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Rapid super resolution for infrared imagery
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Abstract: Infrared (IR) imagery is used in agriculture for irrigation monitoring and early
detection of disease in plants. The common IR cameras in this field typically have low resolution.
This work offers a method to obtain the super-resolution of IR images from low-power devices to
enhance plant traits. The method is based on deep learning (DL). Most calculations are done in
the low-resolution domain. The results of each layer are aggregated together to allow a better
flow of information through the network. This work shows that good results can be achieved
using depthwise separable convolution with roughly 300K multiply-accumulate computations
(MACs), while state-of-the-art convolutional neural network-based super-resolution algorithms
are performed with around 1500K MACs. MTF analysis of the proposed method shows a real ×4
improvement in the spatial resolution of the system, out-preforming the diffraction limit. The
method is demonstrated on real agricultural images.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Infrared (IR) imagery in the 8µm−12µm atmospheric window is extensively used for agricultural
remote-sensing tasks. While a visible light band (VIS) camera measures light reflected from an
object, the IR camera measures the object’s (plant) temperature associated with thermal radiation.
The use of IR imagery in precision agriculture has been well-documented. To name just a few of
these uses, [1] showed how to estimate the water status of a grapevine, [2] detected fruit, and [3]
measured drought responses of plants. The temperature of the plant is important in deducing
information on its well-being.
Once quite costly, today a wide variety of IR cameras are available at affordable prices [4].

While current detector technology allows for a low-cost IR camera, spatial resolution is still
limited - two orders of magnitude less than typical VIS imaging. With only a few tens of
thousands of pixels in the camera’s field of view, there is a trade-off between target coverage
and spatial resolution. Since background temperature can vary widely from that of the object of
interest, imaging of a small target often results in mixed hot and cold pixels at its edges associated
with erroneous temperature estimation.

This work aims to estimate a high-resolution (HR) IR image from a low-resolution (LR) IR
image for low-power devices. This process is called super-resolution (SR). Early SRmethods were
interpolation-based (e.g., nearest-neighbor, bicubic), producing rapid results with low quality,
both visually and metrically. Later, advances were made using sparse coding methods (e.g. [5],
[6]), image priors (e.g. [7], [8]) and example-based learning (e.g [9], [10]). Recent advances in
SR have occurred in the field of machine-learning - specifically deep-learning (DL). The authors
of [11] were the first to demonstrate this approach with a convolutional neural network (CNN).
As networks grew deeper, the problem of vanishing gradients became more acute, as unraveled
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by [12]. A solution was to use skip connections to allow gradient flow throughout the entire
network as in [13]. Later, the notion of dense skip connections was proposed by [14], where all
of the layers are connected via skip connections. [15] proposed using all of the layer’s outputs
for the final reconstruction via a bottleneck layer.
Recently, extensive work has been made in the optical society on improving the resolution

of different imaging systems using DL. To name just a few - [16] applied a CNN to LR slide
scanner microscope, [17] upscaled Terahertz images using CNN, [18] used SR on a single-
photon camera to increase the signal-to-noise ratio of the outputs, [19] performed SR on an
emitting apparatus used for microscopy, [20] used SR to increase the throughput of a lens-free
holographic microscope by reducing the number of measurements needed and [21] used a
generative adversarial network (GAN) to enhance microscope imagery.
Solutions for SR in IR images were researched in several directions - combining several IR

images [22], using prior knowledge from VIS images to enhance the IR image (e.g., via edges, as
suggested by [23] and [24]), using iterative regularization [25]. More recent works have used DL.
In [26], the authors trained a cascade network - meaning that the SR image is restored in several
steps. They first increased the resolution two-fold in each dimension (2×) and subsequently
they increased it again four-fold such that the final resolution is eight-fold in each dimension
(8×). They demonstrated it on a limited set of examples. Another method was discussed by
[27], who offered a DL approach using prior knowledge taken from RGB images. Their method
assumed subpixel registration between a pair of VIS and IR images. However, most devices
only have either VIS or IR. Even in devices with both channels, accurate subpixel registration is
hard to establish with a real commercial-grade apparatus. Low-power approaches for DL are
mainly focused on classification and detection. One solution, MobileNet by [28], uses depthwise
separable convolution as suggested by [29] to lower computational complexity. This is explored
in Section 2.4.
This work proposes a method for obtaining SR using a single IR image while balancing

