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Abstract

Enabling robots to navigate efficiently in un-
known environments is a key challenge in em-
bodied intelligence. Human exploration relies
on accumulated knowledge, spatio-temporal
memory, and scene semantic understanding. In-
spired by these principles, we propose HuLE-
Nav, a zero-shot object navigation method with
two core components: multi-dimensional se-
mantic value maps that emulate human-like
memory retention and active exploration mech-
anisms that mimic human behavior. Specif-
ically, HuLE-Nav utilizes Vision-Language
Models (VLMs) and real-time observations to
dynamically capture semantic relationships be-
tween objects, scene semantics, and spatio-
temporal exploration history. This informa-
tion is then represented and iteratively updated
in the multi-dimensional semantic value maps.
Using these maps, HuLE-Nav employs active
exploration mechanisms that integrate dynamic
exploration, replanning, collision avoidance,
and target verification, enabling flexible long-
term goal selection and real-time adaptation
of navigation strategies. Experimental results
on the challenging HM3D and Gibson datasets
show that HuLE-Nav outperforms the best ex-
isting competitors in terms of both success rate
and exploration efficiency.

1 Introduction

Understanding how humans navigate efficiently
in unfamiliar environments is crucial for develop-
ing robots that can effectively mimic human explo-
ration behavior. Typically, efficient human explo-
ration behavior stems from three fundamental cog-
nitive capabilities: accumulated knowledge, spatio-
temporal memory, and scene semantic understand-
ing. Therefore, in the context of Zero-Shot Object
Navigation (ZSON) (Yu et al., 2023; Wu et al.,
2024; Yokoyama et al., 2024), the primary chal-
lenge for agents lies in constructing these cognitive

capabilities to locate novel target objects in com-
plex environments both accurately and efficiently.
To address these challenges, many ZSON ap-
proaches draw inspiration from the concept of
"cognitive maps" (Raychaudhuri and Chang, 2025).
These historical memories, which help organize
spatial information, are crucial for navigation
and decision-making (Tolman, 1948; Trullier and
Meyer, 2000). Furthermore, recent advances in pre-
trained foundation models (Achiam et al., 2023;
Kenton and Toutanova, 2019; Touvron et al., 2023)
have significantly enhanced decision-making pro-
cesses by better leveraging these maps, owing to
their extensive commonsense knowledge and ad-
vanced reasoning abilities (Zhang et al., 2024b).
For example, SemExp (Chaplot et al., 2020) pi-
oneered semantic mapping, integrating navigable
areas, obstacles, and object categories. Following
this, FBE (Gervet et al., 2023) and L3MVN (Yu
et al., 2023) improved exploration via language
models, encoding object information around map
frontiers. ESC (Zhou et al., 2023) refined target lo-
calization with room-type semantics, while PixNav
(Cai et al., 2023) enabled navigation through pixel-
level goals. VLFM (Yokoyama et al., 2024) uses
similarity metrics to guide frontier-based decisions.
However, existing methods have several limita-
tions. First, by converting temporary observations
into basic textual representations or directly using
object information stored in maps for environmen-
tal understanding, these approaches struggle with
effective scene semantic understanding. Addition-
ally, they neglect the influence of spatio-temporal
memory along the trajectory on path planning, caus-
ing the agent to engage in inefficient or redundant
movements. Furthermore, these methods fail to
fully leverage the accumulated knowledge of foun-
dation models to semantically associate informa-
tion in the environment. Lastly, while these map-
based approaches rely on physical topological in-
formation to construct maps, foundation models



>

Now that I'm looking

for a“TV". How can T A

find it as quickly as a /
- human? )

N

( What objécﬁ | B
are typically )
< nearaTV? )

. ' Which direction ) |

o » (_should T go now?/

( ' Where have T
(" already been?, /

150° Possibility:
0.3.

-90° Possibility: =
0.0.

Higher Value
) ©

g-term
als

30° Possibility:
0.5.

&

)
O

o

Lower Value

Figure 1: HuLE-Nav records three aspects of the thought process: object-level semantic relevance analysis, scene-
level semantic understanding for exploration direction reasoning, and non-redundant path exploration.

are not well-equipped to utilize this map data, hin-
dering the development of a cumulative understand-
ing of the environment. Moreover, these methods
lack an active exploration strategy to complement
map updates, limiting their ability to efficiently
and adaptively gather environmental information.
Just imagine humans in a new indoor environment,
where they might consider questions like: Which
prominent objects are likely to be near the target?
Which direction should I take to approach the tar-
get now? Where have I already been? Additionally,
when humans encounter new environmental infor-
mation, they may pause to observe and adjust their
strategy accordingly.

To address these aspects, we propose Human-
Like Exploration for Navigation (HuLE-Nav). We
extend the concept of "cognitive maps" within the
context of ZSON to not only represent spatial in-
formation but also store perception, representation,
and action processes (Epstein et al., 2017). Ad-
ditionally, we strike a balance between naviga-
tion and observation, as emphasized in (Kessler
et al., 2024). Specifically, HuLE-Nav leverages the
accumulated knowledge of foundation models to
semantically associate and match object informa-
tion. We also use their comprehensive semantic
understanding of the current scene to determine
the optimal direction of movement. To further
enhance this, we improve spatio-temporal mem-
ory by considering the impact of the agent’s tra-
jectory on decision-making. These thought pro-
cesses are represented as value representations,
which are then stored and iteratively updated in
real-time, multi-dimensional semantic value maps
(see Fig. 1). In parallel, HuLE-Nav incorporates ac-
tive exploration mechanisms that mimic human

behavior—such as dynamic exploration and re-
planning, collision avoidance, and target valida-
tion—ensuring real-time adaptation and accurate
exploration. We conduct extensive experiments on
the HM3D (Ramakrishnan et al., 2021), Gibson
(Xia et al., 2018) datasets on the Habitat platform
(Savva et al., 2019). HuLE-Nav achieves state-of-
the-art zero-shot performance on all benchmarks,
with SPL improving over the previous SOTA by
9.2% on the HM3D dataset and 3.2% on the Gib-
son dataset. Our contributions can be summarized
as follows:

* We store and iteratively update the three-
dimensional thought processes in semantic
value maps to guide future planning.

