for tabular models like XGBoost and LightGBM (Ke et al., 2017; Chen
& Guestrin, 2016). However, incorporating new data sources or addressing new tasks with these
tabular models is both costly and time-consuming (Heaton, 2016).

Generalist models such as Temporal Graph Neural Networks (TGNNs) (Rossi et al., 2020; Dileo
et al., 2023; Cini et al., 2023; Longa et al., 2023) promise to offer a more cost-and-time effective
alternative to tabular models (Fey et al., 2024), and have shown some early success (Robinson et al.,
2024). These generalist approaches are applicable as relational databases can be naturally repre-
sented as temporal, heterogeneous graphs, where each row in a table corresponds to an attributed
node, and the edges are defined by primary-foreign key relationships. However, generalist models
often struggle to outperform tabular models, which benefit from years of extensive engineering and
domain-specific optimizations and inside knowledge. Therefore, several important questions arise:
(1) Can we integrate existing tabular models with generalist approaches (GNNs) to leverage their
complementary strengths (speed, accuracy, and flexibility)? (2) Could such a hybrid framework
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Figure 1: Overview of the proposed hybrid modeling framework. The pipeline begins with feature-
engineered tabular data processed by a tree-based model (e.g., LightGBM). Knowledge distillation
generates additional representations, which are used as node features for the graph input to the static
GNN in the training phase.

simplify the assimilation of new data sources and development of simpler, accurate, and scalable
models for new tasks?

Contributions. Our work proposes a hybrid tabular-generalist modeling framework for predictive
tasks on relational databases, which addresses the challenges of using existing tabular models while
effectively dealing with temporal scalability in large relational databases. Specifically, the knowl-
edge extracted from each existing tabular model is distilled into separate multi-layer perceptrons
(MLPs). The embeddings generated by these MLPs are then integrated as additional features into a
single static GNN. Having a single static GNN significantly reduces computational overhead com-
pared to TGNNs used in prior work (Robinson et al., 2024). A diagram of the pipeline is shonw
in figure 1. This modeling choice builds on the theoretical time-then-graph framework of Gao
& Ribeiro (2022), which demonstrates that if a separate model captures the temporal dynamics of
nodes and edges, the relational structure of a temporal graph can be fully captured by a static GNN.
In our framework, the tabular models serve as the temporal model, followed by the application of
a static GNN (details of this integration are provided in Section 3). This method not only improves
efficiency but, as shown in experiments on the RelBench benchmark (Robinson et al., 2024), allows
this lightweight model to outperform both standard tabular models and computationally expensive
temporal GNNs models represented by RDL (Robinson et al., 2024).

Our goal is not to suggest replacing generalist models like RDL with feature-engineered LIGHT-
GBM distillations for TREELGNN. Instead, we aim to demonstrate how TREELGNN can build
on tabular models already provided by industry-standard solutions, enhancing performance and en-
abling the seamless integration of unstructured data (e.g., images, text embeddings) into existing
machine learning pipelines.

2 BACKGROUND

In this section, we formally define the concept of relational databases and provide an overview of
the predictive tasks and the primary methods used to address them. The notation adopted throughout
this section roughly follows that of Fey et al. (2024) with changes that improve clarity in our settings.

2.1 RELATIONAL DATABASES

Relational databases provide a structured framework for organizing and managing interconnected
data across multiple tables. Each table contains a collection of entities sharing a common schema,
while relationships between tables capture complex interdependencies among these entities. A rela-
tional database can be formally defined as follows:

Definition 1 (Relational Database). A relational database R with N tables is described through a
set of entities v ∈ V , where v is a unique index of each entity in the dataset (a costumer, a product,
a transaction, etc.). The i-th table in the database, i ∈ [N ], can be described as a set of rows
representing each entity in the table: Ti = {{vv}}v∈V:ϕ(v)=i, where ϕ : V → [N ] is a function that
maps the entities to tables they belong to and vv = (pv,kv,xv, tv) is row in the i-th table, where
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Figure 2: Relational Database schema and Features-engineered XGBoost.

• pv ∈ N is the primary key that uniquely identifies the entity v;

• kv = (k1v, . . . , k
N
v ) is the tuple of foreign keys, kcv ∈ N, that allow to establish links between the

tables, c ∈ [N ], with kcv ≡ 0 if v does not refer to table c;

• xv = (x1v, . . . , x
di
v ) is the tuple of features of the entity v; entities often have features covering

multiple modalities, where each feature xcv can be categorical, numerical, or textual, c ∈ [di];

• tv is a special feature if “i” is a fact-table, indicating the timestamp when entity v appears.

We also define the set of all “tables” as T = {T1, . . . ,TN}. A link (i, j) between tables i, j ∈ [N ]
exists if a foreign key of Ti points to a primary key of Tj , i.e., if exists u ∈ Ti and v ∈ Tj such
that kju = pv . Let L be the set of such table links, more precisely, L = {(i, j)|∀i, j ∈ [N ] s.t. ∃u ∈
Ti,∃v ∈ Tj , k

j
u = pv}.

Garcia-Molina (2008) classifies tables into two categories: dimension tables, which store descriptive
attributes of entities, and fact tables, which capture interactions or events involving these entities.
Dimension tables contain static features that remain stable over time, whereas fact tables record
dynamic, time-dependent interactions, often using a special timestamp column to track temporal
changes. The rel-hm database from RelBench (Robinson et al., 2024) is a representativa example
of a relational database. It consists of customer purchase histories from the H&M e-commerce site
and consists of three tables: (i) the customer table contains information customers, such as gender
and birth year; (ii) the product provides details about products, including the description and the
size; (iii) the transaction table records which customer buy a specific product. In this schema,
the customer and product tables serve as dimension tables, as they store entities with immutable
attributes, such as a customer’s birth year. In contrast, the transaction table is classified as a fact table
because it records interactions between customers and products. A representation of the rel-hm
datproductsabase is provided in Figure 2, highlighting the table types and the relationships between
tables.

2.2 ML TASKS IN RELATIONAL DATABASES

Many real-world machine learning tasks on relational databases consist on predicting the future
state of specific entities. For instance, on rel-hm, one of the key tasks is forecasting the total
sales of an article for the upcoming week. This is relevant to H&M as it enables effective inventory
management, optimizes stock replenishment, and helps in crafting targeted marketing strategies to
maximize revenue and reduce the risk of article shortages or overstock situations. Predictive tasks
often involve entities from dimension tables and require the specification of a seed time, which
is defined as “the present” in the prediction task. Consider the task of predicting the churn (no
transactions) for a customer (v). Given a seed time t in days (“the present”), we would like to
predict the churn of v over the “next week”, i.e., in the interval [t, t + 7] in the database. Classical
machine learning methods, such as gradient-boosted decision trees (GBDT), dominate relational
database modeling due to their superior performance on these tabular data tasks (Gorishniy et al.,
2021; Shwartz-Ziv & Armon, 2022). When paired with manually-designed feature engineering,
tabular methods like LightGBM or XGBoost represent the industry’s go-to methods for constructing
predictive models on relational databases (Heaton, 2016). Unfortunately, improving these tabular
models is both costly and time-consuming, particularly when incorporating new data sources or
addressing new tasks. In recent years, the intrinsic structure of relational databases has attracted
the use of generalist models such as TGNNs. We formalize next how a relational database can be
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Figure 3: a) For each time i, the figure shows the graph G(Vi), which represents the interactions
occurring at time i; b) graph G(V≤t) is the aggregated graph consisting of all interactions from
every time step up to t; this is the graph used by RDL, representing the cumulative interactions
across all times; c) the graph G(Vt) in this panel represents only the interactions that occurred at
time t, corresponding to the last graph in panel a), which is the training graph for TREELGNN.

represented as a temporal heterogeneous graph and recap how the recently proposed Relational Deep
Learning (RDL) methods (Fey et al., 2024) exploit this representation for predictive tasks.

