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Adversarial Style Augmentation via Large Language Model for
Robust Fake News Detection

Anonymous Author(s)∗

ABSTRACT
The spread of fake news negatively impacts individuals and is re-
garded as a significant social challenge that needs to be addressed.
A number of algorithmic and insightful features have been iden-
tified for detecting fake news. However, with the recent LLMs and
their advanced generation capabilities, many of the detectable fea-
tures (e.g., style-conversion attacks) can be altered, making it more
challenging to distinguish from real news. This study proposes
adversarial style augmentation, AdStyle, to train a fake news detec-
tor that remains robust against various style-conversion attacks.
Our model’s key mechanism is the careful use of LLMs to auto-
matically generate a diverse yet coherent range of style-conversion
attack prompts. This improves the generation of prompts that are
particularly difficult for the detector to handle. Experiments show
that our augmentation strategy improves robustness and detection
performance when tested on fake news benchmark datasets.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Intrusion/anomaly detection andmalwaremitigation; •Com-
puting methodologies→ Artificial intelligence.

KEYWORDS
Misinformation, Adversarial Training, Fake News Detection, Large
Language Model
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1 INTRODUCTION
With the widespread use of the internet and the emergence of
various social media platforms, people have begun to freely share
information they know and their own creative stories. However,
the ease of sharing and consuming information beyond traditional
news organizations has also significantly contributed to the spread
of fake news [3, 11, 30]. Fake news is created to provide readers
with false information as propaganda or to guide public perception
in a desired direction for intentional objectives [16, 36]. The spread
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of such false information has had profound negative impacts on
individuals and society, becoming a major social challenge that
needs to be addressed.

Manually determining the authenticity of all information on the
internet is extremely costly in terms of time and resources. Thus,
prior advances have mainly focused on developing automated fake
news detectors using machine learning techniques [22, 27, 28]. For
example, several studies have extracted sentiment-related or polit-
ical features commonly found in fake news, either through human-
crafted [23, 25] or data-driven methods [27, 28], and used them for
detection.With the advent of languagemodels (e.g., GPT, BERT) [14,
24], efforts have been made to learn the textual style of fake news
by extracting sentence embeddings to train detectors [5, 35].

While these extracted textual styles or human-crafted features
have proven effective in identifying fake news, they allow attack-
ers to bypass detection. Various attack methods include changing
the order of subjects and objects [15], or exaggerating words [38].
Especially, the advent of large language models (LLMs) [7, 20] has
made it possible to easily and automatically paraphrase sentences
in a user-desired direction through prompts (e.g., "change the given
text to an objective and professional style"), making it more difficult
to distinguish between AI-generated fake news and real news (i.e.,
style-conversion attacks) [15, 38]. Recent literature has proposed
strategies to augment the styles of input text via some manually
defined style-conversion prompts, which are taken by LLM for para-
phrasing, but it remains challenging to address all types of prompts
that attackers might use to deceive detectors [32].

In this study, we propose adversarial style augmentation, Ad-
Style, to train a robust fake news detector that can withstand var-
ious style-conversion attacks by attackers. In contrast to earlier
work, which used predefined style-conversion prompts as detector-
agnostic augmentations, AdStyle tries to find prompts for adversarial
style augmentations that are specific to the detector, which makes
predictions uncertain. This means that our augmentations add noise
to the style features in the direction of the detector’s decision bound-
ary, while maintaining the text’s content integrity. Specifically, to
search for and optimize prompts for LLM that are adversarial to
the detector, we introduce an automated prompt engineering tech-
nique [34]. By providing LLMs with style-conversion prompts and
the detector’s performance under these augmentations, LLM can
infer patterns between the prompts and performance, enabling the
search for the most adversarial prompts.

AdStyle proceeds as follows: To generate augmented samples, we
first select a random subset of the dataset and apply a pool of style-
conversion prompts to it. Then, each augmentation set created by
different prompts is fed into the detector, and the score based on
the AUC between the predictions and the ground-truth labels is
measured. The prompt-score pairs are provided to the LLM, which
uses this information to generate new style-conversion prompt can-
didates. From these candidates, we select the top-𝑘 prompts that are
diverse and make the detector’s predictions most uncertain without
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significantly altering the original content. These selected prompts
are applied to the entire dataset and used for detector training. The
chosen prompts are added to the prompt pool, which is repeated
over several training rounds.

We experimented with existing fake news benchmark datasets
(e.g., PolitiFact, GossipCop, and Constraint) under various style-
conversion attack scenarios. As a result, our augmentation strategy
demonstrated higher robustness and detection performance com-
pared to previous methodologies. Furthermore, our augmentation
strategy preserves the content of the sentence while modifying
its structure to increase perplexity according to the LLM-based
detector. This adjustment results in a sentence structure that the
LLM has not frequently encountered during its pre-training phase.
AdStyle is scalable to different attack strategies by adding new attack
prompts to the style-conversion prompt pool. We plan to release
our code after publication.

2 RELATEDWORK
2.1 Automated Detection of Fake News
Manually detecting fake news among the vast amount of content on
the internet is intractable. Consequently, many studies have focused
on leveraging machine learning techniques to automatically detect
fake news [22, 27, 28]. For example, supervised learning methodolo-
gies extract textual features from fake news texts using benchmark
datasets and ground-truth labels [27]. These textual features can
include deep features based on artificial neural networks [27, 28] as
well as manually defined features such as sentiment and political
bias [23, 25]. Other approaches include domain adaptation methods
to enhance detection generalizability across various domains and
topics [18, 19], and knowledge-based methods that rely on exter-
nal data to distinguish false information [9]. With the advent of
LLMs, new methods have emerged that utilize LLMs’ prior knowl-
edge to identify fake news [12], including research on detecting
machine-generated fake news [6].