* We use active exploration mechanisms to ef-
ficiently gather scene information, enhancing
exploration accuracy and adaptability.

* We develop a comprehensive map-based navi-
gation method to achieve state-of-the-art per-
formance on the Habitat platform and plan to
open-source it.

2 Related Works

Object Navigation. Object Navigation requires
an agent, given a textual description of a target ob-
ject (e.g., "bed"), to locate an instance of that object
in a previously unseen environment. Approaches
to Object Navigation can be broadly categorized
into map-less and map-based methods.Map-less
methods use reinforcement learning or imitation
learning to directly map visual observations to ac-
tions, inferring subsequent actions through the im-
plicit encoding of visual inputs (Chang et al., 2020;
Deitke et al., 2022; Maksymets et al., 2021; Ye



/ Semantic Value Map\

Dynamic Exploration and Replanning

v
Semantic [ |
Mapping 1
1
1
1

Frontier
Detector

Semanti Object Semantic
Value Value Map

—h{ Mapper T

i

of -

Dynamic Exploration \

ENV

Circular

Scan

( < Directional value
=) Trajectory value
<@ Object value |

\_é_ Distancevalueﬂ)

___________

Selector

Direction Semantic

Value Map
‘@ jmm————— -
2
Value f

1
Mapping : J

b e s ! ENV

\ Value Map /}

) Collision Escaping
Action @ Collision
J kSequence Detector

Local Policy
] " i

1
'

@ Target Node

\_

Trajectory Semantic
I

Figure 2: HuLE-Nav consists of two main components: Multi-dimensional Semantic Value Maps for Human-like
Exploration Memory and Active Exploration Mechanisms for Human-like Exploration Behaviors.

et al., 2021; Mousavian et al., 2019; Yang et al.,
2018). In contrast, map-based methods store histor-
ical observations as top-down maps during naviga-
tion, enabling the structured storage of topological
and semantic information to guide and optimize
decision-making (Chaplot et al., 2020; Zhang et al.,
2021; Luo et al., 2022; Ramakrishnan et al., 2022;
Zhang et al., 2023). However, these task-specific
training methods often incur high training costs
and are limited to a fixed set of object categories,
which restricts their applicability. Moreover, be-
ing primarily trained in simulated environments,
these methods struggle to generalize effectively to
diverse real-world scenarios.

Zero-Shot Object Navigation. Zero-Shot Ob-
ject Navigation (ZSON) focuses on leveraging prior
knowledge to guide an agent’s exploration, ad-
dressing the challenges of traditional task-specific
training-based methods. In recent years, ZSON has
made significant progress. Map-less, end-to-end
ZSON methods (Majumdar et al., 2022; Zhao et al.,
2023; Gadre et al., 2023; Chen et al., 2023a; Gadre
et al., 2022) have demonstrated the potential of gen-
eralization. However, the implicit scene encoding
in these methods often overlooks important con-
textual details. These methods also require exten-
sive training, suffer from inefficiencies like redun-
dant movements, and lack interpretability in their
decision-making processes. In contrast, map-based
methods utilize detailed maps to store historical
environmental information, which is then used to

guide waypoint selection (Kuang et al., 2024; Chen
et al., 2023b). Recent advancements in this area
have incorporated pre-trained foundation models to
enable agents to make frontier-based waypoint de-
cisions based on environmental semantics (Chang
et al., 2023; Yu et al., 2023; Shah et al., 2023).
Additionally, several methods have improved nav-
igation efficiency and adaptability through the in-
tegration of path-planning algorithms (Wu et al.,
2024), complementary mapping techniques (Long
et al., 2024; Yokoyama et al., 2024), and auxil-
iary tools (Zhang et al., 2024a). However, these
methods have inherent limitations due to their de-
pendence on converting dense visual information
into textual representations and discrete landmarks,
which leads to sparse and incomplete environmen-
tal observations for waypoint selection. Moreover,
their decision-making processes are often restricted
to fixed intervals or predefined locations, which
can result in missed critical context, reduced adapt-
ability, and lower efficiency. We aim to improve
our method by maximizing the recording of envi-
ronmental semantic information and incorporating
flexible exploration strategies, enabling better per-
formance in these aspects.

3 Human-Like Exploration for ZSON

In this section, we first provide an overview of
HuLE-Nav in Sec .3.1. We then describe the
construction of multi-dimensional semantic value
maps in Sec .3.2. Finally, we elaborate on the active
exploration mechanisms in Sec. 3.3.



3.1 Overview of HuLE-Nav

HuLE-Nav consists of two main components. The
first is Human-like Exploration Memory, which
uses Multi-dimensional Semantic Value Maps
to record environmental observations and multi-
dimensional thought processes. The second is Ac-
tive Exploration Mechanisms, which mimic human-
like exploration behaviors, including Dynamic Ex-
ploration and Replanning, Collision Escape, and
Target Verification (see Fig .2). These mechanisms
work together to maximize the acquisition of envi-
ronmental information, ensuring both efficient and
accurate exploration.

The agent takes its position and observations as
input and outputs actions. Initially, the agent per-
forms a full panoramic scan and reasons across
multiple aspects to construct the Semantic Value
Maps, selecting the highest weighted frontier point
as the first long-term goal. The agent then uses Lo-
cal Policy for low-level actions to reach the target.
During navigation, when the Dynamic Exploration
and Replanning mechanisms detect new frontier
points, the agent iteratively updates the maps, se-
lects new goals, and navigates. If the agent gets
stuck during exploration, the VLM-based Colli-
sion Escape module is activated. Once the target is
detected, secondary validation is performed using
the VLM-based Target Validation module until the
agent successfully finds the target object.

