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Abstract

The remarkable progress in text-to-video diffusion models enables the generation of
photorealistic videos, although the content of these generated videos often includes
unnatural movement or deformation, reverse playback, and motionless scenes.
Recently, an alignment problem has attracted huge attention, where we steer the
output of diffusion models based on some measure of the content’s goodness.
Because there is a large room for improvement of perceptual quality along the
frame direction, we should address which metrics we should optimize and how
we can optimize them in the video generation. In this paper, we propose diffusion
latent beam search with lookahead estimator, which can select a better diffusion
latent to maximize a given alignment reward at inference time. We then point
out that improving perceptual video quality with respect to alignment to prompts
requires reward calibration by weighting existing metrics. This is because when
humans or vision language models evaluate outputs, many previous metrics to
quantify the naturalness of video do not always correlate with the evaluation. We
demonstrate that our method improves the perceptual quality evaluated on the
calibrated reward, VLMs, and human assessment, without model parameter update,
and outputs the best generation compared to greedy search and best-of-N sampling
under much more efficient computational cost. The experiments highlight that our
method is beneficial to many capable generative models, and provide a practical
guideline: we should prioritize the inference-time compute allocation into enabling
the lookahead estimator and increasing the search budget, rather than expanding
the denoising steps. 1 2

1 Introduction

The remarkable progress in text-to-video diffusion models enables photorealistic, high-resolution
video generation [1–4]. Many future applications are anticipated, such as creating novel games [5],
movies [6], or simulators to control real-world robots [7]. However, the detailed contents of the
generated video often include unnatural movement or deformation, reverse playback, and motionless
scenes, which should not happen in the real world. For instance, simulating factual physics in the
generated video is still challenging [8, 9]. Recently, it has attracted a lot of attention to steering the
output of diffusion models based on reward evaluation, quantifying the goodness of the content, which
is studied as an alignment problem [10, 11]. There is a large room for improvement of perceptual
quality along the frame direction in the video, and to align models with our preferences, we should
address which metrics to optimize and how to optimize them.

†Work done as an advisory role only.
1Website: https://sites.google.com/view/t2v-dlbs
2Code: https://github.com/shim0114/T2V-Diffusion-Search
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Figure 1: (Left) Diffusion latent beam search (DLBS) seeks a better diffusion path over the reverse process;
sampling K latents per beam and possessing B beams for the next step, which mitigates the effect from inaccurate
argmax. Lookahead (LA) estimator notably reduces the noise at latent reward evaluation by interpolating the
rest of the time steps from the current latent with deterministic DDIM. (Right) DLBS achieves much better
computational-efficiency than best-of-N (BoN), as achieving higher performance gains under the same execution
time. LA estimator (DLBS-LA) could remarkably boost efficiency only with marginal overhead on top of DLBS.

In this paper, we propose Diffusion Latent Beam Search (DLBS) with lookahead estimator, an
inference-time search over the reverse process (Figure 1; Left), which can select a better diffusion
latent to maximize a given alignment reward. A lookahead estimator reduces the noise in the
reward estimate, and a beam search robustly explores the latent paths, avoiding inaccurate argmax
operations.

We then point out that the improvement of perceptual video quality, considering the alignment
to prompts, requires reward calibration of existing metrics [12]. When evaluating outputs using
capable vision language models [13, 14] or human raters, many previous metrics for quantifying
video naturalness do not always correlate with them. Optimal reward design for measuring perceptual
quality highly depends on the degree of dynamics described in evaluation prompts. We design
a weighted linear combination of multiple metrics, which is calibrated to perceptual quality and
improves the correlation with VLM/human preference.

We demonstrate that DLBS can induce high-quality outputs based on the calibrated reward, AI,
and human feedback (Figure 2), without model parameter update, and realize the best generation
under much more efficient computational cost compared to greedy search [15, 11] and best-of-N
sampling [16, 17]. The experiments also highlight that our method is beneficial to many SoTA models
(e.g., Latte [18], CogVideoX [19], and Wan 2.1 [20]), and provide a practical guideline that we should
prioritize the inference-time compute allocation into enabling the lookahead estimator and increasing
the search budget, rather than expanding the denoising steps.

2 Preliminaries

Latent Diffusion Models Latent diffusion models [21, 18] are a special class of diffusion proba-
bilistic models [22, 23], and popular choices for high-resolution text-to-video generation [24, 25, 4],
which considers the diffusion process in embedding space. Let x0 be a video and encode it as
z0 = Enc(x0) using VAE [26]. Continuous-time forward diffusion process can be modeled as a
solution to a stochastic differential equation (SDE) [27]: dz = f(z, t)dt+ g(t)dw, where z0 ∼ p0(z)
is the latent as initial condition while pt(z) is the marginal distribution of zt, f : Rd × R → Rd is
the drift coefficient, g : R→ R is the diffusion coefficient, and w ∈ Rd is d-dimensional standard
Wiener process. f(·, ·) and g(·) are designed appropriately for the marginal distribution to reach
pT (z) ≈ N (0, I) as t→ T [28]. Reverse diffusion process generates samples z0 through the follow-
ing reverse-time SDE: dz = [f(z, t)−g(t)2∇z log pt(z)]dt+g(t)dw̄, where dt here is an infinitesimal
negative time step from T to 0 and w̄ ∈ Rd is a standard reverse-time Wiener process. We start this
with zT ∼ N (0, I). This SDE induces the marginal distribution on the data ppre(z) (i.e., pre-trained
diffusion models). While we omit the notation for simplicity, we consider the text-to-video generation
problem, where the diffusion process is conditioned on text prompts c.

Alignment for Text-to-Video Diffusion Models In this paper, we define the alignment problem
in text-to-video generation as increasing the probability of generating perceptually good video for

2



+ GS (𝐾𝐵 = 32)

“Under a rainbow, a zebra kicks up a spray of water as it crosses a fast-flowing river.”

+ DLBS-LA (𝑲𝑩 = 𝟖, 𝑻′ = 𝟔)Latte

+ DLBS-LA (𝑲𝑩 = 𝟖, 𝑻′ = 𝟔)+ BoN (𝐾𝐵 = 32)Latte

“dog puts paws together”

“A person on a hoverboard colliding with a wall, the board stopping abruptly.”

Wan 2.1-14B + DLBS-LA (𝑲𝑩 = 𝟖, 𝑻′ = 𝟔)

“Two dogs chase each other, suddenly skidding around a sharp corner.”

+ DLBS-LA (𝑲𝑩 = 𝟖, 𝑻′ = 𝟔)CogVideoX-5B

Figure 2: Comparison of text-to-video results between DLBS-LA, base models, and other sampling methods on
SoTA models (Latte [18], CogVideoX [19], and Wan 2.1 [20]). DLBS-LA produces more dynamic, natural, and
prompt-aligned videos than all baselines.

humans, such as maxE[p(O = 1|x0, c)] where O ∈ {0, 1} represents if the generated video x0
conditioned on c is perceptually higher quality or not. The common assumption is such a probability
depends on a proxy scalar reward function r(x0, c) such as p(O = 1|x0, c) ∝ exp(β−1r(x0, c)) with
β ∈ R, and then the problem comes down to reward maximization. The proxy reward function may
input the generated video x0 and a prompt c.

Alignment as Stochastic Optimal Control Previous works formulate such a reward maximization
problem from the view of stochastic optimal control [29, 11, 30], where we aim to find an additional
drift term u(·, ·) for the following reverse SDE: dz = [f(z, t) − g(t)2∇z log pt(z) + u(z, t)]dt +
g(t)dw̄. For convenience, we adopt the change-of-variables as νt := zT−t and f̄(ν, t) := f(ν, t)−
g(t)2∇ν log pt(ν) because stochastic control is often based on the standard flow of time (t : 0→ T ),
and then the original SDE is re-written as: dν = [̄f(ν, t) + u(ν, t)]dt+ g(t)dw, where dt here is an
infinitesimal time step and dw is a standard Wiener process.

Because the alignment problem comes down to reward maximization, the objective in stochastic
control literature is

u∗ = argmax
u

E

[
r′(νT )−

λ

2

∫ T

t=0

∥u(νt, t)∥2

g(t)2
dt

]
(1)

where r′(·) := r(Dec(·)) evaluates the latent in the video space and λ > 0. E[·] is taken over
sampling process above. In stochastic control, the optimal value function is known to be defined as,

v∗t (ν) = Ep∗

[
r′(νT )−

λ

2

∫ T

s=t

∥u(νs, s)∥2

g(s)2
ds|νt = ν

]
, (2)

where p∗t (ν) = 1
Z exp(

v∗
t (ν)
λ )ppre

t (ν), and obtain the optimal drift u∗(ν, t) = g(t)2∇ν
v∗
t (ν)
λ [31].

This optimal value function is the solution of stochastic Hamilton-Jacobi-Bellman equation [32]
according to this Feynman-Kac formula [33, 34]:

exp

(
v∗t (ν)

λ

)
= Eppre

[
exp

(
r′(νT )

λ

)
|νt = ν

]
(3)

and then we obtain a tractable form of the optimal drift term as:

u∗(νt, t) = g(t)2∇ν logEppre

[
exp

(
r′(νT )

λ

)
|νt = ν

]
. (4)

The intuition here is that the optimal drift pulls the current latent ν, while following the pre-trained
reverse SDE, into the region achieving a higher reward at time T .
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3 Diffusion Latent Beam Search

We first provide a unified view of existing inference-time alignment methods through several practical
approximations of optimal drift u∗(νt, t) (Section 3.1). To mitigate errors from approximations, we
propose a novel search algorithm, diffusion latent beam search with lookahead estimator (Section 3.2).

3.1 A Unified View on Practical Approximations

While Equation 4 has a relatively tractable form, it is still computationally expensive, since the
expectation requires complete diffusion sampling to evaluate the latent at each time step and face
numerical instability. Previous alignment methods rely on multiple-step practical approximations.