between the metric quality of the SR image and the low-power requirements posed by the modest
hardware of IR cameras. The computational complexity of the proposed solution is considerably
lower than that of similar networks while achieving satisfactory results. Today’s body of work
focuses on improving the metrics of estimation (e.g., peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM)), but pays little attention to run time or power costs. The
proposed solution combines both quality and low complexity so that it can be performed on
low-power devices. Thus, in this work, a new deep learning SR scheme for IR images is presented.
A network that combines the bottleneck layer from [15] with the dense skip connections of [14]
is shown to preserve the high-quality performance of a deep network with only a small portion
of the required computational power. All calculations are done on the low-resolution space to
save on computational costs, and the upscaling is performed using the shuffle block method [30].
Results show that only a handful of skip connections suffice. To further lower computational
complexity, depthwise separable convolution [29] is performed, showing good PSNR results as
well.

The proposed method is shown to improve the modulation transfer function (MTF) of the
imaging system in Section 3.3.

2. Method

The proposed CNN is presented schematically in Fig. 1. The network is composed of a LR Block,
a Shuffle Block and a final convolution layer. The input to the network is (ILR) a low resolution
IR image with dimensions H ×W × 1. The LR Block learns the features of the image to extract
highly detailed information from the input. A detailed description of the LR Block can be seen in
Fig. 2. The LR Block output dimension is H ×W ×Ch where Ch denotes the number of channels.
Following the LR Block is the Shuffle Block, where the upscaling from ILR to ISR is performed as
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described in [30]. The Shuffle Block aims to upscale the features to dimensions of αH ×αW ×Ch,
where α>1 denotes the SR upscaling. Finally, the convolution layer reorders the features to the
required SR image with dimensions αH × αW with a single channel. The SR image (ISR) is the
approximation of the HR image (IHR). The structure of the LR Block is presented in Fig. 2. The
block is composed of multiple layers. The output of each layer is aggregated via concatenation to
the outputs of the previous layers and to the input image. The concatenated matrix goes through
a bottleneck layer which outputs Ch filters. Each bottleneck layer convolves all the outputs of its
preceding layers. This process is further described in Section 2.2.

Fig. 1. The proposed method applies the LR Block (Fig. 2) to the input. The output of the
LR Block in concatenated with the input and upsampled by the Shuffle Block. The input is
interpolated and concatenated to the output of the Shuffle Block. The network outputs ISR.

Fig. 2. The LRBlock decomposes ILR intoCh filters. The output of each layer is concatenated
with the outputs of all previous layers, along with the input image. The LR Block outputs Ch
filters in the LR domain.

The parametric rectified linear unit (PReLU) proposed by [32] is used as a nonlinear activation
function φ after each convolution and bottleneck layer.
Denoting the Convolution between two matrices A and B as (A ∗ B) and the Concatenation

between these matrices as {A,B}, The network is composed of L layers that can be described as
follows: {

f 1(ĪLR; θ1) = φ(θ1 ∗ ĪLR)
f l(f l−1; θl) =

{
f l−1, φ (θl ∗ Sl−1)

}
l ∈ 2, . . . ,L

(1)

where ĪLR is the normalized low resolution input, θ are learned weights with 3 × 3 spatial
dimensions with Ch filters and f l denotes the output of a layer l. The output of the l bottleneck
layer is denoted Sl. The bias term is omitted for brevity.
The network has one initial convolution layer for the input, L convolution layers that are

concatenated together and one more final convolution layer for the output. All in all there are
(2+L) convolutions and L bottleneck-layers (Fig. 1).
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Depthwise separable convolution layers, as proposed by [29], are used to lower computational
cost and are explored in Section 2.4.

