
HuLE-Nav: Human-Like Exploration for Zero-Shot Object Navigation via
Vision-Language Models

Anonymous ACL submission

Abstract

Enabling robots to navigate efficiently in un-001
known environments is a key challenge in em-002
bodied intelligence. Human exploration relies003
on accumulated knowledge, spatio-temporal004
memory, and scene semantic understanding. In-005
spired by these principles, we propose HuLE-006
Nav, a zero-shot object navigation method with007
two core components: multi-dimensional se-008
mantic value maps that emulate human-like009
memory retention and active exploration mech-010
anisms that mimic human behavior. Specif-011
ically, HuLE-Nav utilizes Vision-Language012
Models (VLMs) and real-time observations to013
dynamically capture semantic relationships be-014
tween objects, scene semantics, and spatio-015
temporal exploration history. This informa-016
tion is then represented and iteratively updated017
in the multi-dimensional semantic value maps.018
Using these maps, HuLE-Nav employs active019
exploration mechanisms that integrate dynamic020
exploration, replanning, collision avoidance,021
and target verification, enabling flexible long-022
term goal selection and real-time adaptation023
of navigation strategies. Experimental results024
on the challenging HM3D and Gibson datasets025
show that HuLE-Nav outperforms the best ex-026
isting competitors in terms of both success rate027
and exploration efficiency.028

1 Introduction029

Understanding how humans navigate efficiently030

in unfamiliar environments is crucial for develop-031

ing robots that can effectively mimic human explo-032

ration behavior. Typically, efficient human explo-033

ration behavior stems from three fundamental cog-034

nitive capabilities: accumulated knowledge, spatio-035

temporal memory, and scene semantic understand-036

ing. Therefore, in the context of Zero-Shot Object037

Navigation (ZSON) (Yu et al., 2023; Wu et al.,038

2024; Yokoyama et al., 2024), the primary chal-039

lenge for agents lies in constructing these cognitive040

capabilities to locate novel target objects in com- 041

plex environments both accurately and efficiently. 042

To address these challenges, many ZSON ap- 043

proaches draw inspiration from the concept of 044

"cognitive maps" (Raychaudhuri and Chang, 2025). 045

These historical memories, which help organize 046

spatial information, are crucial for navigation 047

and decision-making (Tolman, 1948; Trullier and 048

Meyer, 2000). Furthermore, recent advances in pre- 049

trained foundation models (Achiam et al., 2023; 050

Kenton and Toutanova, 2019; Touvron et al., 2023) 051

have significantly enhanced decision-making pro- 052

cesses by better leveraging these maps, owing to 053

their extensive commonsense knowledge and ad- 054

vanced reasoning abilities (Zhang et al., 2024b). 055

For example, SemExp (Chaplot et al., 2020) pi- 056

oneered semantic mapping, integrating navigable 057

areas, obstacles, and object categories. Following 058

this, FBE (Gervet et al., 2023) and L3MVN (Yu 059

et al., 2023) improved exploration via language 060

models, encoding object information around map 061

frontiers. ESC (Zhou et al., 2023) refined target lo- 062

calization with room-type semantics, while PixNav 063

(Cai et al., 2023) enabled navigation through pixel- 064

level goals. VLFM (Yokoyama et al., 2024) uses 065

similarity metrics to guide frontier-based decisions. 066

However, existing methods have several limita- 067

tions. First, by converting temporary observations 068

into basic textual representations or directly using 069

object information stored in maps for environmen- 070

tal understanding, these approaches struggle with 071

effective scene semantic understanding. Addition- 072

ally, they neglect the influence of spatio-temporal 073

memory along the trajectory on path planning, caus- 074

ing the agent to engage in inefficient or redundant 075

movements. Furthermore, these methods fail to 076

fully leverage the accumulated knowledge of foun- 077

dation models to semantically associate informa- 078

tion in the environment. Lastly, while these map- 079

based approaches rely on physical topological in- 080

formation to construct maps, foundation models 081
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Figure 1: HuLE-Nav records three aspects of the thought process: object-level semantic relevance analysis, scene-
level semantic understanding for exploration direction reasoning, and non-redundant path exploration.

