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Abstract
Many critical machine learning applications in cybersecurity,
healthcare and finance, encounter challenges like data pri-
vacy, distribution shifts and class imbalance. Often, minority
class labels are scarce and may only be present for specific
types of samples, which can pose challenges for developing
effective models that handle new and unforeseen minority ex-
amples at inference time. Additionally, feeding sensitive data
into downstream models is a significant privacy concern. Syn-
thetic data generation offers a potential solution by enabling
data privacy, creating data samples to rebalance the classes
and also provides a way to generate out-of-distribution sam-
ples. We introduce TabOOD, a novel approach that generates
synthetic tabular data samples to enhance robustness against
unseen data and distribution shifts. TabOOD generates out-
of-distribution samples that could augment the training set,
simulating unobserved scenarios and enhancing downstream
model robustness. It also allows for the conditional genera-
tion of in-distribution minority and majority class samples.
Building on recent advances in tabular data synthesis us-
ing latent diffusion models, our approach maps tabular data
to class-dependent Gaussian mixture components in a latent
space, thereby separating latent representations, before train-
ing diffusion models on the latent space. We further ma-
nipulate the latent space to generate atypical, boundary data
points. Experimental results across different datasets demon-
strate that TabOOD significantly improves the performance
of downstream models when faced with distribution shifts or
novel out-of-distribution samples, offering a more balanced
and robust approach to tabular data learning.

Introduction
Tabular data plays a crucial role in various machine learn-
ing applications, such as cybersecurity (Zoppi, Gazzini, and
Ceccarelli 2024), healthcare (Ching et al. 2018; Miotto et al.
2018), and finance (Huang, Chai, and Cho 2020; Ozbayo-
glu, Gudelek, and Sezer 2020). In recent years, deep learn-
ing models have demonstrated superior performance com-
pared to traditional statistical methods in analyzing this type
of data. However, this improved performance can often be
limited to the provided training data, as deep learning mod-
els may overfit to the specific distribution of the training
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set. This raises significant concerns about the real-world ap-
plicability and robustness of these models, particularly in
high-stakes domains like cybersecurity, finance, and health-
care. In these fields, where tasks like anomaly detection,
fraud identification, and disease diagnosis are critical, out-
of-distribution (OOD) robustness is essential for reliable and
effective model deployment. One promising strategy to ad-
dress this challenge is the introduction of synthetic or artifi-
cial datasets during the model training process. By augment-
ing the existing training data with these synthetic examples,
the diversity and volume of the training set can be increased,
potentially enhancing the deep learning model’s ability to
generalize and perform well in OOD scenarios.

Early work (Xu et al. 2019) demonstrated the potential of
generative models like GANs and VAEs to create synthetic
tabular datasets. However, these generated datasets often fail
to capture the full range of real-world data correlations, es-
pecially in complex datasets with numerical, categorical,
and mixed features (Zhang et al. 2024a). Accurately synthe-
sizing diverse data that faithfully mimics the original distri-
bution remains a key challenge for these traditional genera-
tive approaches. To address this challenge, researchers have
adapted diffusion models which have already achieved re-
markable success in image generation tasks (Ho, Jain, and
Abbeel 2020; Rombach et al. 2022). Applying diffusion pro-
cesses directly to tabular data introduces new challenges re-
lated to handling heterogeneous or high-cardinality categori-
cal features, which can increase model complexity and make
it harder to learn meaningful joint distributions. Neverthe-
less, a recent algorithm, TabSyn proposed in (Zhang et al.
2024a) has shown promising results. This method combines
a transformer-based variational autoencoder (VAE) to map
the tabular data to a latent space, followed by a score-based
diffusion model to generate synthetic samples. This hybrid
architecture has resulted in stable training and remarkable
performance across multiple evaluation metrics, suggesting
diffusion models hold great potential for advancing the state-
of-the-art in high-fidelity tabular data synthesis.

