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ABSTRACT

Providing explainable molecular property predictions is critical for many scientific
domains, such as drug discovery and material science. Though transformer-based
language models have shown great potential in accurate molecular property predic-
tion, they neither provide chemically meaningful explanations nor faithfully reveal
the molecular structure-property relationships. In this work, we develop a frame-
work for explainable molecular property prediction based on language models,
dubbed as Lamole, which can provide chemical concepts-aligned explanations 1.
We take a string-based molecular representation — Group SELFIES — as input
tokens to pre-train and fine-tune our Lamole, as it provides chemically meaningful
semantics. By disentangling the information flows of Lamole, we propose con-
sidering both self-attention weights and gradients for better quantification of each
chemically meaningful substructure’s impact on the model’s output. To make the
explanations more faithfully respect the structure-property relationship, we then
carefully craft a marginal loss to explicitly optimize the explanations to be able
to align with the chemists’ annotations. We bridge the manifold hypothesis with
the elaborated marginal loss to prove that the loss can align the explanations with
the tangent space of the data manifold, leading to concept-aligned explanations.
Experimental results over six mutagenicity datasets and one hepatotoxicity dataset
demonstrate Lamole can achieve comparable classification accuracy and boost
the explanation accuracy by up to 14.3%, being the state-of-the-art in explain-
able molecular property prediction. The code is available at the provided link:
https://anonymous.4open.science/r/Lamole-7482

1 INTRODUCTION

Molecular property prediction aims to reveal the molecular structures-property relationships, assisting
scientists in screening molecules for various applications such as drug discovery and material
design (Fang et al., 2022; Deng et al., 2023; Tripp et al., 2023; Wang et al., 2024; Ekström Kelvinius
et al., 2023; Hong et al., 2024). Several learning-based models are devised based on the underlying
molecular representations, such as graph-based and string-based molecular representations. Among
them, string-based molecular representations, e.g., simplified molecular input line entry systems
(SMILES (Weininger, 1988)), stand out for their simplicity and adaptability (Deng et al., 2023; Wigh
et al., 2022; Cheng et al., 2023). By viewing the string-based molecular representation as a form of
"chemical" language, the Transformer-based language models (LMs) like Bert (Kenton & Toutanova,
2019) offer higher throughput and accuracy for molecular property prediction (Deng et al., 2023;
Chithrananda et al., 2020).

Despite the superior performance of learning-based prediction methods, what key factors induce
the model’s predictions remain largely unexplored, impeding further advancements in the scientific
domains. Typically, it is crucial to obtain explanations of predictions while achieving accurate
predictions. These obtained explanations could be used for scientific hypotheses validation or/and
providing actionable insights for refining investigations, such as optimization for molecular structural
design (Wu et al., 2023; Wellawatte et al., 2023; Das et al., 2022). With different types of molecular

1Lamole is from the name of a historical winery in Italy called Lamole di Lamole.
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Figure 1: (a) The molecule visualization of prediction/explanation. The interaction between the
benzene ring and the nitro group (highlighted in red) induces the mutagenic property of the molecule.
(b)-(e) are the explanation results obtained with various methods: (b) OrphicX (Lin et al., 2022);
(c) GNNExplainer (Ying et al., 2019), (d) GNN with gradient-based explainability technique (Grad-
CAM (Selvaraju et al., 2017)); (e) Bert with GradCAM (molecular string SMILES as input); (f) Bert
with GradCAM (molecular string Group SELFIES (Cheng et al., 2023) as the input representation);
(g) Our method Lamole assigns an importance score to each functional group/fragment to indicate
their contribution to the property.

representations, explainability techniques for graph neural networks (GNNs) or LMs might be adopted
to alleviate the general lack of explainability in molecular prediction (Proietti et al., 2024; Ying et al.,
2019; Ye et al., 2023; Lin et al., 2021).

Figure 2: The SMILES and
Group SELFIES strings of
p-nitrobenzoic acid molecule
(C7H5NO4): The tokens in the
Group SELFIES string high-
lighted by color are the corre-
sponding functional groups.

However, we argue that existing explainability techniques of-
ten struggle to generate plausible explanations that can highlight
chemically meaningful substructures and faithfully uncover the
structure-property relationships simultaneously. Specifically, 1)
from the molecular representation perspective, the commonly used
representations do not explicitly encode the chemically meaningful
substructures; current explainability methods can only highlight
individual atoms and bonds as explanations (see Fig. 1 (b)∼(e)).
2) From the perspective of explainability techniques, current meth-
ods suffer from two main limitations. First, they cannot effec-
tively capture the interactions between functional groups within
the molecular structure. Second, they could not generate explana-
tions that align with chemists’ intuition. As a result, they fail to
produce explanations that faithfully reflect the structure-property
relationships. (see Fig. 1 (f)). Therefore, an effective framework
is imperative for explainable molecule property predictions.

The recently proposed string-based molecular representation —
Group SELFIES (Cheng et al., 2023) — encodes molecules at
the functional group/fragment level, showcasing the possibility of
obtaining chemically meaningful explanations. As shown in Fig.
2, Group SELFIES converts a p-nitrobenzoic acid molecule to a string, which explicitly encodes
chemically meaningful substructures as tokens, including a benzene, a nitro group, and a carboxyl
group. Compared with 2D molecular graphs, Group SELFIES provides inherent semantic information,
making it easier for the model to capture and understand chemically meaningful semantics. Moreover,
using Group SELFIES eliminates the need to identify or segment chemically meaningful substructures
in 2D molecular graphs. With Group SELFIES’s simplicity and adaptability, this work develops an
explainable molecular property prediction framework based on language models to provide chemical
concepts-aligned explanations, called Lamole (see Fig. 1 (g)). The contributions can be summarized
as follows.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1. We found that existing explainability techniques fail to provide chemically meaningful
explanations, perceive functional group interactions, and reveal molecular structure-property
relationships faithfully. To address the issues, we use Group SELFIES to pre-train and fine-
tune LMs to make LMs easily understand the chemically meaningful semantics. Moreover,
the process of generating explanations should reflect the reasoning process behind the model
architecture. Therefore, by disentangling the information flows of Transformer-based LMs,
we integrate the self-attention weights and gradients to capture the substructure interactions
to better quantify each chemically meaningful substructure’s contribution to the predicted
molecular properties.