are not well-equipped to utilize this map data, hin-082

dering the development of a cumulative understand-083

ing of the environment. Moreover, these methods084

lack an active exploration strategy to complement085

map updates, limiting their ability to efficiently086

and adaptively gather environmental information.087

Just imagine humans in a new indoor environment,088

where they might consider questions like: Which089

prominent objects are likely to be near the target?090

Which direction should I take to approach the tar-091

get now? Where have I already been? Additionally,092

when humans encounter new environmental infor-093

mation, they may pause to observe and adjust their094

strategy accordingly.095

To address these aspects, we propose Human-096

Like Exploration for Navigation (HuLE-Nav). We097

extend the concept of "cognitive maps" within the098

context of ZSON to not only represent spatial in-099

formation but also store perception, representation,100

and action processes (Epstein et al., 2017). Ad-101

ditionally, we strike a balance between naviga-102

tion and observation, as emphasized in (Kessler103

et al., 2024). Specifically, HuLE-Nav leverages the104

accumulated knowledge of foundation models to105

semantically associate and match object informa-106

tion. We also use their comprehensive semantic107

understanding of the current scene to determine108

the optimal direction of movement. To further109

enhance this, we improve spatio-temporal mem-110

ory by considering the impact of the agent’s tra-111

jectory on decision-making. These thought pro-112

cesses are represented as value representations,113

which are then stored and iteratively updated in114

real-time, multi-dimensional semantic value maps115

(see Fig. 1). In parallel, HuLE-Nav incorporates ac-116

tive exploration mechanisms that mimic human117

behavior—such as dynamic exploration and re- 118

planning, collision avoidance, and target valida- 119

tion—ensuring real-time adaptation and accurate 120

exploration. We conduct extensive experiments on 121

the HM3D (Ramakrishnan et al., 2021), Gibson 122

(Xia et al., 2018) datasets on the Habitat platform 123

(Savva et al., 2019). HuLE-Nav achieves state-of- 124

the-art zero-shot performance on all benchmarks, 125

with SPL improving over the previous SOTA by 126

9.2% on the HM3D dataset and 3.2% on the Gib- 127

son dataset. Our contributions can be summarized 128

as follows: 129

• We store and iteratively update the three- 130

dimensional thought processes in semantic 131

value maps to guide future planning. 132

• We use active exploration mechanisms to ef- 133

ficiently gather scene information, enhancing 134

exploration accuracy and adaptability. 135

• We develop a comprehensive map-based navi- 136

gation method to achieve state-of-the-art per- 137

formance on the Habitat platform and plan to 138

open-source it. 139

2 Related Works 140

Object Navigation. Object Navigation requires 141

an agent, given a textual description of a target ob- 142

ject (e.g., "bed"), to locate an instance of that object 143

in a previously unseen environment. Approaches 144

to Object Navigation can be broadly categorized 145

into map-less and map-based methods.Map-less 146

methods use reinforcement learning or imitation 147

learning to directly map visual observations to ac- 148

tions, inferring subsequent actions through the im- 149

plicit encoding of visual inputs (Chang et al., 2020; 150

Deitke et al., 2022; Maksymets et al., 2021; Ye 151
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Figure 2: HuLE-Nav consists of two main components: Multi-dimensional Semantic Value Maps for Human-like
Exploration Memory and Active Exploration Mechanisms for Human-like Exploration Behaviors.

et al., 2021; Mousavian et al., 2019; Yang et al.,152

2018). In contrast, map-based methods store histor-153

ical observations as top-down maps during naviga-154

tion, enabling the structured storage of topological155

and semantic information to guide and optimize156

decision-making (Chaplot et al., 2020; Zhang et al.,157

2021; Luo et al., 2022; Ramakrishnan et al., 2022;158

Zhang et al., 2023). However, these task-specific159

training methods often incur high training costs160

and are limited to a fixed set of object categories,161

which restricts their applicability. Moreover, be-162

ing primarily trained in simulated environments,163

these methods struggle to generalize effectively to164

diverse real-world scenarios.165

Zero-Shot Object Navigation. Zero-Shot Ob-166

ject Navigation (ZSON) focuses on leveraging prior167

knowledge to guide an agent’s exploration, ad-168

dressing the challenges of traditional task-specific169

training-based methods. In recent years, ZSON has170

made significant progress. Map-less, end-to-end171

ZSON methods (Majumdar et al., 2022; Zhao et al.,172

2023; Gadre et al., 2023; Chen et al., 2023a; Gadre173

et al., 2022) have demonstrated the potential of gen-174

eralization. However, the implicit scene encoding175

in these methods often overlooks important con-176

textual details. These methods also require exten-177

sive training, suffer from inefficiencies like redun-178

dant movements, and lack interpretability in their179

decision-making processes. In contrast, map-based180

methods utilize detailed maps to store historical181

environmental information, which is then used to182

guide waypoint selection (Kuang et al., 2024; Chen 183

et al., 2023b). Recent advancements in this area 184

have incorporated pre-trained foundation models to 185

enable agents to make frontier-based waypoint de- 186

cisions based on environmental semantics (Chang 187

et al., 2023; Yu et al., 2023; Shah et al., 2023). 188

Additionally, several methods have improved nav- 189

igation efficiency and adaptability through the in- 190

tegration of path-planning algorithms (Wu et al., 191

2024), complementary mapping techniques (Long 192

et al., 2024; Yokoyama et al., 2024), and auxil- 193

iary tools (Zhang et al., 2024a). However, these 194

methods have inherent limitations due to their de- 195

pendence on converting dense visual information 196

into textual representations and discrete landmarks, 197

which leads to sparse and incomplete environmen- 198

tal observations for waypoint selection. Moreover, 199

their decision-making processes are often restricted 200

to fixed intervals or predefined locations, which 201

can result in missed critical context, reduced adapt- 202

ability, and lower efficiency. We aim to improve 203

our method by maximizing the recording of envi- 204

ronmental semantic information and incorporating 205

flexible exploration strategies, enabling better per- 206

formance in these aspects. 207

3 Human-Like Exploration for ZSON 208

In this section, we first provide an overview of 209

HuLE-Nav in Sec .3.1. We then describe the 210

construction of multi-dimensional semantic value 211

maps in Sec .3.2. Finally, we elaborate on the active 212

exploration mechanisms in Sec. 3.3. 213
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3.1 Overview of HuLE-Nav214

