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ABSTRACT

Multimodal Large Language Models (MLLMs) hold promise in tackling tasks
comprising multiple input modalities, but may produce seemingly plausible but
erroneous output, making them hard to trust and deploy. Accurate uncertainty
metrics during inference could enable efficient escalation of queries from MLLMs
to human experts or larger models for improved performance. However, existing
uncertainty metrics are designed and tested only for specific modalities, and require
external verifiers, additional training, or high computational resources, while strug-
gling to handle scenarios such as out-of-distribution (OOD) or adversarial settings.
To overcome these limitations, we propose UMPIRE, a training-free framework to
estimate MLLM uncertainty for tasks involving various input modalities at infer-
ence time without external tools, based on the diversity of the MLLM’s responses
computed by its enclosed semantic volume that is adjusted with internal indicators
of each response’s coherence. UMPIRE does not require external modality-specific
interventions and instead rely on the MLLM’s own internal modality features,
allowing it to generalize across modalities. We provide theoretical analysis to
offer intuition on how UMPIRE could satisfy key desiderata, and empirically show
that it outperforms baselines in predicting incorrect responses and providing cali-
brated uncertainty estimates across different input modality tasks involving text,
image, text and video, including for OOD, adversarial and domain-specific data
settings. We also show that UMPIRE performs well for uncertainty quantification
on generation tasks beyond text, such as image and audio generation.

1 INTRODUCTION

Building on Large Language Models’ (LLMs) capabilities in handling a wide variety of text-based
tasks (OpenAl et al.| [2024), Multimodal Large Language Models (MLLMs) are LLM-based models
that can process the input of different modalities such as text along with images, audio or video via
modality-specific encoders, aligned with an LLM text-decoder to produce text output, allowing them
to perform important multimodal tasks such as question answering involving different modalities
(Liu et al., [2023c; Hartsock & Rasool, [2024). However, while MLLMs have shown impressive
capabilities, deploying them reliably in important practical settings (e.g., medical imaging analysis
(Liu et al.| 2023a; [Tian et al., 2024; [Lee et al., 2025)) may be challenging as they may produce
seemingly plausible but erroneous output such as object hallucination (Bai et al.,|2024)), potentially
more so than text-only LLMs given additional complexities from processing multimodal input. While
there are works that attempt to directly mitigate such errors or hallucinations during model training
by adjusting the training data (Liu et al., [2023b; Yu et al.| 2024; |Wang et al.| 2024;|Yue et al., [2024),
model architecture (Liu et al.| 2024} [Tong et al.|2024;|Zhai et al., 2023)), or training process (Jiang
et al., 2024} |Yue et al., [2024), these errors cannot be completely eliminated, given real-world data
that is noisy and ambiguous.

A complementary approach to tackling this challenge is uncertainty quantification for MLLMs, where
we estimate how uncertain an MLLM is on a given query and consequently how likely it is that the
MLLM would get that query correct. This would allow users to apply triaging and escalate queries
that an MLLM is uncertain about to other more expensive but accurate models or human experts.
However, existing uncertainty quantification works largely focus on text-only LLM settings (Kuhn
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et al}2023; Malinin & Gales|,|2021)) or aim to fix modality-specific hallucination (e.g., image-text
input), and rely on either external verifiers (Liu et al.| 2023b}; [Sun et al.; 2023)) or methods that involve
relatively expensive computation (Zhang et al.l 2024a; Khan & Fu, [2024b)) to do so, which may not
be practical in many settings with resource limitations. Given the inherently multimodal nature of our
environment, we would likely need to deal with an increasing number of data modalities, and it would
not be scalable nor effective to develop separate modality-specific uncertainty metrics requiring
specially-engineered features for each modality. On the model architecture front, most MLLM works
have adopted general frameworks comprising a core LLM and corresponding encoders/decoders for
each modality (L1 et al.,|2022; |Wu et al.| 2024)). This raises the question: Can we similarly achieve an
effective training-free uncertainty quantification method that can be applied generally across input
modalities without designing modality-specific mechanisms, or using external tools?

In our work, we present UMPIRE, a training-free framework to estimate the uncertainty of MLLM
output for task queries involving multimodal input. Rather than using external tools or modality-
specific methods, UMPIRE uses a simple but effective modality-agnostic method that rely on the
MLLM’s own multimodal feature spaces to compute a metric that indicates how likely it may get a
query wrong. Our key contributions are as follows: we (1) proposed a set of clear desiderata that
MLLM uncertainty metrics should satisfy (Sec.[2); (2) developed our novel UMPIRE framework
, inspired by the quality-diversity kernel decomposition of determinantal point processes (Kulesza
et al.| 2012)), that estimates uncertainty based on the semantic volume enclosed by sampled responses
adjusted by each response’s coherence scores (Sec. [d); (3) provide theoretical analysis to build
intuition and insights on how UMPIRE relates to the desiderata (Sec.[5} (4) empirically show that
UMPIRE consistently outperforms baselines in various multimodal input question-answering tasks
such as text-image, text-only, text-audio and text-video settings and image/audio generation tasks
despite not needing explicit modality-specific mechanisms (Sec. [6.1] [6.2] [6.3) ; and (5) show that
UMPIRE can perform well in settings involving deferring uncertain task instances to larger models
or uncertainty estimation for blackbox API-access MLLM models (Sec. [6.4).

2 PROBLEM FORMULATION AND DESIDERATA

Problem formulation. Consider a whitebox MLLM M that takes in multi-modality input, including
text ¢ and other modality I (image, audio, video, etc), and autoregressively produce text output
y = [w;]¥; that are sequences of tokens w from the MLLM decoder’s vocab space. Specifically,
MLLMs can be represented as conditional probability distributions M(I,q) = psm(y|l,q) =
Pm (w1|17 Q)p/\/{ (w2|I7 q, wl) <o PM (wn‘ja q, wl:n—1)~

We have tasks 7 with task instances ¢ € T, where ¢ := (I, ¢;) represents the multimodal input query,
and we explicitly denote task instances with known text ground truth output y;, as t* = (¢;y;).
The MLLMs’ response g, to a task instance ¢ can be sampled (e.g., with low temperature) from
M(t) = M(I4, q¢), and its performance evaluated by how well the response matches the ground truth,
i.e., a utility function a(M, t*) := v(g, y*) € [0, 1]. Unless otherwise stated, we consider a utility
that is a binary indicator v(g:, y;) = I{g: = y; }. We define the overall MLLM performance on task
T as the expected performance over its labeled task instances, i.e., a(M, T) = Epcra(M, t*).

Our goal is to develop a framework that computes a task instance-specific uncertainty metric u(M; t)
for any ¢t € T at inference time that is highly indicative of the expected accuracy a(M, t*). Note that
we are developing a metric for overall uncertainty (rather than aleatoric or epistemic uncertainty),
which is task-specific (i.e., uncertainty associated with a given input query) rather than response-
specific (i.e., confidence score for a given sampled instance of MLLM output). Our metric can be
used to assess whether a task instance is likely to be answered wrongly by an MLLM, and hence
should be discarded, and escalated to a more capable MLLM model or human expert instead.

Desiderata. Given the above setting, we propose a non-exhaustive list of key desiderata that an
uncertainty metric should satisfy. First, the metric should meet three effectiveness desiderata:

R1 Classification. The metric should be able to distinguish between task instances that the MLLM
will get correct (t. € C == {t € T | a(M,t*) = 1}) or wrong (t,, € W = {t € T|a(M,t*) =
0} with high probability. Specifically, for randomly sampled pairs of task instances t. and t,,,

Plu(M,ty) > u(M,t.)] =1 (1
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where the goal is for Eq. (I)) to be as close to 1 as possible (which in practice may be limited
by the task and model), implying that the metric can classify well whether the model will get
task instances wrong, using just M and instance input ¢. This means that there exist a threshold
~ such that u(M, t) > ~ indicates that it is likely that ¢ € WV, and smaller values indicate that
t € C. Note that Eq. (1)) can be evaluated by computing the Area under the Receiver Operating
Characteristic Curve (AUROC) of the metric, which we do in Sec. [6.1]

R2a Proportionality. The metric should be proportional to the probability that the MLLM will get
the task instance wrong, i.e.,

u(M,t) x Pla(M,t*) = 0]. 2)

Compared to [RT] satisfying allows the metric to provide a meaningful continuous score of
how likely the MLLM will get a task instance wrong, rather than be used only for classification.

R2b Calibration. Given a small sample of unlabeled task instances from 7, the metric u should be
easily adjustable to @ € [0, 1] (e.g., using min-max scaling) such that it provides well calibrated
estimates of how confident the MLLM is in answering ¢t € T correctly, (Guo et al.,[2017), i.e.,

Pla(M,t") =1]a(M,t) =p)~p, Vpel0,1]. 3)

R2bjs a stricter version of R2a]where the metric is properly scaled to estimate the probability that
the MLLM would get a given task instance correct. The probability estimates enable downstream
applications such as risk management, and more interpretable choices of the classification
threshold ~y for[R1] Note that for ease of comparability with past works (Tian et al.| [2023),
and 4 are formulated based on response accuracy a(M,t*) = 1, while R2aland u are based on
error a( M, t*) = 0 which is more natural for an uncertainty measure. In we provide further
discussion on the differences among these desiderata and why they are needed.

We also consider design desiderata related to common practical requirements of metric deployment:

R3 Multimodal generalizability. The metric should be computed with the same modality-agnostic
framework, without additional modality-specific engineering or tools, and still satisfy all other
desiderata across a wide range of input modalities (e.g., text, image, audio, video). A stricter
version of this desideratum, [R3], is for the metric to all apply across different output modalities
(e.g., image generation), even though many LLM works focus on multimodality input with text
output. While not the focus of this work, we provide some results and analysis on[R3] in Sec.[6.3

R4 Multimodal coherence. The metric should consider the coherence of each sampled response
with respect to the various input modalities in the task instance query (e.g. images and text),
instead of only one modality. Having a modality-agnostic framework to satisfy [R3|does not mean
ignoring modality information. Rather, there should ideally be a general method that can make
use of modality information already trained into the MLLM.

RS Computational Efficiency. The metric could be efficiently computed, with (a) fast computational
runtime, and (b) no strict requirements of external pre-trained models or separately trained reward
models as they incur additional costs and may not be feasible for some inference pipelines. When
the MLLM under study is a blackbox, it may be necessary to relax condition (b) to use a proxy
whitebox model, but the proxy model should be small and cheap to run.