3.2 Multi-dimensional Semantic Value Maps
for Human-like Exploration Memory

Semantic Value Maps Overview. To mimic
human-like exploration memory, we construct
multi-dimensional semantic value maps which is
a K x M x M matrix initialized to zero. Among
them, M x M represents the map size, and K =
C + 2 + 3 denotes the number of channels. Specif-
ically, C corresponds to the total number of seman-
tic categories, and the first two channels represent
navigable areas and obstacles, respectively. The
remaining three channels are uniquely designed to
capture (i) Object Semantic Value: the semantic
relevance between objects, (ii) Direction Seman-
tic Value: scene-level semantic information, and
(iii) Trajectory Semantic Value: the spatio-temporal
history of exploration paths.

This C' + 2 semantic map is constructed fol-
lowing the approach proposed in (Chaplot et al.,
2020). Given RGB-D images and the agent’s pose
at each time step, 3D point clouds are extracted and

projected onto the semantic map through height-
based filtering. The semantic map is initialized
with the agent positioned at the center and evolves
dynamically throughout the episode. Point clouds
are generated from visual inputs using a geometric
method and mapped onto a top-down 2D represen-
tation. This map includes obstacle and explored
channels derived from depth images, along with
semantic channels obtained via semantic segmen-
tation. The semantic masks are aligned with the
point clouds, and each channel is accurately pro-
jected onto its corresponding position within the
semantic map. Collectively, these C' + 2 layers
form a comprehensive historical record of the envi-
ronment, encompassing navigable areas, obstacles,
and semantic categories.

The frontier map is obtained from the explored
map and the obstacle map, following the method-
ology in (Ramakrishnan et al., 2022). It represents
the boundaries of the explored area. The process
begins by extracting the explored edge from the
explored map, identifying the maximum contours.
The obstacle map is then dilated, and the frontier
map is computed as the difference between the ex-
plored and obstacle maps. To refine the results, con-
nected neighborhood analysis is applied to group
scattered frontier cells into coherent chains, ensur-
ing spatial continuity. The centroid of each con-
nected frontier region, py, is then evaluated and
serves as a candidate for the long-term goal.

In addition to preserving environmental context,
the remaining 3 channels encode the agent’s rea-
soning process, reflecting its assessment of the ne-
cessity and potential value of exploring specific
regions. Each pixel in the exploration area is as-
signed a semantic importance value, quantifying
its likelihood of proximity to the target object. The
weighted aggregation of the three aforementioned
values is then used to evaluate candidate waypoints,
dynamically selecting the pixel with the highest
value as the next exploration target.

Object Semantic Value Map. To guide the agent
in searching around objects with stronger seman-
tic relevance to the target, we radiate the semantic
connections between the target and other detected
objects to their surrounding areas on the Object
Semantic Value Map. At task initiation, the VLM
assigns semantic relevance values S,, € [—1,1]
between each object instance o; and the target ob-
ject as shown in Table 3, with larger positive values
indicating a higher likelihood of co-occurrence be-



tween the two objects. These relevance values are
then radiated from the object clusters in the seman-
tic map to the Object Semantic Value Map based
on their corresponding positions and semantic re-
lationships. For each frontier point p; within the
frontier set on the map, the final semantic value
So(py) is determined by the object with the highest
relevance at that point, as shown in Eq. 1.

dO(pﬁOi))

So(py) = max <S : (1 i
(L

1(do(py, 01) < 7)

where O represents the set of all objects in the
semantic map, d,(py, 0;) denotes the distance from
the frontier point p to the closest point of object o;,
and I(d,(pf,0;) < r) is an indicator function en-

suring that only objects within a specified threshold
distance r contribute to the relevance score.

Direction Semantic Value Map. To break the
object semantic information bottleneck, we employ
the VLM to extract scene-level semantic cues, in-
tegrating comprehensive semantic information to
determine the optimal exploration direction. Specif-
ically, we maintain a cumulative record of optimal
direction choices on the Direction Semantic Value
Map. At task initiation and at each observation
point, the agent performs circular scans to capture
six equidistant RGB images, {Io, ..., I5}, along
with corresponding pose information. The VLM
evaluates these images for the potential presence
Sa, of the target object G (as shown in Eq. 2), and
the results are projected onto the corresponding pix-
els on the map using depth and pose information.
When projections from different angles overlap at
the same pixel in the direction map, the correspond-
ing values are averaged to update the map as Eq. 3.
Additionally, when projections from different time
points overlap at the same pixel, the new value
is averaged with the old value, ensuring that past
observations influence future decisions.

Sa, = VLM(I;, G),

5 2
ZS@:L i=0,1,...,5, @

=0

5
Sa(py) = Z py € proj(1;)) - Sa;, 3)
=0

where Ny(p f) is the number of projections con-
tributing to the value at frontier point p, proj(I;)
refers to the projection of image I; onto the map,
determining which pixels in the map correspond to
the visual information in the image ;.

Trajectory Semantic Value Map. To prevent the
agent from repeatedly traversing the same paths
or getting stuck at the same target point during
exploration, we create a Trajectory Semantic Value
Map, which assigns lower values S; around the
trajectory 7T', encouraging the agent to explore new
and diverse paths, as shown in Eq. 4 and 5.

d = mi —t
+(pr) min llpy =t
Nie(pg,r)={t €T ||py —tl <7}

_(delpy) L\ [ WNi(py,r)l
St(pf)‘( r 1) <A+|Nt(pf,r)|) ®)
I(de(py) <7)

“

where d;(py) is the minimum distance from fron-
tier point p; to the nearest point on trajectory 7',
Ni(py,r) is the number of trajectory points within
radius 7 of pr, A is a regularization parameter con-
trolling the influence of neighboring points, and
I(di(ps) < r) ensures only frontier points within
distance r from the trajectory contribute.