2.3 TGNNS FOR RELATIONAL DATABASE PREDICTION

We introduce the definition in Fey et al. (2024) of a relational database as a relational entity graph.
Definition 2 (Relational Entity Graph). For any subset of entities V ′ ⊆ V in the relational database
R we can construct a heterogeneous graph G(V ′) = (V ′, E ′, ϕ, ψ), where V, ϕ as given in Defini-
tion 1 and:

1. E ′ = {(v1, v2) ∈ V ′ × V ′ | kϕ(v1)v2 = pv1} is the set of edges between entities, which captures
connections between nodes based on primary-foreign key relationships;

2. ψ : E ′ → L, where L ⊆ [N ] × [N ] is the edge type mapping function that assigns each edge
(v1, v2) ∈ E ′ the pair of tables the belong to, i.e., ψ(v1, v2) = (ϕ(v1), ϕ(v2));

With the relational database represented as relational entity graph, predictions involving database
entities can be redefined as node regression/classification tasks. In practice, tasks on relational
databases are temporal and concern dimension nodes. For example, we may ask whether a customer
will make another purchase at a given seed time t+ 1.

Time filtrations over V: Vt and V≤t. It is therefore reasonable to restrict the relational entity
graph to include only the nodes present at a certain time. We will denote the set of nodes and edges
present at a given time respectively as Vt and Et, and the corresponding temporal relational entity
graph as G(Vt). The relational entity graph can also be constructed for multiple time points; for
example, we define G(V≤t) as the relational entity graph that contains the nodes present at all time
points up to t. Figure 3a shows several relational entity graphs at increasing time points, from 1 to
t, Figure 3b shows G(V≤t) resulting from the aggregation of all previous time points.

2.3.1 THE TGNN OF THE RDL MODEL (ROBINSON ET AL., 2024)

The RDL (Robinson et al., 2024) model employs a message-passing operator designed to account for
both the heterogeneous and temporal nature of the graph G. Given a seed time t ∈ R and a v ∈ V ,
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which serves as the task’s target (for example predicting the churn for customer v at time t) the
relational entity graph G(V≤t) is constructed (Figure 3b)). This graph serves as training examples
for the heterogeneous GNN (Gilmer et al., 2017). While RDL presents a promising approach to
leverage graph learning for predictive tasks on relational databases, it has a few notable drawbacks:

• In real-world applications, tabular models are refined over many years through extensive engi-
neering and domain-specific optimizations. In contrast, generalist methods are unable to effec-
tively use these extensive engineered features (Appendix E). This is a relevant limitation since it
is known that GNNs tend to perform significantly better when initialized with features such as
images or pre-trained embeddings, which provide a strong starting point for learning (Hu et al.,
2020).

• The relational entity graph G(V≤t) is used to make inferences for the next time interval. Thus,
temporal information is handled by including all neighbors from previous time steps, ensuring that
in the message-passing process, information flows only from earlier nodes to more recent ones.
However, the use of RDL presents two challenges: first, there is no explicit mechanism (either
recurrent or otherwise) to manage temporal dependencies; second, the graph G(V≤t) tends to
become large due to the aggregation of nodes and relations over all the times before t. We claim
that it is possible to simultaneously: 1) better leverage temporal information by incorporating
knowledge from tabular methods, and 2) construct a much lighter graph by utilizing the time-
then-graph framework.

3 THE TREELGNN FRAMEWORK

We now propose the TREELGNN framework, a hybrid tabular-generalist modeling framework
designed to integrate tabular data predictors (e.g., XGBoost, LIGHTGBM) with GNNs to capture
both temporal and relational patterns. The key components of TREELGNN are a tabular model
distillation and a time-then-graph representation, which we now describe in detail:

(A) Tree Distillation: Let T(≤t)
i = {{vv ∈ Ti : ∀v ∈ V≤t}} with Ti as in Definition 1. Let FE be

a feature engineering process which assigns to each node v ∈ Vt a new df -dimensional feature based
on all the entities of all the tables up to time t, i.e., fv,≤t = FE(v, {T(≤t)

i }Ni=1). A feature-engineered
tabular model (e.g., XGBoost) is a model TB trained on the set D = {(fv,≤t, yv) : v ∈ V≤t}, where
yv is the ground truth label associated to node v ∈ V≤t i.e., yv ∈ C = {c1, . . . , cn} for classification
tasks or yv ∈ R for regression. For all v ∈ V≤t, we define ŷTBv (fv,≤t) := TB(fv,≤t).

Our model distillation (Hinton, 2015) is performed via multi-task learning over an MLP with two
task heads. The first task head is trained on the dataset D = {(fv,≤t, yv) : v ∈ V≤t}. The second
task head is trained on the predictions produced by TB, i.e., D̂ = {(fv,≤t, ŷ

TB
v (fv,≤t)) : v ∈ V≤t}.

Let ŷMLP(fv,≤t) := MLPL(fv,≤t) be the softmax output of an L-layered MLP. The loss for the first
task head is computed using the cross-entropy:

Lhard = −
∑

v∈V≤t

∑
c∈C

1{yv = c} log(ŷMLP(fv,≤t))c, (1)

where (ŷMLP(fv,≤t))c is the probability that the MLP assigns to class c for entity v. For computing
the loss for the second task head, we need to soften the output from the tabular model using a softmax
with a temperature parameter F ≥ 1, which allows the tabular model to produce softer probability
distributions over the classes C, defined as follows:

pTB,Fc (fv,≤t) = softmax((log ŷTBv (fv,≤t))/F ), (2)

where F is the temperature parameter that controls the smoothness of the output distribution. The
distillation loss is then computed as the cross-entropy between the soft labels provided by the tabular
model and the soft labels generated by the MLP. This can be expressed as

Lsoft = −
∑
v∈T

∑
c∈C

pTB,Fc (fv,≤t) log(ŷ
MLP(fv,≤t))c. (3)

The total loss for the distillation process is a weighted combination of these two losses:

Ltotal = αLhard + (1− α)F 2Lsoft, (4)
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where α is a hyperparameter that controls the trade-off between the ground truth learning and the
distillation learning, and F is the temperature parameter used to soften the predictions from the
tabular model. In the case of regression tasks, we follow a similar procedure but replace the cross-
entropy losses with an appropriate regression loss, i.e., the mean absolute error (MAE). Once the
MLP is trained, the embedding generated by the last hidden layer, embv,≤t = MLPL−1(fv,≤t) con-
tains the knowledge learned from the highly optimized features engineered tabular methods. These
embeddings can be integrated as additional node features. In principle, any existing tabular model
from the literature can be used as the TB component; for our experiments we follow (Robinson et al.,
2024) and choose LIGHTGBM.

