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Abstract

Dataset distillation is a newly emerging task that synthesizes a small-size dataset
used in training deep neural networks (DNNs) for reducing data storage and
model training costs. The synthetic datasets are expected to capture the essence
of the knowledge contained in real-world datasets such that the former yields a
similar performance as the latter. Recent advancements in distillation methods
have produced notable improvements in generating synthetic datasets. However,
current state-of-the-art methods treat the entire synthetic dataset as a unified entity
and optimize each synthetic instance equally. This static optimization approach
may lead to performance degradation in dataset distillation. Specifically, we argue
that static optimization can give rise to a coupling issue within the synthetic data,
particularly when a larger amount of synthetic data is being optimized. This
coupling issue, in turn, leads to the failure of the distilled dataset to extract the
high-level features learned by the deep neural network (DNN) in the latter epochs.
In this study, we propose a new dataset distillation strategy called Sequential Subset
Matching (SeqMatch), which tackles this problem by adaptively optimizing the
synthetic data to encourage sequential acquisition of knowledge during dataset
distillation. Our analysis indicates that SeqMatch effectively addresses the coupling
issue by sequentially generating the synthetic instances, thereby enhancing its
performance significantly. Our proposed SeqMatch outperforms state-of-the-art
methods in various datasets, including SVNH, CIFAR-10, CIFAR-100, and Tiny
ImageNet. Our code is available at https://github.com/shqii1j/seqmatch.

1 Introduction

Recent advancements in Deep Neural Networks (DNNs) have demonstrated their remarkable ability
to extract knowledge from large-scale real-world data, as exemplified by the impressive performance
of the large language model GPT-3, which was trained on a staggering 45 terabytes of text data [4].
However, the use of such massive datasets comes at a significant cost in terms of data storage, model
training, and hyperparameter tuning.

The challenges associated with the use of large-scale datasets have motivated the development of
various techniques aimed at reducing datasets size while preserving their essential characteristics.
One such technique is dataset distillation [5, 6, 13, 22, 29, 35, 42, 48, 50, 51, 52, 53], which
involves synthesizing a smaller dataset that effectively captures the knowledge contained within the
original dataset. Models trained on these synthetic datasets have been shown to achieve comparable
performance to those trained on the full dataset. In recent years, dataset distillation has garnered
increasing attention from the deep learning community and has been leveraged in various practical
applications, including continual learning [41, 52, 53], neural architecture search [21, 39, 40, 51, 53],
and privacy-preserving tasks [12, 15, 31], among others.
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Existing methods for dataset distillation, as proposed in [5, 11, 13, 33, 37, 38, 47, 51, 53], have
improved the distillation performance through enhanced optimization methods. These approaches
have achieved commendable improvements in consolidating knowledge from the original dataset
and generating superior synthetic datasets. However, the knowledge condensed by these existing
methods primarily originates from the easy instances, which exhibit a rapid reduction in training
loss during the early stages of training. These easy instances constitute the majority of the dataset
and typically encompass low-level, yet commonly encountered visual features (e.g. edges and
textures [49]) acquired in the initial epochs of training. In contrast, the remaining, less frequent,
but more challenging instances encapsulate high-level features (e.g. shapes and contours) that are
extracted in the subsequent epochs and significantly impact the generalization capability of deep
neural networks (DNNs). The findings depicted in Figure 1 reveal that an overemphasis on low-level
features hinders the extraction and condensation of high-level features from hard instances, thereby
resulting in a decline in performance.
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Figure 1: Left: MTT [5] fails to extract adequate high-
level features. The loss drop rate between easy and
hard instances is employed as the metric to evaluate the
condensation efficacy of low-level and high-level fea-
tures. The upper solid lines represent the loss change of
hard instances, while the lower dashed lines depict the
loss change of easy instances. The inability to decrease
the loss of hard instances indicates MTT’s inadequacy
in capturing high-level features. In contrast, our pro-
posed SeqMatch successfully minimizes the loss for
both hard and easy instances. Right: The consequent
performance improvement of SeqMatch in CIFAR [25]
datasets. Experiments are conducted with 50 images per
class (ipc = 50).

In this paper, we investigate the factors that
hinder the efficient condensation of high-level
features in dataset distillation. Firstly, we re-
veal that DNNs are optimized through a pro-
cess of learning from low-level visual features
and gradually adapting to higher-level features.
The condensation of high-level features deter-
mines the effectiveness of dataset distillation.
Secondly, we argue that existing dataset distil-
lation methods fail to extract high-level features
because they treat the synthetic data as a unified
entity and optimize each synthetic instance un-
varyingly. Such static optimization makes the
synthetic instances become coupled with each
other easier in cases where more synthetic in-
stances are optimized. As a result, increasing
the size of synthetic dataset will over-condense
the low-level features but fail to condense addi-
tional knowledge from the real dataset, let alone
the higher-level features.

