
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPRESS TO THINK, DECOMPRESS TO SPEAK:
DUAL-MODE REASONING IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Latent reasoning has emerged as an alternative to reasoning with natural language
and involves feeding back the last layer’s hidden state representation (soft token)
to the input of the transformer. This idea is promising, since soft tokens have
increased expressive capacity compared to tokens from the vocabulary (hard to-
kens). Existing works on training transformers with soft tokens often suffer from
performance loss and do not allow for sampling of different reasoning traces. We
propose a training paradigm for transformers that uses soft tokens, in which the
model learns to operate in two modes; one that processes the soft tokens (latent
thinking mode) and one that decompresses the soft tokens into few reasoning steps
with hard tokens from the vocabulary (local decoding mode). We focus on log-
ical and math reasoning tasks, and fine-tune pretrained models of different size.
Our method achieves similar or better performance, compared to supervised fine-
tuning with chain-of-thought data across all tasks; while it requires reduced KV
cache and allows sampling different reasoning traces at inference. 1

1 INTRODUCTION

Reasoning models often rely on increased test-time compute through methods like Chain of Thought
(CoT) prompting (Wei et al., 2022); since they have been either trained on or guided by CoT data,
which encourages them to generate intermediate reasoning steps in order to reach an answer. Even
though CoT data have been shown to improve performance on reasoning tasks, one potential down-
side is that models are constrained to reason only using tokens of the vocabulary (hard tokens).
Projecting the hidden states of a model to the vocabulary, can be thought as a discretization step,
which potentially leads to information loss. Reasoning in the latent space has emerged as an alter-
native, in which the hidden states are not always realized as hard tokens, potentially leading to more
expressive and thus shorter reasoning chains. Towards this direction, recent works have sought to

 "rgba(231, 242, 207, 1)",
 # f"rgba(242, 163, 65, {alpha})",
] * 3 # repeat if needed

 # Build HTML
 for i, tok in enumerate(tokens):
 bg_color = colors[i % len(colors)]
 if tok.startswith("Ġ"):
 tok = tok[1:]
 tok = " "+tok
 html += f"<span style='background-color:{bg_colo

 html += "
"
HTML(html)

Save to HTML
with open("tokens.html", "w") as f:
f.write(html)

Convert HTML to PDF
pdfkit.from_file("tokens.html", "tokens.pdf")

[5]: Is 0 . 9999 ... equal to 1 ?
Let x = 0 . 9999 ...
Mult ip ly by 10 : 10 x = 9 . 9999 ...
Sub stract x : 10 x - x = 9 . 9999 ... - 0 . 9999 ...
9 x = 9 , thus x = 1
Yes , 0 . 9999 ... = 1 .

 "rgba(231, 242, 207, 1)",
 # f"rgba(242, 163, 65, {alpha})",
] * 3 # repeat if needed

 # Build HTML
 for i, tok in enumerate(tokens):
 bg_color = colors[i % len(colors)]
 if tok.startswith("Ġ"):
 tok = tok[1:]
 tok = " "+tok
 html += f"<span style='background-color:{bg_colo

 html += "
"
HTML(html)

Save to HTML
with open("tokens.html", "w") as f:
f.write(html)

Convert HTML to PDF
pdfkit.from_file("tokens.html", "tokens.pdf")

[5]: Is 0 . 9999 ... equal to 1 ?
Let x = 0 . 9999 ...
Mult ip ly by 10 : 10 x = 9 . 9999 ...
Sub stract x : 10 x - x = 9 . 9999 ... - 0 . 9999 ...
9 x = 9 , thus x = 1
Yes , 0 . 9999 ... = 1 .

 "rgba(231, 242, 207, 1)",
 # f"rgba(242, 163, 65, {alpha})",
] * 3 # repeat if needed

 # Build HTML
 for i, tok in enumerate(tokens):
 bg_color = colors[i % len(colors)]
 if tok.startswith("Ġ"):
 tok = tok[1:]
 tok = " "+tok
 html += f"<span style='background-color:{bg_colo

 html += "
"
HTML(html)

Save to HTML
with open("tokens.html", "w") as f:
f.write(html)

Convert HTML to PDF
pdfkit.from_file("tokens.html", "tokens.pdf")

[5]: Is 0 . 9999 ... equal to 1 ?
Let x = 0 . 9999 ...
Mult ip ly by 10 : 10 x = 9 . 9999 ...
Sub stract x : 10 x - x = 9 . 9999 ... - 0 . 9999 ...
9 x = 9 , thus x = 1
Yes , 0 . 9999 ... = 1 .

 "rgba(231, 242, 207, 1)",
 # f"rgba(242, 163, 65, {alpha})",
] * 3 # repeat if needed

 # Build HTML
 for i, tok in enumerate(tokens):
 bg_color = colors[i % len(colors)]
 if tok.startswith("Ġ"):
 tok = tok[1:]
 tok = " "+tok
 html += f"<span style='background-color:{bg_colo

 html += "
"
HTML(html)

Save to HTML
with open("tokens.html", "w") as f:
f.write(html)

Convert HTML to PDF
pdfkit.from_file("tokens.html", "tokens.pdf")

[5]: Is 0 . 9999 ... equal to 1 ?
Let x = 0 . 9999 ...
Mult ip ly by 10 : 10 x = 9 . 9999 ...
Sub stract x : 10 x - x = 9 . 9999 ... - 0 . 9999 ...
9 x = 9 , thus x = 1
Yes , 0 . 9999 ... = 1 .