(B) Time-then-graph representation: The core idea behind TREELGNN is to use a static GNN
on a graph built only with the nodes and relations at time t to infer the next time step. The node
features are integrated with embeddings obtained through distillation, which effectively capture tem-
poral dynamics.

Given a seed time t ∈ R and node v ∈ V which serves as the task’s target, TREELGNN constructs
the relational entity graph using only the nodes from that specific time, i.e., G(Vt) (Figure 3c). In
this way, the graph is significantly smaller because only the interactions between entities occurring
at that specific time are considered. To incorporate historical temporal information, the embeddings
obtained through distillation are integrated as additional feature in the graph nodes as follows:

h0
v = f(xv, embv,≤t),∀v ∈ Vt s.t. ϕ(v) = i∗, (5)

where f is a function that aggregates the original features and the additional ones (in our experiments
we used f as the concatenation), xv are the node features as defined in Definition 1 and i∗ is such
that Ti∗ is the table whose entities are the target of the task (e.g customer in the user-churn task).

The core of TREELGNN is a static heterogeneous GNN; for every heterogeneous message-passing
layer ℓ ≤ L′:

hℓ+1
v = COMBϕ(v)

(
hℓ
v,
{

AGG(ϕ(v),j)

(
{hℓ

u : u ∈ N (t)
j (v)}

)
: ∀j ∈ [N ], |N (t)

j (v)| > 0
})

,

(6)
where

N (t)
j (v) = {u : (v, u) ∈ Et, ϕ(u) = j}, (7)

denotes the set of neighbors of v at time t that belong to the j-th table, ϕ is defined as in Definition 1,
and Et = E ′ is as given in Definition 2 for V ′ = Vt. Aggregation is performed separately for
each target-neighbor table pair (ϕ(v), j) using a neural aggregation function AGG(ϕ(v),j) which is
parameterized by the specific table pair. Subsequently, a neural combination function COMBϕ(v),
parameterized by the type of the target node, merges the target node’s previous layer representation
with the aggregated representations of its neighbors across all relations.

In order to perform the COMB and AGG operations in Equation (6), any functions borrowed from
heterogeneous static GNNs can be used. We opted for HeteroGraphSAGE (Hamilton et al., 2017)
since it is the same message-passing layer used in RDL, allowing for a fairer comparison in our
experiments. It is worth mentioning that the use of a static GNN combined with node embeddings
to handle temporality (embv,≤t in our case) is motivated by the theoretical results on the time-then-
graph framework in Gao & Ribeiro (2022). These results prove that when temporal information is
effectively encoded as node/edge embeddings, a static GNN can achieve as strong performance on
temporal graph tasks as the best temporal GNNs, if not better under some scenarios. Our approach
indeed falls in the family of time-then-graph methods for temporal graphs.

Expressiveness of TREELGNN. In light of Chen & Wang (2024), we can draw conclusions
about the expressiveness of our method and compare it to RDL, specifically in terms of logical ex-
pressiveness in binary classification, which is a prevalent task in many relatable datasets. In TREEL-
GNN, the heterogeneous GNN used as the model core is a HeteroGraphSAGE. This model has been
proven capable of capturing every Boolean node classifier expressible in FOC2 logic. FOC2, which
stands for First-Order Logic with Counting Quantifiers, is a formal system that extends first-order
logic by allowing quantification over sets and counting. Using Theorem 17 in Chen & Wang (2024),
since the graphs constructed from relational databases are bounded and simple, we can state that:
1) RDL is incomparable to the time-and-graph framework (Gao & Ribeiro, 2022) in terms of the
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Table 1: Entity regression results (MAE, lower is better). Best values are in bold. See Table 8 in
Appendix D for standard deviations. TREELGNN demonstrates significantly superior performance
with respect to the baselines, with gains over RDL ranging from 0.6% to 33.9%, and gains over
LIGHTGBM ranging from 2.6% to 4.7%.

LIGHTGBM RDL RDL RDL TREELGNN Gain wrt Gain wrt
w. P. w. D. RDL (%) LIGHTGBM (%)

rel-f1 driver-position 4.010 4.142 3.991 4.120 3.861 +6.8 +3.7
rel-hm item-sales 0.038 0.056 0.050 0.052 0.037 +33.9 +2.6
rel-event user-attendance 0.249 0.255 0.248 0.247 0.238 +6.7 +4.4
rel-stack post-votes 0.068 0.065 0.065 0.065 0.064 +0.6 +4.7

rel-amazon
user-ltv 14.212 14.314 14.187 13.974 13.587 +5.1 +4.4
item-ltv 49.917 50.053 49.189 48.752 48.112 +3.8 +3.6

GNN ✗ ✓ ✓ ✓ ✓
Time-then-graph - ✗ ✗ ✗ ✓

logical expressiveness; 2) by incorporating temporal handling through additional features distilled
from LIGHTGBM, TREELGNN becomes strictly more expressive than RDL.

4 RELATED WORK

Relational databases are integral to a wide-range of applications, from e-commerce plat-
forms (Agrawal et al., 2001) and social media networks (Almabdy, 2018) to banking sys-
tems (Aditya et al., 2002) and healthcare services (Park et al., 2014). Tree-based methods, especially
XGBoost, remain the preferred methods for learning on these relational data (Fey et al., 2024). In-
deed, although efforts to design deep learning architectures for tabular data has shown promising
results (Huang et al., 2020; Arik & Pfister, 2021; Gorishniy et al., 2021; 2022; Chen et al., 2023), no
deep-learning model has yet been demonstrated to clearly outperform tree-based methods on tabular
data (Shwartz-Ziv & Armon, 2022; McElfresh et al., 2024).

Among the deep learning models proposed for relational data, graph neural networks (GNNs)
have also gained attention, with models specifically designed to handle relations among
nodes (Schlichtkrull et al., 2018; Cvitkovic, 2020; Zahradnı́k et al., 2023; Ferrini et al., 2024). Re-
cently, (Fey et al., 2024; Robinson et al., 2024) proposed a general end-to-end learnable framework
for solving tasks on relational data that incorporates a temporal dimension. This proposed approach
bridges the gap between relational GNNs and temporal GNNs (Kapoor et al., 2020; Gao et al., 2021;
Sankar et al., 2020; Cui et al., 2019; Zhao et al., 2019; Lv et al., 2020; Pareja et al., 2020; Jin et al.,
2020; Manessi et al., 2020; Rossi et al., 2020; Gao & Ribeiro, 2022; Heeg & Scholtes, 2023; Longa
et al., 2023; von Pichowski et al., 2024; Marisca et al., 2024; Beddar-Wiesing et al., 2024), introduc-
ing RDL which serves as both our starting point and main competitor in the development of more
effective and light-way GNN-based solutions for relational databases.

