
TrGa: Reconsidering the Application of Graph Neural Networks
in Two-View Correspondence Pruning

Luanyuan Dai
Nanjing University of Science and

Technology
Nanjing, China

dailuanyuan@njust.edu.cn

Xiaoyu Du
Nanjing University of Science and

Technology
Nanjing, China

duxy@njust.edu.cn

Jinhui Tang∗
Nanjing University of Science and

Technology
Nanjing, China

jinhuitang@njust.edu.cn

ABSTRACT
Two-view correspondence pruning aims to accurately remove in-
correct correspondences (outliers) from initial ones. Graph Neural
Networks (GNNs) incorporated by Multilayer Perceptrons (MLPs)
are treated as a powerful manner to handle sparse and unevenly dis-
tributed data. However, the expression capability of correspondence
features obtained by MLPs is limited by their inherent insufficient
of context information. In addition, previous works directly utilize
the outputs of off-the-shelf GNNs, thus leading to confusion be-
tween sparse correspondence attribute features and their global
structural information. To alleviate these issues, we propose a two-
view correspondence pruning network TrGa. Specifically, we firstly
use complete Transformer structures instead of context-agnostic
MLPs to capture correspondence features with global context infor-
mation and stronger expression capability. After that, we introduce
the Concatenation Graph Node and Global Structure (CGNS) block
to separately capture the interaction patterns among sparse cor-
respondence attribute features and the global structural informa-
tion among them, which can prevent their confusion. Finally, the
proposed Feature Dimension Transformation and Enhancement
(FDTE) block is applied for dimension transformation and feature
augmentation. Additionally, we propose an efficient variant C-TrGa,
in which the similarity matrix of the proposed C-Transformer is
computed along the channel dimension. Extensive experiments
demonstrate that the proposed TrGa and C-TrGa outperform state-
of-the-art methods in different computer vision tasks.

CCS CONCEPTS
• Computing methodologies → Matching; • Information sys-
tems → Similarity measures; Combination, fusion and federated
search.
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Figure 1: GNNs-based correspondence pruning networks
with different architectures. (a) is the unified architecture
of other MLPs-based GNNs for correspondence pruning. (b)
illustrates the architecture of the proposed TrGa, in which
Transformers are used to extract correspondence features
with strong expressive capabilities, followed by the proposed
CGNS operation to construct a robust global graph. The green
and red lines show inliers and outliers, respectively.

1 INTRODUCTION
Good-quality correspondences are crucial for many important com-
puter vision tasks, 𝑒.𝑔., visual localization [39, 40], image fusion
[30, 44, 50], image registration [23, 25], Simultaneous Location and
Mapping (SLAM) [33], point cloud registration [3, 31], Structure
fromMotion (SfM) [37, 41], etc. A popular approach is to construct a
putative correspondence set based on local feature matchings (SIFT
[27], SuperPoint [12], etc.). But unfortunately, the putative corre-
spondence set is polluted by massive incorrect correspondences
(i.e., outliers), as shown on the left of Figure 1, due to passive influ-
ence of rotations, illumination changes and viewpoint changes, etc.
To reduce the negative impact of outliers, it is common to remove
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outliers and select a reliable subset composed as much as possible
of true correspondences (i.e., inliers).

Recently, owing to the powerful data processing capabilities
of Graph Neural Networks (GNNs), previous works (OA-Net++
[55], LMC-Net [24], CL-Net [58], MS2DG-Net [11], U-Match [21],
MGNet [28] and NCMNet [22]) have endeavored to integrate GNNs
with MLPs-based backbones to remove outliers from sparsely and
unevenly distributed correspondences (correspondence pruning),
achieving notable success. But they generally choose the off-the-
shelf GNNs (𝑒.𝑔., graph convolutional network (GCN) [18]), which
utilize the ready-made formulation 𝐹𝑔𝑐𝑛 = 𝐿𝑠𝑦𝑚𝐹

𝑇 �̃� to simultane-
ously learn and apply both the attribute information and global
structural information of sparse correspondences. Therefore, during
the information propagation process, the attribute information and
global structural information of sparse correspondences mutually
influence and intertwine, blurring the boundaries between them
and even consequently causing confusion, which can impact cor-
respondence pruning network performance. Another issue is that
current works employ Multilayer Perceptrons (MLPs) as the back-
bone which cannot capture sufficient context information, resulting
in inadequate expressive power of the obtained correspondence
features. This makes it difficult to construct robust global graphs,
leading to a decrease in network performance. (See in Table 10.)
More specifically, all of them first employ MLPs to extract corre-
spondence features, followed by various strategies to construct
graphs to capture global or local information among sparse cor-
respondences. Some works [21, 22] attempt to extract features by
MLPs at different granularities, but the parameter quantity will be
greatly increased. Others [22, 58] try to gradually remove outliers
to increase operational efficiency, which may reduce the ability of
network to resist noise interference. However, due to the insuffi-
cient of context information in correspondence features extracted
by MLPs, the constructed global graph is not sufficiently robust,
which significantly reduces the effectiveness of the model, as shown
in Figure 1 (a).

