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ABSTRACT

Latent reasoning has emerged as an alternative to reasoning with natural language
and involves feeding back the last layer’s hidden state representation (soft token)
to the input of the transformer. This idea is promising, since soft tokens have
increased expressive capacity compared to tokens from the vocabulary (hard to-
kens). Existing works on training transformers with soft tokens often suffer from
performance loss and do not allow for sampling of different reasoning traces. We
propose a training paradigm for transformers that uses soft tokens, in which the
model learns to operate in two modes; one that processes the soft tokens (latent
thinking mode) and one that decompresses the soft tokens into few reasoning steps
with hard tokens from the vocabulary (local decoding mode). We focus on log-
ical and math reasoning tasks, and fine-tune pretrained models of different size.
Our method achieves similar or better performance, compared to supervised fine-
tuning with chain-of-thought data across all tasks; while it requires reduced KV
cache and allows sampling different reasoning traces at inference. 1

1 INTRODUCTION

Reasoning models often rely on increased test-time compute through methods like Chain of Thought
(CoT) prompting (Wei et al., 2022); since they have been either trained on or guided by CoT data,
which encourages them to generate intermediate reasoning steps in order to reach an answer. Even
though CoT data have been shown to improve performance on reasoning tasks, one potential down-
side is that models are constrained to reason only using tokens of the vocabulary (hard tokens).
Projecting the hidden states of a model to the vocabulary, can be thought as a discretization step,
which potentially leads to information loss. Reasoning in the latent space has emerged as an alter-
native, in which the hidden states are not always realized as hard tokens, potentially leading to more
expressive and thus shorter reasoning chains. Towards this direction, recent works have sought to
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Figure 1: When solving the reasoning task, the model can choose to reason with the hard tokens in the
vocabulary space (top), or reason with soft tokens in the latent space (bottom). Our model can traverse either
on the latent or in the vocabulary space: processing the soft tokens, or decompressing the soft tokens into the
CoT steps. This can be viewed as an interpolation between hard token and soft token methods.

1Our code is available at this link.
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internalize CoT steps by distilling them into the latent space (Deng et al., 2023; Yu et al., 2024;
Deng et al., 2024).

One particular approach involves the use of so-called soft tokens, which are not part of the discrete
vocabulary of hard tokens. Soft tokens can be constructed in different ways: as weighted linear
combinations of the embeddings of the top-k next tokens or of parallel reasoning traces (Zhang
et al., 2025; Gozeten et al., 2025); by employing a VQ-VAE trained on CoTs (Su et al., 2025); or
by leveraging hidden representations from intermediate layers (Cheng & Durme, 2024). Another
line of work uses last-layer hidden states as soft tokens. Hao et al. (2024) took initial steps in this
direction, proposing a training algorithm that gradually replaces CoT steps with soft tokens, without
explicitly training them. Later, Shen et al. (2025) introduced an auxiliary loss to distill hidden
representations from a teacher model trained on explicit CoTs. More recently, Hwang et al. (2025)
proposed a three-stage training method: (i) fine-tuning a pretrained model on the target task, (ii)
training an encoder–decoder to compress and decompress CoT steps into latent representations, and
(iii) training a latent model guided by the learned encoder–decoder. In this work, we focus primarily
on the line of work where soft tokens are the last-layer hidden states.

These methods often result in performance loss, compared to explicit CoT training or require training
more than one models. More importantly, models that reason only in the latent space produce
deterministic trajectories and do not support sampling at inference. This conflicts with post-training
algorithms like GRPO (Liu et al., 2024) that require exploring multiple candidate reasoning paths.
In theory, soft tokens could learn to encode the joint distribution of all possible reasoning traces,
eliminating the need for applying such post-training algorithms. However, because the number of
possible reasoning paths grows exponentially with the number of steps, this would require infinite
precision for the learned soft tokens. Thus, sampling would still be a desirable feature of a model
trained to reason in the latent space. In all of the works described so far, even though sampling could
be possible, their performance in such a scenario has not been studied.

Our approach mitigates the concerns raised above by training one transformer model without any
modification in the architecture that performs in a dual nature; the latent thinking mode, in which
the model learns to generate the next soft token and the local decoding mode, in which the model
learns to decode the soft tokens into CoT step(s). The model can also choose to update the soft
tokens, using the representation generated in the local decoding mode. Our main contributions are
as follows:

• Dual-mode Operation. A single transformer is trained to operate in both hard and soft token
spaces via two modes: latent-thinking (predict a soft token given the compressed context) and
local-decoding (decompress a soft token into a few chain-of-thought steps and update the soft to-
ken). If the local-decoding length is zero the model performs latent-only reasoning. Our methods
allow training a mixture of the two, by choosing whether or not to update the soft token with some
probability. We show promising results that the model can operate in a mixture of the two modes.