Other works have explored the combination of GNNs with boosting methods (Ivanov &
Prokhorenkova, 2021; Sun et al.; Shi et al., 2021; Zheng et al., 2021; Tang et al., 2024; Deng et al.,
2021).However, they focus on improving standard GNNs for graph datasets that are not derived
from relational databases, and therefore lack temporal and heterogeneous components. Moreover,
while these methods often aim to replace trees with GNNs within a boosting setup, we instead in-
corporate pretrained tree-based models as a dedicated component for modeling temporality. This is
complemented by a static GNN, which captures the structural relationships within the data.

5 RESULTS

We now show the effectiveness of TREELGNN against state-of-the-art baselines across multiple
experimental settings. The experiments primarily seek to show that TREELGNN significantly re-
duces both training and inference times without sacrificing accuracy. In all scenarios, TREELGNN
not only maintains competitive accuracy but outperforms the best baselines in many scenarios, all
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while being considerably faster. A detailed description of the RelBench datasets used is provided in
Appendix A. Detailed model configurations and training procedures are provided in Appendix B.

Before continuing to our experiments, it is important to reemphasize that our goal is not to
suggest replacing generalist models like RDL with feature-engineered LIGHTGBM distillations
for TREELGNN. Instead, these experiments seek to show that organizations with existing high-
performing tabular models (e.g., XGBoost) can leverage TREELGNN to enhance their perfor-
mance and seamlessly integrate new features and unstructured data (e.g., images, text embeddings)
into their machine learning pipelines.

5.1 DATASETS

For these experiments we consider four datasets from the RelBench benchmark (Robinson et al.,
2024). The rel-hm relational database contains customer purchase histories and product metadata
from the brand’s online shopping network. The rel-f1 database provides comprehensive data on
Formula 1 racing since 1950, including information about drivers, constructors, circuits, and race
results. The rel-event database is derived from the Hangtime app and includes anonymized
user actions, event metadata, and social relations data. The rel-stack dataset is sourced from
the stats-exchange site, comprising user activity, posts, comments, and voting histories. Finally,
rel-amazon stores information about product, users and reviews from Amazon platform. For
each dataset, we considered several tasks, which include both regression and classification tasks
aimed at making future predictions at the entity level of the tables.

5.2 TREELGNN CONFIGURATION AND BASELINES

TREELGNN is configured using two models: (a) the pretrained feature-engineered LIGHTGBM
model from RelBench (Robinson et al., 2024); and (b) a static GNN (HGSAGE) that is a static
HeteroGraphSAGE (Hamilton et al., 2017), identical to the (static) GNN used at each timestep in
the RDL model (Robinson et al., 2024).

We evaluate TREELGNN against two baselines which are the strongest-performing methods in
Robinson et al. (2024): the pretrained feature-engineered LIGHTGBM model from RelBench and
the RDL model. Since TREELGNN uses the additional features derived through distillation, to
ensure a fair comparison, we also create two versions of RDL that incorporate these additional
features. First, we added the pointwise predictions of LIGHTGBM as extra features on the nodes
(RDL w.P.). Second, we introduced the embeddings obtained from the distillation process, as done
with TREELGNN (RDL w.D.). The architectural details of the different models are provided in
Appendix B, the specifics of the distillation process can be found in Appendix C, while the details
about the batch size used for calculating runtime can be found in Appendix F.4.

5.3 EXPERIMENTAL RESULTS

Regression tasks (MAE). Figure 4(a) shows TREELGNN achieves between +0.6% to +34%
lower test errors than RDL, but it is also significantly faster in training and inference times compared
to RDL across all regression tasks, demonstrating speedups between 100× to 1300× in train and
between 35× to 1050× in inference, which we will discuss later.

Table 1 shows the performance of TREELGNN against other baselines, more specifically, against
LIGHTGBM and all versions of RDL: RDL original, RDL with the predicted y from LIGHTGBM
(RDL w. P.), and RDL with the LIGHTGBM-distilled embeddings embv,≤t (RDL w. D.). We see
that RDL does not gain very much from incorporating the LIGHTGBM predictions, possibly due to
the size of its temporal graph (G(V≤t) in Figure 2) interfering with extracting information from the
extra LIGHTGBM-related features. We also note that the gains of TREELGNN over LIGHTGBM
are more modest, they range from +2.6% to +4.7%.

Classification tasks (AUCROC). Figure 5(a) shows that TREELGNN outperforms RDL in four
dataset with gains ranging +1.2% to +7.9% and TREELGNN underperforms RDL in three datasets
with modest losses ranging from -2.1% to -0.8%, but noting that in the tasks TREELGNN loses to
RDL, it is between 100× to 2800× faster in training and 95× to 500× faster in inference than RDL.
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Figure 4: Mean Average Error (MAE) –lower is better— (a), training time (b) and inference time (c)
for regression tasks. TREELGNN achieves between 0.6% to 34% lower test errors than RDL, but
it is also significantly faster in training and inference times compared to RDL across all regression
tasks, demonstrating speedups between 100× to 1300× in train and between 35× to 1050× in
inference.

Table 2: Entity classification results (AUROC, higher is better). Best values are in bold. See Table 10
in Appendix D for standard deviations. TREELGNN achieve good performance in classification;
even if it does not always outperform competitors, the average performance gain wrt LIGHTGBM
and RDL are 1,4% and 1,6% respectively.

LIGHTGBM RDL RDL RDL TREELGNN Gain wrt Gain wrt
w. P. w. D. RDL (%) LIGHTGBM (%)

rel-f1
driver-dnf 70.52 71.08 69.93 71.57 73.55 +3.5 +4.3
driver-top3 82.77 80.30 82.28 83.28 84.73 +5.5 +2.4

rel-hm user-churn 69.12 69.09 69.24 69.56 68.93 -0.9 -0.3

rel-event
user-ignore 82.62 77.82 70.72 79.13 83.98 +7.9 +1.6
user-repeat 75.78 76.50 76.57 76.63 77.77 +1.7 +2.6

rel-stack
user-engagement 90.34 90.59 90.66 90.50 89.02 -1.7 -1.5
user-badge 86.23 88.54 88.42 88.57 86.71 -2.1 +0.1

rel-amazon
user-churn 68.34 70.42 69.81 69.90 69.87 -0.8 +2.2
item-churn 82.62 82.81 82.93 83.12 83.84 +1.2 +1.5

GNN ✗ ✓ ✓ ✓ ✓
Time-then-graph - ✗ ✗ ✗ ✓

Table 2 shows the performance of TREELGNN against other baselines, more specifically, against
LIGHTGBM and all versions of RDL: RDL original, RDL w. P., and RDL w.D. The performance
gain of TREELGNN with respect to LIGHTGBM is between -1.5% to +4.3%. These findings
confirm that TREELGNN is a robust and competitive model, excelling in most cases and losing
only marginally in others. Notably, RDL w.P. and RDL w.D. achieve better performance compared
to RDL, but they still underperform with respect to TREELGNN. We note that, in three tasks, RDL
w.P show lower performance than LIGHTGBM. This may be because the node features in the user-
ignore task are quite large, and adding just a single value for the prediction is insufficient hint for
the model to understand its importance.