2. To make the explanations more faithfully respect the structure-property relationships, we
elaborate on one marginal loss to calibrate the explanations by aligning them with the
chemists’ annotations. We show that using only a few molecules with ground truth annota-
tions can significantly improve the explanation accuracy by up to 5%.

3. We first bridge the manifold hypothesis with explainable molecular property prediction. We
theoretically demonstrate that the elaborated marginal loss aligns explanations with the data
manifold, respecting the structure-property relationship.

Experimental results over six mutagenicity datasets and one hepatotoxicity dataset demonstrate that
Lamole can achieve comparable classification accuracy and improve the explanation accuracy by
up to 14.3%. We also quantitatively evaluate explanations based on the first proposed plausibility
metric. Compared to alternative baselines, the explanation plausibility of Lamole is improved by up
to 9%. Extensive experimental studies demonstrate Lamole achieves state-of-the-art performance in
explainable molecular property prediction.

2 RELATED WORK

Several explainable GNNs are proposed to explain the relationship between the input graph and the
prediction (Sun et al., 2023; Xiong et al., 2019; Lin et al., 2022; Ying et al., 2019; Luo et al., 2020;
Lin et al., 2021). Among these works, structure similarity or attention weights are proposed to capture
structural interaction (Sun et al., 2023; Xiong et al., 2019). However, two similar substructures do
not necessarily lead to interaction between them, and attention weights are often inconsistent with
the feature importance (Jain & Wallace, 2019; Serrano & Smith, 2019; Abnar & Zuidema, 2020).
In addition, as shown in Fig. 1 (b)∼(d), some trivial structures received relatively high importance
scores, indicating the explanations might not align well with the chemical concepts.

On the other hand, with string-based molecular representations, LMs show great potential in molecu-
lar property prediction (Chithrananda et al., 2020; Wang et al., 2019; Ahmad et al., 2022; Ross et al.,
2022). However, the "black-box" characteristics of LMs hamper trust use of these potent computa-
tional tools in scientific domains. Some explainability techniques could be applied to LMs. One way
is to use the attention weights over the input tokens. However, recent studies suggest that "attention
is not explanation" because attention weights could not reflect the true feature importance (Jain
& Wallace, 2019; Serrano & Smith, 2019; Abnar & Zuidema, 2020). Perturbation-based methods
perturb the inputs and evaluate the output changes to reveal the input importance. However, the
generated explanations may change drastically with very small perturbations (Agarwal et al., 2021).
Gradient-based methods determine the feature importance by the partial derivatives of the output to
each feature (Selvaraju et al., 2017). However, several works show that the gradient-based methods
may not be reliable, as they disregard the influence of model architectures on the output and fail to
incorporate the information of the model architectures into the explanations (Adebayo et al., 2018;
Agarwal et al., 2021; Rudin, 2019). Therefore, the explanation generation process should reflect
the model reasoning process behind the model architectures. To this end, we disentangle the model
architectures’ information flows to generate explanations that faithfully reveal the structure-property
relationship.

3 METHODOLOGY

Problem Setup. Given a dataset G = {(g(i), y(i))} consisting of molecular graphs {g(i)} with
their property labels {y(i)}, explainable molecular property prediction aims to train a model f

3
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Figure 3: An illustration of Lamole. Left panel: Group SELFIES strings are tokenized for fine-tuning
the pre-trained language model, and an MLP classifier is equipped with a cross-entropy loss LCE for
molecular property prediction. Right panel: We disentangle the information flows of the Transformer
to assert that both attention weights and gradient determine the output. Therefore, we incorporate the
attention weights and gradients together to generate importance scores v as explanations. In addition,
a marginal loss LM is designed to align explanations with the chemists’ annotations m.

to map a molecule g to its property y, denoted as denoted as f : g 7→ y, while providing an
importance score vector v(i) = {v(i)

1 , . . . ,v
(i)
j } to indicate the contribution of j-th functional

group/fragment to its property y. Particularly, this work proposes to convert the molecular graph g(i)

into the Group SELFIES string represented as s(i) = {t(i)1 , . . . , t
(i)
j }, where t(i)j is the j-th functional

group/fragment’s token, i.e., [·] in Fig. 2. In addition, this work calibrates the explanations in a
supervised manner. For this purpose, a few molecules with annotation masks are provided. The
annotation masks m(g(i)) ∈ {0, 1}j indicate whether t(i)j is the token of a ground truth substructure,

where mj(g
(i)) = 1 denotes the substructure corresponding to the token t

(i)
j inducing the molecular

property of g(i). This work uses D = {(s(i), y(i))} with a few annotation masks to learn a model
f for explainable molecular property prediction. We omit the superscript (i) for simplicity in the
following parts.

3.1 OUR DESIGN: Lamole

In this work, we pre-train Transformer-based LMs, e.g., Bert family models, using the Group
SELFIES corpus to make the models understand the chemical semantics behind Group SELFIES
strings. The details of the pre-train stage are shown in Appendix A.3 Then, we fine-tune the LMs
with Group SELFIES strings and the molecular property labels for explainable molecular property
prediction. An illustration of proposed Lamole is in Fig. 3. In what follows, we will introduce the
detailed design of Lamole.

Fine-Tuning Stage. Fig. 3 shows the fine-tuning stage of the proposed Lamole. We assume that
the Transformer encoder in Lamole stacks L identical Transformer layers to encode the molecular
string s as token embedding h(l) = {h(l)

1 , . . . ,h
(l)
j }, where h(l) is the token embedding at the l-th

layer. We use the self-attention weighted average embedding ho = (
∑

j=1 αj · h(L)
j )/(

∑
j=1 αj)

for molecular property prediction, where αj is the attention weight of the j-th token. A multilayer
perceptron (MLP) classifier is added to predict the molecular property ŷ = MLP(ho) by minimizing
the classification cross-entropy loss LCE(y, ŷ).
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Information Flow-Based Explanations. To derive the explanations from Transformer-based LMs,
a common practice is to use gradient-based methods to determine each feature’s importance by
analyzing the output’s partial derivatives to each input feature (Selvaraju et al., 2017). However, we
argue that using gradients alone cannot effectively capture substructure interactions. As depicted in
Fig. 1 (f), the gradient-based method CradCAM incorrectly attributes the property to the nitro group
and a benzene ring that is not connected to the nitro group.