Step. 1: Jensen’s Inequality First, when assuming r′(νT )
λ is almost deterministic (this might hold

when t→ T ), Jensen’s inequality yields the following approximation by exchanging log and E[·],
which can be considered as a certain form of classifier guidance [35]:

u∗(νt, t) ≈
g(t)2

λ
∇νEppre [r′(νT )|νt = ν] . (5)

Algorithm 1 Diffusion Latent Beam Search (DLBS) with Stochastic DDIM

Input: latent diffusion model ϵθ, reward function r′, noise scheduling parameter
{αt}Tt=0, {σt}Tt=0, number of beams B, number of candidates K

1: z1T , · · · , zBT ∼ N (0, I) ▷ Initial B beams
2: for t = T to 1 do
3: for j = 1 to B do
4: ▷ Compute the posterior mean of zjt−1

5: ẑj0|t =
1√
αt
(zjt −

√
1− αtϵθ(zjt ))

6: zjt−1 =
√
αt−1ẑj0|t +

√
1− αt−1 − σ2

t ϵθ(z
j
t )

7: end for
8: if t > 1 then
9: for j = 1 to B do

10: ▷ Sample K next candidate latents
11: zijt−1 = zjt−1 + σtϵ

i
t with ϵ1t , ..., ϵ

K
t ∼ N (0, I)

12: ▷ Estimate the clean sample from noisy latent
13: ẑij0|t−1 = 1√

αt−1
(zijt−1 −

√
1− αt−1ϵθ(z

ij
t−1))

14: end for
15: ▷ Search B higher-reward beams from KB latents
16: budget := {(z11t−1, ẑ

11
0|t−1), · · · , (z

KB
t−1 , ẑ

KB
0|t−1)}

17: for j′ = 1 to B do
18: zj

′

t−1 = argmaxzij
t−1∈budget

r′(ẑij0|t−1)

19: budget = budget \ {(zj
′

t−1, ẑ
argmax
0|t−1 )}

20: end for
21: j ∈ {1, · · · , B} ← j′ ▷ Reset selected B indices
22: end if
23: end for
24: return: z0 = argmaxzj

0∈{z10,··· ,zB0 } r′(zj0)

Step. 2: Tweedie’s Formula To avoid
the computationally expensive expecta-
tion, the expected reward is further ap-
proximated as Eppre [r′(νT )|νt = ν] ≈
r′(ν̂T |t) where ν̂T |t ≈ Eppre [νT |νt =
ν] is a one-step approximation of poste-
rior mean [36], which can be calculated
only with the current latent νt without
full diffusion path. Therefore, the op-
timal drift term can be seen as solely
depending on the current time step t:

u∗(νt, t) ≈
g(t)2

λ
∇νr

′(ν̂T |t). (6)

Such a computationally tractable drift
term has been leveraged for previ-
ous inference-time alignment methods
via approximate guidance or twisted
sequential Monte Carlo (SMC) [37].
However, as the approximated poste-
rior mean ν̂T |tin intermediate steps is
noisy, evaluation with the reward func-
tion for clean data r′(·) may not pro-
vide a reliable signal [38]. Moreover, Equation 6 requires the reward gradient, which is not applicable
to non-differentiable rewards, such as AI feedback, and is also not suitable for modalities whose
reward gradient imposes a huge computational cost in practice, such as video.

Step. 3: Converting Reward Gradient into argmax The usage of reward gradient can be converted
into argmax operator [11, 39, 40]. The intuition here is that since the optimal drift in Equation 6
induces the diffusion latent to the direction where it maximizes the reward, we replace such a
maximization with a zeroth-order search. The SDE is approximated as:

dν = f̄(ν, t)dt+ g(t)dw∗ where dw∗ = argmaxdw r′(ν̂T |t). (7)

Note that the current diffusion latents νt and posterior mean ν̂T |t are sampled by following the
standard Wiener process dw. This approximation is leveraged for inference-time alignment via greedy
search [11, 39] or SMC [41] of diffusion latents. However, greedy search can result in sub-optimal
generation affected by inaccurate reward estimate r′(ν̂T |t) due to its noisy input. Moreover, it can be
challenging to obtain an accurate density ratio term required in SMC for a high-dimensional domain,
such as video generation.

4



3.2 Mitigating Approximation Errors via Beam Search

Existing practical algorithms based on these three approximations, such as greedy search [11, 39],
fall into sub-optimal generation due to the erroneous reward evaluation with a noisy estimate of
the posterior mean [36], and argmax operator based on them. To resolve the error accumulation,
we propose a simple yet robust modification, diffusion latent beam search (DLBS) with lookahead
estimator. To clearly describe the practical implementation, we use the notation of a discrete-time
diffusion process in the rest of the section (see Appendix E for the continuous-time diffusion process).

Practical Implementation We summarize the detailed sampling procedure of DLBS in Algorithm 1.
For the diffusion sampler, we use stochastic DDIM [42] with a decreasing sequence {αt}Tt=1 ∈
(0, 1]T , noise level η, and noise schedule σt = η

√
(1− αt−1)/(1− αt)

√
1− αt−1/αt, which is

equivalent to DDPM [23] when η = 1.0. We initialize B latent beams from the Gaussian distribution
(Line 1.1), sample K latents per beam in the next time step (Line 1.11), and then compute the one-step
estimation of the posterior mean (Line 1.13). DLBS evaluates the estimator of posterior mean ẑ0|t−1

with reward function (Line 1.18) and selects Top-B-rewarded latent beams instead of Top-1 (i.e.,
argmax) from KB candidates (Line 1.19), which is iterated over entire reverse process from t = T
to t = 0. DLBS can possess latent beams more widely than greedy search under the same budget,
which mitigates error propagation due to the approximated diffusion latent evaluation.

Algorithm 2 Lookahead (LA) with Deterministic DDIM

Input: latent diffusion model ϵθ, current diffusion latent zt−1,
number of lookahead steps T ′(<< T )

1: ▷ Run T ′-step deterministic DDIM starting from zt−1

2: t̃(s) ∈ {t− 1, . . . , ⌊ s
T ′ (t− 1)⌋, . . . , ⌊ 1

T ′ (t− 1)⌋, 0}
3: Select new lookahead noise schedule {α̃s}T

′

s=0 for T ′-step
interpolation of the rest of original {αt′}t−1

t′=0
4: zt̃(T ′) := zt−1

5: z̃0|t̃(T ′) =
zt̃(T ′)−

√
1−α̃T ′ ϵθ(zt̃(T ′))√

α̃T ′

6: for s = T ′ to 1 do
7: zt̃(s−1) =

√
α̃s−1z̃0|t̃(s) +

√
1− α̃s−1ϵθ(zt̃(s))

8: z̃0|t̃(s−1) =
zt̃(s−1)−

√
1−α̃s−1ϵθ(zt̃(s−1))√

α̃s−1

9: end for
10: return: (zt−1, z̃0|t̃(0)) ▷ Latent and LA estimator

Lookahead Estimator The other source of ap-
proximation errors than the argmax operator is
a one-step estimator of the posterior mean ẑ0|t−1

from Tweedie’s formula, which is still noisy, es-
pecially in earlier time steps, and leads to inac-
curate reward evaluation. To reduce errors in
reward evaluation, we propose a lookahead (LA)
estimator z̃0|t̃(0), which is estimated by running
T ′-step deterministic DDIM (1 < T ′ << T )
while equally interpolating the rest of time steps
from the current latent zt−1 to z0 (Algorithm 2).
While requiring additional denoising steps, its
cost is almost the same as naive DLBS because
most computational costs come from when we
decode z0 (i.e., reward evaluation). Theoretically, enlarging the lookahead steps T ′ monotonically
tightens the upper bound on the reward-approximation error (see Appendix F). Empirically, a modest
horizon (T ′ = 2, 3, 6) delivers substantial search improvements (Figure 9; Left), but the marginal
gains saturate, so pushing T ′ further yields little additional benefit (see Appendix M.4).

4 Calibrating Reward to Preference Feedback

Human evaluation is one of the most valuable assessments for generative models, yet gathering human
feedback at scale is prohibitively costly. A practical approach to reduce the time and cost is to leverage
AI feedback from VLMs [43], which has been shown to modestly align with human judgment on
video quality [44–46] (see Appendix K). In this work, we assume that the VLM evaluation works
as an oracle, and we align model outputs with the preferences of VLMs, which is reasonable due to
their capability and the cost to be saved. Our qualitative and quantitative evaluations also confirm
that the highly rated video by VLMs is generally good for us.

However, because alignment via inference-time search requires massive reward evaluation queries,
we still need to build more tractable proxy rewards that do not rely on humans or external VLM APIs.
The question here is what metrics for perceptual video quality can improve the feedback from VLMs.
Because the criteria of videos preferred by humans are multi-objective, maximizing a single metric
may lead to undesirable generation due to over-optimization. For instance, focusing exclusively
on temporal consistency or frame-by-frame quality metrics can unintentionally reduce the video’s
motion magnitude (see Appendix H). In this section, we first review the possible video quality metrics
(Section 4.1), evaluate the Pearson correlation between these and the VLM feedback score, and then
propose a reward calibration (Section 4.2), aiming to align the existing video rewards to VLMs by
considering their weighted linear combination through the brute-force search of coefficients.
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Figure 3: 2D-histogram and correlation between reward functions for perceptual video quality [12] and AI
feedback from Gemini [14]. A single reward (e.g., subject consistency; blue) is often not aligned well with a
preference from Gemini, which happens for all the prompt sets with different dynamics grades (see Figure 13).
The calibrated reward, a linear combination of perceptual metrics via brute-force search (green), achieves the
best Pearson correlation coefficient in all settings (statistically significant with p < 0.01).

4.1 Metric Reward for Perceptual Video Quality

Following Huang et al. [12], we select six base reward functions for perceptual video quality (see
Appendix C):

• Subject Consistency quantifies how consistently the subject appears across video frames with
DINO [47].

• Motion Smoothness leverages the motion prior in AMT [48] to evaluate whether the generated
video’s motion is smooth and physically plausible.

• Dynamic Degree quantifies the overall magnitude of dynamic object movement by estimating
optical flow [49] for each pair of consecutive frames.

• Aesthetic Quality measures compositional rules, color harmony, and the overall artistic merit of
each video frame with LAION aesthetic predictor [50].

• Imaging Quality assesses low-level distortions (e.g., over-exposure, noise, blur) in each frame
with MUSIQ predictor [51].

• Text-Video Consistency captures how closely the content in a video aligns with a prompt with
ViCLIP [52].
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0.4

0.6
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Consistency

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

Text-Video
Consistency

DEVIL-high DEVIL-medium DEVIL-static MSRVTT-test

Figure 4: The coefficient of calibrated reward wi with
feedback from Gemini. Each set of prompts, which has
a different dynamics grade, requires a distinct mixture
of perceptual video qualities.

Reward Calibration To reflect the multi-
dimensional aspect of preferred videos, we
model the calibrated reward function r∗(·, ·) as a
weighted linear combination of video quality met-
rics: r∗(x0, c) :=

∑M
i=1 wiri(x0, c)/

∑M
i=1 wi.

The coefficient wi is determined by maximizing
the Pearson correlation with preference feedback.
We heuristically conduct a brute-force search
within a reasonable range (Section 4.2).

Experimental Setup We leverage Gemini-1.5 [14] and GPT-4o [13] as automated raters for generated
videos. We provide a prompt and generated video as inputs, instructing VLMs to assign discrete
scores (from 1 to 10) based on overall visual quality (e.g., clarity, resolution, brightness, and aesthetic
appeal), the appropriateness of motion for either static or dynamic scenes, the smoothness and
consistency of shapes and motions, and the degree of alignment with a prompt (see Appendix I).

We select four prompt sets from two distinct datasets (see Appendix G). DEVIL [53] classifies its
prompts into five categories depending on the dynamics grade, each further divided by subject type
(e.g., cat, horse, truck, nature, etc.). We focus on three of the five dynamics grades (high, medium, and
static) and select one prompt randomly from each subject-subdivision within a chosen category. We
also draw 30 random captions from the test split of MSRVTT [54], widely used as a video benchmark.