• Sampling through local decoding. We sample hard tokens in the local decoding step and then
update the soft token from these sampled tokens. Thus, stochasticity at the token level induces
stochasticity in the soft tokens, yielding latent-level exploration compatible with multi-sample
post-training method like GRPO.

• Reduced KV-cache with no performance loss. On logical and math reasoning benchmarks,
our method matches the greedy decoding and pass@k of explicit CoT while reducing KV-cache
requirements, enabling more efficient inference.

• Generalization to harder settings. Our method has better generalization than CoT-trained mod-
els on problems with reasoning chains longer than those seen during training.

2 RELATED WORK

Latent Reasoning via Tokens. The idea of augmenting LLM’s capabilities by providing special
tokens in the input, such as pause tokens (Goyal et al., 2024), dot tokens (Pfau et al., 2024), and
latent tokens (Sun et al., 2025) has been shown to improve reasoning with minimal training or
architectural changes. A related line of work studies soft tokens —continuous embeddings not
tied to the discrete vocabulary. Soft tokens are constructed by multiple ways; (i) by superposition
over input embeddings (Xiong et al., 2024), or (ii) by using last-layer hidden states (Hao et al.,
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2024). Following the superposition approach, recent works show that soft tokens can encode parallel
reasoning traces (Gozeten et al., 2025) and can often be used out-of-the-box without any fine-tuniing
of pretrained LLMs (Zhang et al., 2025; Wu et al., 2025).

Our work is closer to the second approach, which feeds the model’s final-layer hidden states back
into the input. This idea was first investigated by (Hao et al., 2024) to compress explicit chain-
of-thought (CoT) into a fixed number of soft tokens, and has since been extended to pretraining
(Tack et al., 2025) and theoretical analysis of soft-token expressiveness (Zhu et al., 2025a). Con-
cretely,(Hao et al., 2024) adopts stage-wise compression of CoTs into soft tokens, while Shen et al.
(2025) introduce an additional distillation loss that further improves performance. A recent work
by Hwang et al. (2025) trains an encoder–decoder to compress chain-of-thoughts (CoTs) into soft
tokens and, with the decoder frozen, trains a latent-thinking model to generate them using cross-
entropy and a contrastive alignment objective. While similar in spirit, our method uses a single
end-to-end model that handles both soft and hard tokens. Beyond these, several methods leverage
learned soft embeddings from other sources: Cheng & Durme (2024) train models to predict in-
termediate hidden representations of a frozen LM; Su et al. (2025) use VQ-VAE to discretize and
compress CoT embeddings into soft tokens.

Internalizing Thinking Process. Beyond using special tokens for latent reasoning, a broader
thread seeks to internalize Chain of Thoughts (CoTs) into latent representations. Deng et al. (2023)
distill hidden states from explicit reasoning trajectories into standard forward passes, and Deng et al.
(2024) extend this by progressively removing explicit CoT while preserving performance. To trans-
fer “System 2” computation into a faster “System 1” mode, Yu et al. (2024); Liao et al. (2025) distill
step-by-step reasoning; Su et al. (2024) propose trace dropping for fast-mode inference; and Xia
et al. (2025) skip tokens deemed less informative during verbal reasoning. In parallel, looped mod-
els (Dehghani et al., 2018; Giannou et al., 2023) iteratively update hidden states without outputting
tokens, enabling variable computation depth. This idea has been studied on synthetic tasks for its
ability to extrapolate and approximate fixed-point solutions (Schwarzschild et al., 2021; Yang et al.,
2024; Gao et al., 2024; Fan et al., 2025), and scaled to large-model pretraining, where the looped
model improves the model’s reasoning ability (Saunshi et al., 2025; Geiping et al., 2025). These
findings are consistent with evidence that greater depth benefits reasoning-related problems (Zhu
et al., 2025b; Ye et al., 2024; Sanford et al., 2024).

