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ABSTRACT

Recent work has shown that the empirical Neural Tangent Kernel (NTK) can
significantly improve the training of physics-informed Deep Operator Networks
(DeepONets). The NTK, however, is costly to calculate, greatly increasing the
cost of training such systems. In this paper, we study the performance of the
empirical Conjugate Kernel (CK) for physics-informed DeepONets, an efficient
approximation to the NTK that has been observed to yield similar results. For
physics-informed DeepONets, we show that the CK performance is comparable
to the NTK, while significantly reducing the time complexity for training Deep-
ONets with the NTK.

1 INTRODUCTION

One current research focus in scientific machine learning is physics-informed neural networks
(PINNs, (Raissi et al., 2019)) and deep operator networks (DeepONets, (Lu et al., 2019)). While
PINNs and physics-informed DeepONets (PI-DeepONets, (Wang et al., 2021; Goswami et al.,
2022a)) have shown tremendous promise across a wide range of applications, e.g., Goswami et al.
(2022b); Hao et al. (2023); Koric & Abueidda (2023); Karniadakis et al. (2021), training PI-
DeepONets can be difficult and can result in large errors when compared with exact solutions (Wang
et al., 2022b). Recent work has focused on efficient methods for improving accuracy of PINNs and
PI-DeepONets, some of which include schemes that implement causality (Wang et al., 2022a), adap-
tive point selection methods (Wu et al., 2023), iterative methods to successively reduce the prediction
in errors (Ainsworth & Dong, 2021; 2022; Howard et al., 2023; Aldirany et al., 2023; Wang & Lai,
2023), and adaptive weighting schemes (McClenny & Braga-Neto, 2023).

One method that has emerged for increasing training accuracy is the use of the Neural Tangent
Kernel (NTK) as a weighting scheme in the loss function in PINNs (Wang et al., 2022c) and PI-
DeepONets (Wang et al., 2022b). While the NTK significantly increases the accuracy, it greatly
increases the computational cost by approximately a factor of six for each iteration. In this work, we
present the use of the conjugate kernel (CK), an efficient approximation of the NTK, for adaptive
weighting for training PI-DeepONets. While significantly less expensive to compute, we show that
the CK provides almost equally accurate results for PI-DeepONets.

2 RELATED WORKS

2.1 CONJUGATE KERNEL AND THE NEURAL TANGENT KERNEL

The NTK (often called the empirical NTK) for a deep neural network (DNN) or a DeepONet is
defined as the Gram matrix of the Jacobian of the DNN with respect to the network parameters
(Jacot et al., 2018), originally defined for infinitely-wide neural networks (NNs). The NTK after
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training a finite-width NN is referred to as the after kernel (Long, 2021). The CK (Fan & Wang,
2020; Wang et al., 2022d) is a “0-order” approximation to the NTK, defined as the Gram matrix of
the parameters of the last layer of a FFNN (Hu & Huang, 2021). Here, we are only interested in
kernels after training, and so both the NTK and CK will denote empirical kernels obtained from
finite-width NNs after some amount of training.

Mathematically, the NTK is represented as the kernel induced by the map

ΦNTK,k :=
∂fθ

NN

∂θk
, k = 1, 2, . . . , |θ| (1)

for a feedforward neural network fθ
NN with trainable parameters θ. The (empirical) NTK is then

given by
NTK(z, z̃) := ΦNTK(z)

⊤ΦNTK(z̃) (2)

Denoting the parameters in the last layer of fθ
NN by θL, the CK is the kernel induced by the map

ΦCK,k :=
∂fθ

NN

∂θLk
, k = 1, 2, . . . , |θL|. (3)

The CK is then defined as
CK(z, z̃) := ΦCK(z)

⊤ΦCK(z̃). (4)
If we define E as the contribution to the NTK for all but the last layer, we can write the relationship
between the NTK and CK as NTK(z, z̃) = CK(z, z̃) + E(z, z̃).

The NTK has been shown to significantly improve the convergence of physics-informed training,
e.g., Wang et al. (2022c;b); Howard et al. (2023); Bai et al. (2023), however, it is extremely compu-
tationally expensive to compute, thereby greatly increasing the training time of the NN or operator
network. The CK has been shown to be an efficient approximation of the NTK, resulting in improved
robustness, better conditioning, and increased accuracy in some test cases (Qadeer et al., 2023).