To tackle the above issues, we reconsider the application of GNNs
in correspondence pruning instead of directly utilizing existing
GNNs. The attribute information of sparse correspondences is the
intrinsic characteristics of sparse correspondences. Its incorpora-
tion enables themodel to better understand the relationships among
sparse correspondences, thereby improving model performance.
Additionally, global structural information contains knowledge that
is not present in attribute information, which plays a crucial role
in characterizing correspondences and representing relationships
among correspondences in each image pair. Therefore, how to ef-
fectively use both types of information becomes paramount. Here,
we propose TrGa for two-view correspondence pruning, which
is made of a Correspondence Feature Extractor (CFE), a Global
Graph Construction (GGC), and a Prediction Block, as shown in
Figure 2. CFE is used to extract correspondence features, which
comprise five complete Transformer structures instead of MLPs.
This is because Transformers can naturally capture global context
information, whereas context-agnostic MLPs cannot. GGC includes
a Concatenation Graph Node and Global Structure (CGNS) block
and a Feature Dimension Transformation and Enhancement (FDTE)

block. The proposed CGNS is employed to better explore comple-
mentary relationships between attribute information and global
structural information of sparse correspondences. As shown in
Figure 3, the CGNS block is used to separately capture the interac-
tion patterns among sparse correspondence attribute features and
the global structural information among sparse correspondences.
Instead of directly multiplying them as in GCN, they are concate-
nated together, which prevents confusion between the two types
of information, thereby enhancing network effectiveness. Further-
more, we also demonstrate that the CGNS block is equivalent to
a low-pass filtering operation, and low-frequency signals contain
more effective information [34]. Then, we use the FDTE block for
dimension transformation and feature enhancement. Finally, we
employ the prediction block for probability prediction, judging the
correctness of correspondences based on probabilities and conduct-
ing subsequent experiments. In addition, we propose an efficient
variant C-TrGa, in which the similarity matrix of the proposed
C-Transformer is computed along the channel dimension.

Our contributions are as follows: 1) In this work, we use com-
plete Transformer structures or efficient C-Transformers instead
of MLPs to extract correspondence features, which can overcome
the individual feature-extraction limitation of MLPs. 2) The pro-
posed CGNS block can separately capture the interaction patterns
among sparse correspondence attribute features and the global
structural information among sparse correspondences, to prevent
their confusion. 3) A simple and effective network TrGa and its
faster variant C-TrGa, are proposed for correspondence pruning,
which perform best on relative pose estimation, homography esti-
mation, visual localization and point cloud registration tasks with
acceptable parameter quantities.

2 RELATEDWORK
2.1 Learning-Based Correspondence Pruning.
RANSAC [14] and its variants (MAGSAC [6], MLESAC [46] and
so on) fail in existing datasets with a high proportion of outliers,
so deep learning-based correspondence pruning networks have
emerged and made breakthrough progress. Specifically, CNe [32] is
a pioneering work that demonstrates it is feasible to directly use cor-
respondence coordinates for correspondence pruning. Inspired by
attention mechanism [47], ACNe [43] and LAGA-Net [10] pay more
attention to important correspondences and reduces attention to
outliers, to improve network performance. After that, ANA-Net [52]
proposes the concept of attention in attention, which essentially
explores the similarity between attention weights. Hence, attention
in attention can also be explained as the second-order attention.
NM-Net [57] uses affine attributes to find compatibility-specific
neighbors to aggregate features. ConvMatch [56] forcibly places
unordered sparse correspondences into a dense motion field and
processes them by CNNs. In addition, GNNs have also been used in
correspondence pruning in recent years, which will be introduced
in Section 2.2.

2.2 GNNs in Correspondence Pruning.
Graph Neural Networks (GNNs) have powerful abilities to discover
and extract features in graph structured data, so they have been used
in correspondence pruning. Inspired by DIFFPOOL [53], OA-Net++
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[55] adopts the differentiable pooling and unpooling operations to
cluster sparse correspondences. LMC-Net [24] uses GNNs to mine
the motion coherence property among sparse correspondences.
In CL-Net [58], Zhao et al. perform progressive pruning on initial
correspondences according to consensus scores obtained from local-
to-global dynamic graphs to reduce the negative impact of outliers.
MS2DG-Net [11] borrows attentions from Transformer [47] and
combine them with GNNs to improve the ability of network to
extract and aggregate information. In U-Match [21], Li et al. imitate
the U-shaped network to construct graphs at different granulari-
ties, which can combine information of different granularities, to
improve network performance. In NCMNet [22], Liu et al. use a
plain graph convolutional network (GCN) [18] to establish a global
graph space to find more accurate neighbors.

2.3 Transformers in Vision Related Tasks.
ViT [13] tries to use a standard Transformer [47] to complete com-
puter vision tasks, which demonstrates that the gap between Natu-
ral Language Processing (NLP) and Computer Vision (CV) can be
broken. Inspired by this work, Transformers have achieved great
success in various computer vision tasks, 𝑒.𝑔., object detection, im-
age restoration, semantic segmentation and so on. DETR [7] is an
end-to-end object detection network, in which Nicolas et al. utilize
the global modeling ability of Transformers to achieve no redun-
dancy boxes and success. After that, Liu et al. [26] select shifted
windows to capture multiple scale information, so that the problem
of detecting objects of different sizes in a single image has been
solved. This idea is used in SwinFusion [29]. Transformer is used in
zero-shot anomaly detection [60]. Segmenter [42] extends Trans-
formers to semantic segmentation, in which the proposed network
models global context throughout the network. At the same time,
Transformers have been used in the vision-and-language field and
obtained competitive performance results with significantly less
network running cost in ViLT [17].