Transformers with Memory. Another line of work relevant to our work is that of augmenting
transformers with some form of memory of the past context. The work of Dai et al. (2019) stores
the hidden representations of all the layers for past tokens and combines them in the calculation of
the attention with those of the new tokens, allowing for information to flow even when the context
exceeds the sequence length. Bulatov et al. (2022), introduces recurrent memory transformer (RMT)
which use the last-layer hidden representations and appends them in the beginning and end of each
segment and iteratively updates them. Later Bulatov et al. (2023) scale RMT to million tokens
context. Chevalier et al. (2023) fine-tune pretrained models by using adaptive instead of a constant
number of memory tokens and showed benefits for long context length. Our work follows a similar
idea in using the soft tokens to summarize the context / CoT steps. However, we focus primarily on
reasoning tasks, and demonstrate the effectiveness of soft tokens in compressing the CoT steps with
no performance drop. Another line of work, considers training models to replace the CoT steps with
verbal summarizations, by learning patterns during training Yang et al. (2025),Yan et al. (2025).

3 OUR METHOD

In this section, we describing our training algorithm for reasoning tasks and techniques we employed
to train the soft tokens using supervision only on the hard tokens.

Description for reasoning tasks. In Figure 2 we provide a depiction of how our method works.
In detail, given CoT training data, in which the steps are explicitly defined, we split them (together
with the label) into k chunks, where k is the maximum number of soft tokens used. Each chunk
is either empty, contains one, or more steps of CoTs. At the end of each chunk we append a spe-
cial [switch] token. While in the beginning of the answer we have a special token [ans] to
distinguish it from the CoTs.

3
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Figure 2: Training framework of our method. We train a single transformer to operate in two modes. In the
latent thinking mode, given the question and compressed context, the model predicts a new soft token. In the
local decoding mode, it decompresses the soft token into a few chain-of-thought steps until a [switch] token
is produced, after which the model choose to update the soft token using the representation at [switch].

We start with the latent thinking mode, given a question q, the first soft token is produced by passing
in the model the question and keeping the last layer’s hidden representation (s1) corresponding to
the last token. Afterwards, we enter the local decoding mode in which the first chunk of data is
fed to the model together with the question and the first soft token. The model predicts some labels
which we keep to apply loss. The last layer’s hidden representation of the [switch] (noted as s′1
in Figure 2) is used to update the soft token. The steps are repeated until all the chunks have been
used. For general reasoning data that do not have explicitly defined steps, we could use a specific
delimiter, such as ‘.’ or \n, to separate them into steps.

Notice that this method does not apply any explicit loss on the soft tokens, but these are implicitly
trained, since they are needed for the decoding to be successful. We consider the forward pass on
the soft tokens as the latent thinking mode and the forward pass for decoding as the local decoding
mode. At inference, the same principle is applied, in which the model switches from the local
decoding mode back to the latent thinking mode, once the [switch] token is predicted. We
provide a detailed algorithm of how the method works in Appendix A.2.

Enhancing soft tokens. In order to enhance reasoning through soft tokens and learn more robust
representations by allowing the model to sometimes skip the local decoding step, we introduce a
stochastic soft token updating rule to the above training and inference algorithm. Specifically, during
training with probability pupdate we update the soft token with the last layer’s hidden representation
of the [switch] (s′1) and with probability 1 − pupdate we do not update it (keep s1). At inference
the user can pick a new probability pupdate, and enable or disable the generation of hard tokens to
speed up inference. Notice that if probability pupdate is 0.0 then the proposed method boils down to
only using soft tokens for reasoning. To determine whether the current soft token marks the start of
the answer, we always predict a hard token from the soft token. If that token is the start-of-answer
marker [ans], we proceed to decode and generate the answer.

Scheduling on soft tokens. During training the model needs to learn to handle and adapt in two
different tasks; one the use of the soft tokens and two the actual reasoning task. To improve the
training stability and learning curve, we apply a curriculum on the number of soft tokens. We start
the training with fewer number of soft tokens to keep training closer to supervised fine-tuning with
explicit CoTs, in which case one soft token needs to encode multiple CoT steps. As the training

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

progress we gradually increase the soft tokens used, until we reach the maximum number of soft
tokens that we want the model to adapt to. Notice that the max number of soft tokens is chosen such
that each soft token compresses at most one CoT step. If the number of soft tokens k exceeds the
number of steps, the extra soft tokens are simply not used. The training steps for each stage of the
scheduling are decided as a percentage of the total number of steps. In the next section, we have
performed an analysis for GSM8k on how the performance changed depending on the percentage
used.