3.3 Active Exploration Mechanisms for
Human-like Exploration Behaviors

Dynamic Exploration and Replanning. To en-
courage the agent to actively survey its surround-
ings and reduce the risk of missing important se-
mantic information, we propose a dynamic explo-
ration and planning mechanism. During navigation,
the agent’s current location / becomes an observa-
tion point p, if it has a direct line of sight to a fron-
tier point py without any intervening obstacles B,
as shown in Eq. 6. At p,, the agent performs a circu-
lar scan and updates the semantic value map using
the current panoramic observation, along with the
newly acquired semantic information. The agent
then selects the frontier point p; with the highest
semantic value from the frontier map as its next
long-term goal L, as shown in Eq. 7. The semantic
value is computed by combining a weighted sum of
the three dimensions of the semantic map, as well
as the normalized distance between the current po-
sition and the candidate target points.

po = {l | 3ps € P, line(l,py) N B = 0}, (6)
L =arg mgx <Sd(pf) + aSi(py) + BSs(py)

)
— Yo (pf)> :

Once the long-term goal L is determined, the lo-
cal policy is employed to navigate the agent toward
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Figure 3: HuLE-Nav method flowchart.

the target point. We use the Fast Marching Method
(FMM)(Sethian, 1996) for point-to-point naviga-
tion, with the agent’s current position as the starting
point and the long-term goal as the endpoint. At
each timestep, FMM computes the optimal path
and selects the appropriate action from the action
space based on the agent’s position. This process
ensures real-time, efficient path planning and navi-
gation. By utilizing FMM, we eliminate the need
for end-to-end methods like reinforcement learn-
ing, allowing our Zero-Shot ObjectNav method to
operate without the need for training.

Collision Escape Strategy. Inappropriate selec-
tion of long-term goals or poor path planning can
cause the agent to become stuck in a situation
where it is unable to update its goal or gets trapped
in a corner. To mitigate this issue, we propose a
VLM-based escape strategy. Specifically, if the
long-term goal is not updated, or if the robot’s
position remains unchanged for a predetermined
number of steps, our algorithm triggers the escape
strategy. The Vision-Language Model (VLM) uses
the current observation [y to generate an action
plan consisting of 10 actions, (A1, As, ..., A1),
as shown in Eq. 8, which are executed sequentially.

(Al,Az,...7A10) :VLM(IQ). ®)

Target Verification Strategy. Accurate object
recognition is a crucial element for the success
of object navigation. To this end, we integrate a
Vision-Language Model (VLM) to assist the ex-
ternal object detection module in performing sec-
ondary validation of the identified target object.
When the agent detects a target object through the
detection module, the VLM is then called to verify
whether the target object is present in the current
observation, considering the full scene. If the VLM
confirms the presence of the target object, it is pro-

HM3D Gibson

Method Zero Shot
Successt SPL{ Successt SPL1T
Random v 0.00 0.00 0.03 0.03
SemExp (Chaplot et al., 2020) X 379 18.8 65.2 33.6
ZSON (Majumdar et al., 2022) X 25.5 12.6 - -
Stubborn (Luo et al., 2022) X - - 23.7 9.8
Pixel-Nav (Cai et al., 2023) X 37.9 20.5 - -
ESC (Zhou et al., 2023) v 39.2 22.3
COW (Gadre et al., 2023) v 32.0 18.1 - -
FBE (Gervet et al., 2023) v 23.7 12.3 41.7 21.4
L3MVN (Yu et al., 2023) v 50.4 23.1 76.1 37.7
VoroNav (Wu et al., 2024) v 42.0 26.0 - -
VLFM (Yokoyama et al., 2024) v 52.5 30.4 84.0 52.5
SG-Nav (Yin et al., 2024) v 54.0 24.9 - -
HuLE-Nav (Ours) v 5501 33.27 85217 54.21

Table 1: Comparison with SOTA methods on HM3D
and Gibson. The best performance for each metric is
highlighted in bold, and for |indicates whether HuLE-
Nav outperforms or underperforms compared to other
SOTA methods.

jected onto the semantic map in the target object
dimension, serving as the final destination for the
local policy navigation. Otherwise, the agent con-
tinues its exploration to find the correct target.

4 Experiments

In the section, we focus on demonstrating the supe-
riority of HuLE-Nav compared with counterparts
on HM3D dataset (Ramakrishnan et al., 2021) and
Gibsion (Xia et al., 2018) dataset.

4.1 Experimental Setups

Datasets. The Gibson dataset (Xia et al., 2018)
comprises 25 training scenes and 5 validation
scenes. The HM3D dataset (Ramakrishnan
et al., 2021) includes 75 training scenes and 20
validation scenes. Following the conventional
evaluation setup for zero-shot object navigation
tasks(Yokoyama et al., 2024), we utilize the val-
idation split of Gibson (1,000 episodes across
5 scenes) and HM3D (2,000 episodes across 20
scenes), respectively.

Metrics. The success rate and efficiency of navi-
gation are important metrics to measure the naviga-
tion performance of agents, so we select Success
Rate (SR) and Success weighted by Path Length
(SPL) for evaluation. Intuitively, higher SR and
SPL values indicate that the agents have superior
navigation performance. Our contributions can be
summarized as follows:

* Success Rate (SR) measures the percentage
of successful episodes, defined as the agent
reaching the target. It is calculated as SR =
% Zf\; 1 Si, where S; = 1 for success and
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S; = 0 for failure, and N is the total number
of episodes.

* Success weighted by Path Length (SPL)
combines success and path efficiency, com-
puted as SPL = 3 PR %, where S;
indicates success (1) or failure (0), [; is the
shortest path, and p; is the actual path length.

SPL rewards shorter, more efficient paths.