3 PROPOSED METHOD
3.1 Problem Formulation.
We first use local features (SIFT [27], SuperPoint [12] and so on.)
and a nearest neighbor matching strategy to build a putative over-
complete correspondence set 𝐶 for an image pair (𝐼𝑠 , 𝐼𝑡 ):

𝐶 = {𝑐1; 𝑐2; ...; 𝑐𝑁 } ∈ R𝑁×4, 𝑐𝑖 =
(
𝑥𝑠𝑖 , 𝑦

𝑠
𝑖 , 𝑥

𝑡
𝑖 , 𝑦

𝑡
𝑖

)
, (1)

where 𝑐𝑖 is a correspondence between normalized interesting points(
𝑥𝑠
𝑖
, 𝑦𝑠

𝑖

)
and

(
𝑥𝑡
𝑖
, 𝑦𝑡

𝑖

)
in the given image pair.

The proposed TrGa is employed to obtain the final probability set
𝑃 = {𝑝1;𝑝2; ...;𝑝𝑁 }, in which 𝑝𝑖 ∈ [0, 1) shows the inlier probability
of the 𝑖𝑡ℎ correspondence. The above operations can be written as:

𝑍 = 𝑓𝜓 (𝐶), (2)

𝑃 = 𝑃𝑟𝑒 (𝑍 ), (3)

where 𝑓𝜓 (·) presents TrGa or C-TrGa with their parameters
𝜓 ; 𝑃𝑟𝑒 (·) describes a prediction block; 𝑍 is the logit value set for
classification.

3.2 Main Structure of TrGa.
The proposed TrGa (shown in Figure 2) consists of a Correspon-
dence Feature Extractor (CFE) , a Global Graph Construction (GGC),
and a Prediction Block, which is very simple and efficient. 𝑈𝑝 (·)
layer is used to project the initial input correspondence set 𝐶 ∈
R4×𝑁 into a correspondence feature set 𝐹 = {𝑓𝑖 }𝑁𝑖=1 ∈ R𝑆×𝑁 . Next,
CFE is used to further extract a stronger expressive power feature
set 𝐹𝑇 ∈ R𝑆×𝑁 from the correspondence feature set 𝐹 , due to Trans-
former strong global modeling ability. After that, GGC is employed
to capture attribute information and global structural information
effectively from the stronger feature set 𝐹𝑇 without a confusion,
both of which are important information contained in graph data.
Notably, attribute information denotes the inherent properties of
sparse correspondences, while global structural information de-
scribes the potential relationships among them in each image pair.
(We will explain them in Section 3.4.) Finally, we obtain the final
probability set 𝑃 by the prediction block.

3.3 Correspondence Feature Extractor.
As shown in Figure 2, the Correspondence Feature Extractor (CFE)
consists of one𝑈𝑝 (·) layer and five Transformer blocks. The𝑈𝑝 (·)
layer is used to transform low-dimensional correspondences into
high-dimensional features for better feature extraction. Here, we
choose a simple MLP layer as the 𝑈𝑝 (·) layer. And Transformer
blocks are used to capture correspondence features with stronger
representation capabilities, each of which is made of two PreNorms
(PNs), one Multi-Head Self-Attention (MHSA) and a FeedForward
(FF), as shown in Figure 2. Layer normalization [2] is selected as
a PreNorm (PN), which is good at handling variable length data.
Following ViT [13], a FeedForward (FF) consists of two linear layers
and a GELU layer [15]. Specifically, the correspondence feature set
𝐹 = {𝑓𝑖 }𝑁𝑖=1 ∈ R𝑆×𝑁 passes through a PN layer and a MHSA layer,
and a residual structure is used. The output result is put into a
PN layer and a FF layer, followed by a residual structure. These
operations can be written as:

𝐹𝑃𝑀 = 𝑀𝐻𝑆𝐴 (𝑃𝑁 (𝐹 )) + 𝐹, (4)

𝐹𝑃𝐹 = 𝐹𝐹

(
𝑃𝑁

(
𝐹𝑃𝑀

))
+ 𝐹𝑃𝑀 . (5)

More specifically, the correspondence feature set 𝐹 is linearly
transformed into a query set 𝑄 , a key set 𝐾 and a value set 𝑉 ,
respectively. The self-attention (SA) is applied on 𝑄 , 𝐾 and 𝑉 by
Eq. (6), as follows:

𝑆𝐴 (𝐹 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄 × 𝐾T

)
×𝑉 , (6)

where the similarity matrix 𝐴𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄 × 𝐾T

)
is to obtain

similarity among correspondences; × and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) present a
matrix multiplication operation and a softmax operation.

Notably, the MHSA is an extension of the SA, where 𝐻 self-
attention operations are performed in parallel, named “heads”, and
their outputs are concatenated, as follows:

𝑀𝐻𝑆𝐴 (𝐹 ) = 𝑈𝑜𝑢𝑡 ( [𝑆𝐴1 (𝐹 ) | | · · · | |𝑆𝐴𝐻 (𝐹 )]) , (7)

where 𝑈𝑜𝑢𝑡 is created by one linear projection; [·| |·] presents the
concatenation operation.
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Figure 2: The architecture of TrGa is composed of a Correspondence Feature Extractor (CFE) , a Global Graph Construction
(GGC), and a Prediction Block.
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Figure 3: The architecture of the proposed Concatenation
Graph Node and Global Structure (CGNS) Block , in which
the color of the block is closer to red, the value is larger.

Although the standard Transformer has achieved good results,
the theoretical time complexity is too high, due to the fact that the
similarity matrix 𝐴𝑠 ∈ R𝑁×𝑁 , and 𝑁 is up to 2000. Therefore, we
propose another version similarity matrix 𝐴𝑐 ∈ R𝑆×𝑆 along the
channel dimension, where 𝑆 = 128. (See Efficiency in Section 4.5.)