In this work, we aim to prevent malicious attackers from deceiv-
ing automated fake news detectors through text modifications such
as paraphrasing. The proposed method is an augmentation strategy
to enhance robustness against text style perturbations as an add-on
to existing detection models. Our contribution is agnostic to the
design of the detection model.

2.2 Attack on Fake News Detection
To test the robustness of fake news detection, various attack meth-
ods have been studied [15, 38]. These include injecting misinforma-
tion by changing the order of subjects and objects or causes and
effects whilemaintaining the textual features used for detection [15].
Other methods involve creating fact distortions by altering or exag-
gerating words related to people, time, or places while preserving
the sentence structure [38]. Additionally, approaches that use the
text generation capabilities of LLMs to change the style of sentences
have been proposed [32].

Our method aims to perform adversarial training of the detection
model by generating augmentations that perturb the text’s style
while preserving the content as much as possible. This approach re-
duces the impact of spurious style features on the detection model,
making it more robust against such attacks.

2.3 Prompt Engineering for LLM
Trainingwith extensive text corpora, LLMs have demonstrated their
utility across various domain tasks [7, 20, 21]. To better harness
the prior knowledge and reasoning abilities of LLMs, strategies for
providing appropriate input prompts have also been researched. For
instance, in-context learning methods involve providing examples
of the desired input-output format to guide the LLM in producing
the correct output [8]. Additionally, engineering techniques such as
chain-of-thought prompting, which includes additional reasoning
steps in the responses, have been developed to enhance the rea-
soning abilities of LLMs [31]. Recently, methods for automatically
finding the most suitable prompts for a given task, known as auto-
mated prompt engineering, have shown promising results [34, 37].

In this paper, we adopt automated prompt engineering tech-
niques to identify adversarial prompts that most effectively confuse
the fake news detector. This process replaces the traditional gradi-
ent descent method used in the image domain to find adversarial
noise, enabling the creation of adversarially augmented versions of
input text via LLM.

3 METHOD
3.1 Overview
LetD = {(d𝑖 , 𝑦𝑖 )}𝑁𝑖=1 be a dataset containing news d𝑖 and the corre-
sponding ground-truth binary veracity label 𝑦𝑖 (indicating whether
the news is true or fake). Each news item d𝑖 is composed of natural
language-based text. This study aims to train a language model
based fake news detector 𝑓 using the labeled dataset to predict the
veracity labels. Our main goal is to develop a detector that remains
robust even when an attacker perturbs the textual style, such as the
order and format, while preserving the meaning of the sentences.

Figure 1 illustrates how our model works. AdStyle generates
style-conversion prompts and performs augmentation over multi-
ple rounds. Each round includes a following process. Firstly, lever-
aging the reasoning ability of LLM, adversarial style-conversion
prompt candidates are generated. These style-conversion prompts
contain instructions on how to transform the given sentences and
are used as inputs to the LLM along with the original sentences
for conversion. Inspired by automated prompt engineering [34],
the style-conversion prompts and detector prediction score pairs
used in previous rounds are included as in-context demonstrations
to guide the LLM in searching prompt candidates that maximally
confuse the detector (Section 3.2). Next, a subset of the dataset is
selected, and these discovered candidates are applied to perform
conversions. The converted samples are then evaluated to deter-
mine how much they confuse the detector. From these candidates,
the top-𝑘 prompts that are diverse and maintain the original con-
tent’s meaning while most effectively confusing the detector are
selected (Section 3.3). These selected prompts are used as an aug-
mentation method to train the detection model in the current round.
We describe each step’s details below.

3.2 Generating Adversarial Style-Conversion
Prompts with LLM

The style-conversion prompts we aim to generate are instructions
that perturb only the textual style, such as the structure or format

2
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You will help me to 
generate style transfer 
attack instruction.  

Input: Change the text 
in a professional tone.
Score: 0.43
,,,

Give me a new 
instruction that has a 
score lower than any of 
the above.

Generating Style 
Conversion Prompts

Candidates 1

Candidates 2

Candidates K

…

Evaluation
- Adversarialness
- Coherency
- Diversity

Selecting Top-k 
Adversarial Prompts

Fake News 
Detector

Augmentations for training

Fake / Real

Input Text

< Round 𝑖 >

Round 𝑖-1 
results

< Round 𝑖+1 >

...
Input: …
Score: …
,,,

< Round 𝑖-1 >

Evaluation
- Adversarialness
- Coherency
- Diversity

Figure 1: Illustration of how AdStyle works. Our model consists of multiple rounds of training. In each round, the model uses
the style-conversion prompt and prediction confusion score from the previous round to generate prompt candidates that can
maximize the confusion of the detector model. Subsequently, considering aspects such as adversarialness, coherency, and
diversity, a subset of the training dataset is used to select the top-𝑘 prompts, which are finally used as augmentations in training.

Now you will help me minimize a fake news detector performance
value with style transfer attack instruction. I have some style
transfer attack instructions and the fake news detector perfor-
mance value using those instructions. The pairs are arranged in
descending order based on their function values, where lower
values are better.

Input: [Style-Conversion Prompt Example]
Score: [Prediction Confusion Score]

Input: ... ...

Give me a new style transfer attack instruction that is dif-
ferent from all pairs above, and has a performance value lower
than any of the above.