The final layer of the network is a convolution with Ch + 1 filters as input. The extra channel
is a Bicubic interpolation of ILR which is concatenated to the network output before going
through the final layer. The concatenation enables the network to learn only the high-frequency
difference between ILR and IHR. The final layer outputs a single channel without an activation
function. The process is illustrated in Fig. 3. Figure 3(a) is a LR image. Figure 3(b) is the bicubic
interpolation of the LR image - the low frequencies of LR. Figure 3(c) is the high-frequency
information learned by the network pipeline. These interpolation data and the high-frequency
data are summed in the final layer, shown in Fig. 3(d). During the training process, the result of
this summation is compared to the HR ground-truth image (Fig. 3(e)).

Fig. 3. Illustration of the proposed super-resolution algorithm’s summation of low-frequency
and high-frequency information. The image was taken from Set5 [31].

Ch is set to 32 channels, L is set to 8 layers. The learned kernel for the filters in the first
convolutional layer is set to a 5 × 5 square to capture local features, while the kernel size for all
other convolutional layers is set to 3 × 3.

2.1. Pre-processing and cost function

ILR single channel represents the object’s temperature and its dynamic range is 16 bits. Before to
entering the network, the ILR is standardized to the range [0, 1] such that

ĪLR =
ILR −min [ILR]

(max [ILR] −min [ILR])
(2)

Network training is done by minimizing the error between a ground-truth HR image and the
network’s output (SR image). As a cost function, the absolute mean error, i.e. the L1 norm which
is robust to outliers, is applied for the difference between ISR and IHR. It reads

LSR(θ) =
1

H ·W

H∑
i=0

W∑
j=0
|Ii,jSR − I

i,j
HR | (3)

where H,W are height and width, respectively and θ are the learned weights of the network.

2.2. Bottleneck layer

Bottleneck layers are a 1 × 1 convolution where the number of output filters is always Ch. This
process was described in [33] and used by [34]. The bottleneck layer has several effects. First,
it helps mitigate vanishing gradients. Second, the most important features are chosen using
the computationally efficient and parameter-conserving bottleneck layer, so operations in other
convolution layers are always applied only to Ch channels.
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The mathematical formulation of the bottleneck layer is:

Sl = φ
(
ϑl ∗

{
ĪLR, f1, . . . , fl

})
(4)

where ϑl denotes the learned weights of the bottleneck layer with l × Ch filters as input and Ch
filters as output. φ is the nonlinear activation function and f l the output from the lth convolution
layer

2.3. The relation between temperature and pixel intensity

The Stefan-Boltzmann equation formulates the relationship between a surface’s temperature and
its irradiance. For a typical outdoor temperature (e.g., 280 − 320 K), the target and ambient
temperatures are similar, such that the change in radiation power in this range can be approximated
as linearly dependent on the change of the body temperature relative to the ambient temperature.

P(T) = α · σT4 = α · σ(T0 + ∆T)4 ≈ α · σ(T0)4︸      ︷︷      ︸
P0

+4α · σ(T0)3∆T (5)

where P is the radiant power, T0 and P0 are the reference ambient temperature and associated
radiance respectively, σ is the Stefan-Boltzmann coefficient, and α is a proportion factor.
Equation (5) presents the Taylor expansion around the ambient temperature. Indeed, in a
narrow temperature range, the change in radiation is linearly dependent on the change in object
temperature ∆T relative to the ambient temperature T0.
The camera lens concentrates the IR radiation associated with the object temperature on the

camera detector. By heating the pixels, the concentrated IR radiation changes the microbolometer
resistance, which in turn (approximately) linearly changes the pixel reading. Here, the resulted
gray-scale presentation of the scene is assumed to be linearly connected to the image grayscale.

This relation allows training the model on regular VIS images and still achieving satisfactory
results, even without fine-tuning of the IR images. Fine-tuning can further enhance performance
due to differences in statistics between IR and VIS images, but this issue is not further explored
in this work.