HuLE-Nav consists of two main components. The215

first is Human-like Exploration Memory, which216

uses Multi-dimensional Semantic Value Maps217

to record environmental observations and multi-218

dimensional thought processes. The second is Ac-219

tive Exploration Mechanisms, which mimic human-220

like exploration behaviors, including Dynamic Ex-221

ploration and Replanning, Collision Escape, and222

Target Verification (see Fig .2). These mechanisms223

work together to maximize the acquisition of envi-224

ronmental information, ensuring both efficient and225

accurate exploration.226

The agent takes its position and observations as227

input and outputs actions. Initially, the agent per-228

forms a full panoramic scan and reasons across229

multiple aspects to construct the Semantic Value230

Maps, selecting the highest weighted frontier point231

as the first long-term goal. The agent then uses Lo-232

cal Policy for low-level actions to reach the target.233

During navigation, when the Dynamic Exploration234

and Replanning mechanisms detect new frontier235

points, the agent iteratively updates the maps, se-236

lects new goals, and navigates. If the agent gets237

stuck during exploration, the VLM-based Colli-238

sion Escape module is activated. Once the target is239

detected, secondary validation is performed using240

the VLM-based Target Validation module until the241

agent successfully finds the target object.242

3.2 Multi-dimensional Semantic Value Maps243

for Human-like Exploration Memory244

Semantic Value Maps Overview. To mimic245

human-like exploration memory, we construct246

multi-dimensional semantic value maps which is247

a K ×M ×M matrix initialized to zero. Among248

them, M ×M represents the map size, and K =249

C + 2+ 3 denotes the number of channels. Specif-250

ically, C corresponds to the total number of seman-251

tic categories, and the first two channels represent252

navigable areas and obstacles, respectively. The253

remaining three channels are uniquely designed to254

capture (i) Object Semantic Value: the semantic255

relevance between objects, (ii) Direction Seman-256

tic Value: scene-level semantic information, and257

(iii) Trajectory Semantic Value: the spatio-temporal258

history of exploration paths.259

This C + 2 semantic map is constructed fol-260

lowing the approach proposed in (Chaplot et al.,261

2020). Given RGB-D images and the agent’s pose262

at each time step, 3D point clouds are extracted and263

projected onto the semantic map through height- 264

based filtering. The semantic map is initialized 265

with the agent positioned at the center and evolves 266

dynamically throughout the episode. Point clouds 267

are generated from visual inputs using a geometric 268

method and mapped onto a top-down 2D represen- 269

tation. This map includes obstacle and explored 270

channels derived from depth images, along with 271

semantic channels obtained via semantic segmen- 272

tation. The semantic masks are aligned with the 273

point clouds, and each channel is accurately pro- 274

jected onto its corresponding position within the 275

semantic map. Collectively, these C + 2 layers 276

form a comprehensive historical record of the envi- 277

ronment, encompassing navigable areas, obstacles, 278

and semantic categories. 279

The frontier map is obtained from the explored 280

map and the obstacle map, following the method- 281

ology in (Ramakrishnan et al., 2022). It represents 282

the boundaries of the explored area. The process 283

begins by extracting the explored edge from the 284

explored map, identifying the maximum contours. 285

The obstacle map is then dilated, and the frontier 286

map is computed as the difference between the ex- 287

plored and obstacle maps. To refine the results, con- 288

nected neighborhood analysis is applied to group 289

scattered frontier cells into coherent chains, ensur- 290

ing spatial continuity. The centroid of each con- 291

nected frontier region, pf , is then evaluated and 292

serves as a candidate for the long-term goal. 293

In addition to preserving environmental context, 294

the remaining 3 channels encode the agent’s rea- 295

soning process, reflecting its assessment of the ne- 296

cessity and potential value of exploring specific 297

regions. Each pixel in the exploration area is as- 298

signed a semantic importance value, quantifying 299

its likelihood of proximity to the target object. The 300

weighted aggregation of the three aforementioned 301

values is then used to evaluate candidate waypoints, 302

dynamically selecting the pixel with the highest 303

value as the next exploration target. 304

Object Semantic Value Map. To guide the agent 305

in searching around objects with stronger seman- 306

tic relevance to the target, we radiate the semantic 307

connections between the target and other detected 308

objects to their surrounding areas on the Object 309

Semantic Value Map. At task initiation, the VLM 310

assigns semantic relevance values Soi ∈ [−1, 1] 311

between each object instance oi and the target ob- 312

ject as shown in Table 3, with larger positive values 313

indicating a higher likelihood of co-occurrence be- 314
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tween the two objects. These relevance values are315

then radiated from the object clusters in the seman-316

tic map to the Object Semantic Value Map based317

on their corresponding positions and semantic re-318

lationships. For each frontier point pf within the319

frontier set on the map, the final semantic value320

So(pf ) is determined by the object with the highest321

relevance at that point, as shown in Eq. 1.322

So(pf ) = max
oi∈O

(
Soi ·

(
1− do(pf , oi)

r

)

· I(do(pf , oi) ≤ r)

)
,

(1)323

where O represents the set of all objects in the324

semantic map, do(pf , oi) denotes the distance from325

the frontier point pf to the closest point of object oi,326

and I(do(pf , oi) ≤ r) is an indicator function en-327

suring that only objects within a specified threshold328

distance r contribute to the relevance score.329

Direction Semantic Value Map. To break the330

object semantic information bottleneck, we employ331

the VLM to extract scene-level semantic cues, in-332

tegrating comprehensive semantic information to333

determine the optimal exploration direction. Specif-334

ically, we maintain a cumulative record of optimal335

direction choices on the Direction Semantic Value336

Map. At task initiation and at each observation337

point, the agent performs circular scans to capture338

six equidistant RGB images, {I0, . . . , I5}, along339

with corresponding pose information. The VLM340

evaluates these images for the potential presence341

Sdi of the target object G (as shown in Eq. 2), and342

the results are projected onto the corresponding pix-343

els on the map using depth and pose information.344

When projections from different angles overlap at345

the same pixel in the direction map, the correspond-346

ing values are averaged to update the map as Eq. 3.347

Additionally, when projections from different time348

points overlap at the same pixel, the new value349

is averaged with the old value, ensuring that past350

observations influence future decisions.351

Sdi = VLM(Ii, G),

5∑
i=0

Sdi = 1, i = 0, 1, . . . , 5,
(2)352

353
Sd(pf ) =

1

Nd(pf )

5∑
i=0

I(pf ∈ proj(Ii)) · Sdi , (3)354

where Nd(pf ) is the number of projections con-355

tributing to the value at frontier point pf , proj(Ii)356

refers to the projection of image Ii onto the map,357

determining which pixels in the map correspond to358

the visual information in the image Ii.359

Trajectory Semantic Value Map. To prevent the 360

agent from repeatedly traversing the same paths 361

or getting stuck at the same target point during 362

exploration, we create a Trajectory Semantic Value 363

Map, which assigns lower values St around the 364

trajectory T , encouraging the agent to explore new 365

and diverse paths, as shown in Eq. 4 and 5. 366

dt(pf ) = min
t∈T

∥pf − t∥,

Nt(pf , r) = {t ∈ T | ∥pf − t∥ ≤ r} ,
(4) 367

St(pf ) =

(
dt(pf )