4.2 Experimental Results

To demonstrate the superiority of our method, we
compare it with 12 classical algorithms and the ex-
perimental results are detailed in Table 1. From Ta-
ble 1, we can observe that:® our method achieves
the best performance on both datasets across both
metrics; @ in terms of SR, HuLE-Nav improves the
SR by 1.9% over the current SOTA SG-Nav (Yin
et al., 2024) and by 4.8% compared to the second-
best VLFM(Yokoyama et al., 2024) on HM3D, and
improves the SR by 1.4% over the current SOTA
VLFM(Yokoyama et al., 2024) and by 12.0% com-
pared to the second-best L3AMVN(Yu et al., 2023)
on Gibson; ®In terms of SPL, HuLE-Nav sur-
passes all other algorithms by a large margin on
both datasets. Its exploration efficiency is both
1.44 times that of the baseline L3MVN(Yu et al.,
2023) and improves by 9.2% and 3.2% compared to
VLEM(Yokoyama et al., 2024) on the HM3D and
Gibson datasets, respectively. The aforementioned
results demonstrate the superiority of our method
in balancing both success rate and efficiency.
Furthermore, we compare the per-category suc-
cess rates with the available baseline method
L3MVN (Yu et al., 2023) in Figure 4. HuLE-Nav
significantly outperforms L3MVN across all target
categories, particularly in challenging categories
such as toilets and plants, which are difficult to lo-
cate or access. This demonstrates that our method
can achieve a comprehensive understanding of in-
door environments, enabling more effective explo-

Metrics Fail Case

Experiment Condition
Successt SPLT Collision Exploration Detection

HuLE-NAV 0.870 0.545 5% 4% 4%
w/o Object Value 0.840 0.530 7% 4% 5% 1
w/o Direction Value 0.760 0.458 8% 1 10% 1 6% 1
w/o Trajectory Value 0.740 0.505 8% 1 12% 1 6% 1
w/o Distance 0.820 0.508 4% 9% 7 5% 1
w/o Dynamic Replanning  0.830 0.508 4% 9% 1 4%
w/o Collision Escape 0.810 0.515 10% 1 5% 1 4%
w/o Target Verification 0.760 0.503 2% 8% 1 14% 1

Table 2: Ablation Study Results: Evaluating Seman-
tic Value Maps (Upper) and Exploration Mechanisms
(Lower). Tand |indicate whether the performance is im-
proved or decreased compared to the original method.

ration. In addition, a simple example of the HuLE-
Nav navigation process is illustrated in Figure 3
for a more intuitive understanding of our method.
More details of the experiment and results can be
found in the Appendix.

4.3 Ablation & Analysis

After the empirical evaluation of the proposed
HuLE-Nav, we are now interested in the following
question: Is each component of multi-dimensional
semantic value maps and active exploration mecha-
nisms effective? To answer this question, we focus
on comparing the approaches that ablate different
components on the Gibson validation subset.

Impact of Semantic Value Maps. As shown in
Table 2, removing key components from the se-
mantic value maps, such as the Direction Value,
Trajectory Value, Object Value, and the distance
factor in Eq. 7, results in considerable performance
degradation. The absence of the Direction Value
impacts the agent’s ability to comprehend the over-
all scene and make informed directional decisions.
Most failures arise from the lack of proper direc-
tion selection, which leads to exploration issues
and a decrease of approximately 10% in both SPL
and success rate. Similarly, omitting the Trajectory
Value significantly affects the agent’s performance,
leading to path repetition and, consequently, task
failure after hitting the step limit. This causes a
12% decrease in success rate and a 4% reduction
in SPL. Furthermore, poor goal point selection due
to missing direction and trajectory information can
result in unavoidable collisions. Additionally, the
Object Value enables the agent to consider object-
level relationships in its decision-making, leading
to more reliable judgments. Finally, the inclusion
of the distance factor contributes to improved ex-
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ploration performance by allowing the agent to
account for the time cost of reaching the target.

Impact of Exploration Mechanisms. The ex-
ploration mechanisms—Dynamic Exploration and
Replanning, Collision Escape, and Target Verifica-
tion—are essential for ensuring system resilience
and efficiency, as shown in Table 2. Since Dy-
namic Exploration and Replanning are coupled
with the semantic value maps, we adapt the dy-
namic planning process to a fixed number of steps
for replanning, while still allowing the agent to
perform dynamic panoramic observations. Even
with this adjustment, the results reveal a signif-
icant increase in exploration failures, with both
success rate and SPL decreasing by approximately
4%. This demonstrates that dynamic exploration
and replanning significantly enhance exploration
efficiency and navigation performance. Addition-
ally, Collision Escape and Target Verification are
designed to address common navigation issues (i.e.,
collision and detection failures). The results show
that these two mechanisms perform well in their
respective roles. The absence of the Collision Es-
cape mechanism caused a 10% increase in collision
failure rate, highlighting its importance in helping
the agent escape from certain predicaments. More-
over, the absence of Target Verification led to a
10% increase in detection error rate. Incorrect ob-
ject recognition may cause the agent to repeatedly
move near the wrong target, resulting in collisions
and exploration issues. This underscores the impor-
tance of accurate target detection in navigation.

Discussions on Hyperparameters. As shown in
Figure 5, we evaluate the impact of the number of
panoramic images captured during the agent’s full
rotation on the direction values (left), as well as
the ratio of new to old value updates projected onto
the same pixel of the Direction Value Map at dif-

ferent timestamps (right). The results indicate that
both the number of captured images and the ratio
of new to old memory values significantly affect
performance. Capturing too few images may lead
to the omission of crucial environmental semantic
information, resulting in suboptimal directional de-
cisions. On the other hand, capturing too many im-
ages may cause information redundancy, making it
difficult for the VLM to process and determine the
best course of action. Additionally, during the up-
date process, the values in the direction value map
should retain a certain weight for the old values to
preserve past decisions and reasoning, providing a
reference for future decisions.