2.4. Computational cost

The operations performed in each layer of the network are mainly dot products:

y = w0 · x0 + · · · + wn · xn (6)

where x and w are vectors and y is a scalar. A multiply-accumulate computation (MAC) is defined
as an operation with a single multiplication and a single addition. This means that in Eq. (6)
there are nMAC operations. Note that in terms of floating point operations (FLOP) there are
2n − 1 operations for a dot product.
Let fl be the feature map of the l’th layer with size Ch × H ×W where H ×W are the spatial

dimensions of the feature map and Ch is the number of channels. For a convolution layers with
K,Cin,Cout as the kernel size, number of input and output channels respectively, for each pixel in
the feature map a dot-product is taken for a K2 window across all Cin and the process is repeated
for Cout channels:

H ×W × K2 × Cin × Cout (7)

Meaning that a bottleneck-layer where K = 1 has:

H ×W × Cin × Cout (8)

For depthwise-separable convolution the calculations for each pixel are done separately for
each channel, so only Cin times. The resulting number of MACs is a factor of Cout less than for a
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convolution layer:
H ×W × K2 × Cin (9)

In the proposed network the first and last layers are always convolution layers, but other layers
can be depthwise-separable convolution. Henceforth Cin ≡ Cout ≡ Ch for brevity. MACs in the
initial convolution, final convolution and shuffle block, respectively, are:

#Convin = H ×W × K2 × 1 × Ch (10)

#Convout = α2 × H ×W × K2 × Ch × 1 (11)
#ShuffleBlock = α2 × H ×W × K2 × Ch2 (12)

where α is the upscale factor of the output. The number of MACs for L convolution layers with
bottlenecks is:

L∑
l=1

[
H ×W × K2 × Ch2

]
+

L∑
l=1

[
H ×W × Ch2

]
= H ×W × Ch2 × L ×

(
K2 + 1

)
(13)

The number of MACs for L depthwise-separable convolution layers with bottlenecks is:
L∑
l=1

[
H ×W × K2 × Ch

]
+

L∑
l=1

[
H ×W × Ch2

]
= H ×W × Ch2 × L ×

(
Ch−1K2 + 1

)
(14)

meaning that factor between the number of MACs performed between the depthwise-separable
convolution implementation and the convolution implementation is:

ξ =
Ch−1K2 + 1

K2 + 1
(15)

with ξ as a reduction factor. A comparison between different networks can be seen in Tables 1
and 2. The contribution of the bias terms and PReLU are neglected for brevity, as each adds Cout
MACs, which are negligible.

Table 1. Results of different Cucumber datasets for an upscale factor of α = 4.

Method Temperature Mean Error [C◦] PSNR [dB] SSIM kMACs

A Cucumber in the greenhouse - 180 IR Images

1 32Ch, 8L, Convolution 0.16 34.15 0.945 409

2 32Ch, 8L, Depthwise 0.18 33.12 0.937 333

3 16Ch, 16L, Convolution 0.18 33.00 0.937 158

4 SRCNN [11] 0.18 32.05 0.943 1746

5 VDSR [13] 0.16 34.13 0.944 11814

6 SRDenseNet [14] 0.20 32.16 0.930 12228

7 Bicubic 0.68 26.68 0.927 -

B Cucumber in the field - 556 IR Images

1 32Ch, 8L, Convolution 0.17 32.95 0.936 409

2 32Ch, 8L, Depthwise 0.19 31.93 0.928 333

3 16Ch, 16L, Convolution 0.19 31.82 0.927 158

4 SRCNN [11] 0.18 31.75 0.937 1746

5 VDSR [13] 0.17 33.05 0.935 11814

6 SRDenseNet [14] 0.20 31.22 0.922 12228

7 Bicubic 0.98 22.80 0.908 -
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Table 2. Results of different Banana datasets for an upscale factor of α = 4.