r
− 1

)
·
(

|Nt(pf , r)|
λ+ |Nt(pf , r)|

)
· I(dt(pf ) ≤ r) ,

(5) 368

where dt(pf ) is the minimum distance from fron- 369

tier point pf to the nearest point on trajectory T , 370

Nt(pf , r) is the number of trajectory points within 371

radius r of pf , λ is a regularization parameter con- 372

trolling the influence of neighboring points, and 373

I(dt(pf ) ≤ r) ensures only frontier points within 374

distance r from the trajectory contribute. 375

3.3 Active Exploration Mechanisms for 376

Human-like Exploration Behaviors 377

Dynamic Exploration and Replanning. To en- 378

courage the agent to actively survey its surround- 379

ings and reduce the risk of missing important se- 380

mantic information, we propose a dynamic explo- 381

ration and planning mechanism. During navigation, 382

the agent’s current location l becomes an observa- 383

tion point po if it has a direct line of sight to a fron- 384

tier point pf without any intervening obstacles B, 385

as shown in Eq. 6. At po, the agent performs a circu- 386

lar scan and updates the semantic value map using 387

the current panoramic observation, along with the 388

newly acquired semantic information. The agent 389

then selects the frontier point pf with the highest 390

semantic value from the frontier map as its next 391

long-term goal L, as shown in Eq. 7. The semantic 392

value is computed by combining a weighted sum of 393

the three dimensions of the semantic map, as well 394

as the normalized distance between the current po- 395

sition and the candidate target points. 396

po = {l | ∃pf ∈ P, line(l, pf ) ∩ B = ∅}, (6) 397398

L = arg max
pf∈P

(
Sd(pf ) + αSt(pf ) + βSo(pf )

− γdnorm(pf )

)
.

(7) 399

Once the long-term goal L is determined, the lo- 400

cal policy is employed to navigate the agent toward 401
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Figure 3: HuLE-Nav method flowchart.

the target point. We use the Fast Marching Method402

(FMM)(Sethian, 1996) for point-to-point naviga-403

tion, with the agent’s current position as the starting404

point and the long-term goal as the endpoint. At405

each timestep, FMM computes the optimal path406

and selects the appropriate action from the action407

space based on the agent’s position. This process408

ensures real-time, efficient path planning and navi-409

gation. By utilizing FMM, we eliminate the need410

for end-to-end methods like reinforcement learn-411

ing, allowing our Zero-Shot ObjectNav method to412

operate without the need for training.413

Collision Escape Strategy. Inappropriate selec-414

tion of long-term goals or poor path planning can415

cause the agent to become stuck in a situation416

where it is unable to update its goal or gets trapped417

in a corner. To mitigate this issue, we propose a418

VLM-based escape strategy. Specifically, if the419

long-term goal is not updated, or if the robot’s420

position remains unchanged for a predetermined421

number of steps, our algorithm triggers the escape422

strategy. The Vision-Language Model (VLM) uses423

the current observation I0 to generate an action424

plan consisting of 10 actions, (A1, A2, . . . , A10),425

as shown in Eq. 8, which are executed sequentially.426

(A1, A2, . . . , A10) = VLM(I0). (8)427

Target Verification Strategy. Accurate object428

recognition is a crucial element for the success429

of object navigation. To this end, we integrate a430

Vision-Language Model (VLM) to assist the ex-431

ternal object detection module in performing sec-432

ondary validation of the identified target object.433

When the agent detects a target object through the434

detection module, the VLM is then called to verify435

whether the target object is present in the current436

observation, considering the full scene. If the VLM437

confirms the presence of the target object, it is pro-438

Method Zero Shot HM3D Gibson
Success↑ SPL↑ Success↑ SPL↑

Random ✓ 0.00 0.00 0.03 0.03
SemExp (Chaplot et al., 2020) × 37.9 18.8 65.2 33.6
ZSON (Majumdar et al., 2022) × 25.5 12.6 - -

Stubborn (Luo et al., 2022) × - - 23.7 9.8
Pixel-Nav (Cai et al., 2023) × 37.9 20.5 - -

ESC (Zhou et al., 2023) ✓ 39.2 22.3 - -
COW (Gadre et al., 2023) ✓ 32.0 18.1 - -
FBE (Gervet et al., 2023) ✓ 23.7 12.3 41.7 21.4
L3MVN (Yu et al., 2023) ✓ 50.4 23.1 76.1 37.7
VoroNav (Wu et al., 2024) ✓ 42.0 26.0 - -

VLFM (Yokoyama et al., 2024) ✓ 52.5 30.4 84.0 52.5
SG-Nav (Yin et al., 2024) ✓ 54.0 24.9 - -

HuLE-Nav (Ours) ✓ 55.0 ↑ 33.2↑ 85.2↑ 54.2↑

Table 1: Comparison with SOTA methods on HM3D
and Gibson. The best performance for each metric is
highlighted in bold, and ↑or ↓indicates whether HuLE-
Nav outperforms or underperforms compared to other
SOTA methods.

jected onto the semantic map in the target object 439

dimension, serving as the final destination for the 440

local policy navigation. Otherwise, the agent con- 441

tinues its exploration to find the correct target. 442

4 Experiments 443

In the section, we focus on demonstrating the supe- 444

riority of HuLE-Nav compared with counterparts 445

on HM3D dataset (Ramakrishnan et al., 2021) and 446

Gibsion (Xia et al., 2018) dataset. 447

4.1 Experimental Setups 448

Datasets. The Gibson dataset (Xia et al., 2018) 449

comprises 25 training scenes and 5 validation 450

scenes. The HM3D dataset (Ramakrishnan 451

et al., 2021) includes 75 training scenes and 20 452

validation scenes. Following the conventional 453

evaluation setup for zero-shot object navigation 454

tasks(Yokoyama et al., 2024), we utilize the val- 455

idation split of Gibson (1,000 episodes across 456

5 scenes) and HM3D (2,000 episodes across 20 457

scenes), respectively. 458

Metrics. The success rate and efficiency of navi- 459

gation are important metrics to measure the naviga- 460

tion performance of agents, so we select Success 461

Rate (SR) and Success weighted by Path Length 462

(SPL) for evaluation. Intuitively, higher SR and 463

SPL values indicate that the agents have superior 464

navigation performance. Our contributions can be 465

summarized as follows: 466

• Success Rate (SR) measures the percentage 467

of successful episodes, defined as the agent 468

reaching the target. It is calculated as SR = 469
1
N

∑N
i=1 Si, where Si = 1 for success and 470
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Si = 0 for failure, and N is the total number471

of episodes.472

• Success weighted by Path Length (SPL)473

combines success and path efficiency, com-474

puted as SPL = 1
N

∑N
i=1

Si·li
max(pi,li)