We illustrate the possible reason by disentangling the information flows of the Transformer. As shown
in Fig. 3 right panel, due to the skip connection and attention mechanism, both attention weights,
gradients, and the input contribute to the outputs. Therefore, using gradients alone as explanations
could fall short of capturing interactions. To address the issue, we leverage both attention and
gradients, as well as the input, to derive explanations. Below, we will elaborate on integrating
attention weights into gradient-based explanations.

Firstly, we show the process of deriving the gradient-based explanations. Similar to GradCAM (Sel-
varaju et al., 2017), the gradient with respect to the j-th token’s embedding h

(l)
j at the l-th layer is

derived by ∇h
(l)
j = ∂ŷ/∂h

(l)
j , where ∇hj signifies the importance of the j-th token in relation to the

predicted property ŷ. Due to the skip connection in Fig. 3 right panel, the input, and its corresponding
gradient should be leveraged together, and the weighted importance w of the j-th token at the l-th
layer can be determined by

w
(l)
j = ∇h

(l)
j ⊙ h

(l)
j , (1)

where ⊙ is the Hadamard product. The weighted importance is regarded as the gradient-based
explanation.

The interaction among tokens can be revealed by the self-attention mechanism in Fig. 3 right
panel. The attention mechanism calculates pairwise similarity scores between all pairs of tokens
to determine attention weights, and these attention weights inherently encode the functional group
interactions. Therefore, we combine the attention weights with the gradient-based explanation
to capture functional group interactions. Assuming the attention weights of the j-th token at the
l-th layer is α

(l)
j , we integrate the attention weights with weighted importance w to consider the

interactions. The importance score of the molecule g can be obtained by

v
(l)
j (g) =

(
tanh(α

(l)
j ) · tanh(w(l)

j )
) 1

2

, (2)

where α(l)
j is the averaging of attention weights of multiple attention heads. Finally, we sum v

(l)
i over

all layers as the final importance score of the j-th token,

v(g) = softmax(

L∑
l=1

v(l)(g)). (3)

The higher the importance scores, the greater the contribution of the corresponding functional
groups/fragments to the molecular property.

Towards Plausible Explanations. One plausible explanation should faithfully uncover the structure-
property relationships. In other words, the explanation should match the ground-truth substructures
with high confidence. Nevertheless, the importance scores of ground-truth substructures might not be
significantly higher than those of other parts. To address this issue, we propose a marginal loss to
explicitly align explanations with the chemists’ annotations to improve the explanations’ plausibility.

First, we formally define the plausibility of explanations. "Plausibility" refers to how the interpretation
convinces humans (Wiegreffe & Pinter, 2019; Herman, 2017; Jacovi & Goldberg, 2020). Similarly, in
our context, "plausibility" refers to the degree of confidence in the explanations that would convince
the chemists.

5
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Definition 1 (Plausibility): Given the importance scores v over all tokens in the molecule g,
the mean importance score v∈Tg

over ground truth substructures Tg and the mean importance

score v/∈Tg
over other substructures Tg are denoted by v∈Tg

=
∑

j vj ·I(tj∈Tg)∑
j I(tj∈Tg)

and v/∈Tg
=∑

j vj ·I(tj /∈Tg)∑
j I(tj /∈Tg)

, respectively, where I(·) is the indicator function. The explanations’ plausibility

EP(g) is defined as the ratio of the difference between v∈Tg
and v/∈Tg

to v/∈Tg
,

EP(g) =
v∈Tg

− v/∈Tg

v/∈Tg

. (4)

The higher the EP value, the greater the confidence of the explanation in matching the ground truth
substructure.

Eq. (4) defines the explanation plausibility based on the scores of two parts, i.e., the scores on ground
truth and the scores on non-ground truth. The lower the scores on non-ground truth and the greater
the scores on ground truth, the better explanation plausibility. Therefore, to maximize the plausibility,
our objective can be transformed to minimize the importance score of non-ground truth and maximize
the importance score of ground truth.

To this end, we design a max-margin loss to optimize the importance score. In our work, the ground
truth substructures are annotated by a binary mask vector m(g) ∈ {0, 1}j . It is worth noting that
using only a few annotations can significantly improve the explanation accuracy. Specifically, the
mask vector m enforces the explanations to align with the ground truth substructures. To achieve
the goal, a max-margin loss is designed by maximizing the mean value of the importance scores of
tokens that have mask values of 1 while minimizing the mean value of importance scores for tokens
with mask values of 0.

LM (v,m) = Eg∈G

[
max

(
0,

∑
j=1(1−mj(g)) · vj(g)

Ns
−

∑
j=1 mj(g) · vj(g)

Nc

)
+△1

]
, (5)

where △1 is a margin term, Ns is the number of tokens with mask values m(g) of 0, and Nc

is the number of tokens with mask values m(g) of 1. The overall optimization objective of the
fine-tuning stage is to minimize LCE + LM . The core of Eq. (5) is the discrepancy between the
average importance score of ground truth and the average importance score of non-ground truth. By
minimizing LM , the discrepancy between the two importance scores is maximized. In other words,
the average importance score of non-ground truth is suppressed, and the average importance score of
ground truth is increased. Finally, the explanation plausibility defined in Eq. (4) is improved. The
next section will theoretically show that by using the designed marginal loss, the explanations can
faithfully reflect the structure-property relationships.

3.2 THEORETICAL ANALYSIS

We bridge the manifold hypothesis with the marginal loss to theoretically show that the explanations
can respect the structure-property relationships. Before giving the proof, the notation and definition
regarding the manifold hypothesis are presented.