Another stream of research focuses on leveraging
large language models (LLMs) for tabular data genera-
tion (Borisov et al. 2023; Kim, Kim, and Choo 2024; Xu
et al. 2024). The GReaT approach (Borisov et al. 2023),
which fine-tunes a pretrained LLM, stands out. This method
encodes each row of tabular data using tokenization and



random permutations and then generates synthetic data in
an auto-regressive manner. By avoiding one-hot encoding,
this technique circumvents the curse of dimensionality but
is computationally intensive, both in terms of memory and
processing time.

Most current methods focus on learning the training data
distribution. However, many real-world applications, such as
cybersecurity, benefit from generation mechanisms that pro-
duce both in-distribution samples and OOD samples. In cy-
bersecurity, for instance, the threat landscape evolves, mak-
ing it crucial to handle unseen OOD attacks effectively.
While methods like domain adaptation and transfer learning
attempt to address these issues, they often require labeled
data from new distributions or complex model adjustments.

Our work introduces a novel approach to address this by
generating OOD samples alongside in-distribution data. By
leveraging latent space manipulation and interpolation, we
generate synthetic data that not only aligns with the train-
ing distribution but also creates edge samples simulating un-
seen OOD scenarios. This approach enhances model robust-
ness to distribution shifts and diverse test-time scenarios, en-
suring more reliable performance when encountering novel
OOD instances.

Background Our approach builds upon the foundation of
TabSyn (Zhang et al. 2024a), necessitating a brief overview
of its methodology. TabSyn integrates a diffusion model
within the latent space of a VAE to perform unconditional
synthesis of tabular data. The authors propose a transformer-
based VAE architecture, prefixed with a tokenizer (and sim-
ilarly a detokenizer) which maps each feature of the tabular
data sample into a d-dimensional embedding. This is fed to
the β-VAE. The encoder of the VAE outputs the mean and
log variance of the latent variables which are then fed into
the decoder. Finally the decoder reconstructs the token ma-
trix, on which a learnable linear transformation, referred to
as a detokenizer, is applied to recover the tabular data sample
x̂. The β-VAE is trained to minimize:

LVAE = Lrecon(x, x̂) + βLKL, (1)

where Lrecon is a reconstruction loss acting on true and re-
covered data samples x and x̂ respectively. LKL imposes a
regularization term that encourages the latent variables to
follow a standard multivariate isotropic Gaussian distribu-
tion.

Once the VAE has been trained, the latent embeddings
for the training samples are extracted from the VAE’s la-
tent space. The distribution of the latent embeddings is then
modeled using a score-based diffusion model, following the
forward and reverse processes outlined in standard diffu-
sion approaches. (Please refer to (Zhang et al. 2024b) for
the details). A denoising neural network, implemented as a
multilayer perceptron (MLP), is trained to approximate the
noise using the perturbed data. After training, synthetic tabu-
lar data can be generated by reversing the diffusion process.

In (Zhang et al. 2024a), the authors compare the perfor-
mance of TabSyn with the several state-of-the-art (SOTA)
baselines (CTGAN (Hong, Yi, and Lee 2024), TVAE (Ish-
faq, Hoogi, and Rubin 2018), StaSy (Kim, Lee, and Park

2022), TabDDPM (Kotelnikov et al. 2023),GReat (Borisov
et al. 2023), SMOTE (Chawla et al. 2002)) on six tabular
datasets and their results demonstrate the effectiveness of
the generated synthetic data across various criteria: perfor-
mance on downstream classification tasks, feature-wise den-
sity estimation, pairwise column correlations, and higher-
order metrics such as fidelity, diversity, and privacy preser-
vation. We build upon TabSyn for two key reasons: (i) it pro-
duces high-quality samples that either outperform or match
those generated by other SOTA methods (ii) latent genera-
tive models provide an opportunity for manipulation of em-
beddings based on domain knowledge, which is often chal-
lenging in LLM-based methods. Furthermore, our focus ex-
tends beyond pure data synthesis to the generation of OOD
samples, making TabSyn a suitable building block for our
approach.