, where Si475

indicates success (1) or failure (0), li is the476

shortest path, and pi is the actual path length.477

SPL rewards shorter, more efficient paths.478

4.2 Experimental Results479

To demonstrate the superiority of our method, we480

compare it with 12 classical algorithms and the ex-481

perimental results are detailed in Table 1. From Ta-482

ble 1, we can observe that:❶ our method achieves483

the best performance on both datasets across both484

metrics; ❷ in terms of SR, HuLE-Nav improves the485

SR by 1.9% over the current SOTA SG-Nav (Yin486

et al., 2024) and by 4.8% compared to the second-487

best VLFM(Yokoyama et al., 2024) on HM3D, and488

improves the SR by 1.4% over the current SOTA489

VLFM(Yokoyama et al., 2024) and by 12.0% com-490

pared to the second-best L3MVN(Yu et al., 2023)491

on Gibson; ❸In terms of SPL, HuLE-Nav sur-492

passes all other algorithms by a large margin on493

both datasets. Its exploration efficiency is both494

1.44 times that of the baseline L3MVN(Yu et al.,495

2023) and improves by 9.2% and 3.2% compared to496

VLFM(Yokoyama et al., 2024) on the HM3D and497

Gibson datasets, respectively. The aforementioned498

results demonstrate the superiority of our method499

in balancing both success rate and efficiency.500

Furthermore, we compare the per-category suc-501

cess rates with the available baseline method502

L3MVN (Yu et al., 2023) in Figure 4. HuLE-Nav503

significantly outperforms L3MVN across all target504

categories, particularly in challenging categories505

such as toilets and plants, which are difficult to lo-506

cate or access. This demonstrates that our method507

can achieve a comprehensive understanding of in-508

door environments, enabling more effective explo-509

Experiment Condition Metrics Fail Case

Success↑ SPL↑ Collision Exploration Detection

HuLE-NAV 0.870 0.545 5% 4% 4%

w/o Object Value 0.840 ↓ 0.530 ↓ 7% ↑ 4% 5% ↑
w/o Direction Value 0.760 ↓ 0.458 ↓ 8% ↑ 10% ↑ 6% ↑
w/o Trajectory Value 0.740 ↓ 0.505 ↓ 8% ↑ 12% ↑ 6% ↑

w/o Distance 0.820 ↓ 0.508 ↓ 4% 9% ↑ 5% ↑

w/o Dynamic Replanning 0.830 ↓ 0.508 ↓ 4% 9% ↑ 4%
w/o Collision Escape 0.810 ↓ 0.515 ↓ 10% ↑ 5% ↑ 4%
w/o Target Verification 0.760 ↓ 0.503 ↓ 2% ↓ 8% ↑ 14% ↑

Table 2: Ablation Study Results: Evaluating Seman-
tic Value Maps (Upper) and Exploration Mechanisms
(Lower). ↑and ↓indicate whether the performance is im-
proved or decreased compared to the original method.

ration. In addition, a simple example of the HuLE- 510

Nav navigation process is illustrated in Figure 3 511

for a more intuitive understanding of our method. 512

More details of the experiment and results can be 513

found in the Appendix. 514

4.3 Ablation & Analysis 515

After the empirical evaluation of the proposed 516

HuLE-Nav, we are now interested in the following 517

question: Is each component of multi-dimensional 518

semantic value maps and active exploration mecha- 519

nisms effective? To answer this question, we focus 520

on comparing the approaches that ablate different 521

components on the Gibson validation subset. 522

Impact of Semantic Value Maps. As shown in 523

Table 2, removing key components from the se- 524

mantic value maps, such as the Direction Value, 525

Trajectory Value, Object Value, and the distance 526

factor in Eq. 7, results in considerable performance 527

degradation. The absence of the Direction Value 528

impacts the agent’s ability to comprehend the over- 529

all scene and make informed directional decisions. 530

Most failures arise from the lack of proper direc- 531

tion selection, which leads to exploration issues 532

and a decrease of approximately 10% in both SPL 533

and success rate. Similarly, omitting the Trajectory 534

Value significantly affects the agent’s performance, 535

leading to path repetition and, consequently, task 536

failure after hitting the step limit. This causes a 537

12% decrease in success rate and a 4% reduction 538

in SPL. Furthermore, poor goal point selection due 539

to missing direction and trajectory information can 540

result in unavoidable collisions. Additionally, the 541

Object Value enables the agent to consider object- 542

level relationships in its decision-making, leading 543

to more reliable judgments. Finally, the inclusion 544

of the distance factor contributes to improved ex- 545
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Figure 5: (Left) Ablation study on the number of panoramic images captured during the agent’s full rotation. (Right)
Ablation study on the ratio of new to old value updates projected onto the same pixel of the Direction Value Map at
different timestamps.