Reduced KV-Cache at Inference. If the probability of updating the soft token is set to be pupdate ∈
[0, 1], meaning we always generate the hard tokens, then our method for inference uses KV-cache
which scales as q + k + L, where q is the size of the length of question, k is the number of soft
tokens used, L is the maximum length of any generation. The inference FLOPs are scaling as

q∑
l=1

l +

k∑
i=1

[(q + i) + pupdate

L∑
j=1

(q + i+ j)] = O(q2 + k2 + pupdatekL(k + L+ q)

Similarly, for the standard model that is fine-tuned in the CoTs the KV-cache scales as q + KL,
while the FLOPs scale as

q∑
l=1

l +

kL∑
i=1

(q + i) = O(q2 + qkL+ k2L2)

Remark 1. (Relation to memory-augmented transformers) Our approach is closely related to recur-
rent memory transformers, especially Autocompressor (Chevalier et al., 2023). That line of work
primarily extends effective context length by updating learned memory tokens and prepending them
to subsequent segments. In our setup, the soft token plays an analogous role: a learned hidden
state that compresses intermediate chain-of-thought into a single embedding. We were not aware of
this work until recently and our approach came from a different perspective: rather than increasing
the retrievable context length, we study how such latent states can compress CoT traces while pre-
serving accuracy and reducing KV-cache. Furthermore, the update probability pupdate interpolates
between memory-augmented processing and purely latent soft-token computation. The success of
this approach to different domains further enhances its potential as a general purpose method.

4 EXPERIMENTS

We evaluate our method by fine-tuning pretrained language models on mathematical and logical
reasoning benchmarks.

4.1 EXPERIMENTAL SETUP

We fine-tune GPT2-small (124M) (Radford et al., 2019), Gemma3 (270M) (Team et al., 2025), and
Qwen2.5 (0.5B) (Team, 2024) on four datasets: GSM8k (Cobbe et al., 2021), iGSM (Ye et al.,
2024), ProsQA (Hao et al., 2024), and ProntoQA (Saparov & He, 2022). For GSM8k we adopt
the augmented split of Deng et al. (2024); for ProsQA we follow Hao et al. (2024). For iGSM we
use two settings: medium with maximum number of operations op ≤ 15 and out-of-distribution
(OOD) evaluation at op = 20, · · · , 27, and easy with op ≤ 9 and OOD at op = 12, · · · , 19. Dataset
statistics are reported in Appendix A.1.

Our main baseline is supervised fine-tuning (SFT) on explicit Chain of-Thought traces. To ensure a
fair comparison, we use identical hyperparameters for our method and the SFT baseline: we apply
learning rate 2e-4 when finetuning GPT2 and 5e-5 when finetuning Gemma3 or Qwen2.5 models.
On GSM8k we finetune for 15 epochs for GPT2, and 5 epochs for Gemma3 and Qwen2.5, while for
ProsQA and ProntoQA we finetune for 60 epochs. We apply weight decay 0.01, cosine annealing
learning rate scheduler, and effective batch size 32.

Regarding the hyperparameter that is specific to our method: Let pupdate (Section 3) denote the
probability of updating the soft tokens during training; we set pupdate = 0.5 for ProsQA and pupdate =
1 elsewhere. Soft token scheduling is enabled by default, where the max number of soft token is set
such that for the given task, each soft token encode at most 1 CoT step. We analyze the effects of
pupdate and the impact of scheduling in Section 4.3.
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4.2 PERFORMANCE ON REASONING TASKS BY DIFFERENT MODELS

Finding 1: Across different models and tasks, similar performance to the stronger baseline–either
explicit CoT or prior soft-token methods.

The results on different reasoning tasks and different models are reported in Table 1. On GSM8k,
for GPT2-small, our method outperforms the CoT baseline and the other soft token approaches. On
ProntoQA, our approach matches CoT at 100%. On ProsQA, latent/soft token methods generally
beat CoT, likely because the task benefits from exploring alternatives without committing to a sin-
gle path. Mirroring this behavior by using pupdate < 1, our method achieves significantly better
performance compared to CoT and competitive with prior soft token approaches.

Across the three backbone models, our method achieves similar or better accuracy to the CoT base-
line. The gain is largest for GPT2-small, smaller for Qwen2.5-0.5B, and mixed for Gemma3-270M.
We hypothesize that the benefit of soft tokens depends on the vocabulary: GPT2 uses around 50k-
token vocabulary, whereas Gemma3 and Qwen2.5 use larger vocabularies (>150k).