Synthesis of Tabular OOD Samples
In this section, we introduce our TabOOD approach for gen-
erating controlled OOD samples1. The approach consists
of three key components: (i) learning latent representations
through a VAE that maps samples from different classes to
distinct Gaussian mixture components in the latent space,
with isotropic covariance and distinct means, resulting in
well-separated representations; (ii) training score-based dif-
fusion models using denoising score matching to model the
distribution of each Gaussian mixture component; and (iii)
generating OOD samples by interpolating between the la-
tent embeddings and decoding these interpolated embed-
dings using the VAE’s decoder.

Let x represent a tabular data sample and M denote the
total number of features. The features are split into Mnum
numerical features and Mcat categorical features. The VAE
architecture follows the design of TabSyn, which utilizes
a tokenizer, detokenizer, encoder, and decoder denoted by
tok(·), detok(·), Enc(·) and Dec(·) respectively. Each
feature is processed by the tok(·), which is a learnable lin-
ear transformation that maps the feature to a d-dimensional
vector. Categorical features are one-hot encoded before this
transformation. The tokenized output of the data sample x
is represented as:

T = [tnum1 , · · · , tnumMnum
, tcat1 , · · · , tcatMcat

], (2)

where T ∈ RM×d. This is passed through the Enc − Dec
structure which are transformer blocks. The VAE encoder
produces learns mean µ and the log variance logσ2 of
the latent embeddings, via the standard reparametrization
trick (Kingma and Welling 2014). These latent embeddings
are passed through the decoder to reconstruct the token ma-
trix T̂ ∈ RM×d. The detokenizer, which is another learn-
able linear transformation followed by a softmax layer for
categorical features, is applied to recover the reconstructed
sample x̂ = detok(Dec(T̂ )).

To ensure separation in the latent space, we propose learn-
ing distinct Gaussian mixture components corresponding to
different groups. While our exposition and experiments fo-
cus on class-based separation assuming a binary classifica-

1We refer readers to Appendix for the algorithm outline



tion setting, these groups can be defined by any set of fea-
tures, depending on the desired type of OOD generation. Let
z = Flat(Enc(T ) ∈ RMd denote the flattened latent em-
bedding output by the encoder. The approximate posterior
distribution of the latent variable z given input xk, which
belongs to class k, is denoted by q(z|xk), modeled as a mul-
tivariate Gaussian with mean µ and diagonal covariance ma-
trix diag(σ2). Thus the overall posterior q(z|x) is a mixture
of Gaussian components. The prior distribution p(z|xk) is
assumed to be class-conditional:

p(z|xk) = N (z|µprior,k, I), (3)

where k ∈ {0, 1} represents the class label, µprior,k is the
class-conditional mean vector, and I is the identity covari-
ance matrix. The Kullback-Leibler (KL) divergence between
the approximate posterior q(z|xk) and the class-conditional
prior p(z|xk) is given by:

DKL(q(z|xk) ∥ p(z|xk)) = Eq(z|xk)

[
log

q(zk|x)
p(z|xk)

]
. (4)

For the two multivariate Gaussian distributions q(z|xk) =
N (z|µk,σ

2
kI) and p(z|xk) = N (z|µprior,k, I), it can be

seen that the KL divergence simplifies to;

DKL(q(z|xk) ∥ p(z|xk))

= −1

2

Md∑
i=1

(
1 + log σ2

k,i − σ2
k,i − (µk,i − µprior,k,i)

2) . (5)

The β-VAE is trained by minimizing the following objec-
tive function:

LVAE = Lrecon(x, x̂) + βDKL, (6)

where DKL is as defined in Equation 5, and Lrecon is the
reconstruction loss, which is taken as mean-squared error
for numerical and cross-entropy for categorical features.
The factor β balances the trade-off between reconstruction
and promoting a Gaussian mixture distribution in the la-
tent space. Once the VAE has been trained, we extract the
class-wise latent embeddings Zk = {zk}, for k ∈ {0, 1},
corresponding to the training samples. To model the con-
ditional distributions q(z|xk), we train score-based diffu-
sion model Sk for each class k ∈ {0, 1}. These mod-
els follow the standard score-based forward and reverse
diffusion processes (see Appendix for detailed formula-
tions). The denoising neural network, implemented as a
multi-layer perceptron (MLP) following the TabSyn archi-
tecture. After training, we can conditionally generate syn-
thetic tabular data that follows the training data distribu-
tion by sampling through the reverse diffusion process as
x̂ = detok(Dec(Unflatten(ẑ))), where ẑ ∼ q(z|xk)
using diffusion model Sk.