Building upon the insights derived from our anal-
ysis, we present a novel dataset distillation strat-
egy, termed Sequential Subset Matching (Seq-

Match), which is designed to extract both low-level and high-level features from the real dataset,
thereby improving dataset distillation. Our approach adopts a simple yet effective strategy for reorga-
nizing the synthesized dataset S during the distillation and evaluation phases. Specifically, we divide
the synthetic dataset into multiple subsets and encourage each subset to acquire knowledge in the
order that DNNs learn from the real dataset. Our approach can be seamlessly integrated into existing
dataset distillation methods. The experiments, as shown in Figure 1, demonstrate that SeqMatch
effectively enables the latter subsets to capture high-level features. This, in turn, leads to a substantial
improvement in performance compared to the baseline method MTT, which struggles to compress
higher-level features from the real dataset. Extensive experiments demonstrate that SeqMatch outper-
forms state-of-the-art methods, particularly in high compression ratio2 scenarios, across a range of
datasets including CIFAR-10, CIFAR-100, TinyImageNet, and subsets of the ImageNet.

In a nutshell, our contribution can be summarized as follows.

• we examine the inefficacy of current dataset distillation in condensing hard instances from the
original dataset. We present insightful analyses regarding the plausible factors contributing
to this inefficacy and reveal the inherent preference of dataset distillation in condensing
knowledge.

• We thereby propose a novel dataset distillation strategy called Sequential Subset Matching
(SeqMatch) to targetedly encourage the condensing of higher-level features. SeqMatch
seamlessly integrates with existing dataset distillation methods, offering easy implementa-

2compression ratio = compressed dataset size / full dataset size [8]
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tion. Experiments on diverse datasets demonstrate the effectiveness of SeqMatch, achieving
state-of-the-art performance.

2 Related work

Coreset selection is the traditional dataset reduction approach by selecting representative prototypes
from the original dataset[2, 7, 17, 43, 45]. However, the non-editable nature of the coreset limits its
performance potential. The idea of synthesizing the “coreset” can be traced back to Wang et al. [47].
Compared to coreset selection, dataset distillation has demonstrated greatly superior performance.
Based on the approach of optimizing the synthetic data, dataset distillation can be taxonomized into
two types: data-matching methods and meta-learning methods [30].

Data-matching methods encourage the synthetic data to imitate the influence of the target data, involv-
ing the gradients, trajectories, and distributions. Zhao and Bilen [52] proposed distribution matching
to update synthetic data. Zhao et al. [53] matched the gradients of the target and synthetic data in
each iteration for optimization. This approach led to the development of several advanced gradient-
matching methods[5, 20, 22, 51]. Trajectory-matching methods [5, 9, 13] further matched multi-step
gradients to optimize the synthetic data, achieving state-of-the-art performance. Factorization-based
methods [11, 29, 33] distilled the synthetic data into a low-dimensional manifold and used a decoder
to recover the source instances from the factorized features.

Meta-learning methods treat the synthetic data as the parameters to be optimized by a meta (or
outer) algorithm [3, 11, 32, 34, 37, 38, 54]. A base (or inner) algorithm solves the supervised
learning problem and is nested inside the meta (or outer) algorithm with respect to the synthetic data.
The synthetic data can be directly updated to minimize the empirical risk of the network. Kernel
ridge regression (KRR) based methods [34, 37, 38] have achieved remarkable performance among
meta-learning methods.

Both data-matching and meta-learning methods optimize each synthetic instance equally. The absence
of variation in converged synthetic instances may lead to the extraction of similar knowledge and
result in over-representation of low-level features.

3 Preliminaries

Background Throughout this paper, we denote the target dataset as T = {(xi, yi)}|T |
i=1. Each pair of

data sample is drawn i.i.d. from a natural distribution D, and xi ∈ Rd, yi ∈ Y = {0, 1, · · · , C − 1}
where d is the dimension of input data and C is the number of classes. We denote the synthetic
dataset as S = {(si, yi)}|S|

i=1 where si ∈ Rd, yi ∈ Y . Each class of S contains ipc (images per class)
data pairs. Thus, |S| = ipc× C and ipc is typically set to make |S| ≪ |T |.
We employ fθ to denote a deep neural network f with weights θ. An ideal training progress is to
search for an optimal weight parameter θ̂ that minimizes the expected risk over the natural distribution
D, which is defined as LD(fθ) ≜ E(x,y)∼D

[
ℓ(fθ(x), y)

]
. However, as we can only access the training

set T sampled from the natural distribution D, the practical training approach of the network f is to
minimizing the empirical risk LT (fθ) minimization (ERM) on the training set T , which is defined as

θ̂ = alg(T , θ0) = argmin
θ

LT (fθ) where LT (fθ) =
1

|T |
∑
xi∈T

ℓ
[
fθ(xi), yi

]
, (1)

where ℓ can be any training loss function; alg is the given training algorithm that optimizes the
initialized weights parameters θ0 over the training set T ; θ0 is initialized by sampling from a
distribution Pθ0 .