 "rgba(231, 242, 207, 1)",
 # f"rgba(242, 163, 65, {alpha})",
] * 3 # repeat if needed

 # Build HTML
 for i, tok in enumerate(tokens):
 bg_color = colors[i % len(colors)]
 if tok.startswith("Ġ"):
 tok = tok[1:]
 tok = " "+tok
 html += f"<span style='background-color:{bg_colo

 html += "
"
HTML(html)

Save to HTML
with open("tokens.html", "w") as f:
f.write(html)

Convert HTML to PDF
pdfkit.from_file("tokens.html", "tokens.pdf")

[5]: Is 0 . 9999 ... equal to 1 ?
Let x = 0 . 9999 ...
Mult ip ly by 10 : 10 x = 9 . 9999 ...
Sub stract x : 10 x - x = 9 . 9999 ... - 0 . 9999 ...
9 x = 9 , thus x = 1
Yes , 0 . 9999 ... = 1 .

[30]: Is 0 . 9999 ... equal to 1 ?
Let x = 0 . 9999 ...
Mult ip ly by 10 : 10 x = 9 . 9999 ...
Sub t ract x : 10 x - x = 9 . 9999 ... - 0 . 9999 ...
9 x = 9 , thus x = 1
Yes , 0 . 9999 ... = 1 .

Figure 1: When solving the reasoning task, the model can choose to reason with the hard tokens in the
vocabulary space (top), or reason with soft tokens in the latent space (bottom). Our model can traverse either
on the latent or in the vocabulary space: processing the soft tokens, or decompressing the soft tokens into the
CoT steps. This can be viewed as an interpolation between hard token and soft token methods.

1Our code is available at this link.

1

https://anonymous.4open.science/r/dual_mode_reasoning-2FFF/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

internalize CoT steps by distilling them into the latent space (Deng et al., 2023; Yu et al., 2024;
Deng et al., 2024).

One particular approach involves the use of so-called soft tokens, which are not part of the discrete
vocabulary of hard tokens. Soft tokens can be constructed in different ways: as weighted linear
combinations of the embeddings of the top-k next tokens or of parallel reasoning traces (Zhang
et al., 2025; Gozeten et al., 2025); by employing a VQ-VAE trained on CoTs (Su et al., 2025); or
by leveraging hidden representations from intermediate layers (Cheng & Durme, 2024). Another
line of work uses last-layer hidden states as soft tokens. Hao et al. (2024) took initial steps in this
direction, proposing a training algorithm that gradually replaces CoT steps with soft tokens, without
explicitly training them. Later, Shen et al. (2025) introduced an auxiliary loss to distill hidden
representations from a teacher model trained on explicit CoTs. More recently, Hwang et al. (2025)
proposed a three-stage training method: (i) fine-tuning a pretrained model on the target task, (ii)
training an encoder–decoder to compress and decompress CoT steps into latent representations, and
(iii) training a latent model guided by the learned encoder–decoder. In this work, we focus primarily
on the line of work where soft tokens are the last-layer hidden states.

These methods often result in performance loss, compared to explicit CoT training or require training
more than one models. More importantly, models that reason only in the latent space produce
deterministic trajectories and do not support sampling at inference. This conflicts with post-training
algorithms like GRPO (Liu et al., 2024) that require exploring multiple candidate reasoning paths.
In theory, soft tokens could learn to encode the joint distribution of all possible reasoning traces,
eliminating the need for applying such post-training algorithms. However, because the number of
possible reasoning paths grows exponentially with the number of steps, this would require infinite
precision for the learned soft tokens. Thus, sampling would still be a desirable feature of a model
trained to reason in the latent space. In all of the works described so far, even though sampling could
be possible, their performance in such a scenario has not been studied.

Our approach mitigates the concerns raised above by training one transformer model without any
modification in the architecture that performs in a dual nature; the latent thinking mode, in which
the model learns to generate the next soft token and the local decoding mode, in which the model
learns to decode the soft tokens into CoT step(s). The model can also choose to update the soft
tokens, using the representation generated in the local decoding mode. Our main contributions are
as follows:

• Dual-mode Operation. A single transformer is trained to operate in both hard and soft token
spaces via two modes: latent-thinking (predict a soft token given the compressed context) and
local-decoding (decompress a soft token into a few chain-of-thought steps and update the soft to-
ken). If the local-decoding length is zero the model performs latent-only reasoning. Our methods
allow training a mixture of the two, by choosing whether or not to update the soft token with some
probability. We show promising results that the model can operate in a mixture of the two modes.

• Sampling through local decoding. We sample hard tokens in the local decoding step and then
update the soft token from these sampled tokens. Thus, stochasticity at the token level induces
stochasticity in the soft tokens, yielding latent-level exploration compatible with multi-sample
post-training method like GRPO.

• Reduced KV-cache with no performance loss. On logical and math reasoning benchmarks,
our method matches the greedy decoding and pass@k of explicit CoT while reducing KV-cache
requirements, enabling more efficient inference.

• Generalization to harder settings. Our method has better generalization than CoT-trained mod-
els on problems with reasoning chains longer than those seen during training.

2 RELATED WORK

Latent Reasoning via Tokens. The idea of augmenting LLM’s capabilities by providing special
tokens in the input, such as pause tokens (Goyal et al., 2024), dot tokens (Pfau et al., 2024), and
latent tokens (Sun et al., 2025) has been shown to improve reasoning with minimal training or
architectural changes. A related line of work studies soft tokens —continuous embeddings not
tied to the discrete vocabulary. Soft tokens are constructed by multiple ways; (i) by superposition
over input embeddings (Xiong et al., 2024), or (ii) by using last-layer hidden states (Hao et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024). Following the superposition approach, recent works show that soft tokens can encode parallel
reasoning traces (Gozeten et al., 2025) and can often be used out-of-the-box without any fine-tuniing
of pretrained LLMs (Zhang et al., 2025; Wu et al., 2025).