ploration performance by allowing the agent to546

account for the time cost of reaching the target.547

Impact of Exploration Mechanisms. The ex-548

ploration mechanisms—Dynamic Exploration and549

Replanning, Collision Escape, and Target Verifica-550

tion—are essential for ensuring system resilience551

and efficiency, as shown in Table 2. Since Dy-552

namic Exploration and Replanning are coupled553

with the semantic value maps, we adapt the dy-554

namic planning process to a fixed number of steps555

for replanning, while still allowing the agent to556

perform dynamic panoramic observations. Even557

with this adjustment, the results reveal a signif-558

icant increase in exploration failures, with both559

success rate and SPL decreasing by approximately560

4%. This demonstrates that dynamic exploration561

and replanning significantly enhance exploration562

efficiency and navigation performance. Addition-563

ally, Collision Escape and Target Verification are564

designed to address common navigation issues (i.e.,565

collision and detection failures). The results show566

that these two mechanisms perform well in their567

respective roles. The absence of the Collision Es-568

cape mechanism caused a 10% increase in collision569

failure rate, highlighting its importance in helping570

the agent escape from certain predicaments. More-571

over, the absence of Target Verification led to a572

10% increase in detection error rate. Incorrect ob-573

ject recognition may cause the agent to repeatedly574

move near the wrong target, resulting in collisions575

and exploration issues. This underscores the impor-576

tance of accurate target detection in navigation.577

Discussions on Hyperparameters. As shown in578

Figure 5, we evaluate the impact of the number of579

panoramic images captured during the agent’s full580

rotation on the direction values (left), as well as581

the ratio of new to old value updates projected onto582

the same pixel of the Direction Value Map at dif-583

ferent timestamps (right). The results indicate that 584

both the number of captured images and the ratio 585

of new to old memory values significantly affect 586

performance. Capturing too few images may lead 587

to the omission of crucial environmental semantic 588

information, resulting in suboptimal directional de- 589

cisions. On the other hand, capturing too many im- 590

ages may cause information redundancy, making it 591

difficult for the VLM to process and determine the 592

best course of action. Additionally, during the up- 593

date process, the values in the direction value map 594

should retain a certain weight for the old values to 595

preserve past decisions and reasoning, providing a 596

reference for future decisions. 597

5 Conclusion 598

In this work, we propose HuLE-Nav, a novel zero- 599

shot object navigation method inspired by human- 600

like exploration thinking and behaviors. By con- 601

structing multi-dimensional semantic value maps 602

and incorporating human-like exploration mecha- 603

nisms, HuLE-Nav outperforms its competitors in 604

terms of both navigation success rate and efficiency. 605

The results on challenging datasets demonstrate the 606

superiority of our method in balancing navigation 607

success and efficiency. 608

Limitations 609

However, HuLE-Nav has some limitations. These 610

primarily stem from its reliance on external object 611

detection modules. Inaccuracies in object recogni- 612

tion not only affect the final results but may also 613

interfere with intermediate steps during exploration. 614

Additionally, the full potential of Vision-Language 615

Models (VLMs) for navigation tasks has not yet 616

been fully realized. Future work will focus on 617

enhancing VLMs and fully leveraging their capa- 618

bilities in navigation tasks. 619
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A More Details of Preliminary850