Figure 2: Prompt for generating adversarial style-conversion
prompts. The text in blue represents the score trajectory
component, while the remaining text represents the problem
description component.

of the sentence, while preserving the content of the given input
text. For example, an instruction like “Rewrite the following article
in an objective and professional tone” can be used to transform the
stylistic features of fake news to resemble real news. However, if
such instructions are heuristically defined, they may not align with
the actual decision boundary of the detector, reducing the training
efficiency. Furthermore, if the instructions remain fixed throughout
the training, the detector may memorize these conversion patterns,
resulting in overfitting.

Therefore, instead of predefining and fixing the instructions for
conversion, we aim to find adversarial conversion prompts that add
noise in the direction of the decision boundary of current state of
detector, maximizing the confusion in the detector’s predictions.
This approach is similar to adversarial training commonly used
in the computer vision domain [17], which enhances robustness
against slight perturbations in the input. However, for textual data,
the discrete nature of the input makes it challenging to add noise
directly through the detector’s gradient as in the image domain. To
address this, we measure the confusion in prediction by conversion
prompts (i.e., prediction confusion score), and feed this prompt-
score pair to LLM for generating adversarial prompts, motivated
from automated prompt engineering techniques.

Figure 2 shows an example of the LLM input used to generate
adversarial style-conversion prompts. The LLM input consists of
the problem description and the score trajectory components.

Problem description component. This component includes the
problem description, the objective, and constraints on the response
necessary for generating style-conversion prompts. For example, a
sentence like “Minimize a fake news detector performance value
with style transfer attack instruction” informs the LLM of the intent
behind the conversion prompt.

Score trajectory component. Previouswork has shown that LLMs
can learn patterns from in-context demonstrations provided as in-
put [8, 34]. This component leverages this ability by providing previ-
ous round’s style-conversion prompts and their corresponding pre-
diction confusion scores in the form of in-context demonstrations1.
The score is measured by selecting a subset B from the entire train-
ing datasetD = {(d𝑖 , 𝑦𝑖 )}𝑁𝑖=1, applying a conversion prompt 𝑐 to cre-
ate a new set B𝑐 = {(d𝑐

𝑖
, 𝑦𝑖 )}𝑀𝑖=1, where d

𝑐
𝑖
= Convert(𝑐, d𝑖 ), 𝑁 >>

1In the first round, a predefined set of prompts is used.
3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28– May 02, 2025, Sydney, Australia. Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑀 , and then measuring the AUC score between the predictions and
the ground-truth labels whenB𝑐 is fed into the detector. Specifically,
the score of a conversion prompt 𝑠𝑐 is defined as:

𝑠𝑐 = |0.5 − AUC({𝑦𝑖 }𝑀𝑖=1, {𝑓 (d
𝑐
𝑖 )}

𝑀
𝑖=1) |. (Eq. 1)

A lower score indicates a higher level of prediction confusion,
implying that the conversion prompt has caused the detector’s
predictions to become random with respect to the labels. Finding
conversion prompts that cause high confusion (i.e., low score) sug-
gests that the detector has not yet learned to handle those stylistic
features, and the conversion prompts have placed the samples near
the detector’s decision boundary, making them difficult to distin-
guish. By showing the LLM these in-context demonstrations, it
can generate conversion prompts that differ from past ones while
maximizing confusion (i.e., minimizing the score). Note that we
avoid selecting conversion prompts that flip the detector’s original
predictions (i.e., AUC << 0.5), as these often disrupt the content
along with the stylistic features, which is undesirable. We extract 𝑆
style-conversion prompts at a time using the input described above.

3.3 Selecting Top-𝑘 Adversarial Prompts
Using all the style-conversion prompt candidates generated by the
LLM can be computationally intensive, and not all prompts may be
suitable for augmentation. For example, the set of style-conversion
prompts used for augmentation should each provide adversarial
perturbations that confuse the detector (i.e., adversarialness). Ad-
ditionally, while altering the textual style, the prompts should not
change the meaning of the sentences to prevent label noise (i.e.,
coherency). Furthermore, the more diverse the set of conversion
directions covered by the prompts, the more efficient the augmen-
tation process (i.e., diversity).

To select a set of style-conversion prompts that satisfies these
three criteria, we propose a selection strategy. Given a conversion
prompt 𝑐 , we first extract embedding vectors for the input texts
in both the training subset B and the subset B𝑐 converted by 𝑐

using a large language model 𝑔 such as BERT. We then compute
the average embedding vectors for each subset and calculate the
vector difference z𝑐 .

z =
1
|B|

∑︁
d𝑖 ∈B

𝑔(d𝑖 ), z′ =
1

|B′ |
∑︁

d𝑐
𝑖
∈B′

𝑔(d𝑐𝑖 )

z𝑐 = z′ − z (Eq. 2)

Here, z𝑐 represents the average change in embedding direction due
to the conversion prompt 𝑐 . We then calculate the adversarialness
scale 𝑠𝑐adv and coherency scale 𝑠𝑐coh for each conversion prompt 𝑐 ,
and rescale z𝑐 accordingly (i.e., ẑ𝑐 = z𝑐 ×𝑠𝑐adv×𝑠

𝑐
coh). Finally, we use

the 𝑘-means++ initialization method [1] on these rescaled vectors
to select 𝑘 prompts. The 𝑘-means++ initialization method helps
select a diverse set of prompts that are adversarial and coherent, by
choosing samples that are as far apart as possible [2]. The details
of each scale are described below.