Our work is closer to the second approach, which feeds the model’s final-layer hidden states back
into the input. This idea was first investigated by (Hao et al., 2024) to compress explicit chain-
of-thought (CoT) into a fixed number of soft tokens, and has since been extended to pretraining
(Tack et al., 2025) and theoretical analysis of soft-token expressiveness (Zhu et al., 2025a). Con-
cretely,(Hao et al., 2024) adopts stage-wise compression of CoTs into soft tokens, while Shen et al.
(2025) introduce an additional distillation loss that further improves performance. A recent work
by Hwang et al. (2025) trains an encoder–decoder to compress chain-of-thoughts (CoTs) into soft
tokens and, with the decoder frozen, trains a latent-thinking model to generate them using cross-
entropy and a contrastive alignment objective. While similar in spirit, our method uses a single
end-to-end model that handles both soft and hard tokens. Beyond these, several methods leverage
learned soft embeddings from other sources: Cheng & Durme (2024) train models to predict in-
termediate hidden representations of a frozen LM; Su et al. (2025) use VQ-VAE to discretize and
compress CoT embeddings into soft tokens.

Internalizing Thinking Process. Beyond using special tokens for latent reasoning, a broader
thread seeks to internalize Chain of Thoughts (CoTs) into latent representations. Deng et al. (2023)
distill hidden states from explicit reasoning trajectories into standard forward passes, and Deng et al.
(2024) extend this by progressively removing explicit CoT while preserving performance. To trans-
fer “System 2” computation into a faster “System 1” mode, Yu et al. (2024); Liao et al. (2025) distill
step-by-step reasoning; Su et al. (2024) propose trace dropping for fast-mode inference; and Xia
et al. (2025) skip tokens deemed less informative during verbal reasoning. In parallel, looped mod-
els (Dehghani et al., 2018; Giannou et al., 2023) iteratively update hidden states without outputting
tokens, enabling variable computation depth. This idea has been studied on synthetic tasks for its
ability to extrapolate and approximate fixed-point solutions (Schwarzschild et al., 2021; Yang et al.,
2024; Gao et al., 2024; Fan et al., 2025), and scaled to large-model pretraining, where the looped
model improves the model’s reasoning ability (Saunshi et al., 2025; Geiping et al., 2025). These
findings are consistent with evidence that greater depth benefits reasoning-related problems (Zhu
et al., 2025b; Ye et al., 2024; Sanford et al., 2024).

Transformers with Memory. Another line of work relevant to our work is that of augmenting
transformers with some form of memory of the past context. The work of Dai et al. (2019) stores
the hidden representations of all the layers for past tokens and combines them in the calculation of
the attention with those of the new tokens, allowing for information to flow even when the context
exceeds the sequence length. Bulatov et al. (2022), introduces recurrent memory transformer (RMT)
which use the last-layer hidden representations and appends them in the beginning and end of each
segment and iteratively updates them. Later Bulatov et al. (2023) scale RMT to million tokens
context. Chevalier et al. (2023) fine-tune pretrained models by using adaptive instead of a constant
number of memory tokens and showed benefits for long context length. Our work follows a similar
idea in using the soft tokens to summarize the context / CoT steps. However, we focus primarily on
reasoning tasks, and demonstrate the effectiveness of soft tokens in compressing the CoT steps with
no performance drop. Another line of work, considers training models to replace the CoT steps with
verbal summarizations, by learning patterns during training Yang et al. (2025),Yan et al. (2025).

3 OUR METHOD

In this section, we describing our training algorithm for reasoning tasks and techniques we employed
to train the soft tokens using supervision only on the hard tokens.

Description for reasoning tasks. In Figure 2 we provide a depiction of how our method works.
In detail, given CoT training data, in which the steps are explicitly defined, we split them (together
with the label) into k chunks, where k is the maximum number of soft tokens used. Each chunk
is either empty, contains one, or more steps of CoTs. At the end of each chunk we append a spe-
cial [switch] token. While in the beginning of the answer we have a special token [ans] to
distinguish it from the CoTs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

s′￼2

s′￼1

[s]

Transformer

question

s1

s1

 latent thinking

Transformer

c11 ⋯

question

s1

s1

c21 ck11 s′￼1

c11 ⋯c21 ck11

[s]

[s]

Transformer

c11 ⋯

question

s1

s′￼1

c21 ck11

c11 ⋯c21 ck11

[s]

⌫ update soft token

Transformer

question

s1

s′￼1

⌫ update soft token

Transformer

question

s1

 latent thinking

s′￼1

s2

Transformer

c12 ⋯

question

s1 ck22 s′￼2

⋯ ck22

[s]

[s]

✎ local decoding

s′￼1

s2

s2 c12 c12 ⋯ ck22 [s]

s2

s′￼2

c12 ⋯ ck22 [s]

✎ local decoding

Figure 2: Training framework of our method. We train a single transformer to operate in two modes. In the
latent thinking mode, given the question and compressed context, the model predicts a new soft token. In the
local decoding mode, it decompresses the soft token into a few chain-of-thought steps until a [switch] token
is produced, after which the model choose to update the soft token using the representation at [switch].