3.4 Global Graph Construction.
The more expressive features 𝐹𝑇 obtained by CFE is used to con-
struct global graph. As shown in Figure 2, Global Graph Construc-
tion (GGC) consists of a Concatenation Graph Node and Global
Structure (CGNS) block and a Feature Dimension Transformation
and Enhancement (FDTE) block, which will be introduced in turn.
CGNS Block. The CGNS block is used to separately capture the
interaction patterns among sparse correspondence attribute fea-
tures and their global structural information to prevent confusion
between attribute information of sparse correspondences and the
global structural information among them. Attribute information
refers to the intrinsic characteristics of sparse correspondences,
while global structural information delineates the potential rela-
tionships among them in each image pair.

As shown in Figure 3, 𝐹𝑇 is firstly passed through a prediction
block, so that we can obtain a sparse correspondence probability
set 𝑃𝑐 . After that, we build Adjacent Matrix 𝐴 ∈ R𝑁×𝑁 to explore

relationships in every two members in the 𝑃𝑐 . Unfortunately, Adja-
cent Matrix 𝐴 ∈ R𝑁×𝑁 cannot consider its own information, so a
self-loop is created on top of it to consider its own information and
keep numerical stability. These can be denoted as:

𝐴 = 𝑃𝑐 · 𝑃T𝑐 , (8)

�̃� = 𝐴 + 𝐼𝑁 , (9)

where �̃� =
{
�̃�𝑖, 𝑗

}𝑁
𝑖,𝑗=1 ∈ R𝑁×𝑁 is the final Adjacent Matrix and 𝐼𝑁

is an 𝑁 × 𝑁 unit matrix.
After that, we embed the final Adjacent Matrix �̃� (attribute infor-

mation) into sparse correspondences, which can learn interaction
patterns among sparse correspondence attribute features and can
be written as:

𝐹𝑎𝑖 = 𝐹𝑇 × �̃�. (10)
Next, we use the normalized Laplace matrix 𝐿𝑠𝑦𝑚 to aggregate

neighbor structural information from a spatial perspective. In addi-
tion, the proposed CGNS block operates on all sparse correspon-
dences in each given image pair at once in GGC. Hence, this process
can be considered as learning global structural information among
sparse correspondences and can be denoted as:

𝐹𝑔𝑠 = 𝐿𝑠𝑦𝑚 × (𝐹𝑇 )T, (11)

where 𝐿𝑠𝑦𝑚 = 𝐷−1/2�̃�𝐷−1/2 [34]1, is the normalized Laplace ma-
trix. 𝐷 is the diagonal degree matrix of �̃�.

Finally, we use interaction patterns among sparse correspon-
dence attribute features and global structural information among
them at the same time, which can be written as:

𝐹𝐶𝐺𝑁𝑆 = [𝐹𝑎𝑖 | |𝐹𝑔𝑠 ], (12)

where [·| |·] presents the concatenation operation.
FDTE Block. We opt for a simple MLP as the Feature Dimen-
sion Transformation and Enhancement (FDTE) block. Initially, the
dimensionality of 𝐹𝐶𝐺𝑁𝑆 is reduced from 2𝑆 to 𝑆 along the chan-
nel dimension. Subsequently, the transformed 𝐹𝐶𝐺𝑁𝑆 is further
processed by a batch normalization (BN) and a ReLU activation
function. This enhances the representational capacity of 𝐹𝐶𝐺𝑁𝑆 ,
making it more discriminative.

1Readers may be more accustomed to using the normalized Laplacian matrix 𝐿𝑠𝑦𝑚 =

𝐼 − 𝐷−1/2�̃�𝐷−1/2 . However, substituting 𝐿𝑠𝑦𝑚 = 𝐼 − 𝐷−1/2�̃�𝐷−1/2 with 𝐿𝑠𝑦𝑚 =

𝐷−1/2�̃�𝐷−1/2 would simplify the subsequent discussions and derivations, without
altering the eigenvectors. Therefore, opting to use 𝐿𝑠𝑦𝑚 = 𝐷−1/2�̃�𝐷−1/2 is feasible.
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Table 1: Evaluation on the outdoor dataset with SIFT, RootSIFT and SuperPoint for relative pose estimation. mAP5◦ and mAP20◦
are reported. The best result and the second-best result in each column are respectively bolded and underlined.

Method References Size (MB) SIFT (%) RootSIFT (%) SuperPoint (%)
mAP5◦ mAP20◦ mAP5◦ mAP20◦ mAP5◦ mAP20◦

CNe [32] CVPR2018 0.39 23.55 52.44 23.85 52.64 24.83 52.70
OA-Net++ [55] ICCV2019 2.47 39.33 66.85 41.25 69.91 32.18 66.81
CL-Net [58] ICCV2021 1.27 53.10 70.15 50.43 79.46 38.99 68.96

MS2DG-Net [11] CVPR2022 2.61 49.13 70.52 47.20 75.83 37.38 68.08
U-Match [21] IJCAI2023 7.76 60.53 80.37 60.18 80.18 45.72 71.39
NCMNet [22] CVPR2023 4.77 63.43 79.82 64.05 80.59 48.20 73.40

TrGa - 2.58 70.00 85.72 71.40 86.34 52.80 77.53
C-TrGa - 2.59 66.03 82.37 65.28 82.24 48.82 73.60