3 RELATED WORKS

Modality-specific methods. Although MLLMs’ hallucination and miscalibration problems are well
known (Chen et al., 2025; Rohrbach et al., [2018} Bai et al., | 2024), research on task instance-specific
uncertainty quantification for MLLMs is relatively underdeveloped. Most works are focused on
(image-text input, text output) modalities, with image-specific approaches and external tools, violating
@ This include works that rely on the use of external reference/entailment models (Zhang et al.}
2024a; [Sun et al 2023} [Liu et al.l [2023b), supervised training of classifiers (Li et al., 2024), or
large numbers of modality-specific query perturbations (Khan & Ful 2024a}; [Zhang et al., [2024a) to
test model consistency (also violating [R5). Furthermore, even by relaxing the design desiderata by
allowing access to external models or more computation time and focusing on just modalities that
these methods are designed for, they do not satisfy the effectiveness desiderata (RT}R2b) compared
to our method UMPIRE, as we see later in Sec.[f]
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LLM uncertainty methods. If we focus on only text-output settings, we found that existing LLM
uncertainty metrics designed only for text input-settings could be adapted for multimodality ouput
and potentially achieve better effectiveness (e.g.,[RT] on classification) compared to modality-specific
methods (see Sec. [0). This includes methods based on lexical (token probability) distributions
(Malinin & Gales|, 2021)), semantic clusters/graphs derived from external text entailment models
(Kuhn et al.;,|2023; Nikitin et al., 2024} |Lin et al.,|2024), semantic embeddings of sampled responses
(Chen et al.} 2024; |Qiu & Miikkulainen| |[2024), and prompting (Xiong et al.,|2024a). However, these
approaches still typically violate several desiderata (e.g.,[R4|by not considering response coherence
with multimodal input) and underperform UMPIRE even for the text-only LLM scenario.

Entropy-based approaches. Many MLLM and LLM uncertainty works also rely on computing
discrete entropy measures (Malinin & Gales, |2021; [Nikitin et al., | 2024; [Zhang et al.,|2024a). However,
it is unclear how to compare entropy values across different support sets (e.g., distributions defined
on 2 versus 5 classes), especially when the support set is determined by external models, making
them potentially hard to use in practice. Eigen (Chen et al.,[2024) considers differential entropy in the
sentence embedding space, and by making a relatively strong Gaussian assumption ends up with a
final metric form that bears some similarity to UMPIRE (in fact, Eigen can be seen as a special case).
However, key differences (see App. result in Eigen consistently underperforming UMPIRE as
can be seen in both multimodal input and text-only tasks (Table[I]), and not meeting key desiderata
such as modality coherence (Rd).

In contrast to existing works, we can combine several insights to design a framework that meets all
desiderata. First, many MLLMs adopt an encoder/decoder + LLM core architecture (Zhan et al.|
2024;(Wu et al.,[2024), where rich modality-specific features have already been trained into the model.
Hence, it may be possible to develop a modality-agnostic framework using an MLLM’s inherent
embeddings without the use of external tools [R3). Second, trained MLLMs would have the
capability to fake into account all input modalities and response coherence via their model-generated
probabilities (R4), which though typically uncalibrated would contain useful relative information
among responses. Finally, our goal is to develop an uncertainty metric for a task instance ¢, rather
than a response-specific confidence score. Although there are settings where response-wise indicators
would be useful, our framework has been developed for the task-instance settings as uncertainty is
conventionally understood as a property of the response distribution rather than a sample from it.
Thus, we consider the response distribution for t which we can probe with efficient sampling via
accelerated batch inference (Kwon et al.| [2023)) without external tools.

4 METHOD

Combining the insights above, we present the framework and theoretical analysis of our proposed
metric UMPIRE, a simple but effective framework with a task instance-specific uncertainty metric
that jointly considers (a) the volume enclosed by sampled responses in the MLLM’s semantic
embedding space capturing global diversity, adjusted by (b) local measures of the MLLM’s per-
response coherence based on all input modalities. Drawing inspiration from the quality-diversity
kernel decomposition of determinantal point processes (DPP) (Kulesza et al.,[2012), our UMPIRE
framework has the following steps (summarized in Fig. [I)) that aim to satisfy [R3{R5}

U1l Sampling. Given a task instance ¢t € T, the MLLM generate k responses V; = {#; }%_,.

U2 Semantic embedding. For each response g;, we extract the last embedding layer vector of the
last response token (more analysis on layer selection in App. ¢; € R%, and normalize it
if not already so (Reimers & Gurevych,[2019) With k£ samples, we form the k£ x d embedding
matrix ®;, where using the MLLM’s rich multimodal semantic embeddings satisfy [R3]

U3 Incoherence score. Concurrently, we extract the model-generated probability scores p; for each
response ¢; which has been generated conditional on all input modalities, capturing multimodal
coherence signals . We compute the incoherence score ¢; € RT, ¢; := exp a(1 — p;), where
« is a scaling hyperparameter that is fixed across 7" and can be set heuristically (App.[D.2). This
score captures how incoherent each response is: e.g., a response deemed fully coherent by the
MLLM will have p; = 1 and the smallest value ¢; = 1, while low probability responses will
have large ¢;. With k samples, we will have a k£ x k incoherence score diagonal matrix C}.
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Figure 1: Schematic describing the UMPIRE framework

U4 Coherence-adjusted semantic volume. Given only the above and without external tools (R3],
we compute its coherence-adjusted semantic kernel Ly, = C;®,®] C,, similar to quality-
adjusted kernels used in DPPs. We can then compute the final UMPIRE uncertainty metric
Vi == log det(Ly, ), where in practice a small jitter term is added to L, for numerical stability

and to avoid degeneracy. V; captures coherence-adjusted semantic volume, since from geometry,
det(Ly,) = Vol*(C;®;), the squared volume spanned by the coherence-adjusted response
semantic embedding vectors. Note that high incoherence responses have magnified contributions,
resulting in the metric having highest values when responses are both diverse and incoherent.

Beyond the design desiderata, UMPIRE is also constructed to satisfy the effectiveness desiderata
[RT}R2b| well. We first provide some theoretical analysis on UMPIRE given simplifying assumptions
that provide some intuition and interpretation of the metric’s components (Sec. [5]and App.[A]for
details on assumptions and proofs), This complements our empirical results (Sec. [6) on how UMPIRE
achieves good performance over a wide range of settings and outperforms baselines.

5 THEORETICAL ANALYSIS AND INTUITION

For our theoretical analysis, we consider the metric normalized by sample number &, which we first
show can be decomposed into two interpretable terms: an unadjusted semantic-volume diversity term
and a Monte-Carlo estimate of the average incoherence based on the model’s internal assessment,

V, := 1V, = Llogdet(®d”) + T@Z 1—p;). )

Proposition 1 (Coherence-adjusted semantic volume decomposmon and Monte-Carlo coherence
term). Eq. @) holds exactly, and under the simplifying assumption of i.i.d. response samples, the
second term can be interpreted as a Monte-Carlo estimator of average incoherence 20E[(1 — p;)]

whose standard error scales as O(1/Vk).

For the first semantic volume term, we further build intuition by considering the simplifying assump-
tion (A5 in App. [A) that the MLLM response embeddings follow a finite mixture distribution (i.e.,
some number of semantic clusters), relating the term to model uncertainty arising from the global
diversity of semantic response clusters. Together with Proposition [I] it suggests how the proposed
metric with both terms are correlated with the MLLM'’s correctness probability for a given task
instance and may satisfy which we show empirically in Sec.[6.2}

Proposition 2 (Semantic volume). Let the MLLM’s response embedding distribution be a finite
mixture model with total covariance ¥ix = Ywithin + Lbetween- 1f the between-cluster covariance
increases such that Ebetween > Ybetween [N the positive semidefinite (PSD) order, let the new total

covariance be X!, = Yithin + Lt etwoen- 11€N, the determinant is non-decreasing: det(X] ;) >
det(ZmiX).

Consequently, for large & where sample covariance Sy = 1 ‘I>T<I> Y mix, the unadjusted empirical
semantic volume term in Eq. (@) is expected to increase W1th the between-cluster spread. As discussed
in App.[A] together with assumption A5 regarding how responses with higher probability of being
correct will tend to concentrate on a subset of cluster, this will relate the semantic volume to the
MLLM’s correctness probability.

We now show the statistical stability of our proposed metric over sample size k, which complements
our empirical results that small values of k tend to provide reliable estimates. This also provides some
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Dataset \ AUROC 1 \ CPCT \ ECE |

| NC LN-Ent. Sem.Ent. Eigen Ours | NC LN-Ent. Sem.Ent. Eigen Ours | NC LN-Ent. Sem.Ent. Eigen Ours
Image-text
VQAvV2 0.769 0.781 0.848 0.868 0.882|0.784 0.553 0916 0.938 0.946|0.326 0.046 0.046  0.047 0.038
OKVQA 0.528 0.705 0.716  0.738 0.755|0.778 0.851 0.277  0.893 0.966 |0.504 0.041 0.144  0.162 0.036
AdVQA 0.657 0.647 0.763  0.774 0.787|0.562 0916 0.759  0.888 0.979|0.344 0.068 0.161 0.217 0.042
MathVista 0.763  0.667 0.805 0.814 0.822|0.721 0.909 0.856  0.797 0.945|0.078 0.116 0220 0.312 0.071
VQA-RAD 0.706 0.614 0.767 0.803 0.802|0.733 0.892 0.690 0.656 0.908|0.138 0.111 0.359 0.366 0.067
Avg (image) 0.685 0.683 0.780 0.799 0.810|0.716 0.824 0.700 0.834 0.949 0.278 0.076 0.186  0.221 0.051
Text-only
CoQA - 0.640 0.739 0.738 0.791| - 0.430 0.790 0.495 0.880| - 0.148 0312 0.242 0.081
TriviaQA - 0.552 0.653  0.650 0.720| - 0.413 0.298 0.531 0.923| - 0.166 0332 0.282 0.054
NQ - 0.755 0.850 0.824 0.853| - 0.566 0.693 0.727 0.892| - 0.130 0.397 0.287 0.022
Audio-text
SLUE-P2-SQA5 - 0.755 0.794 0.783 0.819| - 0.685 0.824 0.831 0.940| - 0.098 0235 0.175 0.058
Spoken SQuAD - 0.710 0.765 0.775 0.797| - 0.855 0.897 0.877 0.985| - 0.071 0.279  0.229 0.030
Video-text
VideO—MME—shorl‘ - 0.717 0.706  0.821 0.823‘ - 0.618 0.683  0.666 0.697‘ - 0.089 0.226  0.334 0.156
Avg (all) ‘ - 0.686 0.764 0.781 0.805‘ - 0.699 0.698 0.754 0915 - 0.099 0246  0.241 0.060

Table 1: Effectiveness of various uncertainty metrics across multimodal datasets (details in App. .
The evaluation covers (i) uncertain response classification using AUROC (7 better), (ii)
uncertainty proportionality (R2a) using CPC (1 better), and (iii) calibration (R2b) using ECE
({ better). Overall, UMPIRE achieves the best or second-best performance across all baselines and
modalities, with only marginal differences when not ranked first. For a fair comparison with NC, we
report the average on all image-text datasets (Avg image) and on all datasets (Avg all).

intuition on how if metric values for correct and wrong task instances have a large enough expectation
gap (possibly contributed partially by factors related to the first 2 propositions), our metric could then
[R1] In Sec. we see how UMPIRE shows strong [RT]empirical performance.