Model GSM8k ProsQA ProntoQA

CoT 44.73 84.6 100
iCoT 30.0 98.2 -

Coconut 34.1 97.0 99.8
CODI 42.9 - -
SbS 40.3 92.6 -
Ours 47.84 94.6 100

Model CoT Ours

GPT2-small 44.73 47.84
Gemma3-270M 48.75 47.92
Qwen2.5-0.5B 58.22 58.45

Table 1: (left) Performance of GPT2-small on GSM8k, ProntoQA and ProsQA with different soft token/latent
methods, and (right) Test accuracy on GSM8k for GPT2-small, Gemma3-270M and Qwen2.5-0.5B. Note We
did not re-implement these methods except for SFT on CoTs; we report the results that each paper reported
(iCOT: Deng et al. (2024), Coconut: Hao et al. (2024), CODI: Shen et al. (2025) and SbS Hwang et al. (2025)).

Finding 2: Better generalization to problems with more reasoning steps than the ones seen during
training.

Task Difficulty Generalization. We further evaluate on iGSM (Ye et al., 2024), a GSM8K-style
synthetic benchmark that controls the number of arithmetic operations (op) required to solve each
problem. Unlike Ye et al. (2024) in which the models are trained from scratch, we fine-tune a pre-
trained GPT2-small model on iGSM-Easy (op ≤ 9) and iGSM-Med (op ≤ 15) datasets, and then test
on out-of-distribution (OOD) data with longer reasoning chains (Easy: op ∈ {12, · · · , 19}; Med:
op ∈ {20, · · · , 27}). Due to the fact that GPT2-small uses learned absolute positional encodings,
length extrapolation is limited: when the CoT spans more steps than seen during training, accuracy
drops as expected for both methods. As shown in Fig. 3, our method matches the CoT baseline
on in-distribution problems and consistently retains higher accuracy on OOD problems; moreover,
its accuracy decays more slowly as op increases. These trends indicate improved generalization on
longer/harder reasoning problems when intermediate steps are compressed into soft tokens.

Finding 3: Test-time performance matches the CoT baseline.

Test-time Performance. As mentioned earlier, our method naturally supports sampling via local
decoding and the update of the soft token accordingly. We evaluate pass@K and majority voting
against the baseline. As shown in Fig. 4, with GPT2-small trained on the GSM8k dataset, our method
exhibits the same monotonic increase of accuracy, with increasing k in both pass@K and majority
voting, indicating it can be applied to post-training on reasoning tasks. Interestingly, even though
our method is slightly worse on Gemma3 under greedy decoding (Table 1, right), with temperature
sampling it performs well and is more robust to higher temperatures: when T increases from 1.0 to
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Figure 3: In-Distribution and OOD Performance of iGSM Easy and Medium Dataset. Across both settings,
our method retains higher accuracy than CoT under OOD shifts with longer reasoning chains and degrades in
a slower rate as the number of operations increases.
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Figure 4: Pass@K (solid line) and majority-vote (dashed line) results on GSM8K for GPT2-small (left)
Gemma3-270m (middle) and Qwen2.5-0.5B (right). Our method shows monotonic gains as k increases, fol-
lowing the same trend as the CoT baseline. Temperature is set at 1 for the top and 1.5 for the bottom.

1.5, our method maintains similar performance, whereas the CoT baseline drops. More results on
different temperature are shown in Appendix A.3.

4.3 EFFECTS OF HYPER-PARAMETER CHOICES

Our method makes the following changes to standard SFT on explicit CoT: (i) we apply soft token
scheduling with a maximum budget k, and (ii) we optionally update each soft token during training
with probability pupdate. In this section, we study the effects of these hyperparameters on GSM8k
and ProsQA.

Effects of number of soft tokens. In GSM8k, we set the max number of soft tokens to be
kmax = 12, since most GSM8k CoT traces contain ≤ 10 steps, this allows (when possible) for
at most one soft token per step. To study the effects of a smaller soft token budget, we also evaluate
kmax ∈ {4, 6}, where some soft tokens must summarize more than one step on average. We report
the performance of different numbers of soft tokens in Table 2. As shown in the table, encoding
fewer steps per token improves reasoning performance, and one-per-step suffices in matching and
surpassing the performance with CoT.