3.5 Why is the CGNS block useful?
Global graphs in the work are undirected and sparse correspon-
dences are permutation-invariant [55], so it can be inferred from
the homophilic graph definition that these global graphs are ho-
mophilic graphs. [35, 48] points out that low-frequency signals
contain more effective information in homophilic graphs. Hence,
low-frequency signals contain more effective information for cor-
respondence pruning among sparse correspondences. Therefore,
proving the usefulness of the CGNS block can be transformed into
the problem of proving that the CGNS block is equivalent to a
low-pass filter. That is, we only need to study the properties of the
frequency function 𝑝 (𝜆) corresponding to a normalized Laplacian
matrix 𝐿𝑠𝑦𝑚 = 𝐷−1/2�̃�𝐷−1/2:

𝐿𝑠𝑦𝑚 = 𝐷−1/2�̃�𝐷−1/2,

= 𝐷−1/2 (𝐷 − 𝐿)𝐷−1/2,

= 𝐼 − 𝐷−1/2𝐿𝐷−1/2,

= 𝐼 − 𝐿𝑠 ,

(13)

where the definition of the Laplacian matrix is 𝐿 = 𝐷 − �̃�, so
�̃� = 𝐷 − 𝐿.

Since 𝐿𝑠 can be orthogonally diagonalized, we assume 𝐿𝑠 =

𝑉Λ𝑉𝑇 and 𝜆𝑖 is the eigenvalue of 𝐿𝑠 , which can prove that 𝜆𝑖 ∈
[0, 2) in [48]. Hence, Eq. (13) can be rewritten as:

𝐿𝑠𝑦𝑚 = 𝐼 −𝑉Λ𝑉 T = 𝑉 (1 − Λ)𝑉 T (14)

Obviously, its frequency response function is 𝑝 (𝜆) = 1−𝜆𝑖 ∈ (−1, 1],
which is a linearly contracted function, so it can serve as a low-pass
filter for graph-based data.

3.6 Loss Function.
Following [11, 32, 55], we select a hybrid loss function as the train-
ing objective:

𝐿 = 𝐿𝑐𝑙𝑠 + 𝛽𝐿𝑟𝑒𝑔 (𝐸, 𝐸) (15)

where 𝐿𝑐𝑙𝑠 (·, ·) denotes a binary cross-entropy classification loss;
𝛽 is a hyper-parameter to balance these two terms. 𝐿𝑟𝑒𝑔 (·, ·) is a
geometry loss, which can be written as:

𝐿𝑟𝑒𝑔 (𝐸, 𝐸) =
(𝑣 ′𝑇 𝐸𝑣)2

∥𝐸𝑣 ∥2[1] + ∥𝐸𝑣 ∥2[2] + ∥𝐸𝑇 𝑣 ′ ∥2[1] + ∥𝐸𝑇 𝑣 ′ ∥2[2]
(16)

Table 2: Evaluation on the indoor dataset with SIFT and Su-
perPoint for relative pose estimation.

Method Size SIFT (%) SuperPoint (%)
(MB) mAP5◦ mAP20◦ mAP5◦ mAP20◦

CNe 0.39 9.36 24.98 10.21 25.68
OA-Net++ 2.47 16.39 39.87 12.12 39.82
CL-Net 1.27 17.03 37.54 14.03 37.48

MS2DG-Net 2.61 17.84 38.46 16.08 40.02
U-Match 7.76 21.46 47.13 18.87 44.72
NCMNet 4.77 20.66 46.80 16.85 41.27
TrGa 2.58 23.54 49.75 20.35 46.12
C-TrGa 2.59 23.49 48.87 19.89 45.77

where 𝐸 and 𝐸 = 𝑔(𝑃,𝐶) are the ground truth and estimated essen-
tial matrices, in which 𝑔 (·) is the weighted eight-point algorithm;
𝑣 and 𝑣 ′ are virtual correspondence coordinates obtained by the
ground truth 𝐸.

3.7 Implementation Details.
The input of TrGa is an 𝑁 ×4 putative correspondence set, in which
𝑁 is up to 2000. Channel dimension 𝑆 is 128. The Transformer block
employs 4-head attentions. Batchsize and 𝛽 in Eq. (15) are selected
as 32 and 0.5, respectively. Adam [36] optimizer has been chosen,
and the learning rate is 10−3. TrGa is trained on NVIDIA GTX 3090
GPUs using a warmup strategy. Initially, the learning rate increases
linearly for the first 10𝑘 iterations, after which it begins to decrease
by a factor of 0.4 every 20𝑘 iterations.

4 EXPERIMENTS
4.1 Relative Pose Estimation.
Recovering relative poses requires to use the predicted inliers to
accurately excavate relative position relationships (rotation and
translation) between different camera aspects, which is a basic
task for many advanced computer vision tasks, and needs robust
matchers and appropriate local features. Therefore, the proposed
TrGa, C-TrGa and baselines are evaluatedwith various local features
under different scenes.
Datasets. Yahoo’s YFCC100M dataset [45] and SUN3D dataset [49]
are selected as outdoor and indoor scenes, respectively. In outdoor
scenes, 68 sequences are regarded as training sequences and the
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Figure 4: Partial typical visualization results on YFCC100M
and SUN3D datasets with SIFT. From top to bottom: the re-
sults of OA-Net++, MS2DG-Net and the proposed TrGa.