We start with the latent thinking mode, given a question q, the first soft token is produced by passing
in the model the question and keeping the last layer’s hidden representation (s1) corresponding to
the last token. Afterwards, we enter the local decoding mode in which the first chunk of data is
fed to the model together with the question and the first soft token. The model predicts some labels
which we keep to apply loss. The last layer’s hidden representation of the [switch] (noted as s′1
in Figure 2) is used to update the soft token. The steps are repeated until all the chunks have been
used. For general reasoning data that do not have explicitly defined steps, we could use a specific
delimiter, such as ‘.’ or \n, to separate them into steps.

Notice that this method does not apply any explicit loss on the soft tokens, but these are implicitly
trained, since they are needed for the decoding to be successful. We consider the forward pass on
the soft tokens as the latent thinking mode and the forward pass for decoding as the local decoding
mode. At inference, the same principle is applied, in which the model switches from the local
decoding mode back to the latent thinking mode, once the [switch] token is predicted. We
provide a detailed algorithm of how the method works in Appendix A.2.

Enhancing soft tokens. In order to enhance reasoning through soft tokens and learn more robust
representations by allowing the model to sometimes skip the local decoding step, we introduce a
stochastic soft token updating rule to the above training and inference algorithm. Specifically, during
training with probability pupdate we update the soft token with the last layer’s hidden representation
of the [switch] (s′1) and with probability 1 − pupdate we do not update it (keep s1). At inference
the user can pick a new probability pupdate, and enable or disable the generation of hard tokens to
speed up inference. Notice that if probability pupdate is 0.0 then the proposed method boils down to
only using soft tokens for reasoning. To determine whether the current soft token marks the start of
the answer, we always predict a hard token from the soft token. If that token is the start-of-answer
marker [ans], we proceed to decode and generate the answer.

Scheduling on soft tokens. During training the model needs to learn to handle and adapt in two
different tasks; one the use of the soft tokens and two the actual reasoning task. To improve the
training stability and learning curve, we apply a curriculum on the number of soft tokens. We start
the training with fewer number of soft tokens to keep training closer to supervised fine-tuning with
explicit CoTs, in which case one soft token needs to encode multiple CoT steps. As the training

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

progress we gradually increase the soft tokens used, until we reach the maximum number of soft
tokens that we want the model to adapt to. Notice that the max number of soft tokens is chosen such
that each soft token compresses at most one CoT step. If the number of soft tokens k exceeds the
number of steps, the extra soft tokens are simply not used. The training steps for each stage of the
scheduling are decided as a percentage of the total number of steps. In the next section, we have
performed an analysis for GSM8k on how the performance changed depending on the percentage
used.

Reduced KV-Cache at Inference. If the probability of updating the soft token is set to be pupdate ∈
[0, 1], meaning we always generate the hard tokens, then our method for inference uses KV-cache
which scales as q + k + L, where q is the size of the length of question, k is the number of soft
tokens used, L is the maximum length of any generation. The inference FLOPs are scaling as

q∑
l=1

l +

k∑
i=1

[(q + i) + pupdate

L∑
j=1

(q + i+ j)] = O(q2 + k2 + pupdatekL(k + L+ q)

Similarly, for the standard model that is fine-tuned in the CoTs the KV-cache scales as q + KL,
while the FLOPs scale as

q∑
l=1

l +

kL∑
i=1

(q + i) = O(q2 + qkL+ k2L2)

Remark 1. (Relation to memory-augmented transformers) Our approach is closely related to recur-
rent memory transformers, especially Autocompressor (Chevalier et al., 2023). That line of work
primarily extends effective context length by updating learned memory tokens and prepending them
to subsequent segments. In our setup, the soft token plays an analogous role: a learned hidden
state that compresses intermediate chain-of-thought into a single embedding. We were not aware of
this work until recently and our approach came from a different perspective: rather than increasing
the retrievable context length, we study how such latent states can compress CoT traces while pre-
serving accuracy and reducing KV-cache. Furthermore, the update probability pupdate interpolates
between memory-augmented processing and purely latent soft-token computation. The success of
this approach to different domains further enhances its potential as a general purpose method.

4 EXPERIMENTS

We evaluate our method by fine-tuning pretrained language models on mathematical and logical
reasoning benchmarks.

4.1 EXPERIMENTAL SETUP

We fine-tune GPT2-small (124M) (Radford et al., 2019), Gemma3 (270M) (Team et al., 2025), and
Qwen2.5 (0.5B) (Team, 2024) on four datasets: GSM8k (Cobbe et al., 2021), iGSM (Ye et al.,
2024), ProsQA (Hao et al., 2024), and ProntoQA (Saparov & He, 2022). For GSM8k we adopt
the augmented split of Deng et al. (2024); for ProsQA we follow Hao et al. (2024). For iGSM we
use two settings: medium with maximum number of operations op ≤ 15 and out-of-distribution
(OOD) evaluation at op = 20, · · · , 27, and easy with op ≤ 9 and OOD at op = 12, · · · , 19. Dataset
statistics are reported in Appendix A.1.

Our main baseline is supervised fine-tuning (SFT) on explicit Chain of-Thought traces. To ensure a
fair comparison, we use identical hyperparameters for our method and the SFT baseline: we apply
learning rate 2e-4 when finetuning GPT2 and 5e-5 when finetuning Gemma3 or Qwen2.5 models.
On GSM8k we finetune for 15 epochs for GPT2, and 5 epochs for Gemma3 and Qwen2.5, while for
ProsQA and ProntoQA we finetune for 60 epochs. We apply weight decay 0.01, cosine annealing
learning rate scheduler, and effective batch size 32.