Comparing training and inference times. TREELGNN achieves a substantial reduction in
training times compared to RDL across all datasets and tasks, with speedups ranging from 100x
to 2800x (see Figure 4 (b) and Figure 5 (b)). This dramatic speedup is due primarily to two factors:
(i) the effect of the number of timestamps of the tasks, which does not affect TREELGNN and
significantly affects RDL (see Figure 2) and (ii) the much smaller number of model parameters in
TREELGNN (see Appendix B). Unlike RDL, where the training graphG(V≤t) is constructed using
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entities and relations of all the time up to t, TREELGNN’s graph G(Vt) only uses the information
at the timestamp t before the inference, so that the size of its graph is independent of the number of
snapshots.

More importantly for organization that already have high-performing tabular models (e.g., XG-
Boost), incorporating TREELGNN is substantially faster than using temporal GNNs such as
RDL at inference time, achieving speedups ranging from 15× to 1050× across various tasks (See
Figure 4 (c) and Figure 5 (c)). These speedups largely compensate for the occasional limited drop
in classification performance (Table 2). Indeed, the largest decrease in classification performance is
2.1% in the user-badge task of the rel-stack dataset, where TREELGNN has a 95-fold increase in in-
ference speed over RDL. This substantial improvement makes TREELGNN particularly well-suited
for relational database ML applications, that demand low-latency and low-computational overhead.
As a result, TREELGNN is not only preferred for scenarios requiring rapid response times but is
also highly practical for deployment in industrial settings where pretrained tabular models already
exist and computational resources and inference latency are critical constraints.

10 1 100 101 102 103 10 1 100 101 102

rel-f1
driver-dnf

driver-top3
rel-f1

b)   Training timea)    Performance

user-churn
rel-hm

user-ignore
rel-event

user-repeat
rel-event

user-badge
rel-stack

user-engage
rel-stack

180X faster

110X faster

2800X faster

119X faster

100X faster

840X faster

100X faster

s/epochROCAUC

c)   Inference time

15X faster

45X faster

500X faster

55X faster

25X faster

370X faster

95X faster

10 2

s/epoch
65 70 75 80 85 90

+3.5%

+5.5%

-0.9%

+7.9%

+1.7%

-1.7%

-2.1%

user-churn
rel-amazon

item-churn
rel-amazon

450X faster

500X faster

20X faster

25X faster

-0.8%

+1.2%

Figure 5: AUCROC (a), training time (b) and inference time (c) for classification tasks. TREEL-
GNN is significantly faster than RDL, achieving speedups ranging from 100× to 2800× in training
and from 15× to 500× in inference. While TREELGNN mildly underperforms RDL in three tasks,
with a maximum performance loss of 2%, this is compensated by a training speed that is at least
100× faster and inference speed that is at least 25× faster in these same scenarios.

6 CONCLUSION

In this work, we introduced the TREELGNN framework, a novel relational deep learning method
that integrates tabular models and graph neural networks in a time-then-graph framework. Our re-
sults on the RelBench benchmark demonstrate that leveraging the strengths of both tabular models
and static GNNs can significantly improve predictive accuracy and efficiency compared to using
either approach in isolation. Specifically, by embedding predictive features from existing tabular
models into a unified static GNN framework, we achieve substantial performance gains across mul-
tiple tasks at a fraction of the computational cost of current RDL approaches.

The TREELGNN framework simplifies the integration of new data into predictive workflows using
a static GNN, enabling real-time inference and enhancing its practicality for industrial applications.
Additionally, this work demonstrates the potential of graph representation learning to complement
traditional tabular models, paving the way for future research on hybrid architectures that effectively
combine feature-engineered and graph-based representations for complex relational data.
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REPRODUCIBILITY STATEMENT

Additional information regarding the experiments and implementation details, as well as source code
are provided in Appendix B.
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A DATASET

The Relational Deep Learning Benchmark (RelBench) is a collection of large-scale, real benchmark
datasets for machine learning on relational databases. We consider four databases of RelBench and
the respective predictive tasks:

rel-event originates from the Hangtime mobile app, which tracks users’ social plans and in-
teractions with friends. The dataset contains anonymized data on user actions, event metadata, and
demographic information, as well as users’ social connections, allowing for an analysis of how these
relations influence behavior. No personally identifiable information is included in the dataset. The
entity predictive tasks on this database are:

• user-attendance: Predict how many events each user will respond ”yes” or ”maybe” to
within the next seven days.

• user-repeat: Determine whether a user will attend another event (by responding ”yes” or
”maybe”) within the next seven days, given they have attended an event in the last 14 days.

• user-ignore: Predict whether a user will ignore more than two event invitations within the
next seven days.

rel-f1 comprises historical data and statistics from Formula 1 racing, covering the period from
1950 to the present. It includes comprehensive information on key stakeholders, such as drivers,
constructors, engine manufacturers, and tire manufacturers. The dataset highlights geographical
details of circuits, along with detailed historical season data, including race results, practice sessions,
qualifying positions, sprints, and pit stops. The entity predictive tasks on this database are:

• driver-position: Forecast the average finishing position of each driver across all races in
the upcoming two months.

• driver-dnf: Predict whether a driver will fail to complete a race (DNF - Did Not Finish)
within the next month.

• driver-top3: Determine whether a driver will qualify within the top 3 positions in a race
over the next month.

rel-hm comprises extensive customer and product data from the company’s online shopping
platform of H&M. It includes detailed customer purchase histories and a wide range of meta-
data, covering everything from customer demographics to comprehensive product information. This
dataset enables a deep analysis of shopping behavior across a broad network of brands and stores.
The entity predictive tasks on this database are:

• user-churn: Predict customer churn (i.e., no transactions) within the next week.
• item-sales: Estimate the total sales for a product (summed over the associated transactions)

during the next week.

rel-stack captures detailed interactions from the network of question-and-answer websites
Stack Exchange. It includes comprehensive records of user activity, such as biographies, posts,
comments, edit histories, voting patterns, and links between related posts. The reputation system
within Stack Exchange enables self-moderation of the community. In our experiments, we use data
from the stats-exchange site. The entity predictive tasks on this database are:

• user-engagement: Predict whether a user will engage (e.g., through votes, posts, or com-
ments) within the next three months.