Dataset distillation aims to condense the knowledge of T into the synthetic dataset S so that training
over the synthetic dataset S can achieve a comparable performance as training over the target dataset
T . The objective of dataset distillation can be formulated as,

E
(x,y)∼D, θ0∼Pθ0

[
ℓ(falg(T ,θ0)(x), y)

]
≃ E

(x,y)∼D, θ0∼Pθ0

[
ℓ(falg(S,θ0)(x), y)

]
. (2)

Gradient Matching Methods We take gradient matching methods as the backbone method to
present our distillation strategy. Matching the gradients introduced by T and S helps to solve S
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in Equation 2. By doing so, gradient matching methods achieve advanced performance in dataset
distillation. Specifically, gradient matching methods introduce a distance metric D(·, ·) to measure
the distance between gradients. A widely-used distance metric [53] is defined as D(X,Y ) =∑I

i=1

(
1 − ⟨Xi,Yi⟩

∥Xi∥∥Yi∥

)
, where X,Y ∈ RI×J and Xi, Yi ∈ RJ are the ith columns of X and Y

respectively. With the defined distance metric D(·, ·), gradient matching methods consider solving

Ŝ = argmin
S⊂Rd×Y
|S|=ipc×C

E
θ0∼Pθ0

[ M∑
m=1

L(S, θm)

]
, where L(S, θ) = D

(
∇θLS(fθ),∇θLT (fθ)

)
, (3)

where θi is the intermediate weights which is continuously updated by training the network fθ0 over
the target dataset T . The methods employ M as the hyperparameter to control the length of teacher
trajectories to be matched starting from the initialized weights θ0 ∼ Pθ0 . L(S.θ) is the matching loss.
The teacher trajectory {θ0, θ1, · · · , θM} is equivalent to a series of gradients {g1, g2, · · · , gM}. To
ensure the robustness of the synthetic dataset S to different weights initializations, θ0 will be sampled
from Pθ0 for many times. As a consequence, the distributions of the gradients for training can be
represented as {Pg1 , Pg2 , · · · , PgM }.

Algorithm 1 Training with SeqMatch in Distillation Phase.

Input: Target dataset T ; Number of subsets K; Iterations N in updating each subset; A base
distillation method A.

1: Initialize the synthetic dataset Sall
2: Divide Sall into K subsets of equal size ⌊ |Sall|

K ⌉, i.e., Sall = S1 ∪ S2 ∪ · · · ∪ SK
3: for each Sk do
4: ▷ Optimize each subset Sk sequentially:
5: repeat
6: if k =1 then
7: Initialize network weights θk0 ∼ Pθ0
8: else
9: Load network weights θk0 ∼ Pθk−1

N
saved in optimizing last subset Sk−1

10: for i = 1 to N do
11: ▷ Update Network weights by subset Sk:
12: θki = alg(Sk ∪ S(k−1), θki−1)
13: ▷ Update Sk by the base distillation method:
14: Sk ← A(T ,Sk, θki )
15: Record and save updated network weights θk−1

N
16: until Converge
Output: Distilled synthetic dataset Sall

4 Method

Increasing the size of a synthetic dataset is a straightforward approach to incorporating additional
high-level features. However, our findings reveal that simply optimizing more synthetic data leads to
an excessive focus on knowledge learned from easy instances. In this section, we first introduce the
concept of sequential knowledge acquisition in a standard training procedure (refer to subsection 4.1).
Subsequently, we argue that the varying rate of convergence causes certain portions of the synthetic
data to abandon the extraction of further knowledge in the later stages (as discussed in Figure 4.2).
Finally, we present our proposed strategy, Sequential Subset Matching (referred to as SeqMatch),
which is outlined in Algorithm 1 in subsection 4.3.

4.1 Features Are Represented Sequentially

Many studies have observed the sequential acquisition of knowledge in training DNNs. Zeiler et
al. [49] revealed that DNNs are optimized to extract low-level visual features, such as edges and
textures, in the lower layers, while higher-level features, such as object parts and shapes, were



represented in the higher layers. Han et al. [16] leverages the observation that DNNs learn the
knowledge from easy instances first, and gradually adapt to hard instances[1] to propose noisy
learning methods. The sequential acquisition of knowledge is a critical aspect of DNN.

However, effectively condensing knowledge throughout the entire training process presents significant
challenges for existing dataset distillation methods. While the synthetic dataset S is employed to
learn from extensive teacher trajectories, extending the length of these trajectories during distillation
can exacerbate the issue of domain shifting in gradient distributions, thereby resulting in performance
degradation. This is primarily due to the fact that the knowledge extracted from the target dataset T
varies across different epochs, leading to corresponding shifts in the domains of gradient distributions.
Consequently, the synthetic dataset S may struggle to adequately capture and consolidate knowledge
from prolonged teacher trajectories.

To enhance distillation performance, a common approach is to match a shorter teacher trajectory
while disregarding knowledge extracted from the latter epochs of T . For instance, in the case of the
CIFAR-10 dataset, optimal hyperparameters for M (measured in epochs) in the MTT [5] method were
found to be 2, 20, 40 for ipc = 1, 10, 50 settings, respectively. The compromise made in matching
a shorter teacher trajectory unexpectedly resulted in a performance gain, thereby confirming the
presence of excessive condensation on easy instances.

Taking into account the sequential acquisition of knowledge during deep neural network (DNN)
training is crucial for improving the generalization ability of synthetic data. Involving more synthetic
data is the most straightforward approach to condense additional knowledge from longer teacher
trajectory. However, our experimental findings, as illustrated in Figure 1, indicate that current gradient
matching methods tend to prioritize the consolidation of knowledge derived from easy instances in
the early epochs. Consequently, we conducted further investigations into the excessive emphasis on
low-level features in existing dataset distillation methods.