Proposition 3 (Concentration and Ranking Consistency). Assuming bounded embedding norms,
there exist constants c, C' such that for any n > 0, the metric concentrates around its mean with
sub-exponential tails in k: Pr (|V, — EV;| > n) < Cexp(—ckn?). Moreover, if two instances t, and
ty satisfy a true mean gap EV;, — EV;, > A > 0, then the empirical ordering V;, > V;, holds with
probability at least 1 — 2C exp(—ck(A/2)?).

Finally, we show that R2b|can be satisfied by scaling our metric via isotonic regression if the metric
is monotone. While this assumption does not always hold exactly, our empirical results suggest that

this is a reasonable approximation (Fig.[4|in App. , and that min-max scaling without labeled
data can also typically achieve good R2b|results (Sec. .

Proposition 4 (Calibration under Monotonicity). If the function u — Pr(correct | V; = u) is
monotone, then isotonic regression fitted on a development set of size n yields a consistent calibrated
estimator of the true correctness probability. Standard non-parametric worst-case convergence rates
apply (e.g., O(n=2/3) for the mean squared error).

6 EXPERIMENTAL RESULTS

We empirically evaluate whether UMPIRE satisfies the desiderata (Sec. [2), compare its performance
against baselines, and demonstrate its utility in practical scenarios. As literature on image-text
input modality tasks is relatively more developed with benchmarks and baselines, we primarily
conduct in-depth studies in this setting, though we also analyzed other modalities such as audio-text
and video-text input modality tasks, as well as the text-only single-modality setting to assess the
modality generalizability [R3|desiderata. We also evaluated metrics on the stricter[R3} desideratum
by considering image and audio generation tasks (details on datasets are in App.[C.1.1).

We use Llava-v1.5-13b (Liu et al) [2023c), Phi-4 (Abdin et all [2024),
LLaVA-NeXT-Video-7b-hf (Zhang et all 2024b) for image-text, audio-text, and video-
text experiments respectively. We compare UMPIRE against baselines representative of different
approaches, including a modality(image)-specific metric Neighborhood Consistency (NC) (Khan &
Fu| 2024a), and 3 text-only LLM uncertainty metrics that we adapt to the multimodal input setting:
LN-Entropy (LN-Ent) (Malinin & Gales|, [2021)), Semantic Entropy (Sem.Ent) (Kuhn et al., [2023)),
and Eigenscore (Eigen) (Chen et al.,[2024). NC and Sem.Ent use external tools and hence violate
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but we still run them to analyze any performance issues beyond this violation. Details on experiment
settings, additional baseline methods and ablation studies to highlight UMPIRE’s robustness across
parameters can be found in the Appendix (App.[Cl App.[D).

6.1 [RIl CLASSIFICATION OF UNCERTAIN RESPONSES

We first evaluate metrics on[R1] i.e., whether the metrics can classify tasks that the MLLM will get
correct (t.) or wrong (t,,), measured via AUROC. TableE] shows that UMPIRE consistently achieves
the best or competitive performance with an average AUROC around 0.810 on image-text datasets,
excelling particularly in challenging datasets like OKVQA and AdVQA, where multimodal-specific
methods like NC struggle due to adversarial and out-of-distribution scenarios. This robustness
highlights UMPIRE’s ability to handle diverse and incoherent predictions in these datasets. Beyond
vision, UMPIRE also demonstrates robust classification performance across text-only, audio-text,
and video-text tasks, underscoring its modality generalizability R3] Moreover, in practice, users
will need to set thresholds based on their use cases to target some minimum requirements, such as
False Positive Rates (FPR). In App. Table[6] we also show how UMPIRE framework’s better
AUROC performance for [RT]translates to consistently higher True Positive Rates (TPR) given various
FPR requirements. The consistent improvement across all scenarios and modalities suggests that
UMPIRE robustly satisfies[R1] and can be deployed more reliably in real-world question-answering
applications where high-stakes decisions depend on model uncertainty (see Sec. [6.4).

6.2 R2A] R2Bl PROPORTIONALITY AND CALIBRATION

Similar to past calibration works (Guo et al., | 2017),

we sort instances in a given task ¢t € T by the com- v

) . X Method | R R2ap [R3 [R3 RS
puted uncertainty metric u(M, t), and put them in | R i =
equally-sized bins b;. Each bin is associated with its NC X X X X X
hich e val dth . d probabil LN-Ent. | X XX
hig est metrlc value u;, an the estimated probabil- Sem.Ent. X X X X
ity that instances within will be answered correctly Eigen X X X
that is computed by its expected response accuracy Ours

i th €bs alM.1;)/1bsl Table 2: Summary of whether UMPIRE and
Calibration Pearson Correlation (CPC)(R2a). baselines satisfy the proposed desiderata.

We define CPC score as the negative Pearson correla-

tion between u; and @; across bins (Eq. (2)). Higher

CPC indicates that the metric is more linearly correlated to the estimated probability that the MLLM
will answer the instance wrongly. Table|l{shows that UMPIRE consistently performs better than
baselines across all settings, achieving an average CPC of ~ 0.95 for image-text tasks and 0.915
across all modality tasks , more than 20% higher than the next best metric. Note that UMPIRE
also produces more stable and reliable results with consistently high CPC, unlike other baselines
with performance that fluctuates greatly depending on the specific task. This is critical for uncertainty
metrics, which themselves are meant to assess model reliability.

Expected Calibration Error (ECE) (R2b). The strong linear relationship indicated by UMPIRE’s
CPC score suggests that a simple scaling process would be sufficient to make the UMPIRE metric
well-calibrated and satisfy R[Z_B} We evaluate the ECE (Guo et al., 2017) of metrics by using an
unlabeled development set of instances (5% of dataset) to compute @ via min-max scaling before
computing the ECE. UMPIRE achieves a very low ECE on almost all datasets with an average of
0.060 (see Table[I), and is significantly lower than baselines with up to 2 — 6 x lower ECE than the
next best baselines for the more challenging tasks.

6.3 |R3|R4|/R5] MULTIMODAL GENERALIZABILITY, COHERENCE AND COMPUTE EFFICIENCY

Multimodal generalizability (R3). As seen in table[I, UMPIRE, without modality-specific modi-
fications or external tools, consistently performs well in effectiveness (R1}R2b)) across multiple
input modality tasks (image-text, text-only, audio-text, video-text) and hence satisfy [R3] empirically
supporting our approach in using MLLMs’ inherent multimodality capabilities to achieve [R3] In
contrast, metrics that rely on modality-specific input, such as NC, cannot be directly applied to
other input modalities to satisfy [R3] Text-only modality baselines (LN-Ent, Sem.Ent, Eigen) could
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Method | Image | Audio Method | Overhead (s)
| AnyGPT NEXTGPT | NEXTGPT NC 90
PUNC 0.460 0.227 . Sem.Ent. 9.1
LN-Ent. 0.235 0.443 0.641 Eigen 1.8e-3
Eigen 0.341 0.581 0.215 LN-Ent. 3.4e-4
Ours 0.839 0.755 0.706 Ours 8.3e-4

Table 3: Pearson Correlation between uncertainty metrics Table 4: Comparisqn overhead run-
and CLIP/CLAP score (image/audio) in image and audio time (k = 50) metrics, averaged on
generation tasks. UMPIRE achieves the highest correlation 3000 VQAv2 samples and run on an
with the continuous evaluation criterion CLIP/CLAP score. L40.

be adapted to multimodal input tasks as these tasks still involve text output, but they have worse
effectiveness compared to UMPIRE, even for the text-only setting as they did not fully capture both
global semantic diversity and local coherence scores unlike UMPIRE.

Non-text output generation tasks (R3). To demonstrate that UMPIRE can also satisfy the stricter
desiderata[R3] that requires applicability to various modality output (beyond text) generation tasks,
we ran experiments on image (MS-COCO caption |Chen et al.| (2015))) and audio (name and cite)
generation using any-to-any MLLMs NExT-GPT (Wu et al.,|2024)) and AnyGPT (Zhan et al.| [2024)).
As the utility for such tasks are continuous scores, we evaluate the uncertainty metrics on [2al by
computing the Pearson correlation between the metrics and quality scores (image: CLIP score (Hessel
et al.,[2021)); audio: CLAP score (Elizalde et al,[2023))). Sem.Ent is designed to require text-specific
external tools, and hence cannot be applied. For these settings, we also compare with PUNC (Franchi
et al.l 2025)), an image-specific uncertainty metric. Table [3]shows that UMPIRE consistently has
strong correlation with image and audio quality, outperforms all baselines across different
modalities, and hence satisfy [R3]. This allows UMPIRE to also be applied to assess whether a given
task instance might be challenging for MLLMs to produce high quality image/audio generations for,
which to our knowledge has not been well-studied in past works.

Multimodal coherence (R4). To further demon-

strate that UMPIRE considers multimodality infor- .

mation despite not using modality-specific exter- B Noise

nal tools or methods, we analyze post-generation 0.30 == Black

whether metric performance degrades when image- & 55 e

input information is (1) corrupted with noise, (2) 2

replaced with a black image, or (3) removed. A £ 0.20

metric that satisfies[R4]should show performance & 0.15

degradation for (1), which worsens for (2) and (3), g 0.10

and is comparable between (2) and (3) since all &

useful signals would be removed in both cases. 0.05 = oo
Fig. 2] shows that UMPIRE exhibits this behav- (o il o=sos”
ior well and satisfies[R4] along with Sem.Ent to SemEnt.  Eigen  LN-Ent.  Ours

a lesser extent. In contrast, among other input Method

modality-agnostic baselines, LN-Ent exhibits large

degradation but with inconsistent trends (e.g., no Figure 2: Decrease in AUROC when image-
image has less degradation than noisy image), and input information is (1) corrupted with noise, (2)

Eigen remains unchanged implying that it does not replaced with a black image, or (3) removed.
consider multimodal coherence at all.