Adversarialness scale (𝑠𝑐adv). To measure how adversarial a given
style-conversion prompt is to the detector, we define a new adversar-
ialness scale similar to the confusion score defined in the previous
section. Given the converted batch B𝑐 by conversion prompt 𝑐 , the

adversarialness scale 𝑠𝑐adv is defined as:

𝑠𝑐adv = −1.8 · |AUC({𝑦𝑖 }𝑀𝑖=1, {𝑓 (d
𝑐
𝑖 )}

𝑀
𝑖=1) − 0.5| + 1. (Eq. 3)

This value increases as the AUC approaches 0.5, indicating that
the prediction is more random. The coefficient 1.8 ensures that the
scale ranges between 0.1 and 1, preventing it from being zero.

Coherency scale (𝑠𝑐coh). To verify that the converted text retains
the same content as the original text, we check the similarity in
meaning between the text pairs using an LLM. Specifically, we cre-
ate sample pairs from B and the converted subset B𝑐 , and inquire
the LLM about the percentage of pairs that it considers to have
the same meaning. This percentage is used as the coherency scale
𝑠𝑐coh. Like the adversarialness scale, this value is rescaled to range
between 0.1 and 1.

Finally, the selected style-conversion prompts via our score and
𝑘-means++ initializationmethod are applied to the input texts of the
entire dataset D to create augmented samples. These augmented
samples are then used alongside the original samples to train the
detector 𝑓 . The detector is trained using binary cross-entropy loss.
These prompt generation and selection processes are repeated over
multiple training rounds.

4 EXPERIMENT
Weevaluate the robustness of AdStyle under diverse style-conversion
attacks across multiple datasets, comparing it with contemporary
baselines. Additionally, we analyze the impact of various model
components on overall performance. An in-depth evaluation is also
conducted on a wider range of paraphrasing attacks, including com-
parisons with LLM-based zero-shot and in-context learning base-
lines. Finally, a qualitative analysis is performed to examine the char-
acteristics of the style-conversion prompts generated by the LLM.

4.1 Performance Evaluation
Dataset. Our experiments use three real-world fake news bench-
mark datasets. We utilize PolitiFact and Gossipcop, drawn from
the FakeNewsNet benchmark [29], which focus on political claims
and celebrity rumors, respectively. Additionally, we incorporate
Constraint [10], a dataset specifically addressing COVID-19 related
social media posts. Each dataset is randomly split into an 80% train-
ing set and a 20% test set. Detailed statistics for these datasets can
be found in Table 1.

Table 1: Statistics of fake news datasets.

Dataset PolitiFact GossipCop Constraint

# of News Articles 774 7,916 8,418
# of Real News 399 3,958 4,406
# of Fake News 375 3,958 4,012

Attack settings. To assess robustness against style conversion
attacks, we employ LLM-empowered techniques to reframe the test
set using a variety of style conversion prompts, as illustrated in
Figure 3. Following the original literature [32], we use four well-
known daily news sources as [publisher name]: CNN, The New

4
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Table 2: Performance comparison with AdStyle in two different scenarios—Attack, where style-conversion attacks are performed,
and Clean, where no attack is performed—across three fake news datasets. For the attack scenario, we report the average AUC
of four style-conversion attacks. The best results are marked in bold. Our model demonstrates a significant performance
improvement over all text-based fake news detectors in both style-conversion attack and clean scenarios.

Attack Politifact Gossipcop Constraint
0.1 0.25 1 0.1 0.25 1 0.1 0.25 1

Vanilla 0.6114 0.6904 0.8548 0.6920 0.7876 0.8453 0.8185 0.8674 0.8741
UDA 0.6241 0.7696 0.8564 0.7381 0.7865 0.8591 0.8615 0.9028 0.9297
RADAR 0.7218 0.7399 0.8571 0.7583 0.8170 0.8616 0.8535 0.8047 0.9086
ENDEF 0.6376 0.7579 0.8134 0.7405 0.7870 0.8615 0.8234 0.8950 0.8835
SheepDog 0.6525 0.8234 0.9009 0.7498 0.8357 0.8669 0.8926 0.9188 0.9630

AdStyle 0.7833 0.8919 0.9399 0.8134 0.8389 0.8721 0.9224 0.9531 0.9716

Clean Politifact Gossipcop Constraint
0.1 0.25 1 0.1 0.25 1 0.1 0.25 1

Vanilla 0.7393 0.8397 0.9355 0.7096 0.8104 0.8645 0.9311 0.9682 0.9892
UDA 0.7404 0.8783 0.9422 0.7422 0.8022 0.8666 0.9365 0.9724 0.9899
RADAR 0.7607 0.8495 0.9314 0.7593 0.8170 0.8630 0.9446 0.9773 0.9817
ENDEF 0.7776 0.8823 0.9294 0.7592 0.7991 0.8738 0.9234 0.9556 0.9871
SheepDog 0.7248 0.8229 0.9394 0.7490 0.8411 0.8641 0.9144 0.9459 0.9785

AdStyle 0.8996 0.9280 0.9460 0.8251 0.8493 0.8797 0.9509 0.9849 0.9889

Rewrite the following article using the style of [publisher
name]: [news article]

Figure 3: Prompt for style conversion. The “publisher
name" part will be filled with the name of a representative
publisher (e.g., newspaper or journal), and the “news article"
part will contain the original news text.

York Times,The Sun, andNational Enquirer. CNN and The New
York Times are recognized for their reputable journalism, while The
Sun and National Enquirer are characterized by their tabloid style.
We utilize OpenAI’s GPT-3.5-Turbo model for reframing input sen-
tences, with the temperature set to 0 and the top-p value set to 1 by
default. We conduct experiments using 10%, 25%, and 100% of the
complete dataset to observe the effect of augmentation across differ-
ent dataset sizes for training. AUC is used as our evaluation metric.