4.2 Coupled Synthetic Dataset
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Figure 2: The accuracy discrepancy between the net-
works trained using S+ and S− separately. The discrep-
ancy will increase with the magnitude of R(si, fθm).
These results verified the coupling issue between S+

and S−, and our proposed method SeqMatch success-
fully mitigates the coupling issue. More experimental
details can be found in subsection 5.3.

The coupling issue within the synthetic dataset
impedes its effectiveness in condensing addi-
tional high-level features. Existing dataset dis-
tillation methods optimize the synthetic dataset
S as a unified entity, resulting in the backprop-
agated gradients used to update S being applied
globally. The gradients on each instance only
differ across different initializations and pre-
assigned labels, implying that instances sharing
a similar initialization within the same class will
converge similarly. Consequently, a portion of
the synthetic data only serves the purpose of
alleviating the gradient matching error for the
pre-existing synthetic data.

Consider a synthetic dataset S is newly initial-
ized to be distilled from a target dataset T . The
distributions of the gradients for distillation are
{Pg1 , Pg2 , · · · , PgM }, and the sampled gradi-
ents for training is {g1, g2, · · · , gM}. Suppose
that G is the integrated gradients calculated by
S, by minimizing the loss function as stated in
Equation 3, the gradients used for updating si when θ = θm would be

∇siL(S, θm) =
∂L
∂G
· ∂G

∂∇θmℓ(fθm(si), yi)
· ∂∇θmℓ(fθm(si), yi)

∂si

=
∂L
∂G
·R(si, fθm), where R(si, fθm) ≜

∂∇θmℓ(fθm(si), yi)

∂si
. (4)
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we have ∂G
∂∇θmℓ(fθm (si),yi)

= 1, because G is accumulated by the gradients of each synthetic data,

i.e., G = ∇θmLS(fθm) =
∑∥S∥

i=1∇θmℓ(fθm(si), yi). Here we define the amplification function
R(si, fθm) ⊂ Rd. Then, the gradients on updating synthetic instance ∇siL(S, θm) shares the same
∂L
∂G and only varies in R(si, fθm). The amplification function R(si, fθm) is only affected by the
pre-assigned label and initialization of si.

More importantly, the magnitude of R(si, fθm) determines the rate of convergence of each synthetic
instance si. Sorted by the l1-norm of amplification function ∥R(si, fθm)∥1 can be divided into two
subsets S+ and S−. S+ contains the synthetic instances with greater values of R(si, fθm) than those
in S−. That implies that instances in S+ converge faster to minimize D(∇θmLS+(fθm), gm), and
S+ is optimized to imitate gm. On the other hand, the instances in S− converge slower and are
optimized to minimize D(∇θmLS−(fθm), ϵ), where ϵ represents the gradients matching error ϵ of
S+, i.e., ϵ = gm −∇θmLS+(fθm). Therefore, S− is optimized to imitate ϵ and its effectiveness is
achieved by compensating for the gradients matching error of S+. S− is coupled with S+ and unable
to capture the higher-level features in the latter epochs.

We conducted experiments to investigate whether S− solely compensates for the gradient matching
error of S+ and is unable to extract knowledge independently. To achieve this, we sorted S+ and
S− by the l1-norm of the amplification function ∥R(si, fθm)∥1 and trained separate networks with
S+ and S−. As depicted in Figure 2, we observed a significant discrepancy in accuracy, which
increased with the difference in magnitude of R(si, fθm). Further details and discussion are provided
in subsection 5.3. These experiments verify the coupling issue wherein S− compensates for the
matching error of S+, thereby reducing its effectiveness in condensing additional knowledge.

4.3 Sequential Subset Matching

We can use a standard deep learning task as an analogy for the dataset distillation problem, then the
synthetic dataset S can be thought of as the weight parameters that need to be optimized. However,
simply increasing the size of the synthetic dataset is comparable to multiplying the parameters
of a model in an exact layer without architecting the newly added parameters, and the resulting
performance improvement is marginal. We thereby propose SeqMatch to reorganize the synthetic
dataset S to utilize the newly added synthetic data.

We incorporate additional variability into the optimization process of synthetic data to encourage the
capture of higher-level feature extracted in the latter training progress. To do this, SeqMatch divides
the synthetic dataset S into K subsets equally, i.e., S = S1 ∪S2 ∪ · · · ∪SK , |Sk| = ⌊ |S|

K ⌉. SeqMatch
optimizes each Sk by solving

Ŝk = argmin
Sk⊂Rd×Y

|Sk|=⌊|S|/K⌉

E
θ0∼Pθ0

[ kn∑
m=(k−1)n

L(Sk ∪ S(k−1), θm)

]
, (5)

where S(k−1) = S1 ∪ S2 ∪ · · · ∪ Sk−1, which represents the union set of the subsets in the former.
S(k−1) are fixed and only Sk will be updated. The subset Sk is encouraged to match the corresponding
kth segment of the teacher trajectory to condense the knowledge in the latter epoch. Let n = ⌊MK ⌉
denote the length of trajectory segment to be matched by each subset Sk in the proposed framework.
To strike a balance between providing adequate capacity for distillation and avoiding coupled synthetic
data , the size of each subset Sk is well-controlled by K.