We generate 64 videos per prompt from pre-trained Latte [18] using the DDIM sampler with T = 50
and η = 0.0 to examine the correlation among AI feedback and perceptual quality metrics. We
also prepare candidates for the calibrated reward by choosing the combination of weights wi ∈
{0.0, 0.25, 0.5, 0.75, 1.0} and use those later to rank them based on the correlation with AI feedback.

4.2 Correlation and Reward Calibration

Figure 3 illustrates the 2D-histogram and the corresponding correlation between each metric and
feedback from Gemini. Relying on a single metric often yields low correlation, which supports
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Figure 5: (Left) Comparison among diffusion latent beam search (DLBS), best-of-N (BoN), and greedy search
(GS). We measure the performance in terms of a combinational reward calibrated to Gemini. DLBS improves all
the calibrated rewards the best as the search budget KB increases (especially KB = 16, 32), while BoN and
GS, in some cases, eventually slow down or saturate the performance. Notably, an LA estimator with a small
search budget (KB = 8, T ′ = 6) is comparable to or even outperforms DLBS (KB = 32). (Right) Optimal
balance between the number of latent K and the number of beams B under the same budget. For instance, as we
increase the budget to KB = 16, 32, we peak around K = 4, 8, 16, which is about 25–50% of the budget.

the multifaceted nature of perceptual video quality. See Appendix J.1 for further results, where we
can see that the relative importance of each metric depends on the dynamics grade of the prompts;
in highly dynamic DEVIL-high, the dynamic degree correlates more strongly with VLMs than
consistency metrics. Conversely, subject consistency and motion smoothness play more prominent
roles in less-dynamic DEVIL-medium or DEVIL-static. Because the aesthetic score focuses on
frame-by-frame visual quality, it tends to correlate strongly with VLM in low-motion scenarios. In
high-motion scenarios, in contrast, rapid movements and frequent transitions often introduce motion
blur or abrupt changes in composition, reducing the frame-level aesthetic quality and thus weakening
its correlation with VLMs.

Reward calibration, a weighted linear combination of these metrics, yields the highest correlation
with Gemini (Figure 3, green). We select the best coefficients among brute-force candidates, based
on the correlation with Gemini, for each set of prompts with a different dynamics grade (Figure 4).
Prompts with a high dynamics grade, i.e., DEVIL-high, place greater weight on the dynamic degree.
In contrast, prompts that describe slight motion, i.e., DEVIL-medium and DEVIL-static, place a
smaller weight on it. In addition, Appendix L presents results from best-of-64 sampling with a single
metric or calibrated reward, where a single metric often leads to over-optimization. This highlights
the importance of reward calibration, appropriately weighting multiple criteria, as aligning with a
request in the prompt.

5 Inference-Time Text-to-Video Alignment

Experimental Setup We use the same prompts and Gemini-/GPT-calibrated rewards as in Section 4.
We compare the following inference-time search methods with a noise level η = 1.0 for DDIM:

• Best-of-N Sampling (BoN): We initialize B latents and they follow the reverse process indepen-
dently (K = 1). At t = 0, we evaluate the reward and select the best.

• Greedy Search (GS): At each denoising step, we select the best-rewarded diffusion latent
(B = 1) from K candidates sampled in a reverse process.

• DLBS: Given the budget KB, we sweep possible combinations in terms of power of 2 (e.g.,
K = 8, B = 2), and report the best results except for the case with K = 1 and B = 1.

• DLBS-LA: We combine DLBS with a lookahead estimator from the 6-step deterministic DDIM.

Our experiments aim to assess: (1) scaling the search budget and computational costs for efficient
resource allocation (Section 5.1); (2) evaluating alignment performance with feedback from hu-
mans and VLMs (Section 5.2); (3) assessing scalability to capable SoTA models (Section 5.3); (4)
quantitative analysis on the diversity of generated video (Section 5.4); (5) validating that DLBS is
complementary to fine-tuning methods (Section 5.5); (6) performing detailed ablations on LA steps
T ′, and robustness to diverse and complex prompts (Section 5.6).

5.1 Scaling Search Budget and Computational Cost

Figure 5 (Left) measures the combinatorial reward calibrated to Gemini while increasing the search
budget KB ∈ {1, 2, 4, 8, 16, 32}. DLBS improves all the calibrated rewards the best as KB increases
(especially KB = 16, 32), while BoN and GS eventually slow down or saturate the performance in
some cases. See Appendix M.1 for results with GPT calibrated reward and Appendix M.2 for the
results with KB = 64, where we still observe the improvement.
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Figure 6: (Left) DLBS achieves alignment performance gains more efficiently than BoN and GS under the
same number of function evaluations (NFE) or execution time. Increasing the search budget provides larger
improvements under an equivalent computational cost than scaling the number of diffusion steps (DLBS-T;
KB = 8, T = 100, 200). Employing the LA estimator (DLBS-LA) further amplifies these gains, only with
marginal overhead, yielding remarkably better efficiency than BoN or GS. (Right) DLBS and DLBS-LA help
the latest SoTA models, CogVideoX-5B [19] and Wan 2.1-14B [20], improve the generated video quality.
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(Right) DLBS on calibrated reward also improves another qualitative metric, the most, VideoScore [55], which
is not involved in a reward calibration.

Figure 5 (Right) demonstrates the scaling trend of DLBS, proportional to the search budget, under
various choices of K. The results show that there is an optimal balance between the number of latent
K and the number of beams B under the same budget. For instance, as we increase the budget to
KB = 16, 32, we peak around K = 4, 8, 16, which is about 25–50% of the budget. This implies that
balancing possession and exploration of diffusion latents in DLBS helps search for the best outputs
robustly. See Appendix M.3 for further results.

We also analyze how alignment performance scales with different DLBS configurations under fixed
computational budgets, using the number of function evaluations (NFE) and wall-clock time as cost
measures. As shown in Figure 6 (Left), DLBS consistently outperforms BoN and GS across both
budgets, demonstrating superior efficiency in utilizing compute. Adding the LA estimator further
amplifies this advantage, offering substantial performance gains with minimal overhead. In contrast,
increasing the number of diffusion steps T (DLBS-T; KB = 8, T ∈ {100, 200}) results in only
marginal improvements despite the higher computational cost. Our results suggest a clear strategy
for inference-time budget allocation: prioritize enabling the LA estimator and increasing the search
budget KB leads to substantial performance gains, while increasing the diffusion steps T provides
limited benefit relative to its computational cost.

5.2 Evaluation with AI and Human Feedback

As discussed in Section 4, we obtain a manageable reward function through the reward calibration,
which reduces the cost for frequent evaluation queries in inference-time search. While DLBS
efficiently improves the calibrated reward (Figure 5; Left), a natural question is whether DLBS can
improve an actual assessment by VLMs or humans by optimizing their calibrated rewards. We first
use each calibrated reward for DLBS, then evaluate the quality using discrete scores (from 1 to 10)
from Gemini or GPT-4o. Figure 7 (Left) demonstrates that DLBS maximizing calibrated rewards can
improve the original preference feedback from VLMs, as we grow the search budget.

Next, we evaluate with VideoScore [55], a metric trained on human judgments that evaluates videos
across five quality criteria. Figure 7 (Right) shows that DLBS significantly improves the quantitative
evaluation based on human evaluation. Lastly, we perform pairwise comparisons between DLBS-LA
(KB = 8, T ′ = 6, NFE = 2500) and BoN (KB = 64, NFE = 3200) by three human evaluators
(Figure 8; Left). The results confirm that, whatever models or prompts we choose, the quality of
content generated by DLBS-LA consistently outperforms that of a baseline despite requiring fewer
NFEs. This emphasizes that our proposed method, integrating reward calibration and beam search in
a latent space, effectively enhances perceptual video quality. See Appendix M.11 for the details.
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Table 1: Performance of DLBS with DPO finetuned
VideoCrafter2 on DEVIL-high and MSRVTT-test
datasets. While DPO alone yields marginal improve-
ments, combining it with DLBS leads to notable
gains, demonstrating the compatibility of inference-
time search with fine-tuning approaches.

Method DEVIL-high MSRVTT-test
VideoCrafter2 0.337 0.555
+ DPO 0.335 0.556
+ DPO & DLBS 0.359 0.576
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Figure 9: (Left) Comparison of different LA steps T ′ on
MSRVTT-test (KB = 8). The performance improves
as the number of LA steps increases. (Right) Perceptual
quality comparison on a large and complex prompt set
(1,003 prompts from Movie Gen Video Bench [57]).
DLBS-LA can generalize to diverse prompts.

5.3 Scaling Model Parameters and Capabilities

We scale up the base diffusion model from Latte to the latest SoTA models, such as CogVideoX-
5B [19] and Wan 2.1-14B [20], and evaluate if DLBS can improve the generation quality from those
larger models. Note that we use SDE-DPMSolver++ [56] for Wan 2.1 experiments. Since base models
are more capable here, we adopt more challenging prompts from DEVIL-very-high (22 prompts)
and Movie Gen Video Bench [57] (20 prompts). See Appendix G and Appendix J.2 for the details.
Figure 6 (Right) shows that our methods achieve significant improvements in calibrated reward for
both models. As shown in Figure 8 (Left), human evaluation also supports that our proposed method
could generally work well with any text-to-video models, even with more capable models in the
future. See Appendix M.9 for results with a maximum frame length, and Appendix M.10 for further
results with CogVideoX and Wan 2.1.

5.4 Alignment-Diversity Tradeoff

Alignment for diffusion models can steer desirable outputs, but it is said that the diversity of generated
samples or the performance of original models often degrade [10, 37]. While inference-time search
does not change or degrade the model itself, we here compare the diversity of samples among BoN,
GS, DLBS, and DLBS-LA. We measure the sample diversity as the mean pairwise distance of
ViCLIP [52] embeddings (see Appendix D). Figure 8 (Right) reveals that DLBS and DLBS-LA
achieve high performance with higher diversity than BoN or GS. This exhibits a benefit from the
wider possession and exploration of diffusion latents in DLBS and DLBS-LA.

5.5 DLBS is Compatible with Finetuning

In image generation, Ma et al. [17] has shown that allocating additional computation at inference
time can be more effective than relying solely on post-training approaches. We find a similar trend in
video generation. To examine this, we apply a representative fine-tuning method, VideoDPO [58],
to VideoCrafter2 [3]. As shown in Table 1, VideoDPO alone brings negligible improvement over
the baseline. However, when combined with DLBS, the performance increases substantially on
both DEVIL-high and MSRVTT-test. These results indicate that DLBS is complementary to post-
training methods, enabling further performance gains even after fine-tuning. See Appendix M.7 and
Appendix M.8 for results comparing DLBS with other alignment methods.
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5.6 Ablation Study

Lookahead Steps for Reward Estimate We scale up LA steps T ′ to obtain an accurate reward
estimate. We use MSRVTT-test (KB = 8) and Gemini reward for experiments. Figure 9 (Left)
shows that as the number of LA steps increases, the performance improves more. Even T ′ = 2, 3
significantly outperforms the posterior mean, which is often used in prior works [15, 11, 41]. This is
because the sub-optimal performance of inference-time search comes from the approximation errors,
and LA estimator can notably reduce them. As shown in Figure 5 (Left), DLBS-LA (KB = 8, T ′ =
6) achieves comparable or even outperforming results with DLBS (KB = 32). It is quite beneficial
to spend a computation to estimate the reward accurately. See Appendix M.4 for further discussions.
In addition, an ablation study on diffusion steps is shown in Appendix M.5.