Regarding the hyperparameter that is specific to our method: Let pupdate (Section 3) denote the
probability of updating the soft tokens during training; we set pupdate = 0.5 for ProsQA and pupdate =
1 elsewhere. Soft token scheduling is enabled by default, where the max number of soft token is set
such that for the given task, each soft token encode at most 1 CoT step. We analyze the effects of
pupdate and the impact of scheduling in Section 4.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 PERFORMANCE ON REASONING TASKS BY DIFFERENT MODELS

Finding 1: Across different models and tasks, similar performance to the stronger baseline–either
explicit CoT or prior soft-token methods.

The results on different reasoning tasks and different models are reported in Table 1. On GSM8k,
for GPT2-small, our method outperforms the CoT baseline and the other soft token approaches. On
ProntoQA, our approach matches CoT at 100%. On ProsQA, latent/soft token methods generally
beat CoT, likely because the task benefits from exploring alternatives without committing to a sin-
gle path. Mirroring this behavior by using pupdate < 1, our method achieves significantly better
performance compared to CoT and competitive with prior soft token approaches.

Across the three backbone models, our method achieves similar or better accuracy to the CoT base-
line. The gain is largest for GPT2-small, smaller for Qwen2.5-0.5B, and mixed for Gemma3-270M.
We hypothesize that the benefit of soft tokens depends on the vocabulary: GPT2 uses around 50k-
token vocabulary, whereas Gemma3 and Qwen2.5 use larger vocabularies (>150k).

Model GSM8k ProsQA ProntoQA

CoT 44.73 84.6 100
iCoT 30.0 98.2 -

Coconut 34.1 97.0 99.8
CODI 42.9 - -
SbS 40.3 92.6 -
Ours 47.84 94.6 100

Model CoT Ours

GPT2-small 44.73 47.84
Gemma3-270M 48.75 47.92
Qwen2.5-0.5B 58.22 58.45

Table 1: (left) Performance of GPT2-small on GSM8k, ProntoQA and ProsQA with different soft token/latent
methods, and (right) Test accuracy on GSM8k for GPT2-small, Gemma3-270M and Qwen2.5-0.5B. Note We
did not re-implement these methods except for SFT on CoTs; we report the results that each paper reported
(iCOT: Deng et al. (2024), Coconut: Hao et al. (2024), CODI: Shen et al. (2025) and SbS Hwang et al. (2025)).

Finding 2: Better generalization to problems with more reasoning steps than the ones seen during
training.

Task Difficulty Generalization. We further evaluate on iGSM (Ye et al., 2024), a GSM8K-style
synthetic benchmark that controls the number of arithmetic operations (op) required to solve each
problem. Unlike Ye et al. (2024) in which the models are trained from scratch, we fine-tune a pre-
trained GPT2-small model on iGSM-Easy (op ≤ 9) and iGSM-Med (op ≤ 15) datasets, and then test
on out-of-distribution (OOD) data with longer reasoning chains (Easy: op ∈ {12, · · · , 19}; Med:
op ∈ {20, · · · , 27}). Due to the fact that GPT2-small uses learned absolute positional encodings,
length extrapolation is limited: when the CoT spans more steps than seen during training, accuracy
drops as expected for both methods. As shown in Fig. 3, our method matches the CoT baseline
on in-distribution problems and consistently retains higher accuracy on OOD problems; moreover,
its accuracy decays more slowly as op increases. These trends indicate improved generalization on
longer/harder reasoning problems when intermediate steps are compressed into soft tokens.

Finding 3: Test-time performance matches the CoT baseline.

Test-time Performance. As mentioned earlier, our method naturally supports sampling via local
decoding and the update of the soft token accordingly. We evaluate pass@K and majority voting
against the baseline. As shown in Fig. 4, with GPT2-small trained on the GSM8k dataset, our method
exhibits the same monotonic increase of accuracy, with increasing k in both pass@K and majority
voting, indicating it can be applied to post-training on reasoning tasks. Interestingly, even though
our method is slightly worse on Gemma3 under greedy decoding (Table 1, right), with temperature
sampling it performs well and is more robust to higher temperatures: when T increases from 1.0 to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

op 9 op=12 op=13 op=14 op=15 op=16 op=17 op=18 op=19
20

40

60

80

100

ac
cu

ra
cy

 (%
)

iGSM-Easy

op 15 op=20 op=21 op=22 op=23 op=24 op=25 op=26 op=27
20

40

60

80

100

ac
cu

ra
cy

 (%
)

iGSM-Med
CoT
Ours

Figure 3: In-Distribution and OOD Performance of iGSM Easy and Medium Dataset. Across both settings,
our method retains higher accuracy than CoT under OOD shifts with longer reasoning chains and degrades in
a slower rate as the number of operations increases.

0 5 10 15 20 25 30
k

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Test time evaluation (Temp 1.0)
CoT
Ours

0 5 10 15 20 25 30
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Ac

cu
ra

cy
Test time evaluation (Temp 1.0)

CoT
Ours

0 5 10 15 20 25 30
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Test time evaluation (Temp 1.0)
CoT
Ours

0 5 10 15 20 25 30
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Test time evaluation (Temp 1.5)
CoT
Ours

0 5 10 15 20 25 30
k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Test time evaluation (Temp 1.5)
CoT
Ours

0 5 10 15 20 25 30
k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Test time evaluation (Temp 1.5)
CoT
Ours

Figure 4: Pass@K (solid line) and majority-vote (dashed line) results on GSM8K for GPT2-small (left)
Gemma3-270m (middle) and Qwen2.5-0.5B (right). Our method shows monotonic gains as k increases, fol-
lowing the same trend as the CoT baseline. Temperature is set at 1 for the top and 1.5 for the bottom.

1.5, our method maintains similar performance, whereas the CoT baseline drops. More results on
different temperature are shown in Appendix A.3.