Effects of scheduling. We train end-to-end to jointly learning the target task and generation of
soft tokens. Using fewer soft tokens keeps training closer to the explicit-CoT baseline, but restricts
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CoT 4 soft tokens 6 soft tokens 12 soft tokens

GPT2-GSM8k 44.73 42.68 44.2 47.84

Table 2: Performance of GPT2-small on GSM8k for different number of maximum soft tokens with scheduling
and probability pupdate = 1.0.

the amount of time in which the model is using the maximum number of soft tokens. We therefore
study how different schedules during training, affect the performance of the model. Specifically, we
increase k by one every N% of total steps until reaching kmax; for the remaining steps of training we
use kmax. As shown in Table 3 , an interval of about 6% gives the best GSM8k accuracy, balancing
task learning and soft token learning; smaller or larger intervals still lead to performance close (or
even better) to the explicit CoT baseline. Following this rule, we use a scheduling interval of ≈ 6%
for both Qwen2.5 and Gemma3.

Percentage of total steps 0.0% 4.4% 5.6% 6.7% 8.3%

GPT2-GSM8k 43.44 43.9 47.84 46.32 47.38

Table 3: Performance of GPT2-small on GSM8k for various scheduling schemes with max soft token budget
kmax = 12. The percentage of the steps corresponds to the amount of steps performed for increasing the
number of soft tokens by one. The remaining steps are performed with keeping the number of soft tokens to
be the maximum. The first column (0.0%) corresponds to using the maximum number of soft tokens from the
beginning.

Finding 4: Operating in both modes can help increase performance in tasks that soft tokens outperform
the baseline.

Effect of the soft token update probability. During training, we stochastically update the soft
tokens via local decoding with probability pupdate. We study the effect of pupdate on ProsQA, where
soft token method outperform the explicit CoT baseline. We sweep pupdate ∈ {0, 0.2, 0.5, 0.7, 1},
where pupdate = 1 corresponds to always use local decoding and update the soft tokens. As shown
in Table 4, training and evaluating with pupdate = 0.5 yields the best performance while reducing the
expected number of hard-token decoding steps by 50% on average.

Probability of updating 0.0% 20% 50% 70% 100%

Always decoding 0.0 91.0 91.6 87.4 82.0
Probabilistic decoding 83.0 91.6 94.6 89.6 72.0
Latent only 90.6 89.0 94.0 93.4 0.0

Table 4: Performance on ProsQA of GPT2-small with variable soft token update probability pupdate (columns)
and across test-time strategies (rows). At test time, “Always decoding” always performs local decoding; “Prob-
abilistic decoding” performs local decoding with probability pupdate matching the column; and “Latent only”
uses only soft token updates. For training with probability 1 and 0, probabilistic decoding is reported with prob-
ability 0.5. The best result is 94.6% at pupdate = 0.5 with probabilistic decoding, which halves the expected
number of hard-token decoding steps.

5 LIMITATIONS AND DISCUSSION

Training efficiency. Our method uses the soft tokens in an auto-regressive loop, so each subse-
quent soft token is a function of the previous soft tokens, this leads to a higher memory requirement
(empirically observed to be less than 2x). This limitation can be easily mitigated by using back
propagation through time with stopping gradients (BPTT) (Sutskever, 2013), a technique that in
generally is employed for recurrent architectures. Furthermore, the forward pass during training re-
quires k forward passes, since the input is segmented into k parts, thus training time scales roughly

8
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linearly with the average number of soft-tokens used. We mitigate this with a curriculum on the max-
imum number of soft tokens, yet a single-pass baseline still remains faster. This motivates future
work on approximating soft-token updates to enable parallelization and improve training efficiency.
Regarding the stochastic update rule, we believe it can be replaced by a learned, input-dependent
pupdate; in that case the model would operate in a dual mode and would decide on its own when to
exit one mode and enter another one.

Scaling and post-training. In this work we study models up to 0.5B parameters. We plan to scale
this work to billion-parameter models and larger reasoning benchmarks, and to integrate RL-based
post-training (e.g., GRPO) to probe how latent thinking interacts with reinforcement learning. At
larger scales we will also examine stability across longer latent unrolls, including variants of BPTT.
For these scales, parameter-efficient fine-tuning such as LoRA (Hu et al., 2022) would allow for
faster training, while also we may consider lightweight adapters specialized for the latent-thinking
and local-decoding modes within a single model.