2.2 PHYSICS-INFORMED DEEP OPERATOR NETWORKS

In operator learning (Li et al., 2020a; Lu et al., 2021; Li et al., 2020b; Wen et al., 2022) a map
is learned between two Banach spaces. For a general parametric PDE of the form N (u, s) = 0
with boundary conditions B(u, s) = 0 the operator network learns the PDE solution, denoted by
G(u) = s(u) for G : U → S , where U is the space of input parameters, e.g., the initial conditions,
with u ∈ U , and S is the space of PDE solutions on a domain Ω. s ∈ S is an unknown function
governed by the PDE.

A standard DeepONet consists of the branch and trunk networks, which for our applications are
both feedforward neural networks. The input to the branch network is the initial condition u ∈ U ,
discretized at a set of M discrete points, or sensor locations. The input to the trunk network is the
spatial and time coordinates. The trunk and branch networks are trained simultaneously, and the
DeepONet output is given by

Gθ(u)(x) =

p∑
k=1

bk(u1, . . . , uM )tk(x) (5)

where θ denotes the trainable parameters of the unstacked DeepONet, bk is the k-th component
of the branch output and tk is the k-th component of the trunk output (Lu et al., 2019; 2021).
In this work we use “modified” DeepONets (Wang et al., 2022b), an architecture that introduces
encoder layers for the branch and trunk nets and has been shown to increase the accuracy of PI-
DeepONet training. PI-DeepONets are trained without data to satisfy the given PDE through the use
of automatic differentiation to calculate the derivatives. The loss function is given by (Wang et al.,
2022b):

L(θ) = 1

N∗

N∗∑
i=1

λi

[
T (i)

(
ui,Gθ(u

i)(xi)
)]2

. (6)

where λi are weighting terms and where N∗ = NR, N is the number of samples considered as
initial conditions, and R is the number of collocation points at which the residual, initial conditions,
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and boundary conditions are sampled. T (i) denotes the operators in the loss function, including the
boundary condition and differential operator. The weighting terms λi in Eq. 6 require careful tuning
to increase the training accuracy. Recent work has focused on the use of the NTK to successfully in-
crease the accuracy for PI-DeepONets by locally choosing the optimal weights (Wang et al., 2022c;
2021). The NTK matrix is found as

HNTK
ij (θ) =

〈
dT (i)(ui,Gθ(u

i)(xi))

dθ
,
dT (j)(uj ,Gθ(u

j)(xj))

dθ

〉
. (7)

Then, we can define the adaptive weights at a given iteration n by

λi =

(
max1≤i≤N∗ Hii(θn)

Hii(θn)

)α

(8)

where Hii is calculated using the NTK. The exponent α is generally chosen as α = 0.5 or α = 1,
depending on the task. The DeepONet is trained using the ADAM optimizer in Jax Bradbury et al.
(2018), with adaptive weights given by the NTK or CK used at every iteration.

3 RESULTS

The CK matrix is defined in an identical manner as the NTK, however, the derivatives are calculated
only with respect to the final layer of the branch and trunk networks, denoted by θ∗:

HCK
ij (θ) =

〈
dT (i)(ui,Gθ(u

i)(xi))

dθ∗
,
dT (j)(uj ,Gθ(u

j)(xj))

dθ∗

〉
. (9)

We can now compute the adaptive weighting given by Eq. 8 by setting Hii as either the NTK or the
CK. In each case, we train with α = 0.5 or α = 1, and select the best value of α for this study.
To provide a comparison with previous literature Wang et al. (2022b), we contrast the NTK and CK
weighting with the case of using fixed weighting, chosen as λr = 1 and λbc = 10.

3.1 BURGERS EQUATION

The viscous one-dimensional Burgers equation given in Appendix A.2 with viscosity ν and periodic
boundary conditions presents a challenge for DeepONets, as shown in Wang et al. (2022b; 2021). To
provide a direct comparison, we follow the procedure as outlined in Wang et al. (2022b) to generate
a training and testing set by selecting initial conditions u(x) from a Gaussian random field, and
train using the same network hyperparameters. Results comparing the CK, the NTK, and using
predetermined fixed weights are shown in Table 1. The use of the CK not only leads to comparable
or improved test accuracies compared to the NTK but requires only 36.8% of the training time.

Figure 1: Sample results for viscous Burgers equation for ν = 0.0001.