4.3 EFFECTS OF HYPER-PARAMETER CHOICES

Our method makes the following changes to standard SFT on explicit CoT: (i) we apply soft token
scheduling with a maximum budget k, and (ii) we optionally update each soft token during training
with probability pupdate. In this section, we study the effects of these hyperparameters on GSM8k
and ProsQA.

Effects of number of soft tokens. In GSM8k, we set the max number of soft tokens to be
kmax = 12, since most GSM8k CoT traces contain ≤ 10 steps, this allows (when possible) for
at most one soft token per step. To study the effects of a smaller soft token budget, we also evaluate
kmax ∈ {4, 6}, where some soft tokens must summarize more than one step on average. We report
the performance of different numbers of soft tokens in Table 2. As shown in the table, encoding
fewer steps per token improves reasoning performance, and one-per-step suffices in matching and
surpassing the performance with CoT.

Effects of scheduling. We train end-to-end to jointly learning the target task and generation of
soft tokens. Using fewer soft tokens keeps training closer to the explicit-CoT baseline, but restricts

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CoT 4 soft tokens 6 soft tokens 12 soft tokens

GPT2-GSM8k 44.73 42.68 44.2 47.84

Table 2: Performance of GPT2-small on GSM8k for different number of maximum soft tokens with scheduling
and probability pupdate = 1.0.

the amount of time in which the model is using the maximum number of soft tokens. We therefore
study how different schedules during training, affect the performance of the model. Specifically, we
increase k by one every N% of total steps until reaching kmax; for the remaining steps of training we
use kmax. As shown in Table 3 , an interval of about 6% gives the best GSM8k accuracy, balancing
task learning and soft token learning; smaller or larger intervals still lead to performance close (or
even better) to the explicit CoT baseline. Following this rule, we use a scheduling interval of ≈ 6%
for both Qwen2.5 and Gemma3.

Percentage of total steps 0.0% 4.4% 5.6% 6.7% 8.3%

GPT2-GSM8k 43.44 43.9 47.84 46.32 47.38

Table 3: Performance of GPT2-small on GSM8k for various scheduling schemes with max soft token budget
kmax = 12. The percentage of the steps corresponds to the amount of steps performed for increasing the
number of soft tokens by one. The remaining steps are performed with keeping the number of soft tokens to
be the maximum. The first column (0.0%) corresponds to using the maximum number of soft tokens from the
beginning.

Finding 4: Operating in both modes can help increase performance in tasks that soft tokens outperform
the baseline.

Effect of the soft token update probability. During training, we stochastically update the soft
tokens via local decoding with probability pupdate. We study the effect of pupdate on ProsQA, where
soft token method outperform the explicit CoT baseline. We sweep pupdate ∈ {0, 0.2, 0.5, 0.7, 1},
where pupdate = 1 corresponds to always use local decoding and update the soft tokens. As shown
in Table 4, training and evaluating with pupdate = 0.5 yields the best performance while reducing the
expected number of hard-token decoding steps by 50% on average.

Probability of updating 0.0% 20% 50% 70% 100%

Always decoding 0.0 91.0 91.6 87.4 82.0
Probabilistic decoding 83.0 91.6 94.6 89.6 72.0
Latent only 90.6 89.0 94.0 93.4 0.0

Table 4: Performance on ProsQA of GPT2-small with variable soft token update probability pupdate (columns)
and across test-time strategies (rows). At test time, “Always decoding” always performs local decoding; “Prob-
abilistic decoding” performs local decoding with probability pupdate matching the column; and “Latent only”
uses only soft token updates. For training with probability 1 and 0, probabilistic decoding is reported with prob-
ability 0.5. The best result is 94.6% at pupdate = 0.5 with probabilistic decoding, which halves the expected
number of hard-token decoding steps.

5 LIMITATIONS AND DISCUSSION

Training efficiency. Our method uses the soft tokens in an auto-regressive loop, so each subse-
quent soft token is a function of the previous soft tokens, this leads to a higher memory requirement
(empirically observed to be less than 2x). This limitation can be easily mitigated by using back
propagation through time with stopping gradients (BPTT) (Sutskever, 2013), a technique that in
generally is employed for recurrent architectures. Furthermore, the forward pass during training re-
quires k forward passes, since the input is segmented into k parts, thus training time scales roughly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

linearly with the average number of soft-tokens used. We mitigate this with a curriculum on the max-
imum number of soft tokens, yet a single-pass baseline still remains faster. This motivates future
work on approximating soft-token updates to enable parallelization and improve training efficiency.
Regarding the stochastic update rule, we believe it can be replaced by a learned, input-dependent
pupdate; in that case the model would operate in a dual mode and would decide on its own when to
exit one mode and enter another one.

Scaling and post-training. In this work we study models up to 0.5B parameters. We plan to scale
this work to billion-parameter models and larger reasoning benchmarks, and to integrate RL-based
post-training (e.g., GRPO) to probe how latent thinking interacts with reinforcement learning. At
larger scales we will also examine stability across longer latent unrolls, including variants of BPTT.
For these scales, parameter-efficient fine-tuning such as LoRA (Hu et al., 2022) would allow for
faster training, while also we may consider lightweight adapters specialized for the latent-thinking
and local-decoding modes within a single model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079–11091, 2022.

Aydar Bulatov, Yuri Kuratov, Yermek Kapushev, and Mikhail S Burtsev. Scaling transformer to 1m
tokens and beyond with rmt. arXiv preprint arXiv:2304.11062, 2023.