In the distillation phase, each subset is arranged in ascending order to be optimized sequentially. We
reveal that the first subset S1 with 1

K size of the original synthetic dataset S is sufficient to condense
adequate knowledge in the former epoch. For the subsequent subset Sk, we encourage the kth subset
Sk condense the knowledge different from those condensed in the previous subsets. This is achieved
by minimizing the matching loss L(Sk ∪ S(k−1), θm) while only Sk will be updated.

During the evaluation phase, the subsets of the synthetic dataset are used sequentially to train the
neural network fθ, with the weight parameters θ being iteratively updated by θk = alg(Sk, θk−1).
This training process emulates the sequential feature extraction of real dataset T during training.
Further details regarding SeqMatch and the optimization of θ∗ can be found in Algorithm.1.
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5 Experiment

In this section, we provide implementation details for our proposed method, along with instructions for
reproducibility. We compare the performance of SeqMatch against state-of-the-art dataset distillation
methods on a variety of datasets. To ensure a fair and comprehensive comparison, we follow up the
experimental setup as stated in [8, 30]. We provide more experiments to verify the effectiveness of
SeqMatch including the results on ImageNet subsets and analysis experiments in Appendix A.1 due
to page constraints.

5.1 Experimental Setup

Datasets: We evaluate the performance of dataset distillation methods on several widely-used datasets
across various resolutions. MNIST [28], which is a fundamental classification dataset, is included
with a resolution of 28× 28. SVNH [36] is also considered, which is composed of RGB images of
house numbers cwith a resolution of 32× 32. CIFAR10 and CIFAR100 [25], two datasets frequently
used in dataset distillation, are evaluated in this study. These datasets consist of 50, 000 training
images and 10, 000 test images from 10 and 100 different categories, respectively. Additionally, our
proposed method is evaluated on the Tiny ImageNet [27] dataset with a resolution of 64× 64 and on
the ImageNet [24] subsets with a resolution of 128× 128.

Evaluation Metric: The evaluation metric involves distillation phase and evaluation phase. In the
former, the synthetic dataset is optimized with a distillation budget that typically restricts the number
of images per class (ipc). We evaluate the performance of our method and baseline methods under
the settings ipc = {10, 50}. We do not evaluate the setting with ipc = 1 since our approach requires
ipc ≥ 2 . To facilitate a clear comparison, we mark the factorization-based baselines with an asterisk
(*) since they often employ an additional decoder, following the suggestion in [30]. We employ
4-layer ConvNet [14] in Tiny ImageNet dataset whereas for the other datasets we use a 3-layer
ConvNet [14].

In the evaluation phase, we utilize the optimized synthetic dataset to train neural networks using a
standard training procedure. Specifically, we use each synthetic dataset to train five networks with
random initializations for 1, 000 iterations and report the mean accuracy and its standard deviation of
the results.

Implementation Details. To ensure the reproducibility of SeqMatch, we provide detailed implemen-
tation specifications. Our method relies on a single hyperparameter, denoted by K, which determines
the number of subsets. In order to balance the inclusion of sufficient knowledge in each segment
with the capture of high-level features in the later stages, we set K = {2, 3} for the scenarios where
ipc = {10, 50}, respectively. Notably, our evaluation results demonstrate that the choice of K
remains consistent across the various datasets.

As a plug-in strategy, SeqMatch requires a backbone method for dataset synthesis. Each synthetic
subset is optimized using a standard training procedure, specific to the chosen backbone method.
The only hyperparameters that require adjustment in the backbone method are those that control
the segments of the teacher trajectory to be learned by the synthetic dataset, whereas the remaining
hyperparameters emain consistent without adjustment. Such adjustment is to ensure each synthetic
subset effectively condenses the knowledge into stages. The precise hyperparameters of the backbone
methods are presented in Appendix A.3. We conduct our experiments on the server with four Tesla
V100 GPUs.

5.2 Results

Our proposed SeqMatch is plugged into the methods MTT [5] and IDC [23], which are denoted as
SeqMatch-MTT and SeqMatch-IDC, respectively. As shown in Table 1, the classification accuracies
of ConvNet [14] trained using each dataset distillation method are summarized. The results indicate
that SeqMatch significantly outperforms the backbone method across various datasets, and even
surpasses state-of-the-art baseline methods in different settings. Our method is demonstrated to out-
perform the state-of-the-art baseline methods in different settings among different datasets. Notably,
SeqMatch achieves a greater performance improvement in scenarios with a high compression ratio
(i.e., ipc = 50). For instance, we observe a 3.5% boost in the performance of MTT [5], achieving
51.2% accuracy on CIFAR-100. Similarly, we observe a 1.9% performance enhancement in IDC [23],
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Table 1: Performance comparison of dataset distillation methods across a variety of datasets. Abbreviations of
GM, TM, DM,META stand for gradient matching, trajectory matching, distribution matching, and meta-learning
respectively. We reproduce the results of MTT [5] and IDC [23] and cite the results of the other baselines [30].
The best results of non-factorized methods (without decoders) are highlighted in orange font. The best results of
factorization-based methods are highlighted in blue font.