Manifold Hypothesis. It is widely believed that natural data, including molecules, distribute around
a manifold (Bordt et al., 2023; Lin et al., 2022; Godwin et al., 2022; Singh et al., 2020). According
to the manifold hypothesis for gradient-based explanations (Bordt et al., 2023), if a feature lies in
the tangent space of a manifold, then the feature respects the manifold and contributes to the class,
and such a feature is desirable to be explained. We call these features "causal features" in our work.
Conversely, if a feature is orthogonal to the manifold, then the feature does not contribute to the class.
We call these features "spurious features".

With the annotation masks, the causal features s∗ and spurious features s∗ can be distinguished by
s∗ = s ⊙m(g) and s∗ = s ⊙ (1 −m(g)), respectively, where s∗ ∪ s∗ = s and s∗ ∩ s = ∅. By
projecting the causal features and spurious features into the data manifold M, the corresponding
manifold regarding the causal features and spurious features can be defined as follows,

6
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Definition 2 (Causal feature manifold and spurious feature manifold): Assume the distribution
p(g|y) is implicitly modeled by a manifold M, and the manifold can be decomposed into two
components,

p(g|y)︸ ︷︷ ︸
M

= p(g|y)⊙m(g)︸ ︷︷ ︸
Mc

+ p(g|y)⊙ (1−m(g))︸ ︷︷ ︸
Ms

, (6)

where Mc is the causal feature manifold and Ms represents the spurious feature manifold.

With this decomposition, we demonstrate how the gradient-based explanations ∇g log p(y|g) can
uncover the structure-property relationships. Due to the page limitation, we provide the proof in
Appendix A.1.

Theorem 1 The marginal loss of Eq. (5) aligns the gradient-based explanations ∇g log p(y|g)
with the tangent space of the causal feature manifold Mc, thus respecting the structure-property
relationships.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use six datasets on two types of tasks, i.e., hepatotoxicity and mutagenicity, to evaluate
the algorithmic performance for the explainable molecular property prediction. Six mutagenicity
datasets are Mutag (Debnath et al., 1991), Mutagen (Morris et al., 2020), PTC-FM (Toivonen et al.,
2003), PTC-FR (Toivonen et al., 2003), PTC-MM (Toivonen et al., 2003), and PTC-MR (Toivonen
et al., 2003). For hepatotoxicity (Toivonen et al., 2003), the Liver dataset (Liu et al., 2015) is used.
We used these datasets as the ground truth substructures in these datasets are known. For detailed
information on these datasets and the ground truth substructures, please refer to Appendix A.2.

Evaluation Metrics. We use three metrics for evaluating the performance of the proposed Lamole.
1) Classification Accuracy: We evaluate the model’s predictions by

∑I
i=1 I(y(i) = ŷ(i))/I . 2)

Explanation Accuracy: We follow the experimental settings in GNNExplainer (Ying et al., 2019),
which formulates the explanation problem as a binary classification of edges. We treat edges inside
ground-truth substructure as positive edges and negative otherwise, and AUC is adopted as the
metric for quantitative evaluation. We only consider the mutagenic/hepatotoxic molecules because no
explicit substructures exist in nonmutagenic/nonhepatotoxic ones. 3) Explanations’ Plausibility: We
use the defined explanations’ plausibility EP to measure how confident the explanation aligns with
the ground truth.

Baselines. We combine Lamole into three BERT family models, such as DistilBert (Sanh, 2019),
DeBerta (He et al., 2020), and Bert to evaluate the performance of the proposed Lamole. For
evaluating classification accuracy, we compare our Lamole with one SMILES string-based LM,
ChemBERTa (Chithrananda et al., 2020) and several GNNs including GCN (Kipf & Welling, 2016),
DGCNN (Zhang et al., 2018), edGNN (Jaume et al., 2019), GIN (Xu et al., 2018), RW-GNN (Niko-
lentzos & Vazirgiannis, 2020), DropGNN (Papp et al., 2021), and IEGN (Maron et al., 2018).

For evaluating explanation accuracy, Lamole is compared with three types of alternative methods: 1)
GCN with feature-based explainability techniques, including SmoothGrad (Smilkov et al., 2017),
GradInput (Shrikumar et al., 2017), and GradCAM (Selvaraju et al., 2017), 2) Bert with the above
feature-based explainability techniques, where Group SELFIES is used as input for a fair comparison,
and 3) explainable GNNs including OrphicX (Lin et al., 2022), GNNExplainer (Ying et al., 2019),
PGExplainer (Luo et al., 2020), and Gem (Lin et al., 2021). The details of experimental settings can
be found in Appendix A.3.

4.2 RESULTS

Prediction Performance. Table 1 shows the classification accuracy of compared algorithms. As we
can see, our proposed Lamole+DistilBert, Lamole+DeBerta, and Lamole+Bert not only can provide
explainability but also can achieve comparable prediction accuracy as compared to existing predictive
methods. In addition, Lamole models show superior performance over ChemBERTa. This suggests

7
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Table 1: Mean Classification Accuracy on the Seven Datasets (%)
Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

GCN (Kipf & Welling, 2016) 84.6 78.9 54.8 63.0 57.8 53.3 41.1
DGCNN (Zhang et al., 2018) 85.8 74.8 57.3 63.5 61.0 58.6 44.6
edGNN (Jaume et al., 2019) 86.9 75.2 59.8 65.7 64.4† 56.3 44.5

GIN (Xu et al., 2018) 87.5 82.3‡ 62.1† 66.2 65.1‡ 64.0 44.9
RW-GNN (Nikolentzos & Vazirgiannis, 2020) 87.2 80.3 61.9 64.0 62.4 57.0 43.2

DropGNN (Papp et al., 2021) 89.4‡ 80.7† 62.0 66.0 63.7 64.2 45.0
IEGN (Maron et al., 2018) 84.6 80.1 60.8 59.8 61.1 59.5 45.3

ChemBERTa (Chithrananda et al., 2020) 86.8 78.0 60.0 65.7 60.4 58.7 45.7

Lamole+DistilBert 84.2 76.8 57.5 69.0 60.2 64.5† 47.2†

Lamole+DeBerta 86.8 73.7 58.6 69.5† 59.7 63.8 45.8
Lamole+Bert 88.2† 74.5 62.4‡ 70.0‡ 61.2 66.0‡ 47.5‡

‡ and † denote the best and the second-best results, respectively.

that using molecular representations with more chemical semantics, like Group SELFIES, can help
LMs better learn the chemical semantics and structure-property relationships.