To generate OOD samples, we first sample N latent em-
beddings z0 ∼ q(z|x0) and z1 ∼ q(z|x1) from the diffu-
sion models S0 and S1, respectively. Next, given an interpo-
lation parameter α, we interpolate between these samples in
the latent space as:

z̃ = αz0 + (1− α)z1. (7)

Finally, we obtain the OOD samples as x̂OOD =
detok(Dec(Unflatten(z̃))).

Experimental Results and Insights
In this section, we evaluate the performance of our method
under two scenarios: (i) distribution shifts, and (ii) un-
seen types of samples during test time. These scenarios are
common in various domains, particularly in cybersecurity,
where evolving attack patterns pose unique challenges.For
instance, the attack landscape frequently evolves, leading to
the emergence of new types of attacks. Our goal is to gen-
erate both (i) synthetic samples from the training data distri-
bution (ii) OOD samples to augment the in-distribution sam-
ples. The combined set of synthetic data can be utilized in
training or evaluation of downstream models. We consider
the following datasets :

• NSL-KDD (Tavallaee et al. 2009): This addresses some
of the limitations of the original KDDCup99 dataset for
network intrusion detection, including the removal of du-
plicate and redundant records. Importantly, the test data
includes specific attack types (14 new types of attacks)
not present in the training data, simulating real-world
scenarios where novel attacks emerge over time. We syn-
thesize both in-distribution and OOD samples that differ
from both normal and known attack samples.

• AnoShift (Dragoi et al. 2023): This anomaly detection
benchmark dataset is built on the Kyoto-2006+ traffic
dataset spanning from 2006 to 2015 and captures natu-
rally occurring changes in network intrusion data over
time. AnoShift provides data splits as IID (2006-2010),
NEAR (2011-2013), and FAR (2014-2015) splits. We
formulate two datasets by considering: (i) IID+NEAR
split and (ii) IID+FAR split. For training, we use all nor-
mal and attack samples from the IID split along with
only normal samples from the NEAR/FAR split, while
the test set includes samples from both IID and NEAR/-
FAR splits. Our OOD generation leverages historical at-
tack information and normal behavior to create attacks
that are out-of-distribution.

• ACS Income: This dataset is derived from the original
dataset proposed by (Ding et al. 2021). The dataset en-
ables systematic studies of distribution shifts across dif-
ferent states and years. We focus on the CA state data
for two well-separated years, 2014 and 2018, to simulate
a large distribution shift. The prediction task is to deter-
mine whether an individual’s income exceeds $50,000,
where the high-income group represents the minority
class. Our training set includes all data from 2014 and
only the majority samples from 2018, while the test set
contains all samples, including minority class samples
from 2018, simulating a distribution shift.

We evaluate the effectiveness of our method by employing
the Machine Learning Efficiency (MLE) metric2. This eval-
uates how downstream model performance varies on real test
samples, when trained using synthetic data in comparison
to the same model being trained using real data. We estab-
lish baselines by training the downstream models on the real
training data and evaluating them on the real test data, which
includes distribution-shifted or new types of attack/minority