5 Conclusion

In this work, we propose HuLE-Nav, a novel zero-
shot object navigation method inspired by human-
like exploration thinking and behaviors. By con-
structing multi-dimensional semantic value maps
and incorporating human-like exploration mecha-
nisms, HuLE-Nav outperforms its competitors in
terms of both navigation success rate and efficiency.
The results on challenging datasets demonstrate the
superiority of our method in balancing navigation
success and efficiency.

Limitations

However, HuLE-Nav has some limitations. These
primarily stem from its reliance on external object
detection modules. Inaccuracies in object recogni-
tion not only affect the final results but may also
interfere with intermediate steps during exploration.
Additionally, the full potential of Vision-Language
Models (VLMs) for navigation tasks has not yet
been fully realized. Future work will focus on
enhancing VLMs and fully leveraging their capa-
bilities in navigation tasks.
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A More Details of Preliminary

Task Definition. Zero-Shot Object Navigation
(ZSON) is a challenging semantic navigation task
where an agent, given a textual description of a
target object (e.g., "bed"), must locate an instance
of that object in a previously unseen environment,
without relying on task-specific training or prior
knowledge.

At the beginning of an episode, the agent is ini-
tialized at a random starting position pg within
an unknown environment F and is provided with
the target object category G € N, where N rep-
resents a novel set of unseen object types. The
agent receives egocentric observations comprising
RGB-D images I; and its real-time pose p; at each
time step t. The cumulative observation history
is denoted as O; = {(po, lo), ..., (ps, It)}. The
agent operates in a discrete action space A con-
sisting of six actions: MOVE FORWARD (0.25m),
TURN LEFT (30°), TURN RIGHT (30°), LOOK
UP (30°), LOOK DOWN (30°), and STOP. A suc-
cessful episode is achieved if the agent executes
the STOP action within 0.1m of the target object in
500 steps or fewer. Conversely, the episode fails if
the agent either exceeds the maximum step limit,
stops at an incorrect location, or fails to avoid ob-
stacles. This task emphasizes the agent’s ability to
utilize semantic reasoning, integrating visual and
spatial observations to navigate complex indoor en-
vironments efficiently, while generalizing to novel
object categories and scenarios.

Episodic Semantic Map. Semantic Map con-
struct and update a (K + 2) x M x M map using
RGB-D images and poses, where M denotes the di-
mensions of the map’s width and height, and K + 2
represents the total number of channels in the map.
Specifically, K channels represent the semantic
channels of the detected objects, 2 channels cor-
respond to an obstacle map and an explored map.
Given RGB-D images and the agent’s poses at each
time step, we can obtain 3D point clouds. The 3D
point clouds are projected onto a top-down 2D map
by judging the height, resulting in an obstacle map
and an explored map, which represent navigable ar-
eas and non-navigable obstacle areas, respectively.
Simultaneously, the RGB images are used to pre-
dict the category masks and filter out specific object
categories. These are aligned with the 3D seman-
tic point clouds and ultimately projected onto the
corresponding K semantic channels.
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B More Details of Method

Semantic Value Map. The Semantic Value Map
assigns a value to each pixel in the exploration area,
quantifying its semantic importance for locating the
target object. This value is a parameterized sum of
three dimensions: Direction Semantic Value Map,
Trajectory Semantic Value Map, and Object Seman-
tic Value Map. The value map is used to evaluate
each frontier, with the highest-valued frontier se-
lected for the next exploration step. The Direction
Semantic Value Map is iteratively built using depth
and pose information to construct a top-down map,
where VLM-provided probabilities are projected
onto the corresponding map pixels. When proba-
bilities from different directions are projected onto
the same pixel, their average is calculated. The
Trajectory Semantic Value Map calculates pixel
values based on the agent’s trajectory path, while
the Object Semantic Value Map computes pixel
values based on the most influential value from the
object list.

C More Details of Experiment

Experiment Setup. For HM3D(Yadav et al.,
2023) and Gibson(Xia et al., 2018) , we use Habitat
Simulator(Savva et al., 2019) adhere to the param-
eters established in the Habitat ObjectNav Chal-
lenge (Yadav et al., 2022). For agent, we select
a LoCoBot(Gupta et al., 2018) with a base radius
of 0.18m, which equipped with an RGB-D camera
mounted at a height of 0.88 meters and a pose sen-
sor that provides precise localization. The camera
features a 79° Horizontal Field of View (HFoV)
and captures frames with dimensions of 480 x 640
pixels. For category prediction across all classes,
we employ a finetuned RedNet model(Jiang et al.,
2018), following the approach outlined in(Ye et al.,
2021). In addition, we employ GPT-40(Achiam
et al., 2023) as the VLM in our method. The pa-
rameters for the Trajectory Semantic Value Map
and Object Semantic Value Map in Eq. 1, 4, and 5
are set with = 30, and the weights for «, /3, and
~vin Eq. 7. are set to 0.5, 0.3, and 0.1, respectively.
Ais set as 10 in Eq. 5. More details can be found
in Sec.4.3

Experiment Baselines. In this work, we com-
pare HuLE-Nav against several baselines:

* Random Exploration: A baseline method
where the agent selects random target points in



unexplored areas, offering a simple reference
for comparison with other methods.

FBE (Frontier-Based Exploration) (Gervet
et al., 2023): A traditional exploration ap-
proach that builds a map and uses frontier-
based exploration to explore unknown envi-
ronments.

SemExp (Chaplot et al., 2020): A semantic
exploration method that integrates reinforce-
ment learning to guide exploration based on
semantic maps, relying on pre-trained seman-
tic models for object detection and localiza-
tion.

ZSON (Majumdar et al., 2022): A zero-
shot object navigation method that uses multi-
modal goal embeddings to navigate to previ-
ously unseen objects without specific training
for each target category.