Explanation Performance. Table 2 presents the explanation accuracy of the compared explainability
techniques. It should be noted that the ground truth annotations used in our work provide additional
supervisory signals. Therefore, we also align the generated explanations of these baselines with the
annotations for fair comparison, and the ground truth annotation rate is 10%. Lamole improves the
explanation accuracy by 1.4% ∼ 14.3% compared to the baseline methods. We also investigated the
explanation accuracy of our Lamole under different ground truth annotation rates (10%, 20%, 50%,
and 100%). The impact of annotation rates can be found in Appendix A.5. In addition, we discuss
the rationale of using labeled annotations (see Appendix A.4).

Table 2: Mean Explanation Accuracy on the Seven Datasets (%)
Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

GradInput+GCN (Shrikumar et al., 2017) 70.3 67.9 69.7 66.4 64.6 65.0 73.0
GradCAM+GCN (Selvaraju et al., 2017) 69.8 67.0 71.0 67.9 66.2 67.3 69.4
SmoothGrad+GCN (Smilkov et al., 2017) 69.2 66.8 67.5 62.6 64.9 63.1 66.4

GradInput+Bert (Shrikumar et al., 2017) 75.1 72.6 73.0 68.9 65.6 69.6 75.6
GradCAM+Bert (Selvaraju et al., 2017) 75.3 72.4 77.5 70.0 70.2 73.0 76.0
SmoothGrad+Bert (Smilkov et al., 2017) 73.4 72.8 73.7 71.0 67.0 69.9 75.1

GNNExplainer (Ying et al., 2019) 70.6 64.2 68.9 67.9 66.8 67.1 72.1
PGExplainer (Luo et al., 2020) 66.5 58.7 70.3 68.0 65.9 67.0 71.5

Gem (Lin et al., 2021) 73.7 66.0 71.3 69.0 68.9 69.2 73.6
OrphicX (Lin et al., 2022) 78.0‡ 71.5 74.6 70.4 70.9† 71.4 74.0

Lamole+DistilBert 70.9 73.0 74.0 70.2 69.6 78.1‡ 76.1‡

Lamole+DeBerta 76.1 75.0† 79.9† 72.1† 70.3 77.2† 75.0
Lamole+Bert 77.8† 75.2‡ 81.1‡ 72.2‡ 72.0‡ 73.1 77.3†

‡ and † denote the best and the second-best results, respectively.

We selected some representative molecules for explanation visualization. These explanations are
shown in Figs. 1, 4, 12, 13, 14, and 15, respectively. The right panel of those figures is the importance
scores obtained by Lamole, where "other" in the figures is the average importance score of other
unlisted functional groups/fragments. Compared to baseline methods, Lamole provides chemically
meaningful explanations. Particularly, the interaction among the functional groups is successfully
captured. More visualization results can be found in Appendix A.7.

In addition, we evaluated the performance of compared algorithms by using the proposed explanation
plausibility metric EP. The statistical results of EP are presented in Figs. 5 and 11. From the figures,
we can observe that the EP values of the comparison algorithm are slightly lower, which means that
the algorithms cannot confidently reflect the relationships between structure and property. Compared
to the comparison algorithm, the EP values of Lamole have increased by 2% ∼ 9%. More analysis
regarding the explanation plausibility can be found in Appendix A.6.
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Figure 4: Explanation visualization of one molecule (ID: 155) from the Mutag dataset.
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Figure 5: The explanation plausibility of the compared algorithms on the Mutag, PTC-FM, and
PTC-MR datasets.

4.3 ABLATION STUDIES

We conducted ablation studies for each component in our Lamole. Specifically, we removed the
attention weights in the explanations, removed the marginal loss, and only used attention weights
as explanations. The corresponding ablation algorithms are named Lamole (−α), Lamole (−LM ),
and Lamole (Att), respectively. The results are shown in Fig. 6. The explanation accuracy decreases
by 1.4%∼2.3% when removing the attention weights. Removing the marginal loss can decrease the
explanation accuracy by 1.0%∼5.0%. Regarding the results of using only attention weights, The
explanation accuracy decreases by 1.4%∼6.3%. The above results confirm the effectiveness of using
the marginal loss, attention weights, and gradients.

From the perspective of model training, the marginal loss enables the model to be trained under
the causal signals. To verify, we compared the classification performance with and without the

Mutag PTC-FM PTC-FR PTC-MM PTC-MR Liver65

70

75

80

85

AU
C

 (%
)

Explanation Accuracy of Ablation Algorithms

Lamole+Bert
Lamole+Bert(- )
Lamole+Bert(- M)
Lamole+Bert(Att)

Figure 6: The explanation accuracy of Lamole+Bert, Lamole+Bert (−α), Lamole+Bert (−LM ), and
Lamole (Att).
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marginal loss, as shown in Table 3. Without the marginal loss, the classification accuracy degrades by
0.7%∼3.7%. The above results indicate that marginal loss could help identify the causal features,
thereby improving classification accuracy.

Table 3: The classification performance with and without the marginal loss (%)
Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

Lamole-LM 84.9 73.8 58.6 69.3 59.7 62.3 44.6
Lamole 88.2 74.5 62.4 70.0 61.2 66.0 47.5

To investigate the attention weights, the attention weights of two molecules are depicted in Fig. 7.
From Fig. 7 middle panel, it can be found the correlation among the ground truth substructures is
higher than others, showcasing the rationality of using attention weights to capture the functional
group interactions. When we aggregate the attention weights for each token, the top two attention
weights of the molecule (ID:155) match the two ground truth substructures (see Fig. 7 (a) right panel).
However, the top two attention weights of the molecule (ID:156) do not match the two ground truth
substructures (see Fig. 7 (b) right panel). The above results indicate that attention weights can capture
the interactions and also confirm that "attention is not explanation" (Jain & Wallace, 2019; Serrano &
Smith, 2019; Abnar & Zuidema, 2020). Due to the page limitation, the limitation of the proposed
work is provided in Appendix A.9.