Baselines.We have implemented several existing text-based fake
news detection strategies as baselines: (1) Vanilla, a text-based fake
news detector using conventional binary cross entropy objective;
(2) UDA, introduces consistency regularization objective between
original text and diverse augmented variations. [33]; (3) RADAR,
utilizes an adversarially trained paraphraser to generate augmented
version of input sentences [13]; (4) ENDEF, mitigates entity bias in

0 2 4 6 8
Round

0.88

0.90

0.92

0.94

AU
RO

C

CNN
The New York Times
The Sun
National Enquirer

Figure 4: Performance changes across rounds on the
PolitiFact dataset for four different style-conversion attacks.
The x-axis represents the training rounds, and the y-axis
represents the detector’s AUC. For all attacks, the detector’s
performance improved as the rounds progressed.

fake news data through causal learning [39]; (5) SheepDog, intro-
duces predefined style-conversion prompts to augment the styles
of input text via LLM [32]. We follow the original paper’s setting
and details for baseline implementations.

Implementation details. All models are evaluated under uniform
experimental conditions to ensure fair comparison. This consistency
extends to the choice of backbone network, optimizer, and learning
rate. We utilize OpenAI’s GPT-3.5-Turbo model for reframing input
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Table 3: Performance comparison of ablations on the Politifact dataset. The results show the impact of style-conversion attacks
using four different publishers (i.e., CNN, The New York Times, The Sun, and National Enquirer) and a clean scenario (i.e.,
Clean) where no attack is performed. Any modification or removal of model components leads to decreased performance.

Model CNN The New York Times The Sun National Enquirer Clean

Vanilla 0.8127 0.8687 0.8789 0.8591 0.9355
Random Selection 0.9075 0.9409 0.9355 0.9365 0.9412
Class Prompt 0.9131 0.9272 0.9333 0.9313 0.9471
Adversarial only Selection 0.9035 0.9343 0.9318 0.9288 0.9405
w/o Adversarialness 0.9039 0.9333 0.9320 0.9402 0.9473
w/o Coherency 0.9193 0.9315 0.9297 0.9430 0.9409
w/o Score trajectory 0.8199 0.8917 0.9124 0.9066 0.9372

Full Components 0.9174 0.9444 0.9520 0.9460 0.9460

sentences and measuring coherency, with the temperature set to
0 and the top-p value set to 1 by default. Our training process for
the detector is conducted over 10 rounds, with one training epoch
per round. When evaluating the style-conversion prompts, we ran-
domly selected 30 samples from the training dataset to apply aug-
mentation (i.e.,𝑀 = 30). In each round, 30 prompt candidates were
generated by the LLM (i.e., 𝑆 = 30), from which 3 were chosen for
augmentation (i.e., 𝑘 = 3) by our selection strategy. The training uti-
lizes the AdamW optimizer with a learning rate of 1e-5 and a batch
size of 8. For measuring diversity, the text embeddings are generated
using a pre-trained BERT-based uncased model from HuggingFace
Transformers. Two V100 GPUs were utilized for all experiments.

Result. Table 2 compares the performance of detector algorithms
in both clean scenarios, where no attack is performed, and adver-
sarial scenarios, where style-conversion attacks are applied. Due
to space limitations, the average AUC results under the four differ-
ent style-conversion attacks are reported. Detailed results for each
prompt can be found in the Appendix (See Table 7 in the Appendix).
According to the results, AdStyle consistently outperforms the base-
lines across all cases, including both clean and adversarial scenarios.
This demonstrates that our augmentation strategy enhances both
the robustness and generalizability of the detector. Notably, our
model’s effectiveness is more pronounced when compared to other
baselines, especially with smaller datasets. Figure 4 shows the AUC
for each style-conversion attack over different rounds. The perfor-
mance gradually improves as the rounds progress, indicating that
continually discovering adversarial augmentations is beneficial.

4.2 Component Analysis
In this section, we examine the contribution of each component on
our adversarial style-conversion prompts. The proposed method
integrates two main modules: adversarial style-conversion prompts
generation and selection. To evaluate their individual contributions,
we conduct experiments where we either remove each component
or substituted it with an alternative within the full model. This
results in six distinct configurations for analysis: (1) Full Compo-
nents: Our complete method with all components; (2) Random
Selection: The method that randomly select conversion prompts

0 2 4 6 8
Round

0.88

0.89

0.90

0.91

0.92

0.93

0.94

AU
RO

C Ours
w/o Score trajectory
Adv. Only Selection
Random Selection

Figure 5: Performance of selection strategies over training
rounds on PolitiFact. The x-axis represents the training
rounds, while the y-axis represents the detector’s AUC.

from candidates instead of using our selection strategy (Sec. 3.3);
(3) Class Prompt: The method categorizes the confusion scores of
conversion prompts into three levels: high, medium, or low. These
categorized labels are then used as in-context demonstrations for
generating adversarial style-conversion prompts (Sec. 3.2), instead
of relying on continuous confusion scores 𝑠𝑐 (Eq. 1); (4) Adver-
sarial only Selection: The method that selects top-𝑘 adversarial
prompts, not considering diversity and coherence criteria; (5) w/o
Adversarialness: The method that omits the adversarialness cri-
terion in our selection strategy; (6) w/o Coherency: The method
that omits the coherency criterion in our selection strategy; (7)w/o
Score trajectory: The method without score trajectory component
for the style-conversion prompt generation (Sec. 3.2).