• post-votes: Forecast how many votes a user’s post will receive over the next three months.
• user-badge: Predict if a user will be awarded a new badge during the next three months.

rel-amazon The Amazon E-commerce database documents products, users, and reviews from
Amazon’s platform, providing comprehensive details about products and their associated reviews.
Each product entry includes its price and category, while reviews capture the overall rating, whether
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Table 3: Tasks details.

Dataset Task name Task type #Rows Train #Rows Val #Rows Test #Unique Entities %train/test Entity Overlap

rel-event user-attendance entity-reg 19 261 2 014 2 006 9 694 14.6
user-repeat entity-cls 3 842 268 246 1 514 11.5
user-ignore entity-cls 19 239 4 185 4 010 9 799 21.1

rel-f1 driver-dnf entity-cls 11 411 566 702 821 50.0
driver-top3 entity-cls 1 353 588 726 134 50.0
driver-position entity-reg 7 453 499 760 826 44.6

rel-hm user-churn entity-cls 3 871 410 76 556 74 575 1 002 984 89.7
item-sales entity-reg 5 488 184 105 542 105 542 1 005 542 100.0

rel-stack user-engagement entity-cls 1 360 850 85 838 88 137 88 137 97.4
user-badge entity-cls 3 386 276 247 398 255 360 255 360 96.9
post-votes entity-reg 2 453 921 156 216 160 903 160 903 97.1

rel-amazon user-churn entity-cls 4 732 555 409 792 351 885 1 585 983 88.0
item-churn entity-cls 2 559 264 177 689 166 842 416 352 93.1
user-ltv entity-reg 4 732 555 409 792 351 885 1 585 983 88.0
item-ltv entity-reg 2 707 679 166 978 178 334 427 537 93.5

the reviewer purchased the product, and the review text. For our analysis, we focus specifically on a
subset of book-related products.

• user-churn: Predict whether a user will refrain from reviewing any products in the next
three months (1 for no reviews, 0 otherwise).

• item-churn: Determine if a product will receive no reviews in the next three months (1 for
no reviews, 0 otherwise).

• user-ltv: Predict the value of the total products a user purchases and reviews over the next
three months.

• item-ltv: Predict the value of the total purchases and reviews a product receives in the next
three months.

Further details regarding the tasks are provided in Table 3.

B EXPERIMENTAL DETAILS

The hyperparameter search was performed using grid search, exploring values for the learning rate
(0.1, 0.01, 0.001), dropout rates (0.1, 0.2, 0.3, 0.4, 0.5), and the number of layers (ranging from 2
to 6). Our method is implemented with PyTorch, PyTorch Geometric (Fey & Lenssen, 2019), and
TorchFrame (Hu et al., 2024), and the experiments were conducted on a single RTX-4090 GPU
with 24GB of memory. For classification tasks, we used the BCEWithLogitsLoss function, and for
regression tasks, we employed L1Loss. The source code for reproducibility is available at https:
//anonymous.4open.science/r/TReeLGNN-3DED/README.md.

Table 4 presents the number of parameters of TREELGNN and RDL across the different tasks.

C DISTILLATION

The knowledge distillation from LIGHTGBM into an MLP was carried out as described in Section
Section 3. A grid search was performed to tune the learning rate, dropout, the α value, temperature
T , and the number of layers. The size of the penultimate layer, from which the embeddings are
extracted, was fixed at 10. The results of the distillation for the classification tasks are presented
in Table 6, where the first column shows the AUC-ROC against the true target, and the second
column shows the AUC-ROC against the predictions of LIGHTGBM. In Table 5, the results for the
regression tasks are also reported.
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Table 4: Number of parameters. TREELGNN has significantly fewer parameters than RDL.

Dataset Task RDL TREELGNN

C
la

ss
ifi

ca
tio

n

rel-f1
driver-dnf 5 073 793 271 803
driver-top3 5 073 793 648 395

rel-hm user-churn 2 178 945 22 204

rel-event
user-ignore 5 942 785 1 231 871
user-repeat 5 942 785 467 583

rel-stack
user-engagement 4 322 177 2 847 127
user-badge 4 322 177 3 586 454

rel-amazon
user-churn 5 129 348 1 622 173
item-churn 5 129 348 1 730 512

R
eg

re
ss

io
n

rel-f1 driver-position 5 073 793 1 372 395

rel-hm item-sales 2 178 945 73 409

rel-event user-attendance 5 942 785 1 518 271

rel-stack post-votes 4 322 177 1 987 955

rel-amazon
user-ltv 5 129 348 925 571
item-ltv 5 129 348 1 113 729

Table 5: Distillation results for the regression tasks in MAE with respect to the real target and to the
LIGHTGBM prediction.

Dataset Task MAE vs Real MAE vs LIGHTGBM
rel-f1 driver-position 3.881 2.411

rel-hm item-sales 0.040 0.022

rel-event user-attendance 0.269 0.068

rel-stack post-votes 0.067 0.007

rel-amazon
user-ltv 14.438 7.319
item-ltv 50.925 32.264

D DETAILED PERFORMANCE

The experiments reported in Section 5 were conducted over 5 runs with 5 different seeds. The com-
plete results are presented in the following tables. Table 7 shows the mean and standard deviation
of the validation performance for the baselines and TREELGNN on the regression tasks; Table 8
presents the mean and standard deviation of the test performance for the baselines and TREELGNN
on the regression tasks. Table 9 and Table 10 present the corresponding results for the classification
tasks.

E TREELGNN W/O TIME WITH FEATURE ENGINEERING

We wanted to test the hypothesis that even when generalist models are allowed to use these engi-
neered features, the performance remains suboptimal, underscoring the fact that such features are
specifically tailored for tabular models. We conducted a preliminary experiment on the driver-top3
task of the re-f1 dataset, where the same engineered features were directly applied as node fea-
tures in the graph without employing any tabular methods (TREELGNN W/O TIME with F.E.).
The poor performance confirm that the feature produced by the feature engineering are primarily
designed for tabular models.
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Table 6: Distillation results for the classification tasks in AUCROC with respect to the real target
and to the LIGHTGBM prediction.

Dataset Task AUCROC vs Real AUCROC vs LIGHTGBM

rel-f1
driver-top3 82.74 89.92
driver-dnf 79.32 90.17

rel-hm user-churn 69.81 82.03

rel-event
user-ignore 80.23 91.08
user-badge 85.77 92.01

rel-stack user-engage 87.05 89.41

rel-amazon
user-churn 66.93 89.32
item-churn 79.91 89.73

Table 7: Validation MAE with standard deviation over 5 runs.