remaining 4 sequences are selected as testing sequences. At the
same time, 239 sequences are chosen as training in the indoor
dataset, and the remainders are used to test various networks.
Evaluation Metrics. The weighted eight-point algorithm is em-
ployed to estimate an essential matrix according to the selected true
correspondences, which is decomposed to a rotation vector and a
translation vector. Next, error metrics refer to angular differences
between calculated rotation/translation vectors and labels, we se-
lect mAP5◦ and mAP20◦ as default metrics to evaluate different
networks for relative pose estimation.
Baselines. We choose six learning-based networks (CNe [32], OA-
Net++ [55], CL-Net [58], MS2DG-Net [11], U-Match [21] and NCM-
Net [22]) as baselines. CNe [32] is the first network to use deep
learning technology to eliminate outliers from sparse correspon-
dences. Afterwards, a series of networks [11, 21, 22, 55, 58] utilizing
various GNNs have emerged to improve network performance.
Outdoor Relative Pose Estimation Results. We summary quan-
titative comparative experimental results of the proposed TrGa,
C-TrGa and other state-of-the-art networks for relative pose esti-
mation under outdoor scenes with three popular local features (SIFT
[27], RootSIFT [1] and SuperPoint [12]) in Table 1. Notably, outdoor

Table 3: Evaluation homography estimation on HPatches.
Accuracy (ACC.) at different error thresholds is reported.

Method Size HPathces (%)
(MB) ACC.3px ACC.5px ACC.10px

CNe [32] 0.39 38.97 51.55 65.34
OA-Net++ [55] 2.47 39.83 52.76 62.93
CL-Net [58] 1.27 43.10 55.69 68.10

MS2DG-Net [11] 2.61 41.21 50.17 62.59
U-Match [21] 7.76 48.90 59.41 70.83
NCMNet [22] 4.77 48.79 58.48 68.00

TrGa 2.58 54.59 67.34 77.00
C-TrGa 2.59 53.09 66.09 75.89

scenes are challenging due to illumination changes, large-scale ro-
tation and viewpoint changes, but the proposed TrGa performs
best in all cases. In particular, the proposed TrGa improves 6.57%
mAP5◦ on the outdoor scene with SIFT than the third best net-
work (NCMNet), but the parameter quantity is only about half of it.
Compared with OA-Net++ and MS2DG-Net (with similar param-
eter quantities as TrGa), TrGa has improvements of 30.67% and
20.87% mAP5◦ on outdoor scenes with SIFT, respectively. From the
first two columns of Figure 4, we can find that the proposed TrGa
can remove more outliers than OA-Net++ and MS2DG-Net. This is
thanks to the proposed TrGa can effectively capture interaction pat-
terns among sparse correspondence attribute features and global
structural information among them in each image pair without
confusion.
Indoor Relative Pose Estimation Results. In addition, we con-
duct relative pose estimation in more challenging indoor scenes
with SIFT [27] and SuperPoint [12], where there are difficulties such
as lack of texture information, excessive repetitive structures and
so on, as shown in the right of Figure 4. Nonetheless, the proposed
TrGa performs best on both SIFT and SuperPoint preprocessed
datasets, as summarized in Table 2. More specifically, the mAP5◦
result of TrGa is 45.49% higher than OA-Net++ and 31.95% higher
than MS2DG-Net on indoor scenes with SIFT. It is worth mention-
ing that parameter quantities of OA-Net++ and MS2DG-Net are
similar to that of TrGa, and TrGa parameter quantity is between
the two. Therefore, we visualize some typical results of the above
three networks in Figure 4 and it can be seen that the image pairs
processed by TrGa have fewer outliers (red lines) than others.

4.2 Homography Estimation.
Homography estimation is a geometric transformation between
two planes, using at least 4 pairs of identical points to calculate
the transformation matrix, which is the foundation for follow-up
computer vision tasks. Hence, models on YFCC100M with SIFT
of the proposed TrGa, C-TrGa and baselines are directly tested
on HPatches benchmark [4] with Direct Linear Transform (DLT).
In particular, there are 696 images and 116 scenes in HPatches
benchmark, and one scene includes 1 reference image and 5 query
images. Hence, there are a total of 580 image pairs, and they have
significant changes in perspective or in lighting. We select SIFT to
detect keypoints (up to 4000), followed by an NN strategy in each
image pair. Referring to [12], homography errors below 3/5/10
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Table 4: Evaluation visual localization on Aachen Day-Night.

Method Size Day Night
(MB) (0.25m, 2◦)/(0.5m, 5◦)/(1.0m, 10◦)

CNe [32] 0.39 81.3/91.4/95.9 68.4/78.6/87.8
OA-Net++ [55] 2.47 82.3/91.9/96.5 71.4/79.6/90.8
CL-Net [58] 1.27 83.3/92.4/97.0 71.4/80.6/93.9

MS2DG-Net [11] 2.61 82.8/92.1/96.8 70.4/82.7/93.9
U-Match [21] 7.76 85.3/92.6/96.8 72.4/82.7/90.8
NCMNet [22] 4.77 83.1/91.4/96.8 69.4/80.7/89.8

TrGa 2.58 85.3/92.7/97.2 72.6/82.9/93.9
C-TrGa 2.59 85.3/92.6/97.1 72.5/82.8/ 93.9

Table 5: Quantitative comparative results of point cloud reg-
istration on the 3DMatch dataset with FPFH.