Figure 7: Attention weights visualization. The ground truth substructures are highlighted in red.

5 CONCLUSIONS

This work proposed Lamole for explainable molecular property prediction based on language models.
Lamole uses Group SELFIES as input for chemically meaningful semantics. By disentangling the
information flows of Transformer-based LMs, Lamole integrates attention weights into gradients to
generate explanations to quantify each chemically meaningful substructure’s impact on the model’s
output. Furthermore, one marginal loss is designed to calibrate the explanations to be more faithful by
aligning them with the chemists’ annotation. Lamole ’s effectiveness has been demonstrated through
theoretical analysis and extensive experimental validation.
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Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple GNN regularisation
for 3d molecular property prediction and beyond. In International Conference on Learning
Representations, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2020.

Bernease Herman. The promise and peril of human evaluation for model interpretability. arXiv
preprint arXiv:1711.07414, 2017.

Haokai Hong, Wanyu Lin, and Kay Chen Tan. Diffusion-driven domain adaptation for generating 3d
molecules. arXiv preprint arXiv:2404.00962, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we define
and evaluate faithfulness? In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4198–4205, 2020.

Sarthak Jain and Byron C Wallace. Attention is not explanation. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556, 2019.

Guillaume Jaume, An-Phi Nguyen, Maria Rodriguez Martinez, Jean-Philippe Thiran, and Maria
Gabrani. edgnn: A simple and powerful gnn for directed labeled graphs. In International
Conference on Learning Representations, 2019.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks. In
International Conference on Machine Learning, pp. 6666–6679. PMLR, 2021.

Wanyu Lin, Hao Lan, Hao Wang, and Baochun Li. Orphicx: A causality-inspired latent variable
model for interpreting graph neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13729–13738, 2022.

Ruifeng Liu, Xueping Yu, and Anders Wallqvist. Data-driven identification of structural alerts for
mitigating the risk of drug-induced human liver injuries. Journal of cheminformatics, 7:1–8, 2015.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2018.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. Advances in
Neural Information Processing Systems, 33:16211–16222, 2020.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021.

Grace Patlewicz, Rosemary Rodford, and John D. Walker. Quantitative structure-activity relationships
for predicting mutagenicity and carcinogenicity. Environmental Toxicology and Chemistry, 22(8):
1885–1893, 2003.

Michela Proietti, Alessio Ragno, Biagio La Rosa, Rino Ragno, and Roberto Capobianco. Explainable
ai in drug discovery: self-interpretable graph neural network for molecular property prediction
using concept whitening. Machine Learning, 113(4):2013–2044, 2024.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das.
Large-scale chemical language representations capture molecular structure and properties. Nature
Machine Intelligence, 4(12):1256–1264, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

V Sanh. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. In Proceedings of
Thirty-third Conference on Neural Information Processing Systems (NIPS2019), 2019.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Sofia Serrano and Noah A Smith. Is attention interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 2931–2951, 2019.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMLR, 2017.

Harshdeep Singh, Nicholas McCarthy, Qurrat Ul Ain, and Jeremiah Hayes. Chemoverse: Mani-
fold traversal of latent spaces for novel molecule discovery. European Conference on Artificial
Intelligence Workshop, 2020.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Haichao Sun, Guoyin Wang, Qun Liu, Jie Yang, and Mingyue Zheng. An explainable molecular
property prediction via multi-granularity. Information Sciences, 642:119094, 2023.

Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma. Statistical
evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):1183–1193,
2003.

Austin Tripp, Sergio Bacallado, Sukriti Singh, and José Miguel Hernández-Lobato. Tanimoto random
features for scalable molecular machine learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 33656–33686. Curran Associates, Inc., 2023.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th ACM
international conference on bioinformatics, computational biology and health informatics, pp.
429–436, 2019.

Zhenzhong Wang, Haowei Hua, Wanyu Lin, Ming Yang, and Kay Chen Tan. Crystalline material
discovery in the era of artificial intelligence. arXiv preprint arXiv:2408.08044, 2024.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Geemi P Wellawatte, Heta A Gandhi, Aditi Seshadri, and Andrew D White. A perspective on
explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19
(8):2149–2160, 2023.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 11–20, 2019.

Daniel S Wigh, Jonathan M Goodman, and Alexei A Lapkin. A review of molecular representation in
the age of machine learning. Wiley Interdisciplinary Reviews: Computational Molecular Science,
12(5):e1603, 2022.

Zhenxing Wu, Jihong Chen, Yitong Li, Yafeng Deng, Haitao Zhao, Chang-Yu Hsieh, and Tingjun
Hou. From black boxes to actionable insights: A perspective on explainable artificial intelligence
for scientific discovery. Journal of Chemical Information and Modeling, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Ziyuan Ye, Rihan Huang, Qilin Wu, and Quanying Liu. Same: Uncovering gnn black box with
structure-aware shapley-based multipiece explanations. In A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 6442–6466. Curran Associates, Inc., 2023.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
Xiangyu Yue, Dongzhan Zhou, et al. Chemllm: A chemical large language model. arXiv preprint
arXiv:2402.06852, 2024.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

CONTENTS

A Appendix 15

A.1 Bridging Manifold Hypothesis with Chemical Concepts-Aligned Explanations . . . 15

A.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.4 Discussion on Using Labeled Annotations . . . . . . . . . . . . . . . . . . . . . . 17

A.5 More Results on Different Annotation Rates . . . . . . . . . . . . . . . . . . . . . 17

A.6 More Results on Explanation Plausibility . . . . . . . . . . . . . . . . . . . . . . 18

A.7 More Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.8 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.9 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.1 BRIDGING MANIFOLD HYPOTHESIS WITH CHEMICAL CONCEPTS-ALIGNED
EXPLANATIONS