Jeffrey Cheng and Benjamin Van Durme. Compressed Chain of Thought: Efficient Reasoning
Through Dense Representations, December 2024. URL http://arxiv.org/abs/2412.
13171. arXiv:2412.13171 [cs].

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart
Shieber. Implicit Chain of Thought Reasoning via Knowledge Distillation, November 2023. URL
http://arxiv.org/abs/2311.01460. arXiv:2311.01460 [cs].

Yuntian Deng, Yejin Choi, and Stuart Shieber. From Explicit CoT to Implicit CoT: Learning to
Internalize CoT Step by Step, May 2024. URL http://arxiv.org/abs/2405.14838.
arXiv:2405.14838 [cs].

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped Transformers
for Length Generalization, April 2025. URL http://arxiv.org/abs/2409.15647.
arXiv:2409.15647 [cs].

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael Ng, Zhenguo Li,
and Zhaoqiang Liu. Algoformer: An efficient transformer framework with algorithmic structures.
Transactions on Machine Learning Research, 2024.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In ICML, 2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
http://arxiv.org/abs/2310.02226.

Halil Alperen Gozeten, M. Emrullah Ildiz, Xuechen Zhang, Hrayr Harutyunyan, Ankit Singh Rawat,
and Samet Oymak. Continuous chain of thought enables parallel exploration and reasoning, 2025.
URL http://arxiv.org/abs/2505.23648.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian.
Training Large Language Models to Reason in a Continuous Latent Space, December 2024. URL
http://arxiv.org/abs/2412.06769. arXiv:2412.06769 [cs].

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

10

http://arxiv.org/abs/2412.13171
http://arxiv.org/abs/2412.13171
http://arxiv.org/abs/2311.01460
http://arxiv.org/abs/2405.14838
http://arxiv.org/abs/2409.15647
http://arxiv.org/abs/2310.02226
http://arxiv.org/abs/2505.23648
http://arxiv.org/abs/2412.06769

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hyeonbin Hwang, Byeongguk Jeon, Seungone Kim, Jiyeon Kim, Hoyeon Chang, Sohee Yang, Se-
ungpil Won, Dohaeng Lee, Youbin Ahn, and Minjoon Seo. Let’s predict sentence by sentence,
2025. URL http://arxiv.org/abs/2505.22202. version: 1.

Yuan-Hong Liao, Sven Elflein, Liu He, Laura Leal-Taixé, Yejin Choi, Sanja Fidler, and David
Acuna. Longperceptualthoughts: Distilling system-2 reasoning for system-1 perception. arXiv
preprint arXiv:2504.15362, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation
in transformer language models, 2024. URL http://arxiv.org/abs/2404.15758.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Hal-
crow, Bryan Perozzi, and Vahab Mirrokni. Understanding Transformer Reasoning Capabil-
ities via Graph Algorithms, May 2024. URL http://arxiv.org/abs/2405.18512.
arXiv:2405.18512 [cs].

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In Advances in Neural Information Processing Systems, 2021.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025.

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dualformer:
Controllable fast and slow thinking by learning with randomized reasoning traces. arXiv preprint
arXiv:2410.09918, 2024.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Yuchang Sun, Yanxi Chen, Yaliang Li, and Bolin Ding. Enhancing latent computation in transform-
ers with latent tokens, 2025. URL http://arxiv.org/abs/2505.12629.

Ilya Sutskever. Training recurrent neural networks. PhD thesis, 2013.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuan-
dong Tian, Jason Weston, and Xian Li. LLM Pretraining with Continuous Concepts, February
2025. URL http://arxiv.org/abs/2502.08524. arXiv:2502.08524 [cs].

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

11

http://arxiv.org/abs/2505.22202
http://arxiv.org/abs/2404.15758
http://arxiv.org/abs/2405.18512
http://arxiv.org/abs/2505.12629
http://arxiv.org/abs/2502.08524

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chünhung Wu, Jinliang Lu, Zixuan Ren, Gangqiang Hu, Zhi Wu, Dai Dai, and Hua Wu. Llms are
single-threaded reasoners: Demystifying the working mechanism of soft thinking. arXiv preprint
arXiv:2508.03440, 2025.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki
Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once: Llms
can in-context learn multiple tasks in superposition. arXiv preprint arXiv:2410.05603, 2024.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

Chenxiao Yang, Nathan Srebro, David McAllester, and Zhiyuan Li. PENCIL: Long thoughts with
short memory, 2025. URL http://arxiv.org/abs/2503.14337.

Liu Yang, Kangwook Lee, Robert D Nowak, and Dimitris Papailiopoulos. Looped transformers
are better at learning learning algorithms. In The Twelfth International Conference on Learning
Representations, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of LLMs in continuous
concept space, 2025. URL http://arxiv.org/abs/2505.15778.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning
by Superposition: A Theoretical Perspective on Chain of Continuous Thought, May 2025a. URL
http://arxiv.org/abs/2505.12514. arXiv:2505.12514 [cs] version: 1.

Ruike Zhu, Hanwen Zhang, Tianyu Shi, Chi Wang, Tianyi Zhou, and Zengyi Qin. The 4th dimension
for scaling model size. arXiv preprint arXiv:2506.18233, 2025b.

12

http://arxiv.org/abs/2503.14337
http://arxiv.org/abs/2505.15778
http://arxiv.org/abs/2505.12514

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASET DETAILS

For GSM8K, ProntoQA, and ProsQA, we adopt the preprocessing and train/validation/test splits of
Hao et al. (2024). For iGSM, we generate the dataset using the official open-source implementation
2. We record the data split in Table 5, and the max number of CoT steps in each dataset in Table 6.
For the OOD dataset in iGSM, the number of CoT step is the number of the operation op, so the
iGSM with op = 20 contains 20 CoT steps.