Methods Schemes MNIST SVHN CIFAR-10 CIFAR-100 Tiny ImageNet
10 50 10 50 10 50 10 50 10

DD [47] META 79.5
±8.1

- - - 36.8
±1.2

- - - -

DC [53] GM 94.7
±0.2

98.8
±0.2

76.1
±0.6

82.3
±0.3

44.9
±0.5

53.9
±0.5

32.3
±0.3

42.8
±0.4

-

DSA [51] GM 97.8
±0.1

99.2
±0.1

79.2
±0.5

84.4
±0.4

52.1
±0.5

60.6
±0.5

32.3
±0.3

42.8
±0.4

-

DM [52] DM 97.3
±0.3

94.8
±0.2

- - 48.9
±0.6

63.0
±0.4

29.7
±0.3

43.6
±0.4

12.9
±0.4

CAFE [46] DM 97.5
±0.1

98.9
±0.2

77.9
±0.6

82.3
±0.4

50.9
±0.5

62.3
±0.4

31.5
±0.2

42.9
±0.2

-

KIP [37, 38] KRR 97.5
±0.0

98.3
±0.1

75.0
±0.1

85.0
±0.1

62.7
±0.3

68.6
±0.2

28.3
±0.1

- -

FTD [13] TM - - - - 66.6
±0.3

73.8
±0.2

43.4
±0.3

50.7
±0.3

24.5
±0.2

MTT [5] TM 97.3
±0.1

98.5
±0.1

79.9
±

87.7
±0.3

65.3
±0.7

71.6
±0.2

40.1
±0.4

47.7
±0.2

23.2
±1.3

SeqMatch-MTT TM 97.6
±0.2

99.0
±0.1

80.2
±0.6

88.5
±0.2

66.2
±0.6

74.4
±0.5

41.9
±0.5

51.2
±0.3

23.8
±0.3

IDC∗ [23] 3 GM 98.4
±0.1

99.1
±0.1

87.3
±0.2

90.2
±0.1

67.5
±0.5

74.5
±0.1

44.8
±0.2

51.4
±0.4

-

SeqMatch-IDC∗ GM 98.6
±0.1

99.2
±0.0

87.2
±0.2

92.1
±0.1

68.3
±0.2

75.3
±0.2

45.1
±0.3

51.9
±0.3

-

RTP∗ [11] META 99.3
±0.5

99.4
±0.4

89.1
±0.2

89.5
±0.2

71.2
±0.4

73.6
±0.4

42.9
±0.7

- -

HaBa∗ [33] TM - - 83.2
±0.4

88.3
±0.1

69.9
±0.4

74.0
±0.2

40.2
±0.2

47.0
±0.2

-

Whole - 99.6
±0.0

95.4
±0.1

84.8
±0.1

56.2
±0.3

37.6
±0.4

achieving 92.1% accuracy on SVNH, which approaches the 95.4% accuracy obtained using the real
dataset. These results suggest that our method is effective in mitigating the adverse effects of coupling
and effectively condenses high-level features in high compression ratio scenarios.

Cross-Architecture Generalization: We also conducted experiments to evaluate cross-architecture
generalization, as illustrated in Table 2. The ability to generalize effectively across different archi-
tectures is crucial for the practical application of dataset distillation. We evaluated our proposed
SeqMatch on the CIFAR-10 dataset with ipc = 50. Following the evaluation metric established
in [13, 46], three additional neural network architectures were utilized for evaluation: ResNet [19],
VGG [44], and AlexNet [26]. Our SeqMatch approach demonstrated a significant improvement in
performance during cross-architecture evaluation, highlighting its superior generalization ability.

5.3 Discussions Table 2: Cross-Architecture Results trained with Con-
vNet on CIFAR-10 with ipc = 50. We cite the results
reported in Du et al. [13].

Evaluation Model
Method ConvNet ResNet18 VGG11 AlexNet

DC [53] 53.9
±0.5

20.8
±1.0

38.8
±1.1

28.7
±0.7

CAFE [46] 55.5
±0.4

25.3
±0.9

40.5
±0.8

34.0
±0.6

MTT [5] 71.6
±0.2

61.9
±0.7

55.4
±0.8

48.2
±1.0

FTD [13] 73.8
±0.2

65.7
±0.3

58.4
±1.6

53.8
±0.9

SeqMatch-MTT 74.4
±0.5

68.4
±0.9

64.2
±0.7

50.7
±1.0

SeqMatch-IDC 75.3
±0.2

69.7
±0.6

73.4
±0.1

72.0
±0.2

Sequential Knowledge Acquisition: We con-
ducted experiments on CIFAR-10 with ipc =
50, presented in Figure 1, to investigate the in-
ability of existing baseline methods to capture
the knowledge learned in the latter epoch, as
discussed in subsection 4.1. Inspired by [16],
we utilized the change in instance-wise loss on
real dataset to measure the effectiveness of con-
densing high-level features. Specifically, we
recorded the loss of each instance from the real
dataset T at every epoch, where the network
was trained with synthetic dataset for only 20

3Although IDC [23] is not categorized as a factorization-based method, it employs data parameterization
to better improve the performance of synthetic dataset. Therefore, we compare IDC to the factorization-based
method as factorization can be treated as a kind of special data parameterization.
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iterations in each epoch. To distinguish hard instances from easy ones, we employed k-means
algorithm [18] to cluster all instances in the real dataset into two clusters based on the recorded
instance-wise loss. The distribution of instances in terms of difficulty is as follows: 77% are
considered easy instances, while 23% are classified as hard instances.