Stubborn (Luo et al., 2022): A baseline
method that relies on a predefined exploration
strategy without active learning, resulting in
fixed behavior during the navigation process.

Pixel-Nav (Cai et al., 2023): A foundation
model-based approach that selects navigation
pixels from panoramic images and trains the
agent to navigate towards them using locomo-
tion skills.

ESC (Exploration with Soft Commonsense
Constraints) (Zhou et al., 2023): A zero-shot
navigation method that integrates object and
room type semantics with soft commonsense
constraints using large language models to
guide the agent’s exploration process.

COW (Commonsense Object Navigation)
(Gadre et al., 2023): A zero-shot object
navigation approach that uses commonsense
knowledge to guide exploration, providing im-
proved navigation efficiency without the need
for task-specific training.

FBE (Frontier-Based Exploration) (Gervet
et al., 2023): As mentioned, FBE employs
frontier-based exploration to guide the agent
through the environment, aiming to achieve
efficient exploration.

L3MVN (Yu et al., 2023): This method uses
a large language model (LLM) fine-tuned for
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frontier-based exploration and reasoning to
help the agent make informed decisions in
complex environments.

* VoroNav (Wu et al., 2024): A zero-shot nav-
igation method that uses Voronoi diagrams
combined with reasoning via LLMs for more
efficient navigation and path planning.

* VLFM (Yokoyama et al., 2024): A novel
method that integrates vision-language fron-
tier maps and utilizes LLMs to enhance rea-
soning about object relationships and naviga-
tion goals.

¢ SG-Nav (Yin et al., 2024): A method that
combines large language models with 3D
scene graph representations to guide zero-shot
navigation, leveraging the reasoning abilities
of the LLM to enhance decision-making.

Experiment Examples. We analyzed the success
rate for each target type in the experiment and com-
pared it with the baseline L3AMVN. As shown in
Fig. 8, HuLE-Nav achieves a higher exploration
success rate than the baseline across all object cat-
egories. We present several examples during the
experiment. Tab. 3 shows the pairwise relation-
ship degrees between objects provided by GPT-4o,
where one row will be used in the object semantic
map during the experiment. Fig. 6, 7, 8, illustrate
sample prompts given to GPT-4 in our method.
Fig. 9, 10, 11, and 12 illustrate some typical exam-
ples and processes encountered in various parts of
the experiment.



Object Chair Sofa Plant Bed Toilet TV Monitor Bathtub Shower Fireplace Appliances Towel Sink Chest of Drawers Table Stairs

Chair 1 075 02 04 -03 0.5 -0.6 -0.5 0.3 0.1 0.1 -0.2 0.5 0.7 0.1
Sofa 0.75 1 03 05 -04 0.6 -0.5 -0.5 0.4 0.2 0.2 -0.2 0.6 0.8 0.2
Plant 0.2 0.3 1 0.1 -0.2 0.2 -0.2 -0.3 0.2 0.1 0.3 0.2 0.2 0.3 0.1
Bed 0.4 0.5 0.1 1 -0.6 0.3 -0.3 -0.4 0.2 0.1 0.1 -0.5 0.6 0.5 0.1
Toilet 03 -04 -02 -0.6 1 -0.5 0.6 0.7 -0.2 -0.3 0.5 0.6 -0.5 -0.4 0.2
TV Monitor 0.5 0.6 02 03 -05 1 -0.5 -0.4 0.3 0.2 0.1 -0.2 0.5 0.6 0.1
Bathtub 06 -05 -02 -03 06 -0.5 1 0.8 -0.2 -0.3 0.4 0.5 -0.5 -0.4 0.1
Shower 05 -05 -03 -04 07 -0.4 0.8 1 -0.3 -0.4 0.5 0.6 -0.6 -0.5 0.1
Fireplace 0.3 0.4 02 02 -02 0.3 -0.2 -0.3 1 0.2 0.2 -0.1 0.3 0.4 0.2
Appliances 0.1 0.2 0.1 01 -03 0.2 -0.3 -0.4 0.2 1 02 0.3 0.2 0.2 0.3
Towel 0.1 0.2 03 0.1 0.5 0.1 0.4 0.5 0.2 0.2 1 0.5 0.1 0.2 0.1
Sink 02 -02 02 -05 06 -0.2 0.5 0.6 -0.1 0.3 0.5 1 -0.4 -0.3 0.2
Chest of Drawers 0.5 0.6 02 06 -05 0.5 -0.5 -0.6 0.3 0.2 0.1 -0.4 1 0.6 0.1
Table 0.7 0.8 03 05 -04 0.6 -0.4 -0.5 0.4 0.2 02 -0.3 0.6 1 0.2
Stairs 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.2 1

Table 3: The Object Correlation Table provided by GPT-4o0 indicates that higher values represent stronger relation-
ships between objects, meaning they are more likely to appear together, while lower values suggest they are less
likely to co-occur.

Partl: Task Setting

You are a navigation robot, and now you are looking for the object goal: {goal} in an indoor
environment. The images are your view of your current position. Angle represents the Angle
directly opposite the center line in this image. Give me a number from O to 1 indicating the
potential for exploring in each direction to find the target. If the target is not in any of
the directions in the picture, you need to give the most likely direction to explore further
(do not have the same probability value for each direction).

Part2: Qualified output

Your output should only be enclosed in brackets as a single dictionary; the reason: {"angle":
possibility} reasoni<>; and whether you detect the goal, answer with 'yes' or 'no'. The
probability you give corresponds to the given anglel And the sum of the possibilities is 1l
The higher the probability, the more potential value this direction has in finding the target,
.ﬁ- the more inclined you are to explore in this direction. If you see the target, give it as high
the grade as possible, like 1 or 0.9! The results in the dict should be sorted in order of the

prompt possibility.