Table 5: Dataset splits.

Dataset Training Validation Test OOD

GSM8k 385,620 500 1,319 -
ProntoQA 9,000 200 800 -
ProsQA 17,886 300 500 -
iGSM-med/easy 1,498,500 500 1,000 1,000

Table 6: Statistics of Dataset.

Dataset Training Validation Test Example CoT step

GSM8k 13 8 8 <<12+3=15>>
ProntoQA 11 11 11 Each yumpus is a wumpus.
ProsQA 6 6 6 Every hilpus is a numpus.
iGSM-med 15 13 13 Define Niagara Falls Aviary’s

Enclosure as y; so y = b = 20.
iGSM-easy 9 9 9 Define Goat Cheese’s Rye as S; so S =

3.

A.2 TRAINING DETAILS

Here we present the detailed training and inference algorithm in Algorithm 1 and 2.

Algorithm 1 Training

1: Input: data point (q, y), Transformer TFθ,
probability pupdate.

2: Choose k {number of soft tokens}
3: {xj}kj=1 ← RANDOMPARTITION(y, k)
{split y (CoTs + labels) into k parts}

4: h0 ← TFθ(q)[−1]
5: for j = 1, . . . , k do
6: zj ← TFθ

(
[q, h0:j−1, xj ,[switch]]

)
7: if U(0, 1) < pupdate then
8: hj−1 ← zj [−1] {update soft token}
9: end if

10: tj ← PROJvocab(zj [: −1])
11: hj ← TFθ

(
[q, h0:j−1]

)
[−1]

12: end for
13: L ← LOSS

(
{tj}kj=1, y

)

Algorithm 2 Inference

1: Input: q, TFθ, pupdate, maxk.
2: i← 0, h0 ← TFθ(q)[−1]
3: while i < maxk and t ̸= [eos] do
4: t← PROJvocab(TFθ([q, h0:i−1])[−1])
5: if U(0, 1) < pupdate and t ̸= [ans] then
6: T ← []
7: while t ̸= [switch] do
8: T.append(t)
9: z ← TFθ([q, h0:i,T])[−1]

10: t = PROJvocab(z)
11: end while
12: hi−1 ← z[−1] {update soft token}
13: end if
14: hi ← TFθ

(
[q, h0:i−1]

)
[−1]

15: i← i+ 1
16: end while

2https://github.com/facebookresearch/iGSM

13

https://github.com/facebookresearch/iGSM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
k

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Test time evaluation (Temp 0.9)
CoT
Ours

0 5 10 15 20 25 30
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Test time evaluation (Temp 0.9)
CoT
Ours

0 5 10 15 20 25 30
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Test time evaluation (Temp 0.9)
CoT
Ours

0 5 10 15 20 25 30
k

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Test time evaluation (Temp 1.0)
CoT
Ours

0 5 10 15 20 25 30
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Test time evaluation (Temp 1.0)
CoT
Ours

0 5 10 15 20 25 30
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Test time evaluation (Temp 1.0)
CoT
Ours

0 5 10 15 20 25 30
k

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Test time evaluation (Temp 1.2)
CoT
Ours

0 5 10 15 20 25 30
k

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Test time evaluation (Temp 1.2)
CoT
Ours

0 5 10 15 20 25 30
k

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Test time evaluation (Temp 1.2)
CoT
Ours

0 5 10 15 20 25 30
k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Test time evaluation (Temp 1.5)
CoT
Ours

0 5 10 15 20 25 30
k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Test time evaluation (Temp 1.5)
CoT
Ours

0 5 10 15 20 25 30
k

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Test time evaluation (Temp 1.5)
CoT
Ours

Figure 5: Additional results for GPT2 small, Gemma3-270m and Qwen2.5-0.5B on majority voting
and pass@K, using different temperatures. Both methods follow a similar curve.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Test-time performance. In Section 4.2, we study the test time evaluation performance of our
method and the baseline CoT on pass@k and majority vote. Here we present the full results on
varying temperature, completing the results demonstrated in the main text. As shown in figure 5,
our method exhibits similar trend in both metrics. Interestingly, on Gemma3 model, even though our
method is slightly worse in greedy decoding, as the temperature increases, we observe an improved
performance on both pass@K and majority voting.

Soft token update probability for GSM8k. In the main text we examined pupdate on ProsQA,
where skipping local decoding (i.e., performing a latent update instead) helps the model learn useful
soft token representations. Here we extend the analysis to GSM8k. We train with pupdate = 0.5
and vary pupdate at inference. As shown in Table 7, GSM8k accuracy drops whenever pupdate > 0,
indicating that inserting latent-only steps at test time hurts performance relative to always decod-
ing. We hypothesize this effect is task-dependent: tasks like ProsQA benefit from encoding parallel
reasoning traces in the latent space, so using pupdate during training and inference can help; in con-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

trast, GSM8k appears to benefit from grounding intermediate steps in hard tokens, so nonzero pupdate
reduces accuracy, however with the trade-off of generating fewer hard tokens.

Probability of updating 0.0% 20% 50% 70% 100%

GPT2-GSM8k 25.24 31.31 37.91 40.79 44.807

Table 7: Performance of GPT2-small on GSM8k for variable soft token update probability.

15

	Introduction
	Related Work
	Our Method
	Experiments
	Experimental Setup
	Performance on Reasoning Tasks by Different Models
	Effects of Hyper-Parameter Choices

	Limitations and Discussion
	Appendix
	Dataset Details
	Training Details
	Additional Experimental Results