LIGHTGBM RDL RDL RDL TREELGNN
w. P. w. D.

rel-f1 driver-pos 2.800 ± 0.030 3.130 ± 0.050 2.830 ± 0.050 3.130 ± 0.030 2.910 ± 0.070

rel-hm item-sales 0.048 ± 0.001 0.065 ± 0.001 0.060 ± 0.000 0.061 ± 0.001 0.046 ± 0.000

rel-event user-attend. 0.249 ± 0.002 0.246 ± 0.004 0.243 ± 0.004 0.244 ± 0.003 0.244 ± 0.003

rel-stack post-votes 0.062 ± 0.001 0.059 ± 0.001 0.059 ± 0.003 0.059 ± 0.008 0.059 ± 0.002

rel-amazon
user-ltv 11.482 ± 0.001 12.132 ± 0.007 12.112 ± 0.001 11.892 ± 0.002 11.325 ± 0.025

item-ltv 44.314 ± 0.001 45.140 ± 0.068 44.910 ± 0.013 44.201 ± 0.025 43.121 ± 0.078

F ADDITIONAL EXECUTION TIME COMPARISON

F.1 PREPROCESSING

Table 12 compares the graph construction times of TREELGNN model and RDL. For TREELGNN
model, preprocessing involves three steps: first, computing predictions with LIGHTGBM; second,
distilling these predictions into embeddings; and finally, constructing static graphs. In contrast,
RDL requires the construction of a temporal graph and the embedding of input features. While the
preprocessing time for TREELGNN model can be up to twice that of RDL, it is performed only
once. This preprocessing leads to a significantly faster training process compared to RDL, making
the overall pipeline more efficient.

F.2 END-TO-END TRAINING TIME

This section presents the end-to-end training results for TREELGNN model, RDL, and LIGHT-
GBM. All models were trained using early stopping, and the reported results are averaged over five
runs. The table shows that TREELGNN model is significantly faster than RDL and generally out-
performs it by 4.74%. In contrast, the training time of TREELGNN model is comparable to that of
LIGHTGBM, but it achieves an average performance improvement of 2.4%.

F.3 INFERENCE TIME

F.4 BATCH SIZE

In this section, we explain the mini-batching strategy used by TREELGNN model compared to that
of RDL. In the case of TreeLGNN, a batch of size 1 corresponds to the entire graph at the current
timestamp, as the model processes the full set of interactions at that time. In contrast, for RDL, a
batch of size 1 refers to a single node along with its temporal neighborhood. Given these differences

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Test MAE with standard deviation over 5 runs.

LIGHTGBM RDL RDL RDL TREELGNN
w. P. w. D.

rel-f1 driver-pos 4.010 ± 0.080 4.142 ± 0.110 3.991 ± 0.120 4.120 ± 0.270 3.861 ± 0.045

rel-hm item-sales 0.038 ± 0.001 0.056 ± 0.001 0.050 ± 0.000 0.052 ± 0.000 0.037 ± 0.000

rel-event user-attend. 0.249 ± 0.003 0.255 ± 0.004 0.248 ± 0.002 0.247 ± 0.001 0.238 ± 0.003

rel-stack post-votes 0.068 ± 0.000 0.065 ± 0.000 0.065 ± 0.000 0.065 ± 0.000 0.064 ± 0.000

rel-amazon
user-ltv 14.210 ± 0.000 14.313 ± 0.013 14.183 ± 0.0382 13.9712 ± 0.010 13.582 ± 0.043

item-ltv 49.912 ± 0.000 50.052 ± 0.163 49.181 ± 0.063 48.751 ± 0.023 48.115 ± 0.059

Table 9: Validation AUCROC with standard deviation over 5 runs.

LIGHTGBM RDL RDL RDL TREELGNN
w. P. w. D.

rel-f1
driver-dnf 81.49 ± 0.25 75.19 ± 2.64 78.31 ± 0.81 78.64 ± 0.33 81.90 ± 0.77

driver-top3 89.74 ± 0.25 76.25 ± 2.22 77.18 ± 0.90 79.95 ± 2.37 89.15 ± 0.33

rel-hm user-churn 70.01 ± 0.02 69.82 ± 0.33 70.05 ± 0.37 69.82 ± 0.33 69.30 ± 0.04

rel-event
user-ignore 91.89 ± 1.61 90.66 ± 0.50 90.04 ± 1.19 92.43 ± 0.68 91.84 ± 0.94

user-repeat 73.18 ± 0.44 72.56 ± 0.79 71.68 ± 1.32 72.60 ± 0.90 74.52 ± 0.46

rel-stack
user-engage 90.17 ± 0.03 90.19 ± 0.05 90.21 ± 0.03 90.19 ± 0.05 88.88 ± 0.02

user-badge 87.84 ± 0.02 89.62 ± 0.13 89.43 ± 0.31 89.68 ± 0.14 84.56 ± 0.21

rel-amazon
user-churn 68.79 ± 0.02 70.45 ± 0.05 69.89 ± 0.35 69.91 ± 0.08 70.01 ± 0.12

item-churn 82.41 ± 0.02 82.39 ± 0.02 82.53 ± 0.16 82.89 ± 0.11 83.11 ± 0.04

in the definition of a batch between the two models, we ensured a fair comparison by manually
adjusting the batch sizes so that GPU usage was balanced across both models. Table 15 shows the
batch sizes and memory consumption for both models.

F.5 RDL-LESS PARAMETERS

In this section, we compare TREELGNN with a reduced-parameter version of RDL, referred to as
RDL small. The number of parameters in RDL small was reduced to match the scale of TREEL-
GNN. Tables 16 and 17 present the metrics (AUCROC/MAE), training time, and inference time.
The results demonstrate that reducing the parameters in RDL leads to slightly faster training and in-
ference times but comes at the cost of diminished performance. However, even with this reduction,
RDL small remains significantly slower than TREELGNN in both training and inference, highlight-
ing the efficiency advantage of TREELGNN.

G ABLATION STUDY

We conducted an ablation study to address two key questions: (i) is temporal information necessary
for relational database tasks? (ii) Is the distillation of boosted tree models truly essential? To an-
swer these questions, we compare the performance of TREELGNN against two baseline models:
TREELGNN W/O TIME, which is a static HeteroGraphSAGE without any temporal information,
andTREELGNN W.P., which incorporates temporal information but without distillation, instead
directly integrating the row predictions produced by LIGHTGBM as additional node features.

The results provide clear answers to both questions. First, temporal modeling proves to be critical
for predictive tasks on relational databases. As shown in Table 18, TREELGNN W/O TIME consis-
tently underperforms when compared to the models that incorporate temporal information (column
1 vs. columns 2 and 3). Second, the distillation process is also essential. TREELGNN significantly
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Table 10: Test AUCROC with standard deviation over 5 runs.