9
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A APPENDIX

A.1 DATASET DETAILS

For GSM8K, ProntoQA, and ProsQA, we adopt the preprocessing and train/validation/test splits of
Hao et al. (2024). For iGSM, we generate the dataset using the official open-source implementation
2. We record the data split in Table 5, and the max number of CoT steps in each dataset in Table 6.
For the OOD dataset in iGSM, the number of CoT step is the number of the operation op, so the
iGSM with op = 20 contains 20 CoT steps.

Table 5: Dataset splits.

Dataset Training Validation Test OOD

GSM8k 385,620 500 1,319 -
ProntoQA 9,000 200 800 -
ProsQA 17,886 300 500 -
iGSM-med/easy 1,498,500 500 1,000 1,000

Table 6: Statistics of Dataset.

Dataset Training Validation Test Example CoT step

GSM8k 13 8 8 <<12+3=15>>
ProntoQA 11 11 11 Each yumpus is a wumpus.
ProsQA 6 6 6 Every hilpus is a numpus.
iGSM-med 15 13 13 Define Niagara Falls Aviary’s

Enclosure as y; so y = b = 20.
iGSM-easy 9 9 9 Define Goat Cheese’s Rye as S; so S =

3.

A.2 TRAINING DETAILS

Here we present the detailed training and inference algorithm in Algorithm 1 and 2.

Algorithm 1 Training

1: Input: data point (q, y), Transformer TFθ,
probability pupdate.

2: Choose k {number of soft tokens}
3: {xj}kj=1 ← RANDOMPARTITION(y, k)
{split y (CoTs + labels) into k parts}

4: h0 ← TFθ(q)[−1]
5: for j = 1, . . . , k do
6: zj ← TFθ

(
[q, h0:j−1, xj ,[switch]]

)
7: if U(0, 1) < pupdate then
8: hj−1 ← zj [−1] {update soft token}
9: end if

10: tj ← PROJvocab(zj [: −1])
11: hj ← TFθ

(
[q, h0:j−1]

)
[−1]

12: end for
13: L ← LOSS

(
{tj}kj=1, y

)

Algorithm 2 Inference

1: Input: q, TFθ, pupdate, maxk.
2: i← 0, h0 ← TFθ(q)[−1]
3: while i < maxk and t ̸= [eos] do
4: t← PROJvocab(TFθ([q, h0:i−1])[−1])
5: if U(0, 1) < pupdate and t ̸= [ans] then
6: T ← []
7: while t ̸= [switch] do
8: T.append(t)
9: z ← TFθ([q, h0:i,T])[−1]

10: t = PROJvocab(z)
11: end while
12: hi−1 ← z[−1] {update soft token}
13: end if
14: hi ← TFθ

(
[q, h0:i−1]

)
[−1]

15: i← i+ 1
16: end while

2https://github.com/facebookresearch/iGSM
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Figure 5: Additional results for GPT2 small, Gemma3-270m and Qwen2.5-0.5B on majority voting
and pass@K, using different temperatures. Both methods follow a similar curve.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Test-time performance. In Section 4.2, we study the test time evaluation performance of our
method and the baseline CoT on pass@k and majority vote. Here we present the full results on
varying temperature, completing the results demonstrated in the main text. As shown in figure 5,
our method exhibits similar trend in both metrics. Interestingly, on Gemma3 model, even though our
method is slightly worse in greedy decoding, as the temperature increases, we observe an improved
performance on both pass@K and majority voting.

Soft token update probability for GSM8k. In the main text we examined pupdate on ProsQA,
where skipping local decoding (i.e., performing a latent update instead) helps the model learn useful
soft token representations. Here we extend the analysis to GSM8k. We train with pupdate = 0.5
and vary pupdate at inference. As shown in Table 7, GSM8k accuracy drops whenever pupdate > 0,
indicating that inserting latent-only steps at test time hurts performance relative to always decod-
ing. We hypothesize this effect is task-dependent: tasks like ProsQA benefit from encoding parallel
reasoning traces in the latent space, so using pupdate during training and inference can help; in con-
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trast, GSM8k appears to benefit from grounding intermediate steps in hard tokens, so nonzero pupdate
reduces accuracy, however with the trade-off of generating fewer hard tokens.

Probability of updating 0.0% 20% 50% 70% 100%

GPT2-GSM8k 25.24 31.31 37.91 40.79 44.807

Table 7: Performance of GPT2-small on GSM8k for variable soft token update probability.
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