Table 3 demonstrates that omitting any component leads to a
decrease in performance for certain style conversions attack. Es-
pecially, omitting the score trajectory component when selecting
the style-conversion prompt proved to be the most detrimental
to performance. This suggests that through the style-conversion
prompt and confusion score pairs as in-context demonstrations,
the LLM can effectively identify conversion prompts that may con-
fuse the detector. In addition, selectively choosing the conversion
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prompts that the LLM identifies according to specific criteria led
to an additional performance gain. It can be confirmed that our
sampling strategy also helps the model to converge faster than
other altenrative sampling strategies (See Figure 5).

4.3 In-Depth Performance Analysis
We here conduct analysis on how AdStyle demonstrates robust and
high performance across various scenarios and how it effectively
enhances the detector’s performance.

Comparison with LLM-based baselines. AdStyle enhanced the
detector’s performance by leveraging the reasoning abilities of ad-
vanced large language models like GPT-3.5. To determine whether
the capabilities of an advanced large language model alone are suf-
ficient for the fake news detection task, we compared AdStyle with
other LLM-based baselines: zero-shot and in-context learning-based
inference with GPT-3.5. In the case of the in-context learning base-
line, one example each of fake news and real news was provided
as in-context demonstrations. The example instruction prompt for
the LLM-based baselines are as follows:

Does the following contain real or fake news? Answer in
one word with either ‘Real’or ‘Fake’: [news article]

Figure 6: Instruction prompt for LLM-based baselines. The
"news article" section contains the original news text.

Table 4 presents the comparison results on the PolitiFact dataset.
Simply using LLMs with prompting makes it challenging to ac-
curately determine the authenticity of news. Rather than directly
using the LLM’s text generation ability for inference, it is found
to be more effective to use it as an augmentation tool to provide
additional training signals, as demonstrated by our model.

Table 4: Performance comparison of different LLM-based
baselines on the PolitiFact Dataset. (NY: The New York Times,
TS: The Sun, NE: National Enquirer)

Model CNN NY TS NE Clean

GPT-3.5 zero-shot 0.5820 0.6242 0.6173 0.5274 0.7037
GPT-3.5 in-context 0.6954 0.6504 0.6875 0.5754 0.7383

Ours 0.9174 0.9444 0.9520 0.9460 0.9460

Robustness against a different LLM backbone for attacks.We
further assessed the robustness of our method by examining its
performance against style conversion attacks when the attacker
utilizes a different LLM backbone, such as Gemini-Pro [26]. As
shown in Table 5, AdStyle consistently outperforms the baselines
even with a different LLM backbone, suggesting that our approach
is not overly reliant on recognizing the specific style of content
generated by a particular backbone.

Table 5: Comparison under attack scenarios with Gemini-Pro
on the PolitiFact dataset.

Model CNN NY TS NE Average

Vanilla 0.7913 0.8039 0.8882 0.8397 0.8308
UDA 0.7216 0.7863 0.8657 0.8119 0.7964
RADAR 0.8023 0.7805 0.8764 0.8423 0.8254
ENDEF 0.7730 0.7537 0.8439 0.8058 0.7941
SheepDog 0.8487 0.8926 0.9174 0.8998 0.8896

Ours 0.8821 0.9120 0.9295 0.9241 0.9120

Table 6: Comparison under attack scenarios on the PolitiFact
Dataset (A: Adversarial prompt, B: Summarization prompt,
C: In-Context prompt D: Adversarial Paraphraser).

Model A B C D

Vanilla 0.8881 0.8522 0.8896 0.8305
UDA 0.8624 0.8363 0.8924 0.8682
RADAR 0.9096 0.8754 0.9234 0.9007
ENDEF 0.8628 0.7978 0.9009 0.8682
SheepDog 0.9297 0.9205 0.9276 0.8995

Ours 0.9456 0.9416 0.9425 0.9212

Robustness against other possible attack scenarios. To validate
our model’s robustness against various attacks, we have conducted
additional comparison experiments with more diverse attack sce-
narios to deceive the detector by altering textual style of inputs: (1)
Adversarial prompt: Given a news article and its label, the prompt
instructs the LLM to rewrite the article to evade detection as the
given label. (2) Summarization prompt: A prompt instructing the
LLM to summarize the news article without incorporating stylistic
guidance. (3) In-Context prompt: A prompt providing an example of
a recent, real CNN article, instructing the LLM to rewrite the given
article in the same style. (4) Adversarial Paraphraser: The attack
utilizes a paraphraser adversarially trained on the training dataset.
The example prompt for each attack is described in Figures 12 to
14 in Appendix. Based on the results in Table 6, we confirm that
our proposed model still demonstrates a performance improvement
compared to other baselines against these attacks.

Effectiveness of the selection strategy.We here empirically ver-
ified that our selection strategy (Sec. 3.3) effectively selects diverse
style-conversion prompts with high adversarialness and coherency.
Figure 7a visualizes the diversity of prompts selected by our method
compared to those chosen solely based on adversarialness scores
(i.e., Adversarial-only Selection, the third model in our ablation
study). We measure diversity using the average cosine similarity of
every pair of selected prompts’ embeddings, z𝑐 (Eq. 2):

Diveristy(C) = 1 − 1
|C|

∑︁
(𝑐𝑖 ,𝑐 𝑗 ) ∈C

sim(z𝑐𝑖 , z𝑐 𝑗 ), (Eq. 4)
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Figure 7: Qualitative analyses with y-axis representing (a)
diversity in embedding (z𝑐 ) of conversion prompts sampled
by AdStyle and adversarial-only selection; (b) Adversarialness
(𝑠𝑐
𝑎𝑑𝑣

) for selected and unselected prompts; and (c) Coherency
for selected and unselected prompts.

where C is the set of prompt pairs, sim(·) represents the cosine
similarity. The result in the Figure 7a indicate that our strategy re-
sults in a more diverse set of augmentations compared to selection
based on adversarialness alone.