LIGHTGBM RDL RDL RDL TREELGNN
w. P. w. D.

rel-f1
driver-dnf 70.52 ± 1.07 71.08 ± 2.79 69.93 ± 1.68 71.57 ± 1.47 73.55 ± 0.34

driver-top3 82.77 ± 1.08 80.30 ± 1.85 82.28 ± 0.76 83.28 ± 2.47 84.73 ± 1.43

rel-hm user-churn 69.12 ± 0.01 69.09 ± 0.35 69.24 ± 0.56 69.56 ± 0.35 68.93 ± 0.03

rel-event
user-ignore 82.62 ± 1.14 77.82 ± 1.88 70.72 ± 3.70 79.13 ± 0.60 83.98 ± 0.44

user-repeat 75.78 ± 1.74 76.50 ± 0.78 76.57 ± 1.22 76.63 ± 1.08 77.77 ± 0.68

rel-stack
user-engage 90.34 ± 0.09 90.59 ± 0.03 90.66 ± 0.05 90.50 ± 0.06 89.02 ± 0.03

user-badge 86.23 ± 0.04 88.54 ± 0.15 88.42 ± 0.29 88.57 ± 0.22 86.71 ± 0.54

rel-amazon
user-churn 68.34 ± 0.09 70.42 ± 0.05 69.81 ± 0.05 69.90 ± 0.12 69.87 ± 0.19

item-churn 82.62 ± 0.03 82.82 ± 0.04 82.93 ± 0.11 83.12 ± 0.07 83.84 ± 0.08

Table 11: Performance of TREELGNN W/O TIME with F.E. in AUCROC.

rel-f1
driver-top3

Val. Test

TREELGNN W/O TIME 87.71 ± 0.51 77.01 ± 2.44

TREELGNN W.P. 87.38 ± 0.19 78.77 ± 0.73

TREELGNN 89.15 ± 0.33 84.73 ± 1.43

TREELGNN W/O TIME with F.E. 87.80 ± 0.40 78.58 ± 2.40

outperforms TREELGNN W.P. (column 2 vs. column 3), demonstrating that embedding the dis-
tilled knowledge offers a more informative and effective way to enrich node features than using raw
predictions.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Comparison of graph construction times for TREELGNN model and RDL.

Dataset Task TREELGNN RDL

C
la

ss
ifi

ca
tio

n
rel-f1

driver-dnf 15 7
driver-top3 17 9

rel-hm user-churn 988 750

rel-event
user-ignore 68 407
user-repeat 12 54

rel-stack
user-engagement 1968 1079
user-badge 1342 1052

rel-amazon
user-churn 558 412
item-churn 641 486

R
eg

re
ss

io
n

rel-f1 driver-position 64 8

rel-hm item-sales 1818 1126

rel-event user-attendance 42 68

rel-stack post-votes 1178 1033

rel-amazon
user-ltv 624 486
item-ltv 651 501

Table 13: End-to-end training time in seconds. TREELGNN model is significantly faster than RDL
and performs at a speed comparable to LIGHTGBM.

Dataset Task TREELGNN RDL LIGHTGBM

C
la

ss
ifi

ca
tio

n

rel-f1
driver-dnf 8 303 4
driver-top3 5 113 1

rel-hm user-churn 13 3783 2

rel-event
user-ignore 5 96 35
user-repeat 3 22 2

rel-stack
user-engagement 745 9426 217
user-badge 578 35791 742

rel-amazon
user-churn 71 3252 150
item-churn 87 3524 174

R
eg

re
ss

io
n

rel-f1 driver-position 42 584 32

rel-hm item-sales 83 20406 1358

rel-event user-attendance 7 98 14

rel-stack post-votes 728 15450 387

rel-amazon
user-ltv 96 2931 138
item-ltv 158 2991 156
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Table 14: Inference time in seconds. TREELGNN model is significantly faster than RDL and
achieves a speed comparable to LIGHTGBM.

Dataset Task TREELGNN RDL LIGHTGBM
C

la
ss

ifi
ca

tio
n

rel-f1
driver-dnf 0.04 0.76 0.05
driver-top3 0.05 2.19 0.04

rel-hm user-churn 0.01 3.63 0.30

rel-event
user-ignore 0.02 1.19 0.02
user-repeat 0.01 0.29 0.04

rel-stack
user-engagement 0.25 24.01 0.14
user-badge 0.25 96.23 3.03

rel-amazon
user-churn 0.11 2.25 0.08
item-churn 0.09 2.24 0.08

R
eg

re
ss

io
n

rel-f1 driver-position 0.07 2.34 0.04

rel-hm item-sales 0.01 10.52 0.13

rel-event user-attendance 0.01 0.95 0.04

rel-stack post-votes 0.23 35.23 0.79

rel-amazon
user-ltv 0.08 5.30 0.14
item-ltv 0.09 5.48 0.04

Table 15: Batch size comparison: TREELGNN model and RDL are trained using batch sizes that
utilize the same amount of memory.

Dataset Task TREELGNN RDL TREELGNN RDL

batch size Memory usage

C
la

ss
ifi

ca
tio

n

rel-f1
driver-dnf All 64 1441 1538
driver-top3 All 64 1450 1508

rel-hm user-churn All 32 6512 6892

rel-event
user-ignore All 128 5364 5324
user-repeat All 128 5536 5622

rel-stack
user-engagement 1 256 14508 15234
user-badge 1 256 14556 15058

rel-amazon
user-churn 1 1024 21554 22125
item-churn 1 1024 21589 22844

R
eg

re
ss

io
n

rel-f1 driver-position All 64 1484 1548

rel-hm item-sales All 32 6502 6874

rel-event user-attendance All 128 5466 5524

rel-stack post-votes 1 256 15122 15214

rel-amazon
user-ltv 1 1024 19326 19125
item-ltv 1 1024 19548 19584
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Table 16: RDL with reduced parameters (21,449) for the classification task shows a decrease in
performance, with minimal improvements in training and inference time.

Dataset Task AUCROC (↑) Training time (seconds) Inference time(seconds)

RDL small TREELGNN RDL small TREELGNN RDL small TREELGNN

rel-hm user-churn 64.28 69.56 1635 13 1.39 0.01

Table 17: RDL with reduced parameters (21,449) for the regression task shows a decrease in perfor-
mance, with minimal improvements in training and inference time.

Dataset Task MAE (↓) Training time (seconds) Inference time(seconds)

RDL small TREELGNN RDL small TREELGNN RDL small TREELGNN

rel-hm item-sales 0.058 0.037 1909 83 3.12 0.13

Table 18: The ablation study proves that (i) temporal modeling is critical for predictive tasks on
relational databases and (ii) the distillation process is essential.

TREELGNN TREELGNN TREELGNN
W/O TIME W.P.

C
la

ss
ifi

ca
tio

n

rel-f1
driver-dnf 68.80 70.79 73.55
driver-top3 77.01 78.77 84.73

rel-hm user-churn 56.07 69.38 68.93

rel-event
user-ignore 80.60 78.76 83.98
user-repeat 69.01 73.37 77.77

rel-stack
user-engagement 78.58 89.94 89.02
user-badge 81.01 84.12 86.71

rel-amazon
user-churn 67.58 69.18 69.87
item-churn 79.58 83.37 83.84

R
eg

re
ss

io
n

rel-f1 driver-position 5.604 3.941 3.861
rel-hm item-sales 0.055 0.038 0.037
rel-event user-attendance 0.261 0.242 0.238
rel-stack post-votes 0.123 0.068 0.064

rel-amazon
user-ltv 16.881 14.088 13.587
item-ltv 57.323 49.314 48.112

GNN ✗ ✓ ✓
Time-then-graph - ✓ ✓
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