2See (Zhang et al. 2024a, Appendix E.4) for details on MLE



NSL-KDD Ano (IID+FAR) Ano (IID+NEAR) ACS Income

LR DT XGB Avg LR DT XGB Avg LR DT XGB Avg LR DT XGB Avg

F1-score
Base 73.5 81.5 80.3 78.43 81.1 85.4 86.5 84.33 88.4 96.6 97.4 94.13 61.9 65.0 64.4 63.77
Ours 81.6 85.9 84.1 83.87 88.2 88.2 88.2 88.21 96.3 97.0 97.4 96.90 71.9 71.4 73.0 72.10
Accuracy
Base 75.6 81.8 80.9 79.43 75.4 80.5 81.9 79.27 85.1 95.3 96.4 92.31 76.8 77.2 78.1 77.37
Ours 81.1 84.8 82.9 82.93 83.1 83.2 83.6 83.31 94.6 95.8 96.4 95.62 79.5 78.1 80.0 79.21
Precision
Base 96.5 96.6 97 96.72 97.8 99.1 99.3 98.73 98 98.9 99.2 98.7 83.1 78.3 84.1 81.83
Ours 91.7 91.1 89.5 90.77 93.9 95.2 97.3 95.47 94 96.7 96.6 95.77 75.1 73.4 75.1 74.53
Recall
Base 59.4 70.4 68.6 66.13 69.3 75 76.7 73.67 80.4 94.4 95.8 90.20 49.3 55.6 52.3 52.41
Ours 73.4 81.3 79.2 77.97 83.2 82.1 80.7 82.09 98.7 97.3 98.3 98.17 68.9 70.7 71.1 70.23

Table 1: MLE performance comparison of baseline vs our synthetic data across different datasets and model families.

class samples. Particularly on NSL-KDD, certain types of
attack categories are exclusively present only in the test set.
We then compare these baselines to models trained on a new
data which includes existing normal samples and synthetic
minority class samples and tested on the same real test data.
In our context, MLE measures the robustness of downstream
models trained with the synthetic data (in-distribution syn-
thesis augmented with OOD samples) when faced with dis-
tribution shifts or the presence of OOD samples during test-
ing. Our synthetic datasets are generated to match the size
of the original training data. Without loss of generality, we
assign k = 0 to the normal class and k = 1 to the attack
class in NSL-KDD and AnoShift datasets. For the ACS In-
come dataset, k = 0 represents majority (low-income) class,
and k = 1 represents high-income class. The interpolation
factor α governs the weight assigned to the majority (nor-
mal) class during data generation. In our experiments, we
aim to enhance robustness to distribution shifts and unseen
minority or attack samples by generating more OOD sam-
ples from the minority or attack classes. Hence, α is set to a
smaller value to give more weight to the minority/anomaly
class. Specifically, we set α = 0.4 for the NSL-KDD dataset
and α = 0.2 for the other datasets. These values were cho-
sen based on empirical insights rather than an extensive grid
search, as further detailed in Appendix.

Enhanced Robustness of Downstream Models. We train
three types of classifiers: Logistic Regression (LR), Deci-
sion Trees (DT), and XGBoost (XGB), each with a diverse
set of hyperparameters. The model with the best perfor-
mance for each classifier type is selected for comparison.
Table 1 presents the gains in robustness achieved by our
method on four datasets, measured in terms of F1-score
and accuracy. While our method results in an average pre-
cision drop of approximately 5% on an average across the
four datasets, it improves recall (by about 18%) and overall
F1-score and accuracy by 6.9% and 3.9% respectively. We
note that introduction of OOD samples in the boundary of
the latent space generates more edge cases of benign sam-
ples which causes classifiers to identify them as anomaly
and the increase in the false positive rate. However, the im-
provements in recall and F1-score suggest that our method
improves the classifiers performance of detecting minority

classes. We also perform an ablation study to establish the
gains in robustness contributed by the OOD samples, and
contrast the results against purely in-distribution generation
of TabSyn or class rebalancing, (please see Appendix, Ta-
ble 2), which shows the benefits of OOD generation in iden-
tifying unseen samples during inference.

Note that our primary focus is on evaluating the utility
of our OOD generation method rather than on the quality
of in-distribution samples. Since our in-distribution gener-
ation follows the TabSyn strategy with an additional nov-
elty of using Gaussian mixture representations in the latent
space, we rely on the extensive evaluations in the original
TabSyn paper to validate the quality of in-distribution sam-
ples. TabSyn has already demonstrated that its synthetic data
closely follows the training data distribution and preserves
feature correlations. Hence, we omit detailed evaluation of
in-distribution samples in this work.