A Large and Complex Prompt Set To confirm the robustness of our approach on a large and highly
diverse prompt set, we compare GS (KB=1) with DLBS-LA (KB=8, T ′=6) with all the prompts
in Movie Gen Video Bench [57], which comprises 1,003 prompts (Figure 9; Right). We observe
that DLBS-LA consistently delivered substantially higher alignment rewards, demonstrating that
DLBS generalizes effectively to complex prompt distributions. Additionally, we also assess reward
transferability by applying weights calibrated on DEVIL-high and DEVIL-medium to MSRVTT-test
prompts, consistently improving scores (see Appendix J.4).

6 Related Works

Classifier guidance [35, 59] has been the most popular to enhance text-content alignment. On top
of that, recent works [11, 39] leverage reward or external feedback at inference time by selecting
better latents [60], which probably achieve higher rewards during the reverse process. Kim et al. [61]
propose twisted SMC [37] with reward gradient, which is not suitable for non-differentiable feedback
and for domains such as video, where reward gradient needs a huge memory cost. Gradient-free
methods [62, 17] such as SMC [41] or greedy search [15] often exhibit sub-optimal results affected
by inaccurate reward estimates from noisy latents. Yeh et al. [63] uses ODE to estimate the reward,
but it highly depends on Karras sampler [28] to avoid numerical instability. In contrast, we address
the error propagation from inaccurate reward estimates with beam search and lookahead estimator
via deterministic DDIM, which is more popular and stable. Our methods work more scalably when
allocating more computation budget at inference time. See Appendix N for further related works.

7 Discussion and Limitation

Our reward calibration assumes that VLMs serve as a proxy for human evaluation, and we demonstrate
both qualitative and quantitative improvements in video quality through evaluations by VLMs and
human raters. In future work, incorporating more specialized and accurate evaluators (e.g., reward
models that focus on physical laws [9]) could enable a more fine-grained analysis. In practice, we
often do implicit or explicit best-of-N sampling for video generation. In contrast, DLBS-LA exhibits
much better computational efficiency. Spending more computation at inference time significantly
improves perceptual quality, but it is orthogonal compared to speeding up the sampling process via
distillation [64, 65], architecture changes [66], or parallel sampling [67]. We believe both high-quality
and speedy sampling have practical needs and should be balanced.

8 Conclusion

This paper studies which metrics we should optimize and how to optimize them for better text-
to-video generation. We point out that feedback from humans or capable VLMs reflects multiple
dimensions of video quality, so optimizing an existing metric alone is insufficient; rather, we should
calibrate the reward by combining. Our DLBS with LA estimator reduces the error propagation from
the inaccurate reward estimate. We demonstrate that DLBS is the most scalable, efficient, and robust
inference-time search that significantly improves video quality under the same computational costs.
We hope our work encourages more uses of inference-time computation for text-to-video models.
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A Broader Impacts

Our work contributes to the progress of text-to-video by focusing on improving the perceptual quality
and fidelity of generated videos, specifically addressing issues like unnatural movement, deformation,
and temporal inconsistencies, through the inference-time alignment algorithm. Such advancements
hold immense potential for revolutionizing creative fields and enabling new applications in gaming,
filmmaking, and robotics.

On the other hand, the ability to generate highly realistic videos raises concerns about the potential for
misuse in creating deceptive content, including deepfakes and misinformation. Like other generative
models, such as large language models, text-to-video models, and their inference-time search, may
inherit and amplify biases present in the training data due to the misalignment. This might lead to the
generation of videos that perpetuate harmful stereotypes or underrepresent certain groups.

Lastly, by focusing on inference-time alignment, our method promotes more use of computational
resources at test time. On one side, this may increase the environmental footprint for running large
generative models and on the other side, our detailed recipe can contribute to designing efficient
use of resources and reducing the footprint associated with training. We believe that discussing this
aspect is crucial as the scale of these models continues to grow.

B Implementation Details

Code Our implementation for the experiments are available at https://github.com/shim0114/
T2V-Diffusion-Search.

Models Our experiments cover three text-to-video diffusion models.

• Latte [18]: a T5-conditioned latent diffusion transformer with 1.1 B parameters, built on PixArt-
α [68, 69].

• CogVideoX [19]: a larger DiT-based model with 2B or 5B parameters. We mainly used
CogVideoX-5B.

• Wan 2.1 [20]: a DiT-based flow model with 1.3B or 14B parameters. We use Wan 2.1-1.3B for
reward calibration and Wan 2.1-14B for inference-time search experiments.

Hyperparameters

• Latte: DDIM scheduler with a linear noise schedule (βstart = 1.0× 10−4, βend = 2.0× 10−2)
and classifier-free guidance scale wcfg = 7.5.

• CogVideoX: DDIM scheduler with the original settings and wcfg = 6.0. Owing to computational
resource constraints, we limit the frame length to 17 per sample.3

• Wan 2.1: DPMSolver++ with guidance scale wcfg = 5.0. For the same computational reasons,
the spatial resolution is limited to 832× 480 and the frame length to 33 per sample.3

Hardware configuration

• Latte: FP16 inference on a single NVIDIA A100 (40 GB), batch size 1.
• CogVideoX: BF16 inference on a single NVIDIA A100 (40 GB), batch size 1.
• Wan 2.1: FP16 inference on four NVIDIA H100s (80 GB each), batch size 1.

AI-feedback endpoints We use API endpoints: gemini-1.5-pro-002 and gpt-4o-2024-11-20.

3The experiments reported in Appendix M.9 were conducted with a different number of frames.
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C Details of Metric Rewards

Subject Consistency We adopt the subject consistency metric proposed in VBench [12] to quantify
how consistently a subject is depicted across consecutive video frames. Concretely, for each frame i
in a video, we extract a feature representation di using DINO [47] with a ViT-B/16 [70] backbone.
Let ⟨di,dj⟩ denote the cosine similarity between the features di and dj . Then, VBench defines the
subject consistency metric as follows:

Rsubject =
1

T − 1

T∑
t=2

1

2

(
⟨d1, dt⟩+ ⟨dt−1, dt⟩

)
. (8)

DINO, which is trained in a self-supervised manner using unlabeled images and image augmentations,
does not explicitly suppress intra-class variations. As a result, it remains particularly sensitive to
identity shifts within the same subject, making it well-suited for evaluating subject consistency across
frames.

Motion Smoothness We adopt the frame-interpolation-based metric originally proposed in
VBench [12] to assess whether a generated video’s motion is smooth and physically plausible.
In particular, this metric leverages the motion prior from AMT [48], employing its AMT-S variant for
frame reconstruction. Concretely, let

[
f0, f1, f2, . . . , f2n

]
denote the frames of a generated video. We

remove each odd-numbered frame to obtain a lower-frame-rate sequence
[
f0, f2, f4, . . . , f2n

]
, and

rely on AMT-S to reconstruct the missing frames
[
f̂1, f̂3, . . . , f̂2n−1

]
. We then compute the Mean

Absolute Error (MAE) between these reconstructed frames and the original odd-numbered frames,
denoting this measure by Rsmoothness. Finally, following the normalization scheme introduced in
VBench, we define:

Rsmoothness-norm =
255−Rsmoothness

255
, (9)

which ensures that the final score lies in the range [0, 1], with higher values indicating smoother
motion. This measure leverages the motion prior in AMT to evaluate whether the generated video’s
motion is smooth and physically plausible. We remove each odd-numbered frame, then use AMT-S
to reconstruct those frames based on short-term motion assumptions.

Dynamic Degree This measure quantifies the overall magnitude of dynamic object movement. Let
T be the total number of frames in the generated video. For each pair of consecutive frames t and
t+1, we estimate the optical flow vt using RAFT [49], compute its norm ∥vt∥, and sum these values
across all frames:

Rdynamics =

T−1∑
t=1

∥vt∥. (10)

We then apply a logarithmic transformation to Rdynamics and divide by 16:

Rdynamics-rescaled =
log

(
Rdynamics

)
16

. (11)

This rescaling helps ensure that the value range of Rdynamics-scaled is roughly comparable to other
metrics in our evaluation.

Aesthetic Quality This criterion evaluates compositional rules, color harmony, and overall artistic
merit on a per-frame basis. Concretely, for each frame i in a video, we extract a CLIP image
embedding cimage

i using the CLIP ViT-L/14 model [71]. We then feed cimage
i into the LAION

aesthetic predictor [50], which assigns a raw rating ri ∈ [0, 10]. To normalize these scores to the
[0, 1] range, we set

r′i =
ri
10

. (12)

Let T be the total number of frames. The final aesthetic reward is then obtained by taking the average
of the normalized ratings across all frames:

Raesthetic =
1

T

T∑
i=1

r′i. (13)
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Because the LAION aesthetic predictor leverages CLIP embeddings instead of raw images, it captures
higher-level features related to composition, color harmony, and artistic appeal.

Imaging Quality This indicator assesses low-level distortions (e.g., over-exposure, noise, blur) in
each generated frame. We adopt the MUSIQ predictor [51], trained on the SPAQ dataset [72]. The
frame-wise score is normalized to [0, 1] by dividing by 100, and the final video score is the mean of
these normalized values across all frames in the same way as Equation 12 and Equation 13.

Text-Video Consistency This measure captures how closely a generated video’s content aligns with
its text prompt. We employ ViCLIP [52], a model pre-trained on a 10M video-text dataset and
fine-tuned to handle temporal relationships, to embed both the video frames and the text. Since
ViCLIP computes embeddings from 8-frame inputs, we sample 8 frames from each video. Let vvideo

denote the resulting video embedding and vtext denote the text embedding. We then define the final
alignment score as the cosine similarity between these embeddings:

Rtv-consistency = ⟨vvideo,vtext⟩ (14)

D Details of Sample Diversity

We measure the sample diversity as the mean pairwise distance of ViCLIP [52] embeddings to
quantify the diversity in videos, inspired by the approach for evaluating diversity in images [61].
Specifically, given N generated video samples, we first extract ViCLIP embeddings vvideo,(i) for each
sample i. The pairwise diversity score is then computed as the mean pairwise distance:

Dvideo-diversity =
1

N(N − 1)

∑
i ̸=j

(
1− ⟨vvideo,(i),vvideo,(j)⟩

)
. (15)

Here, ⟨vvideo,(i),vvideo,(j)⟩ denotes the cosine similarity between the ViCLIP embeddings of two
generated videos i and j. This formulation is similar to Equation 14, but in the case of pairwise
distance computation, we take the pairwise mean of 1 − (cosine similarity) to obtain a diversity
measure.
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E Algorithms with Continuous-time Diffusion Process

In this section, we present our algorithms for a continuous-time diffusion process. For Wan 2.1 [20],
we integrated the proposed search algorithm into DPMSolver++ [56], a widely used continuous-time
solver. Algorithms 3 and 4 present the pseudocode. Although we present the first-order variant for
clarity, the procedure extends straightforwardly to higher-order formulations. Throughout this section,
we adopt the notation of Lu et al. [56].