Task Definition. Zero-Shot Object Navigation851

(ZSON) is a challenging semantic navigation task852

where an agent, given a textual description of a853

target object (e.g., "bed"), must locate an instance854

of that object in a previously unseen environment,855

without relying on task-specific training or prior856

knowledge.857

At the beginning of an episode, the agent is ini-858

tialized at a random starting position p0 within859

an unknown environment E and is provided with860

the target object category G ∈ N , where N rep-861

resents a novel set of unseen object types. The862

agent receives egocentric observations comprising863

RGB-D images It and its real-time pose pt at each864

time step t. The cumulative observation history865

is denoted as Ot = {(p0, I0), . . . , (pt, It)}. The866

agent operates in a discrete action space A con-867

sisting of six actions: MOVE FORWARD (0.25m),868

TURN LEFT (30°), TURN RIGHT (30°), LOOK869

UP (30°), LOOK DOWN (30°), and STOP. A suc-870

cessful episode is achieved if the agent executes871

the STOP action within 0.1m of the target object in872

500 steps or fewer. Conversely, the episode fails if873

the agent either exceeds the maximum step limit,874

stops at an incorrect location, or fails to avoid ob-875

stacles. This task emphasizes the agent’s ability to876

utilize semantic reasoning, integrating visual and877

spatial observations to navigate complex indoor en-878

vironments efficiently, while generalizing to novel879

object categories and scenarios.880

Episodic Semantic Map. Semantic Map con-881

struct and update a (K + 2)×M ×M map using882

RGB-D images and poses, where M denotes the di-883

mensions of the map’s width and height, and K+2884

represents the total number of channels in the map.885

Specifically, K channels represent the semantic886

channels of the detected objects, 2 channels cor-887

respond to an obstacle map and an explored map.888

Given RGB-D images and the agent’s poses at each889

time step, we can obtain 3D point clouds. The 3D890

point clouds are projected onto a top-down 2D map891

by judging the height, resulting in an obstacle map892

and an explored map, which represent navigable ar-893

eas and non-navigable obstacle areas, respectively.894

Simultaneously, the RGB images are used to pre-895

dict the category masks and filter out specific object896

categories. These are aligned with the 3D seman-897

tic point clouds and ultimately projected onto the898

corresponding K semantic channels.899

B More Details of Method 900

Semantic Value Map. The Semantic Value Map 901

assigns a value to each pixel in the exploration area, 902

quantifying its semantic importance for locating the 903

target object. This value is a parameterized sum of 904

three dimensions: Direction Semantic Value Map, 905

Trajectory Semantic Value Map, and Object Seman- 906

tic Value Map. The value map is used to evaluate 907

each frontier, with the highest-valued frontier se- 908

lected for the next exploration step. The Direction 909

Semantic Value Map is iteratively built using depth 910

and pose information to construct a top-down map, 911

where VLM-provided probabilities are projected 912

onto the corresponding map pixels. When proba- 913

bilities from different directions are projected onto 914

the same pixel, their average is calculated. The 915

Trajectory Semantic Value Map calculates pixel 916

values based on the agent’s trajectory path, while 917

the Object Semantic Value Map computes pixel 918

values based on the most influential value from the 919

object list. 920

C More Details of Experiment 921

Experiment Setup. For HM3D(Yadav et al., 922

2023) and Gibson(Xia et al., 2018) , we use Habitat 923

Simulator(Savva et al., 2019) adhere to the param- 924

eters established in the Habitat ObjectNav Chal- 925

lenge (Yadav et al., 2022). For agent, we select 926

a LoCoBot(Gupta et al., 2018) with a base radius 927

of 0.18m, which equipped with an RGB-D camera 928

mounted at a height of 0.88 meters and a pose sen- 929

sor that provides precise localization. The camera 930

features a 79° Horizontal Field of View (HFoV) 931

and captures frames with dimensions of 480 × 640 932

pixels. For category prediction across all classes, 933

we employ a finetuned RedNet model(Jiang et al., 934

2018), following the approach outlined in(Ye et al., 935

2021). In addition, we employ GPT-4o(Achiam 936

et al., 2023) as the VLM in our method. The pa- 937

rameters for the Trajectory Semantic Value Map 938

and Object Semantic Value Map in Eq. 1, 4, and 5 939

are set with r = 30, and the weights for α, β, and 940

γ in Eq. 7. are set to 0.5, 0.3, and 0.1, respectively. 941

λ is set as 10 in Eq. 5. More details can be found 942

in Sec.4.3 943

Experiment Baselines. In this work, we com- 944

pare HuLE-Nav against several baselines: 945

• Random Exploration: A baseline method 946

where the agent selects random target points in 947

12



unexplored areas, offering a simple reference948

for comparison with other methods.949

• FBE (Frontier-Based Exploration) (Gervet950

et al., 2023): A traditional exploration ap-951

proach that builds a map and uses frontier-952

based exploration to explore unknown envi-953

ronments.954

• SemExp (Chaplot et al., 2020): A semantic955

exploration method that integrates reinforce-956

ment learning to guide exploration based on957

semantic maps, relying on pre-trained seman-958

tic models for object detection and localiza-959

tion.960

• ZSON (Majumdar et al., 2022): A zero-961

shot object navigation method that uses multi-962

modal goal embeddings to navigate to previ-963

ously unseen objects without specific training964

for each target category.965

• Stubborn (Luo et al., 2022): A baseline966

method that relies on a predefined exploration967

strategy without active learning, resulting in968

fixed behavior during the navigation process.969

• Pixel-Nav (Cai et al., 2023): A foundation970

model-based approach that selects navigation971

pixels from panoramic images and trains the972

agent to navigate towards them using locomo-973

tion skills.974

• ESC (Exploration with Soft Commonsense975

Constraints) (Zhou et al., 2023): A zero-shot976

navigation method that integrates object and977

room type semantics with soft commonsense978

constraints using large language models to979

guide the agent’s exploration process.980

• COW (Commonsense Object Navigation)981

(Gadre et al., 2023): A zero-shot object982

navigation approach that uses commonsense983

knowledge to guide exploration, providing im-984

proved navigation efficiency without the need985

for task-specific training.986

• FBE (Frontier-Based Exploration) (Gervet987

et al., 2023): As mentioned, FBE employs988

frontier-based exploration to guide the agent989

through the environment, aiming to achieve990

efficient exploration.991

• L3MVN (Yu et al., 2023): This method uses992

a large language model (LLM) fine-tuned for993

frontier-based exploration and reasoning to 994

help the agent make informed decisions in 995

complex environments. 996

• VoroNav (Wu et al., 2024): A zero-shot nav- 997

igation method that uses Voronoi diagrams 998

combined with reasoning via LLMs for more 999

efficient navigation and path planning. 1000

• VLFM (Yokoyama et al., 2024): A novel 1001

method that integrates vision-language fron- 1002

tier maps and utilizes LLMs to enhance rea- 1003

soning about object relationships and naviga- 1004

tion goals. 1005

• SG-Nav (Yin et al., 2024): A method that 1006

combines large language models with 3D 1007

scene graph representations to guide zero-shot 1008

navigation, leveraging the reasoning abilities 1009

of the LLM to enhance decision-making. 1010

Experiment Examples. We analyzed the success 1011

rate for each target type in the experiment and com- 1012

pared it with the baseline L3MVN. As shown in 1013

Fig. 8, HuLE-Nav achieves a higher exploration 1014

success rate than the baseline across all object cat- 1015

egories. We present several examples during the 1016

experiment. Tab. 3 shows the pairwise relation- 1017

ship degrees between objects provided by GPT-4o, 1018

where one row will be used in the object semantic 1019

map during the experiment. Fig. 6, 7, 8, illustrate 1020

sample prompts given to GPT-4 in our method. 1021

Fig. 9, 10, 11, and 12 illustrate some typical exam- 1022

ples and processes encountered in various parts of 1023

the experiment. 1024
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Object Chair Sofa Plant Bed Toilet TV Monitor Bathtub Shower Fireplace Appliances Towel Sink Chest of Drawers Table Stairs