Computational efficiency (R5). Table 4] shows

the computational overhead time introduced for each method. Note that both NC and Sem.Ent violates
[R5]as they require external tools and expensive computation (e.g., pairwise response evaluation) and
the former requires training as well. UMPIRE and the other more efficient metrics satisfying [R3]
take up to 4 orders of magnitude less computational overheads compared to them. We also show
that UMPIRE achieves significant performance margins over single-sample methods (App. [C.3) and
consistently outperforms baselines regardless of sampling budget & (App.[D.3) with as few as k = 5
generations (which can be sped up by accelerated LLM batch inference (Kwon et al., [2023)).
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\ Image | Avg | Text-only Audio Video | Avg
Method . VQA | (image) . SLUE-P2 Spoken | Video-MME | (all)
VQAV2 OKVQA AdVQA MathVista p x13 CoQA TriviaQA NQ |"g0xs" SQuAD | short
NC 0934 0664 0722 0344 0.502] 0633 | - - - - - - -
LN-Ent. | 0.949 0787 0751 0301 0.514| 0.660 | 0.543 0.534 0328| 0708  0.677 0.182  |0.570
Sem.Ent.| 0948 0773 0782 0370 0.549| 0.684 |0.599 0629 0356 0.701  0.678 0.174  |0.596
Eigen | 0963 0.800 0.800 0382 0.589| 0.707 | 0.594 0597 0.350| 0.704  0.704 0.209 | 0.608
Ours 0.966 0.807 0.809 0388 0.600| 0.714 | 0.656 0.691 0.372| 0.737  0.719 0209 |0.632
Table 5: Comparison of AURAC across datasets for different uncertainty metrics, including NC,
LN-Ent, Sem.Ent, Eigen, and UMPIRE (Ours).
AUROC 1 CPC 1 ECE 1
0.9 1.00
g 0.8 0.75 0.4
= 07 0.50
0.2
© 0.6 0.25
05 0.00 0.0
VQAV2  OKVQA  AdVQA VOAV2  OKVQA  AdVQA VOAV2  OKVOA  AdVOA

[ LN-Ent.(Llava) B \erb.Conf. 3 Semt.Ent.(D) B Eigen(Llava) EEA Ours(Llava)

Figure 3: Performance of uncertainty metrics in blackbox settings across image-text QA datasets.
Sem.Ent (D) indicates its discrete version, (Llava) indicates Llava as the white-box proxy model.

6.4 PRACTICAL APPLICATIONS

Selective answering. We consider a practical scenario where a user has a small local MLLLM for a
task, but also a limited budget to route/escalate some task instances to a more capable but expensive
MLLM or human expert to answer. A good uncertainty metric like UMPIRE could help select the
instances that the small MLLM could answer with the lowest uncertainty while escalating the rest,
and hence improve overall accuracy. We evaluate this via the Area Under the Rejection-Accuracy
Curve (AURAC) (Hiillermeier & Waegeman, |2021)), which summarizes the improvement in accuracy
across varying rejection thresholds. UMPIRE consistently achieves the highest AURAC across all
datasets (Table[5)), indicating more reliable uncertainty estimation for selective answering. To show
that UMPIRE’s AURAC performance gains over baselines are statistically significant, we performed
statistical tests across various MLLM model-dataset combinations to show the difference is statisticaly

significant (App. [C.6).

Blackbox Models. In practice, users might need to estimate uncertainty for blackbox MLLMs that
can only be accessed via APIs and do not provide internal model semantic embeddings or response
probabilities. To apply UMPIRE, we can employ a much smaller whitebox proxy MLLM that
processes the blackbox MLLM’s responses to generate embeddings and probabilities for computing
our uncertainty metric. For this setting, we also compared with the Verbalized Confidence (Verb.Conf.)
baseline (Xiong et al.,[2024a)) that can be run with SOTA blackbox API models. In Fig. EL we see that
UMPIRE consistently and significantly outperform baselines when assessing GPT40’s (Hurst et al.
2024) uncertainty on VQAv2, OKVQA, and AdVQA using L1lava-v1.5-13b as the whitebox
proxy model. Experiments with other blackbox (e.g., Claude, GPT40 Mini) and proxy models show
similar results where UMPIRE has large performance gains over baselines (App.[D.7). This shows
how UMPIRE remains practical for blackbox settings given its ease of use and speed (R3).

7 CONCLUSION

We propose UMPIRE, a novel inference-time framework that provides efficient and effective MLLM
uncertainty estimates that generalizes across multiple input and output modalities, without the need
for modality-specific tools or interventions. We presented desiderata that MLLM uncertainty metrics
should satisfy, provided some theoretical analysis with simplifying assumptions to build intuition on
how UMPIRE could be interpreted, and empirically showed how UMPIRE consistently outperforms
baselines across an extensive range of multimodal question-answering and generation tasks. Future
work could analyze and extend the framework for multimodal reasoning tasks.
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A THEORETICAL ANALYSIS AND INTUITION

In this section we providing additional details on the assumptions, propositions and proofs for Sec. [5
As mentioned in Sec. [5} the analysis below hold under simplifying assumptions and are not intended
as formal guarantees for MLLM distributions in practice, but rather is meant to help provide intuition
for UMPIRE and how its components relate to uncertainty and the desired desiderata as described in
Sec.2

A.1 A.1 NOTATION AND ASSUMPTIONS

We first recap the problem setup and state the assumptions used in proofs for our propositions.

Setup. For a given task instance ¢ € 7, we sample k responses from the model. Let ¢; € R? denote
the embedding (row vector) for sample i, and ® € R¥*? with rows ¢7 , ..., ¢kT be the semantic
embedding matrix. Let p; € [0, 1] be the model-generated probability for each response, and the
coherence matrix and scores are C' = diag(cy, - .., ck), ¢; := exp(a(1 — p;)) respectively, for scalar
« > 0. Our unnormalized UMPIRE score is

V, := log det(C®d " C),

and we use its normalized form over the number of samples k:

1. 1
Vo= 2Vi= Elogdet(fbbe) + 20 -

el

k
> (1 =p). 5)
=1

Assumptions. We make the following assumptions:

A1l (Bounded embeddings). There exists B > 0 such that ||¢;||2 < B for all sampled responses i.
This is typical for most MLLMs.

A2 (Approximate i.i.d. sampling). For a fixed instance ¢, the sampled responses (¢;, p;) are con-
ditionally i.i.d. draws from the model’s conditional response distribution, based on the
multimodal task instance input queries. We write expectations over this sampling as E.

A3 (Bounded incoherence variance). The incoherence variables 1 —p; € [0, 1], and Var(1—p;) <
0l < 0.

A4 (Non-Degenerate Covariance). We assume the population covariance matrix of the embeddings,

¥* = E[p¢T], is strictly positive definite, i.e., its minimum eigenvalue A, (3*) is strictly
greater than zero.
This assumption can be met without loss of generality. If the true covariance is singular,
we can analyze a regularized matrix X* + ¢/ for an arbitrarily small € > 0, ensuring that
all quantities in our proofs are well-defined. As mentioned in the main paper, we also
implement this empirically for numerical stability in the computation of our metric. For
notational simplicity, we will proceed using the standard notation (X*, V4, etc.) to refer to
these potentially regularized quantities.

A5 (Clustered posterior structure for volume analysis). (Only used in proposition[2) The model’s

conditional response distribution for task instance ¢ is well approximated by a finite mixture
of m semantic clusters with weights w;, cluster means y; and within-cluster covariances
Y. Let Xywithin = Zj ijJ and Xpetween = Zj wj(uj — ﬂ)(/.tj — ﬂ)T; then Y, =
Ywithin T Lbetween- COITectness concentrates in a subset of clusters (see discussion in App.
A.6).

A6 (Informative internal model probabilities). The MLLM’s internal generated probabilities for
each response, while not necessarily calibrated, is positively correlated with the probability
of the response being correct.

A.2 USEFUL LEMMAS

We state two lemmas used in the proofs: (i) a matrix Bernstein tail inequality (Tropp, 2012)) in a form
we use, and (ii) a common log-determinant perturbation bound via the integral representation.
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Lemma 1 (Matrix Bernstein ((Troppl 2012) Theorem 1.6)). Let X1, ..., Xy be independent, mean-
zero, symmetric random matrices in R with || X;|| < R almost surely. Define the matrix variance
parameter

Then for all t > 0,
k

>,

=1

2
g

Lemma 2 (Log-determinant perturbation). Let A € R be symmetric positive definite and
A € R4 be symmetric. Suppose

||AH2 < )\min(A)a
so that A+ tA = 0 for every t € [0, 1]. Then

1
logdet(A + A) —logdet(A4) = / tr( (A +tA)"'A) dt. (©)
0

In particular, the following uniform bound holds:
llog det(A + A) — logdet(4)] < — & A, < — 22
)\min(A) - ||A||2 )\min(A)

where the last inequality is valid whenever || A]2 < Amin(A)/2.

A2, @)

Proof. Define the scalar function f(t) := logdet(A + tA) for t € [0,1]. Each A + tA is positive
definite by the assumption ||Al|2 < Amin(A), so f is differentiable on [0, 1]. By Jacobi’s formula
(derivative of a determinant) or the standard matrix-differentiation identity,

f’(t) = %logdet(A+tA) = tr((A—FtA)*lA)_

Integrating f’ from 0 to 1 yields the integral identity equation [6]
To obtain the bound equation[7] we can take absolute values in equation [6]and use the elementary
inequalities | tr(M)| < d||M]|2 and || XY |2 < || X||2]|Y ||2:
1
|log det(A + A) — log det(A)| < / [tr((A+tA)'A)| dt
0

1 1
< / (A +tA) Al dt < d Al / 1A+ tA) Yy dt.
0 0
For each t € [0, 1] we have Apin (A + tA) > Amin(A) — t||All2 (by Wey!’s inequality or elementary
eigenvalue perturbation), so
1 1 1
< < -

Amin(A +tA) Amin(A4) = t[|All2 Amin(A) = [|All2

Finally, substituting this bound into the integral gives

I(A+t8) 72 =

d||Afl2
log det(A + A) — log det(A)] < ————12
| ( ) (4] Amin(A4) — [|Al2

which is the first inequality in equation[7} If || All2 < Amin(A)/2 then Apin (A)—[|All2 > Amin(A)/2,
and the second displayed inequality follows. O

A.2 PROPOSITIONS AND PROOFS
We now state and prove the formal propositions that substantiate the main-text claims. Each proposi-

tion includes a brief discussion of where assumptions are used and what the practical implications
are.
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A.2.1 PROPOSITION 1 (COHERENCE-ADJUSTED SEMANTIC VOLUME DECOMPOSITION AND
MONTE-CARLO COHERENCE TERM)

The coherence-adjusted semantic volume can be decomposed two the two terms below:

| . ™ 1
Ve = 1 log det(COPTC) = - log det(®DT) + 200 ¢ g (1—py).

Furthermore, under A2-A3, the coherence term 2o - % Zle (1—p;) concentrates about its population

mean at an O(1/+/k) rate: precisely, by Hoeffding there exist constants ¢;, C; depending on o and
the incoherence range such that for any n > 0,

(-

Proof. AsC and ®®7 are k x k square matrices, we have

det(C®P " C) = det(C) det(®P ") det(C) = det(®d ") det(C)?,

k
1
%Z 1—p;) — 2aE[l — p]

> 77) < Cy exp(—c1kn?).

hence
log det(C®® T C) = log det(®d ") + 2log det(C).
Substituting C' which is a diagonal matrix with ¢; = exp(a(1 — p;)), we have

k k
2logdet(C) =2 Zlog c; = 2a Z(l —Di).

We can obtain the final claimed decomposition by dividing throughout by k. The concentration result
follows from standard Hoeffding bounds for bounded scalar i.i.d. variables 1 — p; (Assumptions
A2-A3).