Method Temperature Mean Error [C◦] PSNR [dB] SSIM kMACs

C Banana Leaves in the greenhouse - 6523 IR Images

1 32Ch, 8L, Convolution 0.32 30.12 0.925 409

2 32Ch, 8L, Depthwise 0.35 29.23 0.915 333

3 16Ch, 16L, Convolution 0.36 29.17 0.913 158

4 SRCNN [11] 0.32 30.93 0.926 1746

5 VDSR [13] 0.32 30.26 0.927 11814

6 SRDenseNet [14] 0.44 27.94 0.889 12228

7 Bicubic 1.66 19.55 0.826 -

D Banana Leaves in the field - 2371 IR Images

1 32Ch, 8L, Convolution 0.16 35.10 0.943 409

2 32Ch, 8L, Depthwise 0.17 34.19 0.936 333

3 16Ch, 16L, Convolution 0.17 34.07 0.935 158

4 SRCNN [11] 0.17 33.27 0.943 1746

5 VDSR [13] 0.16 35.00 0.940 11814

6 SRDenseNet [14] 0.18 33.43 0.931 12228

7 Bicubic 1.03 24.02 0.899 -

3. Results

The proposed method was evaluated on a database composed of 9, 630 outdoor IR images of four
crops - cucumbers and banana leaves in the field and in a greenhouse—where performances were
compared in terms of restoration temperature value, PSNR and MACs against other previously
suggested state-of-the-art SR networks. Tables 1 and 2 presents the average results for the
four crops - (A) Cucumbers in greenhouse, (B) Cucumbers in the field, (C) Banana leaves in
greenhouse. (D) Banana leaves in the field. For convenience, the table is separated into four parts
(A-D). Each with seven rows. Row 1-3 present different implementations of the proposed network.
Rows 4-7 present the performances of three previously suggested SR networks: SRCNN [11],
SRDenseNet [14], VDSR [13] and bicubic interpolation. The proposed network outperformed
SRCNN [11], SRDenseNet [14] and bicubic interpolation, both in restoration quality and
with lower MACs. Comparison to VDSR [13] shows a 28× improvement in computational
requirements, with only a negligible 0.1dB reduction in PSNR.
Figures 5 and 6 show results for 2× and 4× SR respectively, and a comparison between ILR,

bicubic, ISR and VDSR [13]. Observing the figures, the proposed method indeed appears to be
at the same level as the VDSR, with a significantly lower computation effort. Both methods
performed better than bicubic interpolation in both appearance and metrics. In Fig. 4, we present
a zoomed-in replica of Fig. 5(E) (cucumber in the greenhouse). The proposed method appears
much better than VDSR [13]. This advantage will be further discussed in Section 4.
All results were obtained on a desktop computer equipped with an i7 processor.

3.1. Training details

The network was implemented using Pytorch [35]. The mini-batch size was set to 16. Each
image was cropped randomly to 192 × 192 to create IHR and then downscaled with a bicubic
kernel by 2× or 4× to create ILR. The training dataset was augmented with horizontal flips and
90◦ rotations. All image processing was done using python PIL image library.

All network trainable weights were initialized via the method proposed by [32], with a scaling
factor of 0.1 as proposed by [36]. The network was optimized using gradient descent with Adam
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Fig. 4. Examples of 4x SR results. Typical examples taken from five different datasets are
presented one below the other. From left to right: LR input, bicubic interpolation, VDSR
[13] restoration and the results from the proposed method.

[37] with β1 = 0.9, β2 = 0.999 and the initial learning rate set to 5 · 10−4. The learning rate was
halved at 104 and 105 iterations. The training was run for 3 · 105 iterations.
The training was done using NVIDIA 2080ti GPU. Each permutation of the network was

trained for 300k iterations.

3.2. Data

The training was done on the DIV2K [38] and Flicker2K [39] datasets. The images in these
datasets have a resolution of 2k, so each image contains fine details. To obtain LR images,
the training set was down-sampled using bicubic interpolation. The training was done on the
Y channel in the YCbCr color representation scheme, because of the proportionality between
temperature and pixel intensity (Section 2.3).