Algorithm 3 Diffusion Latent Beam Search (DLBS) with SDE-DPMSolver++

Input: signal prediction latent diffusion model zθ, reward function r′, time steps {ts}Ms=0, noise
scheduling parameter {αts}Ms=0, {σts}Ms=0, number of beams B, number of candidates K

1: z1t0 , · · · , zBt0 ∼ N (0, I) ▷ Initial B beams
2: for s = 1 to M do
3: for j = 1 to B do
4: ▷ Update one step to produce zjts
5: zjts =

σts

σts−1
e−hzjts−1

+ αts(1− e−2h)zθ(zjts−1
)

6: end for
7: if s < M then
8: for j = 1 to B do
9: ▷ Sample K next candidate latents

10: zijts = zjts + σt

√
e−2h − 1ϵits−1

with ϵ1ts−1
, ..., ϵKts−1

∼ N (0, I)
11: ▷ Estimate the clean sample from noisy latent
12: ẑijtM |ts =

σtM

σts
zijts − αtM (e−h − 1)zθ(z

ij
ts))

13: end for
14: ▷ Search B higher-reward beams from KB latents
15: budget := {(z11ts , ẑ

11
tM |ts), · · · , (z

KB
ts , ẑKB

tM |ts)}
16: for j′ = 1 to B do
17: zj

′

ts = argmaxzij
ts

∈budget r′(ẑijtM |ts)

18: budget = budget \ {(zj
′

ts , ẑ
argmax
tM |ts )}

19: end for
20: j ∈ {1, · · · , B} ← j′ ▷ Reset selected B indices
21: end if
22: end for
23: return: ztM = argmaxzj

tM
∈{z1tM ,··· ,zBtM } r′(zjtM )

Algorithm 4 Lookahead (LA) with DPMSolver++

Input: signal prediction latent diffusion model zθ, current diffusion latent zts , number of lookahead
steps M ′(<< M)

1: ▷ Run M ′-step deterministic DPMSolver++ starting from zts
2: s̃(u) ∈ {s, . . . , ⌊M

′−u
M ′ s+ u

M ′M⌋, . . . , ⌊ 1
M ′ s+

M ′−1
M ′ M⌋,M}

3: Select new lookahead noise schedule {α̃tu}M
′

u=0 for M ′-step interpolation of the rest of original
{αts′}

M
s′=0

4: zts̃(0) := zts
5: for u = 1 to M ′ do
6: z̃ts̃(u)|ts̃(u−1)

=
σts̃(u)

σts̃(u−1)

zijts̃(u−1)
− αts̃(u)

(e−h − 1)zθ(z
ij
ts̃(u−1)

))

7: end for
8: return: (zts , z̃tM |ts̃(0)) ▷ Latent and LA estimator
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F Theoretical Analysis on Lookahead Estimator

Consider the Lookahead estimator described in Algorithm 2, which obtains the state z̃0|t̃(0) by
performing T ′ steps of DDIM (or another diffusion-based sampling) with η = 0.0. Our goal is
to show that, as T ′ grows, the reward estimate r′(z̃0|t̃(0)) converges to r′(z0), thereby improving
estimation accuracy.

Let zt−1 be a state in the latent space from which we wish to recover the initial latent z0. By applying
T ′ steps of DDIM with η = 0.0, we obtain an approximation z̃0|t̃(0). From prior work [73], the error
∥z̃0|t̃(0) − z0∥ scales as follows:

∥z̃0|t̃(0) − z0∥ ≤


O(1/T ′) (DDIM),
O(1/

√
T ′) (DDPM),

O(1/(T ′)n) (an n-th order solver).

Hence, increasing T ′ yields a progressively better approximation of z0.

Assume z0 is the latent representation at time t = 0. By the Continuous Mapping Theorem, if
z̃0|t̃(0) → z0 as T ′ →∞, then for any continuous function f , we have

f(z̃0|t̃(0)) → f(z0).

Setting f(·) = r′(·), where r′ is our reward model, yields

r′(z̃0|t̃(0)) → r′(z0),

as T ′ →∞.

We further assume that the reward model r′(·) is Lipschitz continuous with Lipschitz constant L.
Then for any two latent states za and zb, the reward estimates satisfy

|r′(za)− r′(zb)| ≤ L∥za − zb∥.

Hence, the order of the error in r′(z̃0|t̃(0)) tracks the order of the error in z̃0|t̃(0) itself. Explicitly,∣∣r′(z̃0|t̃(0))− r′(z0)
∣∣ ≤ L ∥z̃0|t̃(0) − z0∥,

implying that an O(1/T ′) (or better) approximation in latent space implies an O(1/T ′) (or corre-
spondingly better) approximation in the reward space.

As T ′ increases, z̃0|t̃(0) converges to z0, and consequently r′(z̃0|t̃(0)) converges to r′(z0. Because the
reward model is Lipschitz continuous, this convergence ensures that the error in reward estimation
decreases at the same order as the error of the latent approximation. Therefore, employing the LA
estimator with a larger T ′ yields a more accurate reward estimate.
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G List of Prompts

MSRVTT-test
1. a woman is singing on stage about that one person being the one she wants

2. someone is filming a parked car in the parking lot

3. a cat is feed it s babies and a rabbit

4. mario game with bombs

5. someone is browsing a set of games on their console

6. a game is being played

7. a man holds a very large stick

8. a yellow-haired girl is explaining about a game

9. a ship is sailing around on the water

10. a woman with blonde hair and a black shirt is talking

11. a buffalo is attacking a man

12. a band is playing music and people are dancing

13. a child is playing a video game

14. a person is showing how to fold paper

15. a woman is sitting down on a couch in a room

16. a man inside of a car is using his finger to point

17. a man waters his plants

18. the symmetrical cone is japan s most famous symbol

19. an indoor soccer game

20. a japanese monkey bathing in a hot spring with pleasant music

21. some images of motorcycles are being shown on tv

22. someone is serving food in the restaurand

23. this is a competition type show

24. a woman on the news is talking about a story

25. this is a phone review video

26. some fake horses are standing around in a game

27. a person is filming a white car interior seat

28. video of clips from a movie

29. a man with a blue and white shirt is walking around

30. person making something in the kitchen

DEVIL-high
1. A bookshelf collapses loudly, books flying everywhere, creating chaos in the once quiet room.

2. Swift scenes of a sandstorm engulfing a desert oasis, with dunes shifting and palm trees bending in the relentless wind.

3. A chaotic scene of cowboys rounding up cattle during a stampede.

4. Suddenly, a storm hits the city, rain pouring down like a torrent, making rivers on the streets.

5. WWI biplanes in a dogfight with canvas wings ripping, dramatic cloud backdrop, ultra-detailed.

6. In the mountains, a bear erupts from the snow, creating a large cloud of powder.

7. Amidst a thunderstorm, a lightning bolt strikes a bicycle, setting it ablaze with crackling energy and lighting up the dark, rainy street.

8. A single eagle dives extremely fast, snatching a fish from the water.

9. A boat hits a big wave and flips, landing upside down.

10. A car drives through a wall of fire in a daring escape.

11. The cat tore across the living room, jumping over toys and furniture to catch the mouse.

12. A cow jumps over a fence, landing in a pond with a big splash.

13. Two dogs chase each other, suddenly skidding around a sharp corner.

14. A storm sweeps an elephant into a raging river, carrying it away swiftly.

15. Racing the sunset, a giraffe charges across the horizon, shadows stretching long.

16. Against the wind, a lone horse gallops, mane streaming behind.

17. Jumping over a gorge, the motorcycle lands just in time on the other side.

18. A thief sprints away from the scene, with the police in hot pursuit.

19. The ice cracks beneath their feet, making the sheep skid and slide, rushing to solid ground.

20. Lightning strikes as a train blasts its horn, cutting through a stormy night.

21. A truck speeds across the desert, dust clouds swirling behind it.

22. Under a rainbow, a zebra kicks up a spray of water as it crosses a fast-flowing river.
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DEVIL-medium
1. London heathrow, united kingdom - 05 12 2019: 4k super-telephoto plane accelerates down hot runway through heat shimmer
2. A cool dj teddy bear with sunglasses on top of turntable with video static
3. Aerial view. cute girl in the coat drive on country road on the bicycle
4. Brown pelican flying flight in fall bay harbor in ecuador
5. Small fishing boat, anchored on a silver ocean, in thailand.
6. a filled yellow school bus with over-sized black wheels drives through a flooded area with red lights on and gets splattered with mud
7. St. petersburg, russia - circa march, 2015: vehicles drive on city ringroad at evening time. st. petersburg ring road is a main route encircling

the city
8. cat manages to hang on to dangling object
9. Taking cow milk cheese with fork 4k footage

10. dog passes in and out of view
11. 1930s: elephant roars, man shoots at elephant. elephants walk through jungle. man tries to fire gun, throws gun on ground, runs away.
12. the baby giraffe is zoomed in on and then camera shakes
13. Cowboys drive group of horses at farming enterprise.
14. 4k couple watching film or tv at home & jumping with shock at the action
15. contestants are reading themselves to start a mini-motorbike race
16. Macao beach with stone mountains aerial view from drone. travel destination. summer vacation. dominican republic
17. Male boxer resting and sweating after boxing training
18. Wild tulips in a meadow on background sky. sunrise. bonfire. a quiet spring morning in the steppe.
19. Sheep eating grass in punata and potosi, bolivia.
20. Bodo arctic town norway - ca july 2018: train station building and rails tilt up
21. a woman is describing different sets of tubes and hoses in the back of a white pick up truck which is parked on the side of a street with cars

going by in the background
22. Istanbul, turkey - october 2018: commuters inside istanbul metro wagon travelling towards taksim station

DEVIL-static
1. airplane with red body is shown for first time.
2. a man holds up a stuffed bear.
3. when you can see the first view of the full bike
4. second bird lands on feedersecond bird lands on feeder
5. a red boat is first seen.
6. Tourist bus station 3d realistic footage. public transport front view animation. vehicles on modern urban highway bridge background.

passengers transportation parking. city bus stop video
7. black car is under the blue sign.
8. cat looks at the camera
9. dog puts paws together

10. a white horse standing beside red colored wearing girl dress standing with stick bending down knee displaying on screen
11. Blurred conference room with audience - 4k video
12. first time we see orange branch to the right
13. A woman and a man. holding a gift.
14. A tranquil tableau of the old red barn stood weathered and iconic against the backdrop of the countryside
15. black numbers 1758 at bottomof train
16. a large white box truck travels through water is followed by two other trucks and ascends a gray road through mountains
17. view of big city from balconyview of big city from balcony
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DEVIL-very-high
1. Classical style of a horse partaking in an ancient chariot race, scenes switching quickly from cheering crowds to close-ups of intense wheel

clashes.
2. High-speed shots of a volcanic eruption engulfing a tropical island, with lava fountains spewing molten rock and the environment

transforming from idyllic paradise to hellish landscape of ash and fire.
3. A thrilling scene of rural mountain biking extreme sports, starting from the early morning cycling adventure, transitioning to the intense

chase through fields and forests, and ending with cheers and celebrations under the sunset.
4. Neon-lit streets pulse with energy as vehicles engage in a high-octane pursuit, transitioning seamlessly from chaos to calculated evasion.