3



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: Results for Burgers equation for a range of viscosities ν. The mean and SD of the relative ℓ2
error are over 500 initial conditions in the test set. Mean run times are computed using an NVIDIA
A100 GPU. The weighting scheme refers to the expressions chosen for λi in Eq. 6.

ν Fixed weighting NTK weighting CK weighting
0.01 3.65%± 6.26% 0.63%± 0.50%(α = 1) 0.66%± 0.57%(α = 1)
0.001 9.18%± 8.03% 2.80%± 3.00%(α = 0.5) 3.04%± 3.82%(α = 0.5)
0.0001 25.10%± 9.53% 11.44%± 5.91%(α = 0.5) 8.34%± 3.62%(α = 1)
Mean time (h) 1.582 6.096 2.243

Table 2: Comparison of the relative ℓ2 error and computational time for the wave equation. The
mean and SD of the relative ℓ2 error are over 500 initial conditions in the test set. Run times are
computed using an NVIDIA A100 GPU. The weighting scheme refers to the expressions chosen for
λi in Eq. 6.

Fixed weighting NTK weighting CK weighting
Error 3.45%± 1.83% 0.93%± 0.50% (α = 0.5) 0.96%± 0.74% (α = 1)
Run time (h) 1.305 5.949 1.881

3.2 WAVE EQUATION

The wave equation is given by

stt = 2sxx, (x, t) ∈ Ω = [0, 1]× [0, 1] (10)
s(x, 0) = u(x), x ∈ [0, 1] (11)

st(x, 0) = 0, x ∈ [0, 1] (12)
s(0, t) = s(1, t) = 0, t ∈ [0, 1]. (13)

We take u(x) =
∑5

n=1 bn sin(nπx). Then, the exact solution is given by s(x, t) =∑5
n=1 bn sin(nπx) cos(nπ

√
2t). To generate each initial condition u we generate a set {bn}5n=1 of

normally distributed random variables. We train with 1000 random initial conditions as the training
set.

In Table 2 we report the relative ℓ2 errors between the exact solution and results. We note that the
CK error is very close to the NTK error, however, it takes only about 32% of the computational time
to achieve results of this accuracy. While the CK does not offer additional accuracy over the NTK,
the lower computational time is a compelling argument for why one may consider using it.

Figure 2: Sample results for the wave equation.
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4 DISCUSSION

We have shown that the CK is an efficient approximation of the NTK, and can result in similar
training accuracy for physics-informed DeepONets, while significantly reducing the computational
time. In the cases presented, the CK results have errors quite similar to the NTK results, including
outperforming the NTK for the smallest viscosity for the viscous Burgers equation. While the accu-
racy is similar between the two, using the CK rather than the NTK cuts the training time by roughly
two-thirds, and for this reason, the CK should be considered as an alternative for the NTK when
training physics-informed DeepONets. Testing the CK for two cases limits the generalization in this
study, however the use of the CK will be further explored in future work, including tuning for the
optimal value of the exponent α to ensure the robustness of results.
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A APPENDIX

A.1 ℓ2 ERRORS

The errors reported are the relative ℓ2 errors, given by ||s(u)(x)−Gθ(u)(x)||2
||s(u)(x)||2 .

A.2 BURGERS EQUATION

Burgers equation as considered in Sec. 3.1 is given by

∂s

∂t
+ s

∂s

∂x
− ν

∂2s

∂x2
= 0, (x, t) ∈ [0, 1]× [0, 1] (14)

s(x, 0) = u(x), x ∈ [0, 1], (15)
s(0, t) = s(1, t), t ∈ [0, 1], (16)

∂s

∂x
(0, t) =

∂s

∂x
(1, t), t ∈ [0, 1], (17)

where ν is the viscosity.

A.3 TRAINING PARAMETERS

Parameter
Learning rate (10−3, 5000, 0.9)
Branch network size [101, 100, 100, 100, 100, 100, 100, 100]
Trunk network size [2, 100, 100, 100, 100, 100, 100, 100]
Activation function tanh
Batch size 10000
Iterations 200,000
λr 1.0
λbc 10.0
M 101
Rbc 100
Rres 2500
N 1000

Table 3: Training parameters for the DeepONet results in Sec. 3. For the learning rate, the triplet
(a, b, c) denotes the exponential decay function in Jax with learning rate a, decay steps b, and
decay rate c. N is the number of initial conditions used in the training set. M is the number of
sensor locations at which the initial condition is evaluated. Rbc and Rres are the number of points
at which the boundary conditions and residual are evaluated, respectively.
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