Method 3DMatch
RR (%↑) RE (◦↓) TE (cm↓)

FGR [59] 40.67 3.99 9.83
SM [19] 55.88 2.94 8.15

TEASER [51] 75.48 2.48 7.31
RANSAC [14] 73.57 3.55 10.04

GC-RANSAC [5] 67.65 2.33 6.87
PointDSC [3] 76.89 2.08 6.54

TrGa 78.66 2.06 6.53
C-TrGa 78.45 2.07 6.53

pixels are used to evaluate different networks. As shown in Table 3,
the performance of TrGa is about 10% higher than the third best
performing network (U-Match) at all thresholds. That is, our TrGa
is more suitable for homography estimation than other networks,
the reason of which may be that our TrGa can effectively and
reasonably use attribute information of sparse correspondences
and global structural information among them.

4.3 Visual Localization.
The purpose of visual localization is to estimate the 6-degree of
freedom (DOF) relative pose, including 3-DOF for rotation and
another 3-DOF for translation, on a given query image based on the
corresponding 3D scene model, which is important for subsequent
computer vision tasks. Hence, we compare the proposed TrGa, C-
TrGa, and other comparative networks on this task. Specifically,
we integrate all networks into the official HLoc [39]. In addition,
we select Aachen Day-Night [40] to test different networks, which
includes 922 query images (824 daytime and 98 nighttime) and 4328
reference ones, and each image of them is firstly extracted up to 4096
keypoints with SIFT followed by an NN strategy. Next, a SfM model
is used to triangulate from day-time images with known poses,
and register nighttime query images with 2D-2D matches gained
from those correspondence learning networks and COLMAP [41].
We choose the percentage of correctly localized queries at specific
distances and orientation thresholds as the evaluation matrix. From
Table 4, it can be seen that the proposed TrGa performance is
the best under all conditions, which can demonstrate that TrGa is
suitable for visual localization.

Table 6: Generalization ability test on YFCC100M, SUN3D and
PhotoTourism (PT) with different feature extractors, includ-
ing RootSIFT, SuperPoint (SP) and SIFT. mAP5◦ is reported.

Method YFCC100M (%) SUN3D (%) PT (%)
SIFT RootSIFT SIFT SP SIFT

CNe [32] 29.25 30.85 1.03 2.09 20.17
OA-Net++ [55] 39.30 40.03 2.87 3.05 40.39
CL-Net [58] 53.35 53.95 2.88 2.48 45.54

MS2DG-Net [11] 49.13 50.25 3.60 3.28 45.53
U-Match [21] 60.53 60.46 6.76 2.42 54.43
NCMNet [22] 63.43 64.83 5.46 2.57 54.73

TrGa 70.00 68.33 8.40 4.59 62.22
C-TrGa 66.03 66.55 7.46 3.70 62.57

4.4 Point Cloud Registration.
We also perform the proposed TrGa, C-TrGa, and other algorithms
to complete point cloud registration on 3DMatch [54] dataset pre-
processed by the traditional FPFH [38] descriptor, the division of
which is the same as [8, 9], to prove the generalization and ro-
bustness of our TrGa. Notably, we choose five traditional methods
(FGR [59], SM [19], TEASER [51], RANSAC [14] and GC-RANSAC
[5]), and iterate RANSAC and GC-RANSAC 100𝑘 times respectively.
The chosen PointDSC [3] is a network proposed for point cloud
registration. Specifically, we integrate TrGa and C-TrGa into the of-
ficial PointDSC [3], and choose three evaluation metrics. 1) Rotation
Error (RE), 2) Translation Error (TE), 3) Registration Recall (RR). Fol-
lowing PointDSC [3], we also define that a successful registration
result, whose TE and RE are less than 30cm and 15◦, respectively.
The proposed TrGa and C-TrGa perform best in Table 5, which can
prove that they are qualified with point cloud registration.

4.5 Understanding TrGa.
Generalization Ability. Two-view correspondence pruning net-
works exhibit poor generalization across different descriptors and
scenes. For instance, a model trained on outdoor scenes may per-
form poorly in indoor scenes. Specifically, we pre-train all models
on the YFCC100Mdataset with SIFT and subsequently evaluate their
performance on various datasets (YFCC100M, SUN3D, and Photo-
Tourism [16]) with different feature extractors (SIFT, SuperPoint,
and RootSIFT). Notably, PhotoTourism contains a large number of
tourists. As demonstrated in Table 6, the performance of both TrGa
and C-TrGa consistently ranks in the top two positions across all
scenarios. That is because the proposed TrGa and C-TrGa can effec-
tively use the attribute information of sparse correspondences and
the global structural information among them without confusion.
Efficiency. The theoretical time complexity of each standard Trans-
former block in TrGa and each C-Transformer block in C-TrGa is
denoted as 𝑘𝑠 and 𝑘𝑐 , which can be written as:

𝑘𝑠 = 𝑂 (𝑁 2 × 𝐻 ) +𝑂 (𝑁 × 𝑑2), (17)

𝑘𝑐 = 𝑂 (𝑆2 × 𝐻 ) +𝑂 (𝑁 × 𝑑2), (18)

where 𝑁 , 𝐻 , 𝑆 , and 𝑑 stand for the number of correspondences,
attention heads, channels dimensionality, and hidden state dimen-
sionality, respectively. 𝑂 (𝑁 × 𝑑2) corresponds to the complexity
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Table 7: Efficiency evaluation. mAP5◦, the average runtime (ART, unit: ms) of each image pair on YFCC100M with SIFT and
parameter size (size, MB) of different networks are reported.