Figure 7b and 7c illustrate the Adversarialness and Coherency,
respectively, of our selected prompts compared to remaining unse-
lected prompts. Adversarialness was measured using the 𝑠𝑐

𝑎𝑑𝑣
score

(Section 3.3), and coherency was calculated as the cosine similarity
between the original text and its augmented version using semantic
BERT embeddings [4]. We can also observe that, for both metrics,
prompts selected through AdStyle exhibit higher values compared
to unselected prompts. This suggests that our strategy effectively
selects prompts by considering both adversarialness and coherency.

Analysis on style-conversion prompts. Finally, we qualitatively
analyzed the characteristics of our style-conversion prompts. Fig-
ure 8 shows examples of prompts generated and selected by AdStyle.
Previous work relied on prompts that were more conventional,
such as “neutral" or “sensational." However, our prompts included
creative phrases beyond typical human suggestions, which proved
to be more adversarial to the detector. Currently, we use a fixed
format for the initial set of prompts, which results in the generation
of prompts with a similar format. We expect that using a more di-
verse initial set of prompts will allow the LLM to optimize prompts
within a wider search space.

Then, what characteristics of the augmented samples generated
from these style-conversion prompts contribute to enhancing the
detector’s robustness? Interestingly, when we compare the aug-
mented samples from two models: AdStyle and SheepDog, we found
that our model produced sentences with significantly higher per-
plexity according to the language model backbone used by the
detector than SheepDog model (9.05 vs. 4.26, see Figure 11b in Ap-
pendix), even though ours have lower lexical diversity (0.503 vs.
0.634, see Figure 11a in Appendix). In other words, our generated
samples featured sentence structures that the detector’s language
model likely had not encountered during pretraining. By providing
the detector with inputs that have a variety of sentence structures
and styles it has not previously seen, the detector naturally be-
comes more robust against style-conversion attacks. In addition,
when we measured the changes in perplexity of the augmented

Round 0
P1: Rewrite the following article in a nonsensical and absurdly
exaggerated tone with a hint of horror
P2: Rewrite the following article in a sarcastic and mocking tone
P3: Rewrite the following article in a chaotic and disorganized
tone

Round 1
P1: Rewrite the following article in a haunting and macabre tone
with a sense of impending horror and madness
P2: Rewrite the following article in a cryptic and enigmatic tone
P3: Rewrite the following article in a malevolent and apocalyptic
tone with a sense of impending doom and destruction, while also
incorporating elements of surrealism and existential dread

Figure 8: Example adversarial style-conversion prompts
selected for the PolitiFact dataset.
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Figure 9: Perplexity changes of augmented texts over the
course of training rounds in the Prolific dataset.

samples across training rounds (see Figure 9), the perplexity in-
creased over rounds and eventually converged at a certain point.
This indicates that iterative exploration over multiple rounds is
effective in creating augmentations that increasingly challenge the
detector.

5 CONCLUSION
This paper presents a robust fake news detection method that with-
stands various style-conversion and paraphrasing attacks through
adversarial style-conversion. Unlike traditional detectors that use
predefined, agnostic augmentations, AdStyle employs tailored aug-
mentations that shift samples in the direction of the detector’s
current decision boundary using style-conversion prompts, func-
tioning similarly to adversarial noise. Among the various prompt
candidates generated by the LLM, we selected an efficient set of
prompts for training by considering diversity, coherency, and adver-
sarialness. As a result, we were able to train a detector that exhibits
high robustness and generalizability against a wide range of attacks.
We believe that our work helps filter fake news and contribute to
a better exchange of information in online.
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<EXAMPLES>: [news article]
Determine whether the given <EXAMPLES> content is
fact or fake, mentioning the style of the article that led to
that decision following format:
Answer: {Fact or Fake}
Reason: {one-sentence reason}

Your current article is: [news article]
But this article is detected as [Answer] due to the following
[Reason].
Based on the above information, rewrite a new improved
article not to be detected as [news label], maintaining the
original content, as follows:

Figure 12: Example input for Adversarial prompt model.
First, use the prompt above to extract the answer and reason
of authenticity of the given news. Then, the below prompt is
used for paraphrasing to avoid detection based on the reason.
The "news article" section contains the original news text,
and the "news label" section contains the corresponding label.

Summarize the following article, ensuring the content re-
mains the same: [news article]

Figure 13: Example input for Summarization prompt model.
The “news article" part is filled with the original news text.

<EXAMPLES>: [news article example] Rewrite the follow-
ing article as the writing style of <EXAMPLES> : [news
article]

Figure 14: Example input for In-Context prompt model. The
"news article example" section is filled with an example
from a specific publisher, while the "news article" section
contains the original news text.

6 APPENDIX
6.1 Baseline Implementation
For consistency, experiments replicating existing baselines main-
tained fixed settings for learning, backbone network, and other
relevant parameters. Augmented variations for UDA were gener-
ated using back-translation through German. RADAR employed
adversarial training to learn paraphrases, utilizing the maximiza-
tion of the binary cross-entropy loss of a fake news detector as a
reward signal, with the T5-large model serving as the paraphraser.
Named entities for ENDEF were extracted using the bert-base-NER

model from Hugging Face. For SheepDog, augmentations were
generated following the original paper’s methodology, using the
prompt format illustrated in Figure 10 and four tones: "objective and
professional," "neutral," "emotionally triggering," and "sensational".
Two V100 GPUs were utilized for all experiments.