A.2.2 PROPOSITION 2 (SEMANTIC VOLUME)

As stated in assumption A5, Let the MLLM’s response embedding distribution be a finite mixture
model with total covariance X iy = Ywithin + Zbetween- 1f the between-cluster covariance increases

such that ¥ . > Ypetween 1 the positive semidefinite (PSD) order, let the new total covariance
be X/ . = Ywithin T Lhetween Lhen, the determinant is non-decreasing: det(X ;) > det(Xmix)-

Consequently, for large k£ where sample covariance Sy = %(I)TCD A Yimix, det(Sg), or the unadjusted
semantic volume term in our proposed metric, increases with >ctween. When correctness probability
concentrates in a subset of clusters, increasing Ypetween (More spread / more separated modes)
implies a decrease in Pr(correct|t).

Proof. Given Xix = Zwithin + Zbetween, and suppose that between-cluster spread increases such
that the new covariance Ebetween > Ypetween, Which by definition means the difference matrix
D is positive semidefinite. Then Emlx = Ymix + D, and by Weyl’s inequality (Weyl, |1912),
Ai (Zmix + D) > A\i(Zmix) Vi where i is the i-th largest eigenvalue. Since the determinant of a matrix
is the product of its eigenvalues, we have that det(X/ . ) > det(Zmix)-

mix

For finite k, let Sy, := %Q)T(I) be the empirical per-sample second moment. Under A2 and Al, S,
concentrates about X,,;x (matrix Bernstein; see Proposition A.3 below). Hence with high probability
for large k, det(Sy) is close to det(Xnix) and inherits its monotonicity under positive semidefinite
increases of Xy ctwoen-

Finally, consider the assumption that correctness is concentrated in a subset of the posterior’s semantic
clusters (Assumption A5). Let the set of cluster indices J be partitioned into Jegrrect and Jincorrects
and let ¢; = p(correct|cluster j) be the correctness probability for cluster j. The total correctness
probability is then the weighted average p(correct|t) = . ;w;q;, where w; is the posterior
probability mass on cluster j.

An MLLM’s increase in uncertainty involves a transfer of posterior probability mass from the high-

correctness clusters to the low-correctness clusters, thereby decreasing the total weight > € T W+
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This causes (a) weight to be moved from high-g; terms to low-q; terms, causing the value of the
weighted average p(correct|t) to decrease, and (b) the between-cluster covariance matrix, Spetween =
> wipy — ) (py — i)7, to increase in the PSD order. A posterior concentrated on a few modes
has a smaller second moment than one spread more uniformly across many modes.

Since an increase in Xpeeen i the PSD order leads to a non-decreasing determinant of the total
covariance approximated by our proposed semantic volume term, an increase in model uncertainty
corresponds to a non-decreasing semantic volume and a non-increasing probability of correctness,
illustrating the relationship between the volume term and the expected error. O

A.2.3 PROPOSITION 3 (CONCENTRATION AND RANKING CONSISTENCY)

Under assumptions A1-A4, there exist constants ¢, C' such that for any n > 0, the score concentrates
around its mean with sub-exponential tails in &:

Pr (|V; —EV| > 1) < C exp(—ckip?).

Moreover, if two instances t,, and ¢; satisfy a true mean gap IEVta — ]Eth > A > 0, then the empirical
ordering V;, > V4, holds with probability at least 1 — 2C exp(—ck(A/2)?).

Proof. We will compute bounds for each of the two decomposed terms (semantic volume and
coherence scores) in our proposed metric separately, before combining them.

(i) Coherence term concentration. As already shown in App.[A.2.1] there exist constants ¢, C; > 0
(depending on « and the incoherence range) such that for any n > 0,

.

(if) Volume term concentration. Consider Sy = LSk ¢ipf and B = E[p¢]. Note that our
semantic volume term

200 -

El e

k
31— p) — 20E[1 ~ 3]

> 7)) < (C; exp(—clkn2).

logk 1
—1 .
A + k og det(Sy)

1 1
- log det(®dT) = - logdet(kSy) =

log k
1 k

has an additiona term that vanishes as & — oo, so it suffices to consider % log det(S}) in our

analysis.

We define centered symmetric random matrices:
— T * -
E_¢Z¢z _27 7’_17"'7k7

50 Sy —¥* = L% ¥, and E[Y;] = 0. From A1, we have that ||¢;¢; || < [|¢:]|3 < B2, and hence
|Y;]| < B2 + ||=*|| < 2B? (we absorbed ||X*|| < B2 for simplicity). We can then apply Lemmali}
the matrix Bernstein inequality: there are constants co, Cs > 0 such that for all § > 0,

p(||Sk — £*|| > 6) < Cadexp(—cokd?). 8)

We now translate the matrix norm bound to log-determinant bounds for our metric. Assumption
A4 states that X* is positive definite with \p;, (X*) > 0. For clarity and to cover the practical case
where ¥* may be nearly singular, we denote regularized matrices

Sp(e) := 8k +el, X*(e):=X*+el,

where a small € > 0 is chosen. Then Apin (X*(2)) = Amin(5*) + & =: Mg > 0. € could be treated as
for example the empirical jitter used in numerical computation.

Using the integral representation for log-determinant difference (Lemma 2), for positive definite A
and symmetric A with || Al[spec < Amin(A) we have

1
logdet(A + A) — log det(A) = / tr((A+tA)"tA) dt.
0
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With this identity, we can get the bound

d || Al|spec
[logdet(A + A) —logdet(A)| < .
/\min(A) - ”AHSPEC

By applying Eq. (9) with A = ¥*(¢) and A = Sj(e) — £*(¢) = Sy — £*, on the high-probability
event ||.Sy — X*||spec < 0 and when 6 < \g/2 we obtain

©))

2d
[log det(Sk(e)) — logdet(X*(e))| < )\—0 ISk — X*||spec-

This converts Eq. into a log-determinant difference: there exist constants (re-labelled) c3, C's > 0
such that for any n > 0

2
Pr (Hlogdet(sk(e)) 7 log det(Z*(g))’ > 77) < Cyd exp (—csk‘ (”ﬁ;) > |

Absorbing factors of d, A\g into constants gives a sub-exponential-in-% tail of the same qualitative
form as before.

Hence, given additive 10% k term that vanishes and the regularized bound above, our semantic volume

term % log det(®® ") concentrates around its expectation at the above rate.

(iii) Combining with union bound Finally, we combine with union bound the concentration events
for both the coherence and semantic volume term. There exist constants ¢, C' > 0 depending on
B, d, \y, a such that for any n > 0:

Pr(|V; —EV4| >n) < C exp(—ckn?).

To consider desiderata[RT] we will additionally need to analyze the bounds for ranking. Given two
task instances ¢, and t; that satisfy EV;, — EV;, > A > 0, then the event that V;, < V4, implies at
least either |V, — EV; | or |V}, — EV;, | exceeds A/2. Applying the concentration bound to both
instances and the union bound yields the desired bound on the probability that the metrics will be
misordered: ~ ~

Pr(Vi, < Vi) <2Cexp (—ck(A/2)?).

O

As mentioned in assumption A4, where we consider regularized matrices, and on the high-probability
event || — X*|| < & with 6 < X\o/2 (using A4 with A\g = Amin(37)), by Lemma[2] with A = %
and A = 5 — Xf we get

d

log det(S;) — logdet(X})| < ——————

2d
1Al < S IALL

Since ||A]| = ||Sk — Z*|| < 4, we obtain
Pr (Jlog det(Sf) — logdet(X})| > n) < Cadexp (—c2k(nAo/(2d))?),

rearranging 1) < d§/o. Because 1 log det(®® " +kel) = 1 logk+ 1 log det(Sg) and 1 log k — 0
we get the same exponential-in-k concentration rate (constants adjusted) for the normalized volume
term 1 log det(®® " + kel).

(iii) Combine term tails. Union-bounding the coherence term tail and volume term tail yields the
stated exponential concentration for V,¢ with constants ¢, C depending on B, d, Ao, cv.

(iv) Ranking bound. Suppose two instances t,,t; satisfy IEVti — EVti > A. The event that
Ve < V¢ implies either |V —EVE | > A/2or [VE — EVE| > A/2. Applying the concentration
bound and union bound yields the exponential bound on misordering probability claimed. O

PROPOSITION A.4 (CALIBRATION UNDER MONOTONICITY)

If the function u — Pr(correct | V; = wu) is monotone, then isotonic regression fitted on a
development set of size n yields a consistent calibrated estimator of the true correctness probability.
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Standard non-parametric worst-case convergence rates apply (e.g., O(n~2/3) for the mean squared
error).

This is a standard result in isotonic regression and shape-constrained estimation (Barlowl [1972;
Chatterjee et al., [2015} |Guntuboyina & Sen, [2018)). We refer readers to the cited literature for full
technical statements and proofs.

B DISCUSSION

B.1 ASSESSING MULTIMODAL QUERY INPUT COHERENCE (R4))

For a metric to satisfy [R4] it should consider the coherence of each sampled response with respect
to the multimodal task instance query, rather than just a single modality (e.g., text). We design an
experimental setting on image-text modalities to assess this by computing uncertainty metrics based
on (1) both image and text portions of the query (¢ = (I3, ¢:)), (2) image I; with additive noise
N(0,0.5%), (3) I; is entirely black, and (4) no image, i.e only the text portion of the query (only ¢;)
with the MLLM text response ¢;. A metric that satisfies |R4|should perform significantly better under
(1), while a metric that does not will produce similar performance regardless of (1)-(4).

Specifically, for (2)-(4), after the MLLM has generated responses ¢; based on (I, ¢;), we recompute
the various metrics LN-Ent, Sem.Ent, Eigen, and UMPIRE based on the query-answer pair lower
quality to no image, e.g., based on recomputing the response logits and embedding vectors of text-only
query-answer pairs [q;, 4, on a subset of the VQAv?2 validation set. In Fig.|2| we observe that LN-Ent
and UMPIRE, and to a smaller extent Sem.Ent, are sensitive to the lack of multi-modality information,
with their performance increasing once the image queries are provided during the computation of the
metrics. On the other hand, Eigen is insensitive to whether the image query is provided or not. This
may be because Eigen measures only the diversity of responses through the covariance matrix of text
response sentence embeddings across multiple generations, which is not affected by the image query
bias. On the contrary, logit signals are more sensitive to the coherence of the multimodal input query
and the generated response, hence metrics that use some form of that such as LN-Ent and UMPIRE
can better satisfy [R4]

B.2 COMPARISONS WITH EIGENSCORE

As mentioned in App.[C.T] the Eigen (Chen et al.,2024) metric involves computing the log determinant
of the covariance matrix of sampled sentence embeddings. At first glance, this metric may seem
similar to that of UMPIRE. However, there are key differences that lead to Eigen consistently
underperforming our proposed UMPIRE metric, as can be seen in both the MLLM (Sec. [6) and LLM
case (App.[C.7), and Eigen could be interpreted as a special case of UMPIRE.