Proof of Theorem 1: The gradient with respect to the prediction ∇g log p(y|g) can be decomposed
into the gradient on the causal features and spurious features, respectively,

∇g log p(y|g) = ∇g log p(y|g)⊙m(g) +∇g log p(y|g)⊙ (1−m(g)). (7)

By minimizing the loss of Eq. (5), the gradients on spurious features ∇g log p(y|g)⊙ (1−m(g))
are suppressed, and ∇g log p(y|g) approximates ∇g log p(y|g) ⊙ m(g). Therefore, we have
∇g log p(y|g) ≈ ∇g log p(y|g)⊙m(g). On the other hand, ∇g log p(y|g)⊙m(g) can be rewritten
as

∇g log p(y|g)⊙m(g) = ∇g log p(g|y)⊙m(g)−
∑
j

p(y = j|g)∇g log p(g|y = j)⊙m(g). (8)

Because the data distribution p(g|y)⊙m(g) reflects the causal feature manifold Mc, the gradient of
the distribution ∇gp(g|y)⊙m(g) represents the tangent space of the causal feature manifold Mc. In
addition, Eq. (8) shows that the ∇g log p(y|g)⊙m(g) is a linear combination of ∇gp(g|y)⊙m(g),
so ∇g log p(y|g)⊙m(g) also lies tangent space of the manifold Mc.

Together with Eq. (7) and Eq. (8), we prove the gradient-based explanations ∇g log p(y|g) lies
tangent space of the manifold Mc. This indicates by minimizing the loss of Eq. (5), the model
p(y|g) has reflected the causal feature manifold. According to the manifold hypothesis, the features
on the causal feature manifold contribute to the molecular property. Therefore, the gradient-based
explanations ∇g log p(y|g) can uncover the causal features, thus revealing the structure-property
relationships. This completes the proof.

A.2 DATASETS

We use six datasets on two types of tasks, i.e., hepatotoxicity and mutagenicity, to evaluate the
algorithmic performance for the explainable molecular property prediction. Six mutagenicity datasets
are Mutag (Debnath et al., 1991), Mutagen (Morris et al., 2020), PTC-FM (Toivonen et al., 2003),
PTC-FR (Toivonen et al., 2003), PTC-MM (Toivonen et al., 2003), and PTC-MR (Toivonen et al.,
2003). For hepatotoxicity (Toivonen et al., 2003), the Liver dataset (Liu et al., 2015) is used. Larger-
sized molecules typically include more complex structures. The datasets that we used contained
relatively large molecules. The maximal number of atoms of Mutag, Mutagen, PTC-FM, PTC-FR,
PTC-MM, PTC-MR, and Liver are 26, 417, 64, 64, 64, 64, and 157, respectively. The details of the
used dataset are provided in Table 4.
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Table 4: Statistiscal Information of the Datasets
Datasets Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

Graphs 188 4337 349 351 336 344 587
Classes 2 2 2 2 2 2 3

Max nodes 26 417 64 64 64 64 157
Avg nodes 17.9 29 14.1 14.6 14 14.3 25.6
Avg edges 19.8 30 14.5 15 14.3 14.7 27.4

Ground truth∗ 120 724 58 49 51 61 187
∗ denotes the number of molecules with known ground truth substructures.

Following OrphicX (Lin et al., 2022), on the Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, and
PTC-MR datasets, we only consider the explanations for the mutagenic class, because the molecules
of the non-mutagenic class have no ground truth. Although some works used single N = N, NO2, or
NH2 as ground truth, this is not reasonable, as 32% of non-mutagenic graphs in Mutagen containing
at least single NO2 or NH2. In fact, the ground truth for the mutagenic class is the benzene with a
chemical group on it, such as N = N, NO2, and NH2 (Lin et al., 2021; 2022; Patlewicz et al., 2003).

For the Liver dataset, the molecules of possible hepatotoxicity with ground truth substructures and
hepatotoxicity with ground truth substructures are collected for explainable molecular property
prediction. The twelve ground truth substructures of the Liver dataset are shown in Fig. 8.
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N N
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Figure 8: Twelve ground truth substructures of the Liver dataset. Lowercase element symbols
represent aromatic atoms of the element; the letter "a" matches any aromatic atom. Elements in
square brackets match any of the elements in a molecule.

Users can specify the fragments in Group SELFIES they want to cover by using a dictionary. The
dictionary is called "group set". Our group set covered several fundamental functional groups,
including benzene, amido, carboxyl, hydroxyl, nitro, amino, toluene, nitroso, cyan, and methyl.
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A.3 EXPERIMENTAL SETTINGS

Following ChemBERTa (Chithrananda et al., 2020), our BERT family models were pre-trained on a
set of 100,000 molecules from the ZINC dataset (Irwin et al., 2012). During pre-training, 15% of
tokens in each input string were randomly masked for masked language learning. For each dataset,
the ratio of samples with annotation masks over the data size is 10%. The pre-training process was
conducted for 10 epochs.

We finetuned the models on the Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, PTC-MR, and Liver
datasets for the downstream explainable molecular property prediction tasks. During the fine-tuning
stage, for Mutag, Mutagen, and the four PTC datasets, we used an Adam optimizer with a learning
rate of 5e-5 and weight decay of 1e-5. The number of epochs is set to 60. For the liver dataset, we
used an Adam optimizer with a learning rate of 5e-7, and the other parameter settings were the same
as the above. The margin term △1 in Eq. (5) is set to 1.

ChemBERTa is a SMILES string-based Bert model, and the input for ChemBERTa is SMILES strings.
For SmoothGrad+Bert, GradInput+Bert, and GradCAM+Bert, the inputs are Group SELFIES strings
for a fair comparison. For explainable GNNs and GCNs with feature-based explainability techniques,
we select edges with the top-K importance scores as the explanations, where K is the number of
edges in the corresponding ground truth substructures. For Bert with feature-based explainability
techniques, we select tokens with the top-K importance scores as the explanations, where K is 2 for
the Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, PTC-MR, and Liver datasets, as 2 fragments
(benzene with chemical groups such as N = N, NO2, and NH2 on the benzene) determine the
mutagenic class. For the Liver dataset, the K is the number of tokens of ground truth substructures.
We conducted experiments on the computer with an NVIDIA A100 GPU.