Chair 1 0.75 0.2 0.4 -0.3 0.5 -0.6 -0.5 0.3 0.1 0.1 -0.2 0.5 0.7 0.1
Sofa 0.75 1 0.3 0.5 -0.4 0.6 -0.5 -0.5 0.4 0.2 0.2 -0.2 0.6 0.8 0.2
Plant 0.2 0.3 1 0.1 -0.2 0.2 -0.2 -0.3 0.2 0.1 0.3 0.2 0.2 0.3 0.1
Bed 0.4 0.5 0.1 1 -0.6 0.3 -0.3 -0.4 0.2 0.1 0.1 -0.5 0.6 0.5 0.1
Toilet -0.3 -0.4 -0.2 -0.6 1 -0.5 0.6 0.7 -0.2 -0.3 0.5 0.6 -0.5 -0.4 0.2
TV Monitor 0.5 0.6 0.2 0.3 -0.5 1 -0.5 -0.4 0.3 0.2 0.1 -0.2 0.5 0.6 0.1
Bathtub -0.6 -0.5 -0.2 -0.3 0.6 -0.5 1 0.8 -0.2 -0.3 0.4 0.5 -0.5 -0.4 0.1
Shower -0.5 -0.5 -0.3 -0.4 0.7 -0.4 0.8 1 -0.3 -0.4 0.5 0.6 -0.6 -0.5 0.1
Fireplace 0.3 0.4 0.2 0.2 -0.2 0.3 -0.2 -0.3 1 0.2 0.2 -0.1 0.3 0.4 0.2
Appliances 0.1 0.2 0.1 0.1 -0.3 0.2 -0.3 -0.4 0.2 1 0.2 0.3 0.2 0.2 0.3
Towel 0.1 0.2 0.3 0.1 0.5 0.1 0.4 0.5 0.2 0.2 1 0.5 0.1 0.2 0.1
Sink -0.2 -0.2 0.2 -0.5 0.6 -0.2 0.5 0.6 -0.1 0.3 0.5 1 -0.4 -0.3 0.2
Chest of Drawers 0.5 0.6 0.2 0.6 -0.5 0.5 -0.5 -0.6 0.3 0.2 0.1 -0.4 1 0.6 0.1
Table 0.7 0.8 0.3 0.5 -0.4 0.6 -0.4 -0.5 0.4 0.2 0.2 -0.3 0.6 1 0.2
Stairs 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.2 1

Table 3: The Object Correlation Table provided by GPT-4o indicates that higher values represent stronger relation-
ships between objects, meaning they are more likely to appear together, while lower values suggest they are less
likely to co-occur.

Figure 6: The complete prompt given to GPT-4 for generating the direction value map after obtaining panoramic
images in HuLE-Nav, along with a sample response.
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Figure 7: The complete prompt given to GPT-4 for collision escape when HuLE-Nav encounters a predicament,
along with a sample response.

Figure 8: The complete prompt given to GPT-4 for target verification when HuLE-Nav detects a target, along with a
sample response.

I’m stuck in a collision. 
The image represents my view of the current position.
Suggest a sequence of 10 actions to escape this situation.
The actions can be one of the following:
1: Move forward 2: Turn left 30° 3: Turn right 30°

Based on the image, it appears that you are stuck near a corner in a home environment. 
To navigate out of this corner, you can use the following sequence of actions:
[3, 3, 1, 1, 3, 1, 1, 1, 1, 1]

I will Turn right 60°, Move forward two steps, Turn right 30°,  and Move forward five 
steps!

Figure 9: Example of HuLE-Nav collision escape: When the robot encounters a deadlock, GPT-4o generates an
action sequence based on the robot’s current observations. The robot then executes this sequence to successfully
escape the trapped situation.
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Step1: Turn around and Initialize.
Step11: Select the long-term goal 
from frontiers based on the semantic 
value map.

Step28: Move towards the goal using 
local policy. Find new frontier! 
(Dynamic Exploration)

Step41: Turn around and select the 
new long-term goal (Dynamic replanning) 
using the updated semantic map.

Step66: Arrive long-term goal using 
local policy. 

Step78: Turn around and select the 
new long-term goal (Dynamic 
replanning).

Step83: Move towards the long-term 
goal. Find new frontier! (Dynamic 
Exploration)

Step85: Turn around and detect the 
target! Verify target using VLM.

Step100: Pass the verification and 
move towards the target.

Figure 10: Example of HuLE-Nav navigation process: The robot’s main steps in a task to find a "bed," from
initialization to task completion.

Yes, there is a toilet visible 
in the image. It is located 
on the left side, partially 
visible behind the sink.

Goal :toilet

Yes, there is a chair visible in 
the image. It is located near 
the lamp, to the right of the 
bed.

Goal :chair

Yes, there is a bed visible in 
the image. It is located in the 
room seen through the 
doorway, in the background.

Goal :bed

Yes, there is a toilet visible in 
the image. It is located at the 
end of the hallway, in the 
bathroom area.

Goal :toilet

No, there is no toilet visible. 
The objects in the image 
include chairs, a table, and 
some artwork on the wall, but 
there is no toilet present.

Goal :toilet Goal :tv monitor

No, there is no TV monitor 
visible. The objects include 
chairs, a table, and some 
artwork on the wall, but there 
is no TV monitor present.

Check if the “goal” is visible in the image，Respond with a 'yes' or 'no', and the reason.

Figure 11: Example of HuLE-Nav target verification: After the target detector identifies the object, GPT-4o is used
to verify and confirm the detection.
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{“30.0”:0.4,“-30.0”:0.3,“90.0”:0.15,“150.0”:0.1,“-90.0”:0.025,“-150.0":0.025}，

Reason:"The area at angle 30.0 looks like a hallway that could lead to other rooms, 
such as a bedroom. -30.0 also appears to lead to another space, but less likely than 30.0. 
The remaining angles show kitchen and dining areas, which typically do not contain beds."

-30° -90° -150° 150° 90° 30°

Give me a number from 0 to 1 indicating the potential for exploring in each direction to 
find the target.

Long-Term Goal：296 252 
Direction Value：0.25 
Tajectory Value：-0.0 
Obejct Value：0.28
Distance Value：0.43
Value Sum：0.29

I‘m going to the Long-Term Goal！

{ "chair": 0.6, "sofa": 0.7, "plant": 0.3, "toilet": -0.9, "tv_monitor": 0.4,  "bathtub": -0.8, 
"shower": -0.8, "fireplace": 0.2, "appliances": -0.5, "towel": -0.4, "sink": -0.7, 
"chest_of_drawers": 0.8, "table": 0.5, "stairs": -0.2 }

I‘m looking for the object goal:”bed” in an indoor environment. 
Determine the correlation between the objects in the object list and the goal separately.

Figure 12: Example of HuLE-Nav circular scan initialization for the semantic value map decision-making based on
the updated semantic value map.
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