Against the backdrop of a setting sun, the chase intensifies, each turn a heartbeat away from capture.
5. A fighter jet dodging rapid anti-air gunfire, quick maneuvers, tracer rounds visible.
6. Bear escaping a collapsing cave, rocks tumbling, dust rising, ((masterpiece)), ((best quality)), 8k, high detailed, ultra-detailed, bear, ((dark

rocky textures)), sprinting, (echoing rumble), sudden movement
7. A courier on a bike weaves through traffic at breakneck speed, narrowly avoiding cars and pedestrians in a rush to make deliveries on time.
8. A hummingbird rapidly darting between vibrant flowers in a lush garden, with quick cuts to various close-up shots showcasing its rapid

wing movement and agility.
9. Venetian gondola chase scene, narrow canals, historic buildings, urgent escape, ((masterpiece)), ((best quality)), 8k, high detailed,

ultra-detailed, gondola, ((twisting canals)), (ancient architecture), (urgent paddling), cinematic chase.
10. Futuristic sports cars racing on a vertical loop track against a sci-fi cityscape, cars defying gravity, ((speed trails)), (dizzying heights),

(spectacular crashes), the thrill of cutting-edge technology.
11. Cat rapidly zigzagging across a rooftop, avoiding swooping birds under a stormy sky.
12. A sequence of a cow performing acrobatic stunts over a series of colorful, abstract platforms that morph shapes.
13. The dog bursts through a thicket, darting from a foggy forest to a steep hillside, rocks crumbling under its paws as it charges towards a

roaring river below.
14. Thundering across a vast desert plain, the elephants race over dunes and dodge sandstorms, before swiftly traversing through a rocky

canyon, bounding over boulders and leaping across narrow ravines.
15. A giraffe navigating a city during a robot uprising, with quick cuts showing chaotic battles, explosions, and futuristic technology in a

high-stakes escape scenario.
16. A horse leading a wild stampede across a stormy beach with waves crashing, depicted with swift, sweeping camera moves, cinematic

composition.
17. Intense motorcycle escape from a volcanic eruption, with transitions from lava-filled landscapes to ash-clouded skies.
18. A futuristic robot uprising, ((lasers firing)), metallic drones, explosions, debris, ((screaming civilians)), dystopian cityscape.
19. Sheeps engaging in a high-speed pursuit through a cyberpunk city, the scene rapidly transitioning between neon-lit streets, bustling

marketplaces, and towering skyscrapers.
20. A pulse-pounding sequence of a train barreling through a treacherous storm, the scene transitioning between lightning-lit skies and torrents

of rain to flooded tracks and collapsing bridges.
21. A truck rushing away from a treacherous mountain pass during a blizzard, with sudden avalanches and rockslides adding to the danger.
22. A zebra sprinting across the busy lanes of Times Square in New York City, with scene transitions occurring quickly as it moves from iconic

billboards to bustling sidewalks filled with tourists.

MovieGen
1. A green monster made of plants walks through an airport.
2. A marble goes through a glass cup, breaking it into pieces.
3. A droplet of water falling onto a hot surface, instantly evaporating into a wisp of steam that swirls gracefully into the air.
4. An old man wearing a green dress and a sun hat taking a pleasant stroll in Johannesburg South Africa during a beautiful sunset.
5. A person on a hoverboard colliding with a wall, the board stopping abruptly.
6. A toy robot wearing blue jeans and a white t-shirt taking a pleasant stroll in Johannesburg South Africa during a winter storm.
7. In a marathon race, a female athlete gradually sprints ahead of the male athletes.
8. A teenager eating a slice of pizza, cheese stretching as they pull it away.
9. A man in a suit fights monsters.

10. A dog made of ice melts completely in a hot summer day.
11. A truck right alongside a flowing river, capturing the movement of the water and the surrounding forest.
12. A group of skateboarders perform tricks on ramps and rails at a skate park, showcasing their skills.
13. A hot air balloon descending back to the ground.
14. Chef chopping onions in the kitchen for the preparation of the dish.
15. Zoom in shot to the face of a young woman sitting on a bench in the middle of an empty school gym.
16. The couple runs hand in hand to release a sky lantern, then watches it drift upward into the night sky, carried by the wind with the stars

shining above.
17. Aerial view shot of a cloaked figure elevating in the sky between skyscrapers.
18. A softball player sliding safely into second base.
19. A giraffe in a lifeguard outfit, sitting atop a high chair and watching over a crowded pool.
20. A speed skater accelerating during a short track race.
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H Detailed Analysis on Reward Function for Perceptual Video Quality

Figure 10 shows that different metrics in reward functions for perceptual video quality often exhibit
negative or weak correlations. For example, dynamic degree tends to be negatively correlated with
many other metrics, indicating that optimizing exclusively for one metric can either reduce motion
dynamics or undermine temporal consistency and aesthetic quality. These findings underscore the
need to balance potentially conflicting reward functions, rather than prioritizing any single one in
isolation, and emphasize the importance of a carefully calibrated approach to evaluating generated
videos.
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Figure 10: Correlation between reward functions for perceptual video quality.

I Prompt of AI Feedback

Prompt for AI Feedback from VLMs

You are a helpful assistant that evaluates the quality of a generated video from a textual prompt.

Compare the text prompt and generated video and evaluate the quality (visual quality, proper dynamics,
etc...) of the video.

First explain the reasoning, then present the final assessment. Start the reasoning with ’Reasoning: ’.

After explaining the reasoning, present the final assessment with ’Assessment: ’.

Your final ’Assessment’ should be a single-number score from 1 to 10, not as a fraction.

When evaluating, consider the following points:

- Visual Quality: Evaluate the clearness, resolution, brightness, aesthetic appeal of the video.

- Dynamics: Evaluate whether the video demonstrates appropriate dynamics, ensuring it avoids
excessive movement in situations meant to be static or insufficient movement in situations intended to
be dynamic.

- Smoothness, Consistency, and Naturalness: Assess the smoothness, consistency, and naturalness
of shape and motion for objects, animals, and humans.

- Contents: Evaluate whether the video content aligns with the given text prompt.

Textual Prompt: {instruction}

Video: {video_file}
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J Further Results for Calibrating Reward to Preference Feedback

J.1 Basic Prompts

Figure 13 and Figure 14 show the two-dimensional histogram and correlation between reward function
and AI feedback from Gemini [14] and GPT-4o [13], and Figure 11 represents the coefficient of
calibrated reward designed for GPT-4o. The relative weighting assigned to the dynamic degree
changes according to the dynamics grade of the prompt. Specifically, prompts with a high dynamics
grade, i.e., DEVIL-high, place greater weight on the dynamic degree. In contrast, prompts that
describe slight motion, i.e., DEVIL-medium and DEVIL-static, place a smaller weight on it. This
behavior matches the pattern observed in reward calibration with Gemini (Figure 4). GPT-4o exhibits
a stronger inclination toward dynamics than Gemini.
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Figure 11: Coefficients of calibrated reward with GPT-4o.

J.2 Challenging Prompts

This section describes the reward calibration procedure and results for two challenging prompt
sets, DEVIL-very-high and MovieGen, which were introduced to evaluate our method with larger
T2V models, such as CogVideoX [19] and Wan 2.1 [20]. Following the methodology for reward
calibration with Latte (see Section 4), we generated 64 videos per prompt using Wan 2.1-1.3B [20].
Consistent with observations in Appendix J.1, using solely text-video consistency is insufficient to
fully capture AI feedback from Gemini (Figure 15). We choose the combination of weights wi to
maximize correlation with Gemini’s evaluations. The coefficients of calibrated weights are shown in
Figure 12.
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Figure 13: 2D-histogram and correlation between reward function and AI feedback from Gemini.
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Figure 14: 2D-histogram and correlation between reward function and AI feedback from GPT-4o.
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Figure 15: 2D-histogram and correlation between reward function and AI feedback from Gemini for challenging
prompt sets, DEVIL-very-high and MovieGen.
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J.3 Cost of Reward Calibration

As described in Section 4.1 and Appendix J.2, we generate 64 videos per prompt using pre-trained
Latte and Wan 2.1 models. Compared to naively querying VLMs at every inference step, our
calibration approach is substantially more cost-efficient, since the VLM queries are amortized through
a one-time weight estimation. Table 2 summarizes the difference in per-prompt query count and
execution time when applying DLBS (KB = 32). These results demonstrate that reward calibration
reduces the number of VLM queries, making large-scale search with DLBS computationally feasible.

Table 2: Comparison of query count and execution time between naive VLM queries during search and reward
calibration. Assuming 15 seconds per VLM query.

Method Query Count Exec. Time (sec)

Querying VLMs during Search (KB = 32) T=50×KB=32 = 1600 ≈ 102,400
Reward Calibration 64 ≈ 960

J.4 Generalization of Reward Calibration across prompts

Video generation inherently involves trade-offs between fundamental properties such as dynamics and
consistency (Appendix H), which may require category-specific calibration for optimal performance.
However, despite these domain-specific requirements, we hypothesize that calibrated rewards can
generalize to some extent across different datasets, as they are based on shared principles of perceptual
quality. To test the out-of-domain transferability, we conducted additional experiments applying the
reward weights calibrated on DEVIL-high and DEVIL-medium to MSRVTT-test prompts (Table 3).
We used Latte [18] as a base model and evaluated the results using VideoScore [55], a human
preference-trained evaluator, measuring five key metrics along with their corresponding average
scores. With the DEVIL-high reward, we can enhance other metrics while maintaining dynamics.
DEVIL-medium reward, which is a closer domain to MSRVTT-test, shows a different trade-off
pattern. While it slightly reduces dynamics, it significantly improves other metrics and achieves a
higher average score than the MSRVTT-test reward, demonstrating higher transferability.