The training results were evaluated on Set5 [31] and Set14 [40]. The metrics used were PSNR
and SSIM. Both metrics were calculated between the SR image (ISR) and the HR image (IHR)
using compare_psnr() and compare_ssim() from the skimage library in Python. The
borders of the images were each cropped by 10 pixels to neglect border effects.
Aside from these training and testing sets, several test sets of different plants were gathered

using a Therma-App TH Infra Red camera at midday.

http://www.therm-app.com/therm-app-thermography
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Fig. 5. Examples of 4× SR results. Typical examples taken from five different datasets are
presented one below the other. From left to right: LR input, bicubic interpolation, VDSR
[13] restoration and the results from the proposed method.
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Fig. 6. Examples of 2× SR results. Typical examples taken from five different datasets are
presented one below the other. From left to right: LR input, bicubic interpolation, VDSR
[13] restoration, and the results from the proposed method.
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3.3. MTF comparison

Following the above, the improvement in the MTF [41] is examined. To measure the MTF,
an experiment was conducted to evaluate the Line Spread Function (LSF) of the system [42].
First, a step response was measured by imaging an aluminum sheet heated to 50◦, which is held
in the open room’s air. The image was taken with ThermApp TH camera from a distance of
L = 310mm, which resulted in a sampling resolution of 0.40mm in the object plane. The LSF
was evaluated by a derivation of the edge between the aluminum and the air. The MTF was
evaluated from the Fourier transform of the LSF. Three additional MTF curves were evaluated
for comparison. Figure 7 shows the MTF curves evaluated from the LR image, the 4× bicubic
interpolation, 4× SR image and the diffracted limited MTF. The edge width is composed of a few
hundreds of pixels; thus, each of the first three plots is an average over an ensemble of many edge
points.
The diffracted limited MTF was evaluated analytically. The camera is characterized by

F# = 1.1. The diffraction-limited MTF [41] of the imaging system was calculated for a circular
aperture with a cutoff frequency of ξcutoff = f

F#λ·L = 3.87 Cycles
mm

with λ = 10µm which is the middle
of the camera’s sampled spectrum. The diffraction-limited MTF has the form [43]:

MTF
(

ξ

ξcutoff

)
=

2
π

[
arccos

ξ

ξcutoff
−

ξ

ξcutoff

(
1 −

ξ

ξcutoff

2)] 1
2

(16)

Due to a practical limit of imaging systems that stems from noise, a 5% contrast is taken as a
minimal requirement for the minimal required contrast [44].

Observing Fig. 7, while the Bicubic interpolation improves the native cutoff frequency of the
LR image, it’s contrast magnitude over the extended range is poor, hardly exceeding 5% until a
virtual cutoff at 4.5 Cycles

mm
− 0.22mm sampling resolution. The SR falls to 5% contrast in a sampling

frequency of more than 9.5 Cycles
mm

which is equivalent to 0.10mm sampling resolution - i.e a true 4×
improvement of the original 0.40mm sampling resolution. Furthermore, the method is shown to
significantly improve the diffraction-limit of the imaging system.
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Fig. 7. MTF curves of the LR image, the effective MTF of the ×4 bicubic interpolation, the
effective MTF of the 4× SR and the diffracted limited MTF of the lens. The y-axis is the
MTF contrast given in %. The x-axis is the spatial frequency [cycle/mm] given in object
space coordinate

4. Summary and discussion

This work was aimed at finding a suitable solution to a real-world problem - enhance plant
traits resolution in low-power IR cameras. The model developed in this paper can be used with
low-power devices under field-conditions, making it suitable for agricultural and environmental
uses.
As seen in Tables 1 and 2, the restoration metrics of the proposed method were on par with

state-of-the-art methods in terms of PSNR, SSIM and temperature estimation, while requiring 4
to 30 times less MACs.
As for the appearance of the restoration (Fig. 5 and 6), the model produces visually pleasing

results, supported by the enlarged comparison between ILR, bicubic interpolation, ISR and VDSR
[13] shown in Fig. 4. The results of the proposed method are sharper and look better than the
other results, including VDSR. This is believed to be due to the propagation of features from
all layers throughout the network using bottleneck layers. Moreover, VDSR is trained using the
minimization of the L2 norm, which improves the PSNR but tends to produce blurry results.
The MTF comparison experiment shown in Section 3.3 shows a true 4× improvement in the

sampling resolution compared to the LR image. Furthermore, the proposed method results in a
significant advantage in the diffracted limited results and bicubic interpolation.
Thus, the method offered in this work provides a suitable solution in both quality and

complexity.
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