Part3: Example

For example:{"-30.0":0.6,"-90.0":0.2 "-150.0":0.1,"150.0":0.05,"90.0":0.05,"30.0":0.0},
Reason:" The current room is a kitchen and dining area, which typically do not contain beds.
Angles O and 30 show potential pathways leading to other areas of the house where a bed
might be located, such as bedrooms"

Part4: Real-Time Observation

3 -
K
L‘. .
-30° -90° -160° 150° 90°
({"30.0":O.4,“-30.0":0.3,“90.0":0.15,“150.0":0.1,“—90.0":0.025,“—150.0":0.025}. @
Reason:"The area at angle 30.0 looks like a hallway that could lead to other rooms, such
as a bedroom. -30.0 also appears to lead to another space, but less likely than 30.0. The answer

\remaining angles show kitchen and dining areas, which typically do not contain beds."

Figure 6: The complete prompt given to GPT-4 for generating the direction value map after obtaining panoramic
images in HuLE-Nav, along with a sample response.



Partl: Task Description

You are a navigation rebot, and you are stuck in a collision. The images represents your view
i of the current situation. If you're stuck in a stairwell, walk up or down the stairs; If you're

stuck in a corner, try to get out. Suggest a sequence of 10 actions to escape this situation.
prompt | The actions can be one of the following: 1: Move forward 2: Turn left 30° 3: Turn right 30°
Provide the actions only as a JSON list, eg., [1,2,3,1,1,1,2, 3,1, 1].

[t Bl Bl

Part2: Observations

N W
N
[ [38,3,1,1,3,1,1, 1, 1, 1] ] @

answer

Figure 7: The complete prompt given to GPT-4 for collision escape when HuLE-Nav encounters a predicament,
along with a sample response.

Collision Escape Description

Respond with a 'yes' or 'no', and the reason.

i Check if the goal ‘{bedl}' is visible in the image.

prompt Part2: Observations

[ Yes, a bed is in the middle of the room ] @

answer

Figure 8: The complete prompt given to GPT-4 for target verification when HuLE-Nav detects a target, along with a
sample response.

~
I'm stuck in a collision.
N The image represents my view of the current position.
' Suggest a sequence of 10 actions to escape this situation.
i . The actions can be one of the following:

1: Move forward 2: Turn left 30° 3: Turn right 30°

~

Based on the image, it appears that you are stuck near a corner in a home environment.
To navigate out of this corner, you can use the following sequence of actions:

3,3,1,1,3,1,1,1, 1, 1] } @

i 4 T will Turn right 60°, Move forward two steps, Turn right 30°, and Move forward five

steps!

Figure 9: Example of HuLE-Nav collision escape: When the robot encounters a deadlock, GPT-40 generates an
action sequence based on the robot’s current observations. The robot then executes this sequence to successfully
escape the trapped situation.
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Stepll: Select the long-term goal

from frontiers based on the semantic

value map.

Step4l: Turn around and select the

-

using the updated semantic map.

new long-term goal (Dynamic replanning)

/

Stepb6: Arrive long-term goal using
local policy.

14l

Step83: Move towards the long-term

goal. Find new frontier! (Dynamic
Exploration)

/

Step85: Turn around and detect the
target! Verify target using VLM.

&
o

)
AN

J

Step28: Move towards the goal using

local policy. Find new frontier!
(Dynamic Exploration)

&

Step78: Turn around and select the
new long-term goal (Dynamic
replanning).

N

Stepl00: Pass the verification and
move towards the target.

/

Figure 10: Example of HuLE-Nav navigation process: The robot’s main steps in a task to find a "bed," from

initialization to task completion.

&

Check if the “goal” is visible in the image, Respond with a 'yes' or 'no’, and the reason.

/

Goal :toilet

Yes, there is a toilet visible
in the image. It is located
on the left side, partially
visible behind the sink.

~

Yes, there is a chair visible in
the image. It is located near
the lamp, to the right of the

bed.
%

6Goal :chair

~

Yes, there is a bed visible in
the image. It is located in the
room seen through the
doorway, in the background.

/

Goal :bed

<

Yes, there is a toilet visible in
the image. It is located at the
end of the hallway, in the
bathroom area.

Goal :toilet

)

\

No, there is no toilet visible.
The objects in the image
include chairs, a table, and
some artwork on the wall, but
there is no toilet present.

Goal :toilet

<

Goal :tv monitor

No, there is no TV monitor
visible. The objects include
chairs, a table, and some
artwork on the wall, but there
is no TV monitor present.

&)

Figure 11: Example of HuLE-Nav target verification: After the target detector identifies the object, GPT-40 is used
to verify and confirm the detection.
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I'm looking for the object goal:“bed” in an indoor environment.
'ﬁ' Determine the correlation between the objects in the object list and the goal separately.

-
{ "chair": 0.6, "sofa": 0.7, "plant": 0.3, "foilet": -0.9, "tv_monitor": 0.4, "bathtub": -0.8,
“"shower": -0.8, "fireplace": 0.2, "appliances": -0.5, "towel": -0.4, "sink": -0.7,

"chest_of_drawers": 0.8, "table": 0.5, "stairs": -0.2 } @
(G

(Give me a number from O to 1 indicating the potential for exploring in each direction to \
find the target.

| 150°

{"30.0":0.4,"-30.0":0.3,"90.0":0.15,"150.0":0.1,"-90.0":0.025,"-150.0":0.025},

Reason:"The area at angle 30.0 looks like a hallway that could lead to other rooms,

such as a bedroom. -30.0 also appears to lead to another space, but less likely than 30.0.
The remaining angles show kitchen and dining areas, which typically do not contain beds." @

I'm going to the Long-Term Goal!

=
.

Long-Term Goal: 296 252
Direction Value: 0.25
Tajectory Value: -0.0
Obejct Value: 0.28
Distance Value: 0.43

i‘ Pt ‘ ’ Value Sum: 0.29

Figure 12: Example of HuLE-Nav circular scan initialization for the semantic value map decision-making based on
the updated semantic value map.
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