Conclusion

We present TabOOD, a novel framework for generating
OOD tabular data through a combination of latent space
interpolation and diffusion techniques. While existing ap-
proaches have primarily focused on in-distribution data syn-
thesis, TabOOD is, to our knowledge, the first method
specifically designed to generate OOD samples—a critical
capability for high-stakes applications. By generating syn-
thetic OOD data, our work addresses the fundamental chal-
lenge of distribution shifts and enables models to better pre-
pare for real-world scenarios where test distributions in-
evitably differ from training distributions.

Extensive evaluation across four datasets and three classi-
fier families demonstrates the effectiveness of our approach.
Models trained with TabOOD-generated data showed con-
sistent performance improvements on unseen test samples,
achieving average gains of 6.9% in F1-score and 3.9% in ac-
curacy. These substantial improvements validate TabOOD’s
capability to enhance model robustness, making it a valuable
tool for developing reliable systems in critical applications
where handling distribution shifts is paramount.
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Appendix
TabOOD Algorithm

Algorithm 1: TabOOD: Controlled OOD Sample Generation

1: Input: Dataset D of N tabular data samples, each de-
noted as x, VAE parameter β, interpolation parameter
α ∈ [0, 1]

2: Output: OOD samples {x̂OOD,j}N
′

j=1
3: Step 1: Learn Gaussian mixture latent representa-

tions using β-VAE
4: for each sample x in a batch of samples from D do
5: T = tok(x) ∈ RM×d {Tokenize tabular input data

}
6: ẑ = Flat(Enc(T )) ∈ RMd {Latent embeddings at

encoder output flattened}
7: LVAE = Lrecon(x, x̂) + βDKL {Learn Gaussian mix-

ture latent space by minimizing this objective, with
DKL as in Eqn 5. β tuned to ensure best possible re-
construction while encouraging regularization during
training.}

8: end for
9: Denote the class-conditional latent distributions, for

class k ∈ {0, 1}, by q(z|xk).
10: Step 2: Train Score-Based Diffusion Models
11: for each class k ∈ {0, 1} do
12: Train score-based diffusion model Sk using latent

embeddings {zk} to model the conditional distribu-
tion q(z|xk).

13: end for
14: Step 3: Generate OOD Samples
15: Given the trained VAE components and diffusion mod-

els:
16: for each OOD sample generation do
17: Sample z0 ∼ q(z|x0) from diffusion model S0.
18: Sample z1 ∼ q(z|x1) from diffusion model S1.
19: Interpolate latent embedding: z̃ = αz0 + (1− α)z1
20: Reconstruct OOD sample: x̂OOD =

detok(Dec(Unflatten(z̃)))
21: end for
22: Return: Generated OOD samples {x̂OOD,j}N

′

j=1

Insights on Choosing the Interpolation Parameter
For conciseness, we focus on the NSL-KDD dataset for in-
sights and ablation studies due to space constraints. Our
goal is to assess how different the unseen test samples
(distribution-shifted anomalies or minority class samples for
other datasets) could be, from previously seen attacks, to
provide insights on when our generated OOD samples effec-
tively enhance the performance of downstream models. Note
that no information about these new test samples is utilized
during training or sampling. Suppose a small proportion of
the new attack samples becomes available post model train-
ing. These samples, denoted as xnew, can be used to inform
our sampling and manipulation process. To guide the inter-
polation, consider the following steps:

Figure 1: Effect of interpolation weight α on generated sam-
ples and downstream performance.

• Randomly sample 1% of the new attack samples, which
amounts to approximately 40 samples in the NSL-KDD
case.

• Compute the average pairwise ℓ2 distance in the VAE la-
tent space between the embeddings of new attack sam-
ples and the previously seen attack samples from the
training set, denoted by as d(Anew, Atrain), where A
represents attack samples.

• Similarly, compute the average pairwise distance be-
tween the new attack samples and the normal samples
from the training set, d(Anew, Ntrain), where N repre-
sents normal samples.