Method CNe [32] OA-Net++ [55] CL-Net [58] MS2DG-Net [11] U-Match [21] NCMNet [22] TrGa C-TrGa
mAP5◦ (↑) 23.55 39.33 53.10 49.13 60.53 63.43 70.00 66.03
ART (ms↓) 28.78 51.36 58.45 55.62 81.03 74.28 61.25 48.75
Size (MB↓) 0.39 2.47 1.27 2.61 7.76 4.77 2.58 2.59

Table 8: Evaluation on outdoor scenes with SIFT for relative
pose estimation.𝐻 , 𝐿, and𝑀 are the numbers of Transformer
blocks, attention heads, and CGNS blocks, respectively.

mAP5◦ (%) L=5 L=5, M=1 L=5, M=2 L=6 L=6, M=1
H=1 54.30 - - - -
H=2 59.33 - - - -
H=4 64.50 70.00 67.95 67.15 68.03

Size (MB) 2.42 2.58 2.75 2.91 2.98

of the Feedforward, which remains the same for both TrGa and
C-TrGa, so it can be omitted for convenience in future writings.

𝑘𝑠 = 𝑂 (𝑁 2 × 𝐻 ), (19)

𝑘𝑐 = 𝑂 (𝑆2 × 𝐻 ), (20)
where 𝑁 is up to 2000 and 𝑆 is chosen as 128. Because 𝑆 is much
smaller than 𝑁 , the theoretical time complexity of C-TrGa is also
smaller than that of TrGa. From Table 7, it can be observed that
our TrGa and C-TrGa respectively achieve the top two perfor-
mances with acceptable parameters. Meanwhile, C-TrGa ranks
second in ART and outperforms CNe [32], which ranks first in
ART, by 180.38% in performance.

4.6 Ablation Studies.
Relationship among𝐻 , 𝐿 and𝑀 . From the 1𝑠𝑡 column of Table 8,
it can be seen that attention head number𝐻 in Transformers has in-
creased from 1 to 4, and the effectiveness of the model is constantly
increasing. Hence, we choose Transformers with 𝐻=4. Comparing
with the 1𝑠𝑡 , 2𝑛𝑑 and 3𝑟𝑑 columns of the 3𝑟𝑑 row, we can find that
the model performs best when we only use one CGNS block. If we
use multiple CGNS blocks, features will tend to be consistent and
feature distinguishability will become poor, which makes feature
learning more difficult. [20] summarizes this phenomenon as the
over-smooth problem of multi-layer graphs. From Table 8, we can
know that the model with five Transformer blocks and one CGNS
block is the best one.
How to effectively perform Global Graph Construction? The
core of Global Graph Construction is the CGNS block. Therefore,
the question of how to effectively perform Global Graph Con-
struction can be transformed into how to build the CGNS block.
Most of previous works directly use the core calculation formula
of GCN: 𝐹𝑔𝑐𝑛 = 𝐿𝑠𝑦𝑚𝐹

𝑇 �̃�. The first step adopts 𝐹𝑇 �̃� to learn at-
tribute information of sparse correspondences. The second step
utilizes 𝐿𝑠𝑦𝑚 (𝐹𝑇 �̃�) to obtain global structural information, which
already incorporates sparse correspondence attribute information.
However, we discover that this approach leads to confusion be-
tween the sparse correspondence attribute features and their global

Table 9: Evaluation Node, Structure, GCN, Add and CGNS
operations in the Global Graph Construction.

Node Structure GCN Add CGNS
mAP5◦ (%) 68.40 69.23 68.15 68.03 70.00
mAP20◦ (%) 85.28 85.57 84.99 84.54 85.72

Table 10: Ablation studies about network compositions on
outdoor scenes with SIFT for relative pose estimation. TrGa
(MLPs): replacing all Transformers inside TrGa with MLPs.

mAP5◦ mAP20◦ Size (MB)
TrGa (MLPs) 46.45 71.06 2.60

TrGa (Transformers) 70.00 85.72 2.58

structural information. (See Table 9.) Therefore, we firstly employ
the proposed CGNS to separately capture the interaction patterns
among sparse correspondence attribute features and the global
structural information among them, which can prevent their confu-
sion. Then, the FDTE block is applied for dimension transformation
and feature augmentation. Additionally, we also try to perform only
attribute information of sparse correspondences obtained by 𝐹𝑇 ×�̃�
(Node), only global structural information obtained by 𝐿𝑠𝑦𝑚×(𝐹𝑇 )𝑇
(Structure), simply adding up them (Add) and the original GCN to
complete the task, respectively. From Table 9, it can be seen that the
proposed CGNS block achieves the most favorable performance.
MLPs 𝑣𝑠. Transformers.We replace Transformers with MLPs of
similar parameter quantities. From Table 10, it can be observed that
TrGa (Transformers) outperforms TrGa (MLPs) by a significant
margin. For instance, on mAP5◦, TrGa (Transformers) outperforms
TrGa (MLPs) by 50.70%. This indicates that Transformers are more
effective at feature extraction, because Transformers can naturally
capture global context information, whereas MLPs cannot.

5 CONCLUSION
In this work, we devise a two-view correspondence pruning net-
work named TrGa and a faster variant C-TrGa, the core of which
consists of a Correspondence Feature Extractor (CFE) and a Global
Graph Construction (GGC). CFE is composed of several complete
Transformer structures, which effectively capture the global con-
text information among sparse correspondences. The CGNS block,
serving as the core of GGC, is capable of effectively learning the
attribute information of sparse correspondences and the global
structural information among them without confusion. Extensive
experiments demonstrate that the proposed TrGa and C-TrGa out-
perform state-of-the-art networks in various tasks.
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