A major distinction, among others, is that|Chen et al.|(2024) analyzed only the LLM setting, and
proposed Eigen by considering the differential entropy of sentence embeddings, assuming that the
embeddings form a multivariate Gaussian distribution — this motivated the log determinant term of
the metric, which bears similarity to UMPIRE. However, our UMPIRE framework considers the
more general MLLM setting, and adopts a different approach inspired by the quality-diversity kernel
decomposition of determinantal point processes (DPP), which naturally factors the incoherence
scores when computing the UMPIRE metric to adjust the semantic volume enclosed by the responses’
semantic embeddings. This inclusion of the incoherence scores help (1) satisfy [R4] as we can
see in App. [B.1]that Eigen does not, and (2) significantly improve metric performance (App.[D.2).
Eigen could possibly be interpreted as the special case of UMPIRE where all responses have
incoherence scores of 1 (i.e., the model-generated probabilities of all responses p; = 1 Vi), or when
the hyperparameter « is set to 0. Note that the incoherence scores also boost performance in the LLM
setting (App.[C.7), indicating that while incoherence scores help in addressing App. [B.T] its weighting
of different responses in the computation of UMPIRE also helps in single modality settings.
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B.3 ADDITIONAL DISCUSSION ON THE EFFECTIVENESS DESIDERATA

In this section, we provide further discussion on the various effectiveness desiderata, such as the
differences and relevance of [R1] R2ajand R2b| For ease of discussion, we focus on comparing [R1]
and R2b| which is a stricter form of R2a]

The classification desiderata [R1] and the calibration desiderata R2b| are primarily motivated by
different considerations. In the former, we are concerned about classifying whether a task instance
t will be answered correctly or not by the MLLM. As represented in Eq. (I)), for this desiderata
the metric should be able to successfully rank the task instances that the MLLM will get wrong
higher than those that it will get correct, which can be evaluated by the AUROC of the metric. Such
evaluations are used in many MLLM and LLM uncertainty quantification works (Farquhar et al.|
2024} |[Malinin & Gales,, [2021}; |Chen et al.| 2024} [ Xiong et al.| [2024a) to assess the performance of
their metrics. While useful, note that the desiderata does not consider a quantitative, continuous
measure of the uncertainty associated with each task response, since classification of correct/wrong
responses is a binary task.

However, in the latter, we are concerned about providing an accurate, calibrated estimate of whether
the MLLM will get a task instance correct, conditional on the uncertainty metric (as in Eq. (3)),
which can be evaluated via the expected calibration error (ECE). Note that in this scenario, we are
not concerned about classifying whether a task instance will be answered correctly (RT)), but instead
are focused on being accurate about the probability that a task instance will be answered correctly
given an associated metric value.

To illustrate the difference, consider an extreme example where an MLLM will definitely get 50% of
the task instances correct, and the rest wrong. The vacuous metric that assigns the same uncertainty
score to all task instances might satisfy since it will output the average accuracy, 0.5, as the score
for all task instances. This metric would violate [RT]and fail to classify the correct from wrong task
instances. Instead, a better metric might strive to assign 1 to all task instances that can be answered
correctly and 0 to the rest, satisfying both [RT]and R2b]

In practice, we would likely not have perfect information prior to evaluation on whether a task
instance will be correct or wrong. That is why for [RT]the goal is only for the metric to get as close to
1 as possible, as the best possible AUROC would depend on the model and task. However, given two
metrics that can achieve the same AUROC, a poor metric might only obtain the right relative ranking
of task instances, while a good metric would not only achieve the same AUROC but also provide
calibrated probabilities on how likely a task instance would be answered correctly or not. Hence,
both the [RT] and R2b|should be considered when evaluating uncertainty metrics, as we described
in Sec.[2] In the absence of a small development set of unlabeled task instances before deployment,
metrics satisfying R2a] would at least provide interpretable relative information regarding how likely
a task instance would be answered correctly compared to another.

C EXPERIMENTAL SETTINGS AND OTHER RESULTS

C.1 BENCHMARKS
C.1.1 DATASETS

For our experiments, we utilize a diverse set of general multi-modality question-answering baseline
datasets to ensure a comprehensive evaluation across different scenarios. Specifically, for image-text
understanding, we use VQAV2 (Goyal et al.|[2017), OKVQA (Marino et al.,[2019), and AdVQA (L1
et al., [2021), which include challenging cases such as out-of-distribution and adversarial settings.
Besides, we also try to use the domain-specific visual QA datasets, including VQA-RAD, a dataset of
question-answer pairs on radiology images, and MathVista, a consolidated Mathematical reasoning
baseline within visual contexts. We evaluate our method using the first 15,000 samples from the
validation split of VQAv2, along with the full validation sets of OKVQA (5,000 samples) and AdVQA
(10,000 samples), the test split of VQA-RAD (Lau et al., 2018) (450 samples), and MathVista (Lu
et al.,[2023)) (testmini split - 1,000 samples).

These datasets provide a robust test bed for assessing the effectiveness of our approach across different
types of visual QA tasks. Besides image-text understanding, we also show the effectiveness of various

21



Under review as a conference paper at ICLR 2026

uncertainty metrics on audio-text and video-text understanding via audio QA datasets, including the
test split of SLUE-P2-SQAS (Shon et al.| 2022)), Spoken SQuAD (Li et al., [2018)), and video QA
datasets with Video-MME-short (Fu et al., [2025) (we convert multi-choice answers into free-form
answers by taking the correct choice). For text-only datasets, we have CoQA (Reddy et al.;|2019),
TriviaQA, (Joshi et al.}[2017), and NQ (Kwiatkowski et al., 2019)).

C.1.2 BASELINES

The details of each baseline are as follows.

C.1.3

* Neighborhood Consistency (NC) (Khan & Fu, 2024a). This method tries to examine
the reliability of the model via the consistency of the model’s responses over the visual
rephrased questions generated by a small proxy Visual Question Generation (VQG) model.
We implement this method by training BLIP (Li et al.l 2022) as the VQG model with
its default setting. To ensure a fair comparison, we use Llava-v1.5-13b as the VQA
model, aligning with the model used in our experiments.

Length-normalized Entropy (LN-Entropy) Malinin & Gales| (2021). This approach
normalizes the joint log-probability of each sequence by dividing it by the sequence length
and is proposed by Malinin & Gales|(2021) for uncertainty quantification in LLM. Following
Kuhn et al.| (2023)), we also apply multinomial sampling instead of using an ensemble of
models.

Semantic Entropy Kuhn et al.| (2023). This method introduces a concept of semantic
entropy, which measures the uncertainty over different meanings. Following their algorithms,
we try to cluster the generated sequences by Deberta as the text entailment model and
then compute the entropy based on these clusters.

EigenScore |(Chen et al.| (2024). We follow their default settings and compute the log
determinant of the covariance matrix by Eigenvalues via Singular Value Decomposition
(SVD), with the exception of the jitter term value — we found that using a jitter term of 10~8
rather than their default setting of 10~2 improves their performance, hence we applied that
and reported the improved performance.

Verbalized Confidence Xiong et al.| (2024a). This method is applied specifically to
blackbox models where we instruct it to provide a measure of its own confidence. For a
single instance, we sample generations k times and return the most frequent answer along
with the average reported confidence by the model.

Image generation UQ methods . We implement PUNC [Franchi et al.| (2025)) as the image
generation uncertainty metric. This approach tries to generate the caption from the generated
image and compute the text similarity between the new generated caption and the input
caption through text similarity metrics such as ROUGE or BertScore. We use their default
settings with the L1ava-v1.5-13b as the caption generation Vision-Language model
and ROUGE as the text similarity metric.

EXPERIMENTAL SETTINGS

Models and parameters. We primarily use L1ava—-v1.5-13b as our image-text MLLM,
with further analysis on other models provided in App. Phi-4 as audio-text MLLM,
and LLaVA-NeXT-Video-7b-hf as video-text ones. Following past work Kuhn et al.
(2023), for each task instance ¢, the MLLM generates the most likely answer using a low-
temperature setting (7' = 0.01) and we use this answer ¢, to evaluate the correctness of the
model when answering this pair. For the computation of the various uncertainty metrics that
require multiple samples, we apply Monte Carlo sampling to generate n samples from the
MLLM using 7' = 1 and top_p = 0.9. In the main paper, we use the number of generated
samples n = 50, and ablation results on the impact of this hyperparameter are presented
and discussed in App.[D.3]

Evaluation. We use ROUGE-L and exact match as the evaluation functions a(M, t*), given
the model answer ¢; and ground truth answer y;, to assess the model performance. In the
main paper, we report results using exact match, while additional results with ROUGE-L
with varying parameters can be found in App.
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* Blackbox APIs. For OpenAI’s GPT models, we used n = 50 generations per prompt. For
Anthropic’s Claude 3.5 Haiku model, we used the same model parameters as specified above
but a smaller number of generations n = 20 due to limitations on API credits.

* Image/Audio Generation settings. In this setting, we use NExXT-GPT and AnyGPT models
as the image/audio generation models, and their default configurations. To make it consistent
with MLLM understanding tasks, we also use low-temperature generation for computing
CLIP score, and multi-sampling with n = 10, temperature 7' = 1, and top_p = 0.9, We
conduct experiments on 500 task instances of the MS-COCO caption validation set (Chen!
et al., 2015) for the image generation task, and the full Audiocap test set for the audio
generation task. We compare UMPIRE to image generation uncertainty quantification
method PUNC (Franchi et al.,|2025)). To evaluate the performance of multimodal genera-
tion uncertainty methods, instead of introducing the in-distribution and out-of-distribution
datasets and trying to let uncertainty metrics classify these sets as in|Franchi et al.| (2025)),
we show that these uncertainty metrics satisfy R2a|by computing the Pearson Correlation
between the uncertainty metric and the quality scores, including continuous CLIP score
(Hessel et al., 2021)), or CLAP score (Elizalde et al., [ 2023) for image or audio generation
tasks, respectively. These quality scores compute the similarity between the generated
image/audio and its corresponding input caption from a real image/audio.