Table 3: Out-of-domain prompt generalization. Rewards calibrated on DEVIL-high/medium applied to MSRVTT-
test prompts. All metrics are derived from VideoScore [55]. VQ = Visual Quality; TC = Temporal Consistency;
DD = Dynamic Degree; T2V Align. = Text-to-video Alignment; FC = Factual Consistency.

(R: Reward, P: Prompt) VQ TC DD T2V Align. FC Average

Latte 2.32 2.01 2.91 2.67 2.07 2.40

+ DLBS (KB = 8)
with R=MSRVTT, P=MSRVTT 2.50 2.27 2.88 2.74 2.28 2.53
with R=DEVIL-medium, P=MSRVTT 2.49 2.26 2.89 2.73 2.31 2.54
with R=DEVIL-high, P=MSRVTT 2.36 2.03 2.90 2.68 2.10 2.42
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K Correlation between VLM and Human Evaluation

As mentioned in prior research [44–46], evaluation from VLMs such as Gemini and GPT-4o exhibits
a high correlation with human assessment compared to other existing metrics. As an experiment, we
measured the correlation between the AI feedback from these VLMs and human labels in the TVGE
dataset [74]. As shown in Figure 16, Gemini achieved a correlation of 0.49, and GPT-4o achieved
0.51. Consequently, optimizing for these VLM rewards is a valid way to improve human-perceived
quality, rather than merely “gaming” the metrics.
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Figure 16: Correlation between VLM outputs and human labels in the TVGE dataset.

For a deeper analysis of failure cases, we qualitatively examined the top 5% outliers between human
preference labels in the TVGE dataset and VLM (Gemini) evaluation (Figure 17). As far as we
observed, VLM sometimes makes subtle mistakes, but we did not see any critical failures.

“the words 'KEEP OFF THE GRASS' on a sign next to a lawn”

“Four friends have a picnic, enjoying six sandwiches and two bottles of juice”

“fashion portrait shoot of a girl in colorful glasses, a breeze moves her hair”

Figure 17: Misaligned cases of Gemini-based evaluation with human preferences. (Top) For prompts specifying
text, such as "the words ’KEEP OFF THE GRASS’ on a sign next to a lawn," the VLM was significantly
harsher than human evaluation on text rendering (VLM: 2/10, Human: 4.5/5). (Middle) For prompts specifying
quantities, such as "Four friends have a picnic, enjoying six sandwiches and two bottles of juice," the VLM was
more lenient than human evaluation (VLM: 8/10, Human: 1.5/5). (Bottom) For "fashion portrait shoot of a
girl in colorful glasses, a breeze moves her hair," despite missing arms in the generated person, the VLM was
misled by distracting background patterns, possibly mistaking them for curtain-like elements that obscure the
arms behind the background (VLM: 8/10, Human: 1.2/5).
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L Qualitative Evaluation of Calibrated Reward

We provide best-of-64 videos by individual rewards and VLM calibrated rewards in Figure 18. Videos
selected solely on a single metric can over-optimize one aspect while neglecting others, whereas
those chosen via VLM-calibrated rewards exhibit a more balanced quality. For instance, videos
chosen solely based on temporal consistency (i.e., subject consistency and motion smoothness) or
frame-by-frame quality (i.e., aesthetic quality, imaging quality) tend to lack dynamic movement,
whereas those selected based on dynamic degree often lose temporal consistency. Evaluations relying
on a single metric also fail to reflect the given prompt in some cases. Text-video consistency, which
often exhibits a high correlation with VLM-based evaluation among individual metrics (Figure 3),
is relatively effective in capturing the overall quality of a video. However, it may overlook certain
aspects, such as frame-wise artifacts. In contrast, videos selected using VLM-calibrated rewards
exhibit a more balanced overall quality.

Gemini Calibrated RewardAesthetic QualityDynamic Degree

“A storm sweeps an elephant into a raging river, carrying it away swiftly.”

Imaging Quality

“Macao beach with stone mountains aerial view from drone. travel destination. summer vacation. dominican republic”

GPT Calibrated RewardSubject Consistency

Gemini Calibrated RewardDynamic DegreeMotion Smoothness

“black car is under the blue sign.”

Text-Video Consistency

“a yellow-haired girl is explaining about a game”

GPT Calibrated RewardSubject Consistency

Figure 18: We select the video with the highest reward out of 64 randomly generated candidates for each prompt,
drawn from DEVIL-high, DEVIL-medium, DEVIL-static, and MSRVTT-test (arranged from top to bottom).
Videos chosen using VLM-calibrated rewards achieve a more balanced quality compared to those relying on any
single metric. For instance, when subject consistency, motion smoothness, or aesthetic quality serves as the sole
selection criterion, the resulting videos often lack dynamic movement, whereas prioritizing dynamic degree can
compromise temporal consistency. Moreover, single-metric evaluations may occasionally fail to align with the
intended prompt.

31



M Further Results for Diffusion Latent Beam Search

M.1 Scaling Search Budget with GPT-4o Calibrated Reward

We measure the performance using a reward calibrated to GPT-4o (Figure 19). DLBS improves all
the calibrated rewards the best as the search budget KB increases (especially KB = 16, 32), while
BoN and GS, in some cases, eventually slow down or saturate the performance. Notably, an LA
estimator with a small search budget (KB = 8, T ′ = 6) is comparable to or even outperforms DLBS
(KB = 32).
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Figure 19: Inference-time search on reward calibrated to GPT-4o.

M.2 Scaling Search Budget to Larger Regimes

Figure 20 and Figure 21 show the performance of inference-time search on DEVIL-medium and
MSRVTT-test that includes the results with KB = 64. We can observe that the increasing trends still
continue.
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Figure 20: Inference-time search on reward calibrated to Gemini including KB = 64.
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Figure 21: Inference-time search on reward calibrated to Gemini including KB = 64.
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M.3 Full Results for Scaling Trend of DLBS

Figure 22 demonstrates the scaling trend of DLBS, proportional to the search budget, under various
choices of K. The results show that there is an optimal balance between the number of latent K
and the number of beams B under the same budget. For instance, as we increase the budget to
KB = 16, 32, we have a peak around K = 4, 8, 16, which is about 25–50% of the budget. This
implies that balancing possession and exploration of diffusion latents in DLBS helps search for the
best outputs robustly.
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Figure 22: DLBS can improve the performance in any prompts or reward, as we increase the search budget
KB ∈ {1, 2, 4, 8, 16, 32}. In addition, we can see an optimal balance between the number of latent K and the
number of beam B under the same budget. For instance, as we increase the budget to KB = 16, 32, we have a
peak around K = 4, 8, 16, which is about 25–50% of the budget.

M.4 Further Analysis on Lookahead Estimator

Figure 23 (Left) demonstrates that increasing the number of reward estimation steps T ′ in the LA
estimator leads to improved reward prediction performance for zt during the denoising process. This
finding suggests that extending the LA steps enables a more effective search based on accurate reward
predictions, particularly in the early stages of the denoising. As shown in Figure 23 (Right), enlarging
the look-ahead horizon increases the reward gain to T ′ = 6; beyond this point, e.g., T ′ = 20 offers
no significant benefit while multiplying the computational cost. Accordingly, we fix T ′ = 6 in the
main experiments, as it captures nearly all the attainable gains at minimal cost. These results were
obtained on Latte [18] using a DDIM sampler.
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Figure 23: (Left) Comparison of the reward estimation error for different LA steps T ′. We evaluate the reward
predicted by the LA estimator, which projects zt to z̃0|t̃(0) in T ′ steps (Algorithm 2) and computes r′(z̃0|t̃(0)),
against the actual reward obtained by projecting zt to z0 in t steps using a DDIM sampler (η = 1.0) and
evaluating r′(z0). (Right) Impact of T ′ on search performance. Reward improves rapidly up to T ′ = 6 but
saturates thereafter; using T ′ = 20 offers no measurable gain. These results show that a modest T ′ is sufficient
in practice.
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To verify that this behavior is not specific to DDIM sampler, we conducted the same ablation with an
SDE-DPMSolver++ [56] on Wan 2.1-1.3B [20] (Figure 24). Note that the notation follows Algorithm
4. Specifically, M ′ in the SDE-DPMSolver++ setting corresponds to the T ′ used with the DDIM
sampler. We observed the same pattern shown in Figure 23. Increasing the look-ahead horizon M ′

monotonically improves the LA estimator’s reward prediction. Search reward gain up to roughly
M ′ = 6, after which gains saturate. For example, M ′ = 12 yields no measurable improvement
while incurring substantially higher cost. This cross-sampler and cross-model consistency provides a
practical guideline for choosing M ′: a modest horizon (≈ 6) captures nearly all attainable benefit.
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Figure 24: (Left) Comparison of the reward estimation error for different LA steps M ′. We evaluate the
reward predicted by the LA estimator, which projects zts to z̃tM |ts̃(0) in M ′ steps (Algorithm 4) and computes
r′(z̃tM |ts̃(0)), against the actual reward obtained by projecting zts to ztM in (M − s) steps using a SDE-
DPMSolver++ [56] and evaluating r′(zM ). (Right) Ablation study of M ′ on search performance with SDE-
DPMSolver++ [56] on Wan 2.1-1.3B [20]. Reward improves rapidly up to M ′ = 6 but saturates thereafter;
using M ′ = 12 offers no measurable gain. These results show that a modest M ′ is sufficient in practice.
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M.5 Ablation Study for Diffusion Steps

Scaling Diffusion Steps Figure 25 (Left) shows the performance when increasing the number of
denoising steps T . Since DDIM exhibits fast convergence [42], BoN with a larger T does not improve
the reward much. DLBS improves performance when scaling denoising steps to T = 200 more than
BoN, which implies that DLBS benefits from larger computational resources in denoising. However,
as Figure 6 (Left) indicates, these gains are smaller than those obtained by widening the beam budget
KB or leveraging the LA estimator.

Range of Diffusion Steps for Search We investigate which range of diffusion steps DLBS should
be applied to for effective search. Unlike Kim et al. [15], which applies GS only during the initial
5–10 steps, our results in Figure 25 (Right) show that applying DLBS throughout all steps leads to
substantially better performance. This suggests that applying DLBS entirely is more effective than
focusing on the early stage.
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Figure 25: (Left) Scaling the denoising steps T . (Right) Range of denoising steps t ∈ [50, 0] to apply search
methods. While Kim et al. [15] applies GS in the first 5–10 steps, DLBS over the entire diffusion steps yields
the largest improvement.

M.6 Ablation Study for η in DDIM scheduler

Figure 26 illustrates how varying the value of η in DDIM influences search performance. Here, η
controls the degree of randomness in the DDIM scheduler: η = 0.0 corresponds to the deterministic
version of DDIM, while η = 1.0 is equivalent to DDPM. As η decreases below 1.0, performance in
terms of the final reward diminishes, presumably because lowering the randomness in the sampling
process narrows the scope of exploration.
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Figure 26: Comparison among different η in DDIM sampler.