A.4 DISCUSSION ON USING LABELED ANNOTATIONS

Lamole requires human-labeled annotations. Due to the huge knowledge base of LLMs, we explored
the use of LLMs, including ChatGPT and ChemLLM (Zhang et al., 2024), to annotate the ground truth.
We input molecules’ SMILES strings into the two LLMs to ask the ground truth. The explanation
accuracy results are shown in Table 5.

It is obvious that there is a significant decrease in explanation accuracy, indicating that existing
LLMs may make incorrect annotations. Therefore, we argue that this human-in-the-loop strategy
— providing slight human annotations — to guide learning is reasonable and necessary for critical
scientific domains.

Table 5: The explanation accuracy results when using different annotation methods
Methods Mutag PTC-FM PTC-FR PTC-MM PTC-MR Liver

Lamole (ChatGPT) 67.6 64.5 55.0 51.0 65.6 72.7
Lamole (ChemLLM) 62.5 72.1 61.5 57.1 71.9 72.7

Lamole (Human) 77.8 81.1 72.2 72.0 73.1 77.3

A.5 MORE RESULTS ON DIFFERENT ANNOTATION RATES

The results of explanation accuracy of Lamole under different annotation rates (10%, 20%, 50%, and
100%) on the PTC-FR and PTC-MM datasets are shown in Fig. 9 and Fig. 10. It is clear that more
annotations can constantly enhance the accuracy of the explanation. Compared to Lamole (−LM ),
only using 10% molecules with ground truth annotations can significantly improve explanation accu-
racy by up to 5%. Using more annotations (from 10% to 20%) can achieve significant improvement
in explanation accuracy. However, raising the rate from 50% to 100% can bring a limited increase in
explanation accuracy on the four PTC datasets. Therefore, there is a trade-off between the explanation
accuracy and additional annotation costs.
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Figure 9: The explanation accuracy of Lamole with different annotation rates on the Mutag, PTC-FM,
and PTC-MR datasets.
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Figure 10: The explanation accuracy of Lamole with different annotation rates on the PTC-FR and
PTC-MM datasets.

A.6 MORE RESULTS ON EXPLANATION PLAUSIBILITY

The experimental results of the explanation plausibility on the PTC-FR, PTC-MM, and Liver datasets
are presented in Fig. 5 and Fig. 11. The explanations’ plausibility EP(g) is defined as the ratio of
the difference between the mean importance scores of ground truth and the mean importance scores
of non-ground truth to the mean importance scores of non-ground truth. A larger ratio indicates
that ground truth’s importance scores exceed non-ground truth’s. The high EP(g) values of Lamole
indicate Lamole can improve the importance scores of ground truth and suppress the importance
scores of non-ground truth, leading to higher confidence in matching the ground truth.
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Figure 11: The explanation accuracy of Lamole with different annotation rates on the PTC-FR,
PTC-MM, and Liver datasets.
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A.7 MORE VISUALIZATIONS

In addition to Figs. 1 and 4, the explanations of more molecules are shown in Figs. 12, 13, 14, and
15, respectively. The right panel of those figures displays the importance scores across the functional
groups/fragments obtained by Lamole, where "other" represents the average importance score of the
other unlisted functional groups/fragments. As shown in Figs. 13 and 14, Lamole accurately and
confidently identify benzene with amido group and benzene-1 with nitro-1 group as explanations,
respectively. While other methods can neither provide chemically meaningful explanations nor reflect
the functional group interactions. These explanations demonstrate Lamole’s superior interpretation in
faithfully revealing the structure-property relationships. However, as depicted in Fig. 15, although
the ground truth substructures, i.e., benzene-1 and amido ground, are identified, other functional
groups/fragments such as carbonyl-0, Br-0, and Br-1 also have relatively higher importance scores.
This may be due to complex interactions caused by multiple functional groups. In future work, more
strategies may need to be designed to reveal such complex functional group interactions.

Figure 12: Explanation visualization of one molecule (ID: 156) from the Mutag dataset.
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Figure 13: Explanation visualization of one molecule (ID: 574) from the Liver dataset.
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Figure 14: Explanation visualization of one molecule (ID: 161) from the PTC-FM dataset.
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Figure 15: Explanation visualization of one molecule (ID: 277) from the PTC-FM dataset.

A.8 COMPUTATIONAL COST

The pre-training stage took 11.8 hours. After pre-training, we fine-tuned the model on the used
dataset. On the Mutag dataset, this process took 158s, and the evaluation time was 15s. For the
baseline methods, SmoothGrad+GCN and OrphicX, the total training and evaluation time is 87s and
122s, respectively. Considering that the language model only requires pretraining once, the proposed
method consumes acceptable additional computational cost but brings comparable classification
accuracy and explainability.

A.9 LIMITATION

The developed explainable molecular property prediction models have several limitations and require
further research.

1. Label annotations: Currently, the proposed Lamole still requires human label annotations as
additional supervisory signals. For a fair comparison, we also use these annotations to align
the generated explanation of compared baselines. Table 2 shows that Lamole outperforms
baseline explainability techniques when using human ground truth annotations. To eliminate
the human labor in labeling annotations, we also explored the possibility of using LLMs to
annotate ground truth, as shown in Appendix A.4. The results indicate that a few human
label annotations are still required to improve the explanation accuracy. Despite that, from
the ablation studies, we show that only a few annotations can significantly improve the
explanation accuracy. Overall, there is a trade-off between the explanation accuracy and
additional annotation costs.

2. Generalizability: Ensuring the generalizability of the explainable models to handle large
and diverse molecular datasets across different chemical domains while maintaining inter-
pretability and faithfulness to structure-property relationships is an ongoing challenge.

3. Fidelity: The classification prediction performance of the algorithm needs further improve-
ment. Future work may include incorporating larger Group SELFIES corpora and larger
models to further unleash its ability in explainable molecular property prediction.
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