We evaluated MTT[5] and SeqMatch as mentioned above. Our results show that MTT[5] over-
condenses the knowledge learned in the former epoch. In contrast, SeqMatch is able to successfully
capture the knowledge learned in the latter epoch.

Coupled Synthetic Subsets: In order to validate our hypothesis that the synthetic subset S− is
ineffective at condensing knowledge independently and results in over-condensation on the knowledge
learned in the former epoch, we conducted experiments as shown in Figure 2. We sorted the
subsets S+ and S− of the same size by the l1-norm of the amplification function |R(si, fθm)|1 as
explained in Figure 4.2. We then recorded the accuracy discrepancies between the separate networks
trained by S+ and S− with respect to the mean l1-norm difference, i.e., Esi∈S+ [|R(si, fθ0)|1] −
Esi∈S− [|R(si, fθ0)|1].
As shown in Figure 2, the accuracy discrepancies increased linearly with the l1-norm difference,
which verifies our hypothesis that S− is coupled with S+ and this coupling leads to the excessive
condensation on low-level features. However, our proposed method, SeqMatch, is able to alleviate
the coupling issue by encouraging S− to condense knowledge more efficiently.

Baseline

1st Subset

2nd Subset

3rd Subset

Figure 3: Visualization example of “car” synthetic images distilled by MTT [5] and SeqMatch from 32× 32
CIFAR-10 (ipc = 50).

Synthetic Image Visualization: In order to demonstrate the distinction between MTT [5] and
SeqMatch, we visualized synthetic images within the "car" class from CIFAR-10 [25] and visually
compared them. As depicted in Figure 3, the synthetic images produced by MTT exhibit more concrete
features and closely resemble actual "car" images. Conversely, the synthetic images generated by
SeqMatch in the 2nd and 3rd subsets possess more abstract attributes and contain complex car shapes.
We provide more visualizations of the synthetic images in Appendix A.2.

5.4 Limitations and Future Work

We acknowledge the limitations of our work from two perspectives. Firstly, our proposed sequential
optimization of synthetic subsets increases the overall training time, potentially doubling or tripling
it. To address this, future research could investigate optimization methods that allow for parallel
optimization of each synthetic subset. Secondly, as the performance of subsequent synthetic subsets
builds upon the performance of previous subsets, a strategy is required to adaptively distribute the
distillation budget of each subset. Further research could explore strategies to address this limitation
and effectively enhance the performance of dataset distillation, particularly in high compression ratio
scenarios.

9



6 Conclusion

In this study, we provide empirical evidence of the failure in condensing high-level features in dataset
distillation attributed to the sequential acquisition of knowledge in training DNNs. We reveal that
the static optimization of synthetic data leads to a bias in over-condensing the low-level features,
predominantly extracted from the majority during the initial stages of training. To address this issue
in a targeted manner, we introduce an adaptive and plug-in distillation strategy called SeqMatch. Our
proposed strategy involves the division of synthetic data into multiple subsets, which are sequentially
optimized, thereby promoting the effective condensation of high-level features learned in the later
epochs. Through comprehensive experimentation on diverse datasets, we validate the effectiveness of
our analysis and proposed strategy, achieving state-of-the-art performance.
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A More Experiements

A.1 ImageNet Subsets

To assess the efficacy of our approach, we conducted experiments on subsets of the ImageNet
dataset [10]. These subsets were constructed by selecting ten pertinent categories from the ImageNet-
1k dataset [10], with a resolution of 128 × 128. Consequently, the ImageNet subsets pose greater
challenges compared to the CIFAR-10/100 [25] and Tiny ImageNet [27] datasets. We adhered to the
configuration of the ImageNet subsets as suggested by previous studies [5, 13, 33], encompassing
subsets such as ImageNette (diverse objects), ImageWoof (dog breeds), ImageFruits (various fruits),
and ImageMeow (cats).

To synthesize the dataset, we employed a 5-layer ConvNet [14] with a parameter setting of ipc = 10.
The evaluation of the synthetic dataset involved performing five trials with randomly initialized
networks. We compared the outcomes of our proposed method, referred to as SeqMatch, with the
baseline approach MTT [5], as well as the plug-in strategies FTD [13] and HaBa [33] which build
upon MTT.

The comprehensive results are presented in Table 3. Our proposed SeqMatch consistently outper-
formed the baseline MTT across all subsets. Notably, we achieved a performance improvement
of 4.3% on the ImageFruit subset. Additionally, SeqMatch demonstrated superior performance
compared to HaBa and achieved comparable results to FTD.

Table 3: The performance comparison trained with 5-layer ConvNet on the ImageNet subsets with a
resolution of 128× 128. We cite the results as reported in MTT [5], FTD [13] and HaBa [33]. The
latter two methods, FTD and HaBa, are plug-in strategies that build upon the foundation of MTT.
Our proposed approach, SeqMatch, exhibits superior performance compared to both MTT and HaBa,
demonstrating a significant improvement in results.