• Assign weights to the respective components based
on the inverse ratio of these distances, i.e., α =
d(Anew, Atrain)/d(Anew, Ntrain).

This naive approach yields α = 0.37. We now experi-
mentally study the effect of this manipulation weight α on
the proportion of attack samples produced and its impact on
the MLE performance. Note that in tabular synthesis, la-
bels are treated as features, so when moving from latents
to raw samples, both normal and attack samples are synthe-
sized based on the interpolation. We observe in Fig. 1 that
varying α results in a sharp change in the proportion of gen-
erated attack samples. Additionally, certain ranges of α lead
to superior generalization. However, if the new attacks differ
significantly from the previously seen ones, such that α be-
comes larger than a dataset-dependent threshold, our latent
manipulations may not improve downstream performance.

Ablation Study
We perform an ablation on the NSL-KDD data to evalu-
ate key factors driving the performance gains in our ap-
proach. Specifically, we want to demonstrate: (i) signifi-
cant improvement comes from OOD samples in particular
(ii) compare our in-distribution synthetic samples with those
generated by TabSyn (iii) improvements are not simply due
to rebalancing class proportions, as the training and test dis-
tributions differ. The test data remains the same across all
experiments, with variations only in the training data. The



F1-score Accuracy

Base Base-Rebal TabSyn-Rebal Ours-ID-Rebal Ours Base Base-Rebal TabSyn-Rebal Ours-ID-Rebal Ours

LR 73.5 76.8 73.1 77.4 81.6 75.6 77.7 75.3 77.7 81.1
DT 81.5 81.2 76.8 83.4 85.9 81.8 81.6 78.1 82.9 84.8
XGB 80.3 80.6 78.8 80.3 84.1 80.9 81.1 79.6 80.0 82.9
Avg 78.43 79.53 76.23 80.37 83.87 79.43 80.13 77.67 80.21 82.93

Precision Recall

Base Base-Rebal TabSyn-Rebal Ours-ID-Rebal Ours Base Base-Rebal TabSyn-Rebal Ours-ID-Rebal Ours

LR 96.5 94.4 96.1 91.3 91.7 59.4 64.7 58.9 67.2 73.4
DT 96.6 96.8 96.7 93.1 91.1 70.4 69.9 63.7 75.5 81.3
XGB 97.0 97.0 96.8 91.3 89.5 68.6 69.1 66.4 71.8 79.2
Avg 96.7 96.07 96.53 91.9 90.77 66.13 67.9 63.0 71.5 77.97

Table 2: Performance comparison across different models on the NSL-KDD dataset.

(a) Average pairwise cosine similarity of embeddings. (b) Average pairwise L2 distance of embeddings.

Figure 2: Comparison of pairwise similarities and distances between real and synthesized embeddings for test and synthesized
attacks on the NSL-KDD dataset.

results in Table 2 demonstrate that our method, which in-
cludes OOD samples, improves generalization to unseen at-
tack types. Base-Rebal refers to the real training samples,
with class proportions rebalanced to match that in the test
set. Similarly, TabSyn-Rebal and Ours-ID-Rebal refers to
in-distribution training samples generated by TabSyn and
our method respectively, but with the class proportions re-
balanced.

Other evaluation metrics
We evaluate the latent embeddings generated by the encoder,
comparing real samples with synthesized ones, focusing on
the NSL-KDD dataset. We employ cosine similarity and L2
Euclidean distance as evaluation metrics. Specifically, we
compute the average pairwise similarity and distance be-
tween embeddings, as shown in Figures 2a and 2b.

Note that ”Test Attacks” refer to in-distribution attacks

(attack types present in the training data), and ”Syn Attacks”
refer to synthesized attacks generated to resemble these in-
distribution attacks.

We also evaluate the effectiveness of synthesized data
using unsupervised anomaly detection methods. Specif-
ically, we employ DeepSVDD (Ruff et al. 2018) and
GOAD (Bergman and Hoshen 2020), leveraging their im-
plementations in the DeepOD library. In these methods, only
normal samples are used for training anomaly scoring mod-
els, which are then tested on a mix of normal and anoma-
lous data. The models are expected to produce low anomaly
scores for normal samples and high scores for anomalies.