C.1.4 PROMPTS

Following Liu et al.| (2023c)), we use the following prompt for all baseline tasks:

<modality>. Answer this question in a word or a phrase.
{question}

The prompt used to elicit verbalized confidence from the blackbox API models are slightly different,
such that they output their confidence in the answer along with the response. In accordance with
Xiong et al.|(2024a), we use the following prompt to extract verbalized confidence:

<modality>. Read the question, provide your answer, and your
confidence in this answer. Note: The confidence indicates how
likely you think your answer is true. Use the following format
to answer: “'‘Answer and Confidence (0-100): [ONLY a word or a
phrase; not a complete sentencel], [Your confidence level, please
only include the numerical number in the range of 0-100]%"”’ Only
give me the reply according to this format, don’t give me any
other words. Now, please answer this question and provide your
confidence level. Question: {question}

C.2 ADDITIONAL STATE-OF-THE-ART LLM UQ BASELINES

We have conducted experiments to evaluate UMPIRE against some other LLM UQ baselines,
including Kernel Language Entropy (Nikitin et al., 2024])), Degree (Lin et al.,|2024), and Semantic
Density (Qiu & Miikkulainen| [2024) on OKVQA and VQAv2, and AdVQA. Table E] shows the
performance across these datasets, demonstrating the robustness of our method, which achieves
the highest AUROC (0.808), lowest ECE (0.039), and highest AURAC (0.861), with near-top CPC
(0.964). UMPIRE outperforms these baselines in general over the effectiveness desiderata. While
these three baselines similarly rely on multiple response samples to compute their uncertainty metrics,
they are formulated based on premises and design considerations that are different from UMPIRE,
leading to distinct algorithms and hence different performances. Degree and KLE extended Semantic
Entropy (Kuhn et al.||2023)) by computing semantic graphs derived from NLI models and deriving
uncertainty metrics from them (e.g. via spectral graph analysis, graph kernels), while Semantic
Density focuses on response-wise metrics, building on the intuition that a response that is semantically
closer to more highly probable samples should be more trustworthy by estimating a semantic kernel
density based on output from NLI models and response token probabilities. UMPIRE adopts a
different approach where, inspired by DPPs, directly computes the coherence-adjusted (quality term
in DPP literature) semantic volume enclosed by responses in the MLLM’s embedding space, without
help from external tools like NLI.
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C.3 EVALUATING TPR UNDER FPR CONSTRAINTS

Image | Audio |  Video

Metric ~ Method ‘ ‘ Avg

. SLUE-P2 Spoken | Video-MME
VQAv2 OKVQA AdVQA MathVista VQA-RAD SQA5  SQUAD short
NC 0362  0.095 0.189 0.408 0.189 - - - 0.249
TPR@10% LN-Ent | 0.282 0244  0.168 0.347 0.127 0.299  0.248 0.287 0.250
FPR 1 Sem.Ent| 0.574  0.327  0.419 0.437 0.511 0.557  0.464 0.311 0.450

Eigen 0.602  0.340  0.466 0.483 0.601 0.443 0.435 0.534 0.488
Ours 0.629 0369  0.477 0.497 0.587 0.522 0.490 0.539 0.514

NC 0.049  0.008 0.019 0.030 0.023 - - - 0.026
LN-Ent | 0.057 0.030  0.066 0.075 0.065 0.025 0.023 0.022 0.045
Sem.Ent| 0.177  0.057 0.125 0.136 0.286 0.095 0.169 0.054 0.137
Eigen 0215 0.074  0.171 0.086 0.304 0.134 0.118 0.274 0.172
Ours 0.230  0.091 0.185 0.131 0.326 0.154 0.162 0.287 0.196

TPR@1%
FPR 1

Table 6: True Positive Rates (TPR) at different False Positive Rate (FPR) thresholds for various
uncertainty quantification methods across multimodal tasks. Results are reported at FPR levels of
10% and 1%.

In addition to the AUROC metric reported in Sec.[6.1} we also provide results on the True Positive
Rate (TPR) achievable for a given False Positive Rate (FPR), which users might have different
minimum requirements for based on their application. As shown in Table[6] we provide True Positive
Rate (TPR) at 10% and 1% FPR levels, and the results generally align with AUROC trends reported
in the main text, where UMPIRE consistently performs well compared to baselines across datasets.

C.4 PLOTS FOR CALIBRATION R2A]

To better visualize the performance of the various metrics for proportionality RZ2a] we plot the error
rate (P[a(M, t*) = 0]) v.s. uncertainty score u on the AdVQA validation set in Fig. 4] UMPIRE
manages to achieve the strongest linear correlation with error rate compared to all other metrics. This
satisfies the desiderata of R2al
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Figure 4: Pearson correlation plots of the uncertainty scores u on the VQAv2, OKVQA, and AdVQA,
which demonstrate UMPIRE’s strong correlation compared to other metrics.
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C.5 SINGLE SAMPLING METHOD

We have also run experiments on basic uncertainty metrics that use only a single MLLM response,
rather than a sampled set of MLLM responses. We ran the single-sample methods listed in |Xiong
et al.| (2024b): Sequence Probability, Mean Token Entropy (Fomicheva et al.,[2020), and Perplexity.

Table@] shows these methods’ results for the various MLLM datasets, along with UMPIRE, based on
five response generations. Note that while the single-sampled methods may be cheaper to compute,
they also produce significantly worse performance results compared to UMPIRE with & = 5. The
appropriate metric to use would depend on the application requirements. For settings that require
better uncertainty metric performance, UMPIRE would likely be a good choice especially since
accelerated batched response generation (Kwon et al.,|2023)) is fast and typically not a computational
resource bottleneck, while single-sample methods may be more suitable for very time-sensitive
applications.

C.6 STATISTICAL T-TEST ON AURAC

To determine whether the difference in AURAC between UMPIRE and other baselines is statistically
significant, we performed t-tests and Wilcoxon signed-rank tests (non-parametric) to ensure the
results agree.

* Ho: XuympIrReE — Xother =0

* Hi: Xuympire — Xother >0

where Xy v prrE 1s the set of AURAC scores from UMPIRE and X ;1. is the set of AURAC scores
from baseline methods, including length-normalized entropy. and EigenScore.

Test | LN-Ent. | EigenScore | SE
0.000413 ‘ 0.00791 ‘ 0.0000342

t-test pvalue

Wilcoxon test pvalue | 0.00390 0.00391 0.00390

Table 7: Statistical tests calculated based on 9 datapoints for the 9 model-dataset combinations (i.e.
Models: Llava-13B, Llava-7B and Mllama-11B with datasets: VQAv2, AAVQA and OKVQA). Each
data and model combination is treated as a single data point. The p-value of both tests are < 0.01, thus
there is sufficient evidence at the 1% level of significance to conclude that Xy arprreE — Xother > 0.

The results in Table[7]show that the AURAC between UMPIRE and other baselines are statistically
significant. However, the hypothesis tests were each performed with only 9 data points, which may
not be sufficient. Thus, we treat each model and dataset as a population, and perform sampling with
replacement instead (sample size 1000 of 100 observations each). The differences are approximately
normally distributed according to Central Limit Theorem, which would allow some robustness to
non-normality. The results are shown in Table[8] where both the t-test and the Wilcoxon sign-rank test
agree, indicating that the difference in AURAC between UMPIRE and other baselines is statistically
significant.

Test | VQAV2 | AdVQA | OKVQA

| LN-Ent.  EigenScore SE | LN-Ent.  EigenScore SE | LN-Ent.  EigenScore SE
Llava-13B
t-test pvalue 1.157E-283  5.99E-47  7.58E-118 0 4.85E-59  3.97E-127 | 1.1E-197  3.28E-66  2.92E-180
Wilcoxon test pvalue | 6.506E-162  5.31E-67 1.55E-108 | 4.1E-164 1.89E-53  6.73E-106 | 2.6E-141 5.53E-63 1.34E-137
Llava-7B
t-test pvalue 9.883E-296  3.64E-49 1.41E-98 0 3.34E-79  6.46E-153 | 4.6E-207  2.32E-69 1.19E-187
Wilcoxon test pvalue | 9.072E-163  3.09E-64 7.49E-87 4.4E-165 SE-72 4.09E-119 | 9.4E-143 1.33E-62  2.87E-139
Mllama-11B
t-test pvalue

0
9.854E-165  2.9E-146  2.15E-133 1.3E-162 7.42E-35  3.32E-124 | 3.5E-165  1.38E-95 7.44E-22

2.5E-223  3.05E-184 | 1.044E-314  1.01E-35  5.79E-164 0 3.7E-113 9.07E-24
Wilcoxon test pvalue

Table 8: Statistical tests calculated based on bootstrap sampling for each model-dataset combination.
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Metric Method | VQAV2 OKVQA AdVQA | Avg

KLE 0868 0702 0777 | 0782
Degree 0871 0711 0782 | 0788
Sem.Dens. 0.860 0.702 0.767 0.776
AUROCT (5 1rs 0.882 0755 0787 | 0.808
KLE 0861 0704 0844 | 0.803
Degree 0936 0934 0972 | 0947
CPC 1 Sem.Dens. 0.980 0.947 0.986 0.971
Ours 0946 0966 0979 | 0.964
KLE 0.133 0260 0206 | 0.200
Degree 0044 0098 0013 | 0052
pop,  SemDens. | 0026 0119 0043 | 0063
Ours 0038 0036 0042 | 0.039
KLE 0963 0778 0806 | 0.849
Degree 0.963 0.768 0.806 | 0.846
SemDens. | 0961 0759 0799 | 0.840
AURACT s 0.966  0.807  0.809 | 0.861

Table 9: Comparision of UMPIRE with SOTA LLM uncertainty quantification methods, including
Semantic Density (Sem.Dens.), Degree, Kernel Language Entropy (KLE), and UMPIRE (Ours)
across VQA datasets (VQAv2, OKVQA, AdvQA). We report AUROC (7 better), CPC (1 better),
ECE (| lower is better), and AURAC (1 better). UMPIRE achieves consistently strong results across
all metrics, often outperforming or matching the best baselines.

C.7 SINGLE MODALITY EXPERIMENT

We also tested our UMPIRE metric on purely textual datasets. To generate the embeddings and
answers, we used the Llama—3.1-8B-Instruct model (Grattafiori et al [2024) instead of
MLLMs. The datasets tested include Conversational Question Answering (CoQA), TriviaQA, Natural
Questions (NQ) and Stanford Question Answering Dataset (SQuAD). We performed tuning of the
weighting parameter & for each dataset.

AUROC 1 CPC 1 ECE |
0.9 1.0
0.4
0.8 1
0.8 0.34
0.6 1
0.7 0.2
0.4 4
0.6 024 0.1
0.5 - 0.0 - 0.0 -
& & & » & & & & & & & &
& @27 o4 & 27 & & Y N
& s & £ & £

[ LN-Entropy 3 Semantic Entropy I EigenScore B Ours

Figure 5: Performance comparison of different uncertainty quantification methods across LLM tasks.
The metrics include AUROC (higher is better), CPC (higher is better), and ECE (lower is better).

As shown in Fig.[5] UMPIRE managed to outperform other metrics in most cases, except for the CPC
score on the SQUAD dataset, where LN-Entropy performs slightly better. Thus, as noted in Sec.[2]
our method is not reliant on modality-specific characteristics when computing the metric, as it is
capable of working well in textual tasks of a single modality. UMPIRE is a general framework that
can also perform well in the special case of text-only LLM settings.