ImageNette ImageWoof ImageFruit ImageMeow

Real dataset 87.4
±1.0

67.0
±1.3

63.9
±2.0

66.7
±1.1

MTT [5] 63.0
±1.3

35.8
±1.8

40.3
±1.3

40.4
±2.2

FTD [13] 67.7
±1.3

38.8
±1.4

44.9
±1.5

43.3
±0.6

HaBa∗ [33] 64.7
±1.6

38.6
±1.2

42.5
±1.6

42.9
±0.9

SeqMatch-MTT 66.9
±1.7

38.7
±1.1

44.6
±1.7

44.8
±1.2

SeqMatch-FTD 70.6
±1.5

41.1
±1.4

46.5
±1.2

45.4
±1.2

A.2 More Visualizations

Instance-wise loss change: We have presented the average loss change of easy and hard instances
in Figure 1, revealing that MTT failed to effectively condense the knowledge learned from the
hard instances. To avoid the bias introduced by averaging, we have meticulously recorded and
visualized the precise loss change of each individual instance. This is accomplished by employing a
heatmap representation, as demonstrated in Figure 6. Each instance is depicted as a horizontal line
exhibiting varying colors, with deeper shades of blue indicating higher loss values. Following the
same clustering approach as depicted in Figure 1, we proceed to visualize the hard instances at the
top and the easy instances at the bottom.

The individual loss changes of MTT, depicted in Figure 6, remain static across epochs. The losses of
easy instances decrease to a small value during the initial stages, while the losses of hard instances
persist at a high value until the end of training. These results confirm that MTT excessively focuses
on low-level features. In contrast, the visualization of SeqMatch clearly exhibits the effect of color
gradient, indicating a decrease in loss for the majority of instances. Notably, the losses of hard
instances experience a significant decrease when a subsequent subset is introduced. These results
validate that SeqMatch effectively consolidates knowledge in a sequential manner.
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Figure 4: The heatmap illustrates the loss change of each instance in the real dataset across epochs. Each row in
the heatmap represents an instance, while the deeper blue color denotes higher instance-wise loss. The network
is trained with the synthetic datasets distilled by MTT and SeqMatch. Left: MTT fails to reduce the loss of hard
instances while excessively reducing the loss of easy instances. Right: SeqMatch minimizes the loss of both the
hard and easy instances.

IPC2 MTT

IPC3 MTT

1st Subset

2nd Subset

3rd Subset

Figure 5: Visualization example of synthetic images distilled by MTT [5] and SeqMatch from 32×32 CIFAR-10
(ipc = {2, 3}). SeqMatch(ipc=2) is seamlessly embedded as the first two rows within the nameSeqMatch(ipc=3)
visualization.

Synthetic Dataset Visualization: We compare the synthetic images with ipc = {2, 3} from the
CIFAR10 dataset to highlight the differences between subsets of Seqmatch in Figure 5. We provide
more visualizations of the synthetic datasets for ipc = 10 from the 128× 128 resolution ImageNet
dataset: ImageWoof subset in Figure 7 and ImageMeow subset in Figure 8. In addition, parts of
the visualizations of synthetic images from the 32× 32 resolution CIFAR-100 dataset are showed
in Figure 6. We observe that the synthetic images generated by SeqMatch in the subsequent subset
contains more abstract features than the previous subset.

A.3 Hyperparameter Details

The hyperparameters K of SeqMatch-MTT is set with {2, 3} for the settings ipc = {10, 50},
respectively. The optimal value of hyperparameter K is obtained via grid searches within the set
{2, 3, 4, 5, 6} in a validation set within the CIFAR-10 dataset. We find that the subset with a small size
will fail to condense the adequate knowledge from the corresponding segment of teacher trajectories,
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Figure 6: Visualization of the first 10 classes of synthetic images distilled by SeqMatch from 32× 32 CIFAR-
100 (ipc = 10). The initial 5 image rows and the final 5 image rows match the first and second subsets,
respectively.

resulting in performance degradation in the subsequent subsets. For the rest of the hyperparamters,
we report them in Table 4.

1ImageFruit has different setting of Max Start Epoch from other ImageNet subesets: {10,10}
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Figure 7: Visualization of the synthetic images distilled by SeqMatch from 32× 32 ImageWoof (ipc = 10).
The initial 5 image rows and the final 5 image rows match the first and second subsets, respectively.

Table 4: Hyperparameter values we used for SeqMatch-MTT in the main result table. Most of the
hyperparameters “Max Start Epoch” and “Synthetic Step” are various with the subsets, we use a
sequential numbers to denote the parameters used in the corresponding subsets. “Img.” denotes the
abbreviation of ImageNet.

CIFAR-10 CIFAR-100 Tiny Img. Img. Subsets
ipc 10 50 10 50 10 10

K 2 3 2 3 2 2
Max Start Epoch {20,10} {20,20,10} {20,40} {40,20,20} {20,10} {10,5}4

Synthetic Step {30,80} 30 30 80 20 20
Expert Epoch {2,3} 2 2 2 2 2

Synthetic Batch Size - - - 125 100 20
Learning Rate (Pixels) 100 100 1000 1000 10000 100000

Learning Rate (Step Size) 1e-5 1e-5 1e-5 1e-5 1e-4 1e-6
Learning Rate (Teacher) 0.001 0.01 0.01 0.01 0.01 0.01
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Figure 8: Visualization of the synthetic images distilled by SeqMatch from 32× 32 ImageMeow (ipc = 10).
The initial 5 image rows and the final 5 image rows match the first and second subsets, respectively.
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