Rewrite the following article in a/an [tone]: [news article]

Figure 10: Prompt for style-conversion. The “tone" part will
be filled with the desired tone, and the “news article" part
will contain the original news text.

6.2 Further Analysis on Augmented Samples
We present the results of comparing the textual characteristics of
augmented samples generated by our model with those generated
by the SheepDog model. Our model produced sentences with over-
all lower lexical diversity compared to the outputs of the SheepDog
model (see Figure 11a). However, when evaluated against the detec-
tor’s language model, our samples exhibited a significantly higher
perplexity distribution (see Figure 11b).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

De
ns

ity

(a) Lexical diversity

Ours 

Sheepdog

(b) Perplexity

Figure 11: Histogram for lexical diversity and perplexity of
augmented samples from two different models - ours and
SheepDog.

6.3 Prompt Examples of Other Attack Scenarios
We have conducted additional comparison experiments with more
diverse attack scenarios: (1) Adversarial prompt, (2) Summarization
prompt, (3) In-Context prompt, and (4) Adversarial Paraphraser.
Here we provide the example prompt for each attack prompt in
Figures 12 to 14.

6.4 Full Results on Performance Evaluation
Table 7 reports the AUC for each style-conversion attack. Paired
sample t-tests were conducted to compare our method with the
second-best baseline, Sheepdog, across different ratios for each
dataset. Except for the 25% ratio in the Gossipcop dataset, all p-
values were significantly smaller than 0.05, indicating statistically
significant differences.
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Table 7: Performance comparison with AdStyle in four different style—conversion attacks. For the attack scenario, we report the
AUC of four style-conversion attacks. Our model demonstrates a significant performance improvement over all text-based fake
news detectors in diverse style-conversion attack scenarios. (NY: The New York Times, TS: The Sun, NE: National Enquirer )

CNN Politifact Gossipcop Constraint
0.1 0.25 1 0.1 0.25 1 0.1 0.25 1

Vanilla 0.5664 0.6566 0.8127 0.6841 0.7913 0.8518 0.8563 0.8175 0.8056
UDA 0.5906 0.7174 0.8009 0.7294 0.7859 0.8599 0.8305 0.8594 0.9021
RADAR 0.7205 0.7301 0.7926 0.7683 0.8138 0.8666 0.8099 0.8400 0.8873
ENDEF 0.5426 0.6679 0.7588 0.7288 0.7839 0.8624 0.7695 0.8666 0.8353
SheepDog 0.6305 0.8269 0.8683 0.7472 0.8393 0.8706 0.9200 0.9022 0.9544

AdStyle 0.7547 0.8822 0.9174 0.8195 0.8429 0.8744 0.9344 0.9430 0.9646

NY Politifact Gossipcop Constraint
0.1 0.25 1 0.1 0.25 1 0.1 0.25 1

Vanilla 0.5899 0.7334 0.8687 0.6750 0.7797 0.8465 0.8522 0.8939 0.8868
UDA 0.6189 0.7644 0.8744 0.7207 0.7795 0.8558 0.8745 0.9184 0.9297
RADAR 0.6966 0.7853 0.8586 0.7481 0.7960 0.8574 0.8701 0.8974 0.9176
ENDEF 0.6152 0.7630 0.8150 0.7227 0.7837 0.8609 0.8341 0.9067 0.8918
SheepDog 0.6310 0.7990 0.9090 0.7420 0.8309 0.8650 0.8937 0.9254 0.9645

AdStyle 0.7599 0.8940 0.9444 0.8118 0.8389 0.8686 0.9243 0.9594 0.9720

TS Politifact Gossipcop Constraint
0.1 0.25 1 0.1 0.25 1 0.1 0.25 1

Vanilla 0.6913 0.6859 0.8789 0.7068 0.7918 0.8430 0.7822 0.8727 0.8974
UDA 0.6646 0.8072 0.8883 0.7488 0.7904 0.8613 0.8662 0.9145 0.9446
RADAR 0.7271 0.7173 0.8909 0.7594 0.8062 0.8620 0.8564 0.8882 0.9132
ENDEF 0.7001 0.8132 0.8444 0.7603 0.7909 0.8639 0.8445 0.8955 0.9043
SheepDog 0.7070 0.8408 0.9096 0.7580 0.8395 0.8688 0.8962 0.9217 0.9665

AdStyle 0.8444 0.9002 0.9520 0.8117 0.8347 0.8751 0.9219 0.9521 0.9727

NE Politifact Gossipcop Constraint
0.1 0.25 1 0.1 0.25 1 0.1 0.25 1

Vanilla 0.6432 0.6856 0.8591 0.7020 0.7875 0.8399 0.7833 0.8853 0.9067
UDA 0.6557 0.7892 0.8622 0.7450 0.7902 0.8595 0.8747 0.9191 0.9423
RADAR 0.7428 0.7269 0.8864 0.7573 0.8026 0.8556 0.8775 0.8919 0.9161
ENDEF 0.6924 0.7877 0.8355 0.7502 0.7897 0.8589 0.8456 0.9112 0.9025
SheepDog 0.6636 0.8268 0.9166 0.7521 0.8331 0.8632 0.8606 0.9257 0.9667

AdStyle 0.8029 0.8913 0.9460 0.8166 0.8391 0.8702 0.9092 0.9579 0.9771
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