26



Under review as a conference paper at ICLR 2026

Dataset | Method AUROC?t ECE] CPC*?
Seq Prob 0.632 0.121 0.374

Mean Token Entropy 0.628 0.129  0.046

VQAVZ | perlexity 0629  0.131 0.125
Ours (k=5) 0.873  0.067 0.923

Seq Prob 0.595 0.303  0.372

Mean Token Entropy 0.590 0.302  0.170

ADVQA | pe plexity 0592 0336 0.151
Ours (k=5) 0.774 0.055  0.959

Seq Prob 0.581 0.304 0.463

Mean Token Entropy 0.580 0.303  0.039

OKVQA Perplexity 0.581 0.335 0.225
Ours (k=5) 0.740 0.097  0.944

SingleProb 0.628 0.539  0.322

. Mean Token Entropy 0.606 0.601  0.334
MathVista | po sty 0.616  0.643 0224
Ours (k=5) 0.791  0.087  0.706

Seq Prob 0.540 0.525 0.140

Mean Token Entropy 0.535 0.534 0.118

VQA-RAD | pe lexity 0537 0550 0.168
Ours (k=5) 0.806 0.090 0.828

Table 10: Comparison of the performance of single sampling methods and UMPIRE across various
VQA datasets.

D ABLATION STUDIES

D.1 EMBEDDING LAYER SELECTION

We analyzed the impact of the layer index when extracting the embedding vectors by computing the
AUROC performance on different embedding matrices extracted from different layer indices. As
shown in Fig. 6] (b), the change in the layer indices makes the AUROC vary slightly. The last layer
still yields the best performance, so we adopt it for all of our experiments.

D.2 WEIGHTING PARAMETER &

(a) (b)
0.756 - 0.880
0.754 A 0.878
ot 0.876
© 0.752 A
&
2 I |
< 0.874
1]
0.748 ® Best AUROC 0.872 A
® Adaptive alpha l-l
: y T T 0.870 -
0 50 100 150 20 40
Alpha Layer indexes

Figure 6: (a) Tuning of the weighting parameter & with respect to AUROC on the small development
set (10%) of AdVQA. The ‘adaptive alpha’ value set without the need for hyperparameter tuning
produces good performance. & = 0 is suboptimal, reflecting the importance of the incoherence
scores. (b) Ablation study on choosing the layer index to extract embedding vectors. Results show
that different layer indices only have slight variations in the AUROC performance.
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Subset Size  AUROC ECE CPC  AURAC

1% 0.882 0.04 0948 0.966
5% 0.882 0.038 0947 0.966
10% 0.882 0.038 0946 0.966

Table 11: UMPIRE performance is robust to the size of unlabeled set of task instance that we use to
compute adaptive a.

As mentioned in U3 in Sec. 4} the incoherence score in UMPIRE has a scaling hyperparameter
« that is related to the hyperparameter & = 2k« that controls the balance between two terms in
Eq. @): the unadjusted semantic volume metric and the expectation value of the model-generated
probabilities of getting the task instances wrong. In most of our experiments, we did not tune the
hyperparameter based on a labeled development set but instead set & such that both terms have the
same expected contribution (e.g. based on an unlabeled sample of task instances). We also show that
UMPIRE performance is also robust to the size of this unlabeled set of task instance that we use to
set by conducting an experiment of using different subset sizes (1%, 5%, and 10%) of the unlabeled
evaluation set to set « on the VQAv2 validation set. As can be seen in the table Table[TT} UMPIRE
maintains consistent and high performance across all metrics, with minimal variation in AUROC,
ECE, CPC, and AURAC, underscoring its robustness to the subset of unlabeled data used.

However, in practice, users could potentially search for a better hyperparameter value for their task,
such as via grid search or AutoML methods like Bayesian Optimization. In Fig.[](a), we provide
an illustration of a plot of AUROC v.s. & values from tuning & for the AdVQA dataset, based on
a development set consisting of randomly sampled 10% of the full dataset. Note that while using
grid search would yield a higher AUROC (green dot), the ‘adaptive alpha’ approach of setting & to
balance both terms in Eq. (@) will not be very far off from the optimum. In addition, an alpha value
of 0 has a significantly lower performance, indicating that the incoherence score contributes to the
good performance of UMPIRE.

D.3 NUMBER OF GENERATIONS ANALYSIS
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Figure 7: Ablation study on the (a) number of generations for our method and (b) evaluation methods.
(a) shows the AUROC performance as the number of generations increases, demonstrating the impact
of additional generations. UMPIRE is able to achieve high performance with few generations. (b)
consistently outperforms baseline approaches regardless of the chosen evaluation functions.

To analyze the impact of the number of generations on the various metrics’ performance, we conduct
an ablation study by varying the number of generated responses (from 2 to 50) per task instance for a
VQAV2 validation subset. As shown in Fig.[7](a), while increasing the number of generations generally
improves AUROC across all methods, UMPIRE achieves higher performance with significantly fewer
generations compared to baselines. This indicates that our method is more efficient, requiring
fewer samples to reach strong performance, whereas other methods continue to rely on additional
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Figure 8: Results for the effect of number of bins on (a) CPC and (b) ECE. Both measures show that
UMPIRE consistently outperforms baselines.

generations for improvement. The results highlight the robustness of our approach in capturing
correctness signals effectively, even with a limited number of generations.

D.4 ABLATION ON EVALUATION PARAMETERS

Evaluation function a(M, ¢t*) Following the setting in Kuhn et al.[(2023), we further evaluate the
performance of our method and baselines under various levels of the ROUGE-L. Fig.[7[b) presents the
AUROC scores across different evaluation functions a(M, t*) on a subset of the VQAv2 validation
set, demonstrating that our method consistently outperforms baseline approaches regardless of the
chosen evaluation functions. These results highlight the versatility and robustness of our approach
across different correctness evaluation criteria.

Effect of number of bins in ECE and CPC. We also analyzed the effect of the number of bins
when computing ECE and CPC by randomly trying on a subset of AdVQA dataset. Fig. [8]illustrates
that UMPIRE still achieves the best and consistent performance across all bin values.

D.5 SAMPLING TEMPERATURE
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Figure 9: Impact of temperature during the generation process on evaluation performance.

Besides the number of generations in App. [D.3] we analyzed the impact of temperature during the
generation process on the evaluation performance. We conducted an ablation study by varying the
generation temperature (from 0.25 to 2) on a subset of the VQAv2 validation set. As shown in
Fig.[9 the temperature of 1 helps UMPIRE achieve the best performance and outperforms the best
performance of other baselines (Eigen and LN-Ent).
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D.6 MODEL SIZES AND FAMILIES ANALYSIS

We analyze the impact of model size and architecture family on evaluation performance by comparing
different models across various sizes and families on a subset of the VQAV2 validation set for the
image-text understanding task and the SLUE-P2-SQAS test set for the audio-text ones. As shown
in Fig. [I0] we observe a slight increase in AUROC as the model size increases within the same
family. This suggests that larger models tend to generate more informative and reliable outputs.
Additionally, our method show a strong performance AUROC across all tested models, demonstrating
its robustness regardless of model size or architecture. These findings highlight that while larger
models can enhance performance, our approach remains effective across different model scales and
families.

Image-Text Audio-Text
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Figure 10: Ablation study across different models on image-text (VQAv2) and audio-
text (SLUE-P2-SQAS) understanding datasets, evaluating AUROC performance for LN-Ent,
Sem.Ent, Eigen, and UMPIRE. The results indicate that UMPIRE consistently achieves
strong AUROC across various models, including Llava-v1.5-7b, Llava-vl1.5-13b,
Llama-3.2-11B-Vision, Llama-3.2-90B-Vision, cogvlm2-1llama3-chat-19B,
Qwen?2.5-VL-7B-Instruct for image-text, and Qwen2-Audio-7B, Phi4 for audio-text.
This highlights the robustness and effectiveness of our approach across different model architectures.

D.7 RESULTS OF OTHER BLACKBOX AND WHITEBOX PROXY MODELS IN BLACKBOX
SETTINGS.

D.7.1 BLACKBOX MODELS

As in Fig. [T1] we find that UMPIRE also outperforms other baselines using different black-box
models, including Claude 3.5 Haiku 2024), GPT40-mini 2024).

D.7.2 WHITE-BOX PROXY MODELS

The experiments in Sec.[6.4use a simple approach of applying a vanilla L1ava-v1.5-13b proxy
model for all blackbox models. As seen in our empirical results Fig. 3] UMPIRE consistently
outperforms baselines without any fine-tuning of the proxy model. In general, we observe that
performant models tend to produce similar semantic volume, while variations in incoherence scores
introduce noise, they do not have a significant adverse impact on overall performance. The table
Table [I2] shows new ablation results where using different whitebox proxy models for GPT-4o still
yield good performance on 3000 samples of the VQAv2 validation set.

Method | AUROCT CPCt ECE |
UMPIRE (Llava-v1.5-13b) 0.890 0904  0.094
UMPIRE (L1lava-v1l.5-7b) 0.893 0.900  0.087

UMPIRE (Llama-3.2-11B-Vision) 0.839 0.943 0.091

Table 12: Results of UMPIRE in blackbox settings with different proxy models.
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Figure 11: UMPIRE metric consistently outperforms other baselines across various black-box models,
including GPT40, GPT40-mini, and Claude 3.5 Haiku.

D.8 LENGTH-NORMALIZED EFFECT

In prior work on uncertainty estimation and related scoring functions, length normalization has often
been applied to adjust for biases introduced by varying response lengths (Kuhn et al},[2023; [Malinin|
2021). Motivated by this, we explored whether length normalization could also benefit
the quality term of UMPIRE, i.e, length-normalized incoherence score. Empirically, as shown in
Table[T3] we observed that applying length normalization does not consistently improve performance
across most MLLM baselines. In fact, the normalized variant frequently underperforms in terms of
AUROC and CPC, and yields better ECE in several datasets. However, in the pure LLM setting as
seen in App. length normalization appears to offer some advantages (see Table[I4)), suggesting
that its effectiveness may be setting-dependent.

Metric Method VQAv2 AdVQA OKVQA MathVista VQA-Rad
AUROC 1 Without Length Normalized ~ 0.882 0.787 0.755 0.822 0.802
Length Normalized 0.875 0.779 0.756 0.825 0.792
CPC 1 Without Length Normalized  0.946 0.979 0.966 0.945 0.908
Length Normalized 0.986 0.978 0.946 0.936 0.935
ECE | Without Length Normalized ~ 0.038 0.042 0.036 0.071 0.067
Length Normalized 0.062 0.019 0.034 0.056 0.068

Table 13: Comparison of UMPIRE with and without length normalization across various VQA
datasets.
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Metric Method CoQA TriviaQA NQ SQuAD
AUROC 7 Without Length Normalized 0.749  0.641 0.844 0.813
Length Normalized 0.799  0.720 0.853 0.836
CPC 1 Without Length Normalized 0.876  0.850 0.780 0.888
Length Normalized 0.937 0.923 0.892 0.855
ECE | Without Length Normalized 0.068  0.098 0.076  0.117
Length Normalized 0.061 0.054 0.022 0.257

Table 14: Comparison of UMPIRE with and without length normalization across various text datasets.
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