35



M.7 Comparison with Gradient-Based Search Methods

Applicability to diverse reward models One advantage of our zero-order search framework is
its applicability to reward models for which computing gradients is computationally prohibitive
(e.g., large-scale VLMs) or fundamentally impossible (e.g., human evaluators or external API-
based models). To demonstrate this, we simulated search with human feedback by employing
VideoScore [55], a VLM-based reward model trained on human evaluations, as the reward function.
As shown in Table 4, DLBS-LA with VideoScore as the evaluator achieved substantial improvements
over the vanilla baseline, suggesting that high-performance VLMs or human evaluators can, in
principle, be directly incorporated as reward functions in our framework.

Table 4: Results of DLBS-LA with VideoScore as the evaluator, illustrating its applicability to reward models for
which computing gradients is computationally prohibitive (e.g., large-scale VLMs) or fundamentally impossible
(e.g., human evaluators or external API-based models).

Method VideoScore

Latte 2.40
+ DLBS-LA (KB = 4, T ′ = 6) with VideoScore 2.69

Efficiency in time and memory We further compared DLBS with DAS [61], a first-order gradient-
based method based on Sequential Monte Carlo. Experiments were conducted on Stable Diffusion
1.5 [21] with LAION Aesthetic V2 [50] as the reward model, using an NVIDIA RTX 6000 Ada
(48GB). Table 5 shows that under the assumption of equal execution time, DLBS (a zero-order
method) takes the lead because it can have a larger search budget, which refers to the number of
particles used for search, i.e., KB for DLBS and N for DAS. Our observation that a zero-order
method achieves better performance than a first-order method under the equal execution time aligns
with prior findings on inference-time search for image generation [41].

Gradient-based search methods also exhibit significant increases in memory usage due to gradient
computations required for the reward function and the VAE decoder. In other words, gradient-
based methods are actually inefficient in terms of memory cost. The results shown in Table 5
are based on a single evaluator and a single frame (i.e., image generation). Note that for video
generation, as mentioned in Figure 3, a single evaluator metric does not correlate well with perceptual
quality, necessitating the combination of multiple evaluators, which roughly multiplies the memory
requirements for gradient calculation. Additionally, video generation models do not decode just one
frame from the VAE (maximum frames are 81 for Wan 2.1 [20] and 49 for CogVideoX [19]). The
gradient increase would be significantly larger in video generation than in image generation, making
gradient-based methods almost impossible in practice. For reference, the memory usage of vanilla
Latte, DLBS-LA, and DAS in Table 6.

Table 5: Comparison between DLBS and DAS on Stable Diffusion 1.5 with LAION Aesthetic V2 reward. DLBS
(a zero-order method) achieves better performance than DAS (a first-order method) under equal execution time.

Method Score Time (sec) Memory (GB)

SD 1.5 5.81 2 4.3

+ DAS (N = 8) 6.59 108 14.2
+ DLBS (K = 8, B = 2) 6.63 103 5.9
+ DAS (N = 16) 6.68 220 14.2
+ DLBS (K = 16, B = 2) 6.69 209 5.9

Table 6: Memory usage of search methods on Latte. The memory advantage of DLBS-LA (a zero-order method)
becomes more critical in video generation.

Method Latte + DLBS-LA + DAS

Memory Usage (GB) 16.3 38.9 >48.0 (OOM)
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M.8 Comparison with Other Inference-Time Search Methods

Concurrently with our work, inference-time search based on zero-order sequential Monte Carlo
(SMC) has been proposed. We include a comparison with FK Steering [41] in Figure 27, where the
resampling mechanism in the SMC-based methods does not occur frequently enough, preventing
them from surpassing BoN performance, in our text-to-video experiments.
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Figure 27: Comparison with FK steering [41].

M.9 Scalability to Long Videos

To demonstrate that our method is scalable even when extending the frame count to the model’s
maximum, we conducted experiments with the maximum frames for CogVideoX-5B (49 frames, 6
seconds) and Wan 2.1-1.3B (81 frames, 5 seconds). The reward, which was calibrated using 33-frame,
2-second videos generated by Wan 2.1-1.3B, was applied as-is. As shown in Table 7 and Table 8, we
confirmed that even with longer frames, the reward values could be improved more efficiently than
the BoN baseline.

Table 7: Scalability results on CogVideoX-5B with 49 frames, 6 seconds using DEVIL-very-high prompts.

Method KB Reward Inference Compute (NFE)

CogVideoX-5B 1 0.429 50

+ BoN 64 0.474 3200
128 0.478 6400

+ DLBS 16 0.481 1200
32 0.490 2400

+ DLBS-LA 8 0.497 2500
16 0.517 4900

Table 8: Scalability results on Wan 2.1-1.3B with 81 frames, 5 seconds using MovieGen prompts.

Method KB Reward Inference Compute (NFE)

Wan 2.1-1.3B 1 0.313 50

+ BoN 128 0.357 6400
256 0.360 12800

+ DLBS 16 0.357 1200
32 0.371 2400

+ DLBS-LA 8 0.373 2500
16 0.393 5000
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M.10 DLBS with Larger Text-to-Video Models

We have tested our method on VideoCrafter2 [3] (1.9B) and CogVideoX-5B, 2B [19] and Wan
2.1-14B, 1.3B [20]. Our experiments confirm that our DLBS and DLBS-LA yield significant
improvements, indicating their effectiveness can be observed in larger video generation models.

1 2 4 8 16
K * B (Budget)

0.44

0.46

0.48

0.50

Ge
m

in
i

Ca
lib

ra
te

d 
Re

wa
rd

DEVIL-very-high

1 2 4 8 16
K * B (Budget)

0.300

0.325

0.350

0.375
MovieGen

BoN(K=1)
GS(B=1)
DLBS
DLBS-LA

1 2 4 8 16
K

0.44

0.46

0.48
DEVIL-very-high

Budget=1
Budget=2
Budget=4
Budget=8
Budget=16

1 2 4 8 16
K

0.28

0.30

0.32

0.34

0.36
MovieGen

Budget=1
Budget=2
Budget=4
Budget=8
Budget=16

Figure 28: Inference-time search with CogVideoX-5B [19].
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Figure 29: Inference-time search with CogVideoX-2B [19].

1 2 4 8 16
K * B (Budget)

0.47

0.48

0.49

0.50

0.51

Ge
m

in
i

Ca
lib

ra
te

d 
Re

wa
rd

DEVIL-very-high

1 2 4 8 16
K * B (Budget)

0.32

0.34

0.36

0.38
MovieGen

BoN(K=1)
GS(B=1)
DLBS
DLBS-LA

1 2 4 8 16
K

0.47

0.48

0.49

DEVIL-very-high

1 2 4 8 16
K

0.32

0.34

0.36
MovieGen

Budget=1
Budget=2
Budget=4
Budget=8
Budget=16

Figure 30: Inference-time search with Wan 2.1-14B [20].
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Figure 31: Inference-time search with Wan 2.1-1.3B [20].
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Figure 32: Search with VideoCrafter2 [3].
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Figure 33: Search with CogVideoX-5B [19].
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M.11 Further Results in AI and Human Evaluation

We show full results of evaluations using VideoScore [55], a metric trained on human judgments
that evaluates videos at 8 fps across five dimensions and outputs scores ranging from 1.0 to 4.0 (see
Figure 34). Under this metric, videos generated with our DLBS consistently outperformed those
generated without search and with BoN.
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Figure 34: DLBS on calibrated reward also improves another qualitative metric, the most, VideoScore [55],
which is not involved in a reward calibration.

We also show additional results of human judgment by three human evaluators (see Figure 35). These
experiments confirmed that, regarding human preference (win rate), content generated with our search
strategy consistently outperformed content produced without search.
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Figure 35: Human evaluation results. We searched videos using the Gemini calibrated reward and asked three
human evaluators to compare outputs from GS (KB = 1) and DLBS-LA (KB = 8, T ′ = 6). "Win" indicates
that the video generated by DLBS-LA was preferred.

M.12 Qualitative Results for DLBS

Qualitative results are shown in https://sites.google.com/view/t2v-dlbs.
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M.13 DLBS for Image Generation

We adopt PixArt-α [69] as our base text-to-image generation model. For evaluation, we directly reuse
the prompt set of 45 common animal categories from prior works [75, 63]. As a reward model, we
employ the LAION aesthetic predictor [50] to assess image quality.
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Figure 36: Inference-time search with PixArt-α [69].

Figure 37: Qualitative Results in inference-time search with PixArt−α [69]. (Left) GS (KB = 1). (Right)
DLBS-LA (KB = 32, T ′ = 6).

N Extended Related Works

Aligning Diffusion Models via Finetuning Alignment by finetuning text-conditioned models has
been investigated for image [10] and video [46, 45] generation. Typically, LoRA [76] in a backbone
model [77] is finetuned through policy gradient [75, 78, 79], direct preference optimization [80, 44,
81, 38, 82], reward-weighted regression [83], or direct reward gradient [84, 85, 45, 86]. Some train
an extra model for better initial noise space [87–89]. In contrast, we focus on the search over the
denoising process at inference time, which does not require any model updates and may not degrade
the original performance.

Evaluation of Text-to-Video Generation While there are several conventional metrics for video
generation (or the one repurposed from image generation) such as SSIM [90], IS [91], LPIPS [92], or
FVD [93], those are not always suitable to evaluate how the quality of contents in video is, which is
much more emphasized in text-to-video generation [74]. It has been a long-standing challenge to
comprehensively and semantically evaluate the dynamics of contents or physical commonsense in
generated videos [9, 53]. To deal with that, VBench [12] has recently been proposed as a suite of
holistic evaluations for text-to-video generation to reflect the perceptual aspect of the quality, such as
consistency, smoothness, aesthetics of contents, or text–video alignment. Moreover, inspired by the
success in LLMs [94–96], we could leverage VLMs, which become more capable these days, as a
proxy of human evaluation of the contents [45]; by finetuning CLIP-based models [55, 71, 97], or
prompting GPT-4o [13] or Gemini [14]. Our paper adopts AI feedback from VLMs as an alternative
to human rater, and proposes a recipe to calibrate a reward to other sources of feedback (such as AI
or human feedback), by considering a linear combination of fine-grained metrics.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction appropriately include the claims made in the
paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of experiments in Section 5 and other necessary
information in Appendix B.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments are based on the open-source dataset [53, 54,
57]. Our experimental code is shown in https://anonymous.4open.science/r/
T2V-Diffusion-Search-537B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the details of experiments in Section 5 and other necessary
information in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the statistical significance of the Pearson correlation coefficient
in Figure 3 and Appendix J.1. We also report the reward values averaged over multiple
prompts to reduce the variance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix B.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe our research conforms, in every respect, with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper does not include new datasets or pre-trained models that pose a risk
of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have appropriately cited the papers of existing assets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: he paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: We only recruited participants for user experiments to validate the effective-
ness of our model, where they were asked to choose from generated videos. No human
participants were involved in the dataset construction or model training process.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our experiment solely involves measurement and does not entail behavioral
manipulation; therefore, we did not apply for IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLMs only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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