We perform two types of evaluations using common met-
rics such as AUROC, Average Precision (AP), and F1-score.
First, we establish a baseline by training the anomaly de-
tection models on real normal samples and testing on real
test samples. We then compare this performance with mod-



Model Train: Real Normal, Test: Real Train: Synth Normal, Test: Real Train: Real Normal, Test: Synth
Dataset Method AUC AP F1 AUC AP F1 AUC AP F1

NSL-KDD DeepSVDD 0.77 0.85 0.76 0.73 0.82 0.73 0.81 0.89 0.78
GOAD 0.92 0.91 0.87 0.90 0.87 0.86 0.94 0.93 0.89

Table 3: Unsupervised anomaly detection performance on the NSL-KDD dataset using DeepSVDD and GOAD models.

els trained on synthesized normal samples and tested on real
data. The goal is to see if the synthetic data can replicate
the performance of models trained on real data, indicating
that the synthetic normal samples closely resemble the real
normal ones.

Additionally, we evaluate whether models trained on real
normal samples can detect attacks generated in our synthe-
sized dataset. We expect these models to perform similarly,
or even better, as the synthesized OOD attacks might be eas-
ier to detect than new, unseen real test attacks. Results are
summarized in Table 3.

Cross-validation results on NSL-KDD
We conduct extensive cross-validation experiments compar-
ing TabOOD with TabSYN using the NSL-KDD dataset.
While other datasets like AnoShift and ACSIncome are
available, their temporal and seasonal characteristics made
them unsuitable for efficient cross-validation.

Our experimental setup involved creating 5 folds of train-
test splits, carefully partitioning the attack samples to ensure
that the test sets contained only out-of-distribution attacks.
For each fold, we implemented the following procedure:
1. Trained VAE on the training data with Gaussian mixture

modeling
2. Trained diffusion models using 5 different random seeds

on the training data
3. Reversed the train-test split and repeated the process
This methodology generated 50 distinct comparison scenar-
ios (5 folds × 5 random seeds × 2 train-test configurations).
Once the models are trained, we sample appropriate benign
and attack samples using the diffusion models to form the
synthetic datasets. For TabOOD, we generated two types of
samples: (i) in-distribution samples from the latent space
comprising two Gaussian distributions; (ii) OOD samples
using Equation equation 7 with α = 0.2. For evaluation, we
use the train dataset of each generated fold to train three fam-
ilies of classifier models (LR, DT, XGB) and assess the clas-
sification performance on the test dataset which only con-
tains out-of-distribution attack samples. Next, we swapped
the train and test datasets as suggested by cross validation
procedure and trained the classifiers on test data and com-
pute their classification performance on the training data.
Note that this evaluation is distinct in flavor from the MLE
evaluations reported earlier. Particularly, we experimentally
evaluate whether incorporating our synthetic data generation
approach into model training improves classifier detection
performance compared to the existing TabSyn method.

We employed t-tests to statistically validate TabOOD’s
performance improvements over TabSyn across various

Performance metric Model selection method DecisionTreeClassifier LogisticRegression XGBClassifier
F1 Score Best F1 Score 0.161 0.001 0.087
Accuracy Best Accuracy 0.376 0.001 0.016

Precision
Best AUROC 0.871 0.017 0.155
Best F1 Score 0.274 0.646 0.214
Best Accuracy 0.730 0.672 0.233

Recall
Best AUROC 0.378 0.006 0.576
Best F1 Score 0.274 0.002 0.038
Best Accuracy 0.528 0.004 0.155

Table 4: The t-test p-value results for the cross validation on
classification models.

classification methods. Our hypothesis testing framework
examined whether TabOOD’s precision was lower than
TabSyn’s, while for all other metrics, we tested whether
TabOOD’s performance was higher. Our model selection
criteria varied by metric: for F1 scores and accuracy com-
parisons, we used models with the best respective scores,
while for precision and recall evaluations, we considered
models with the best F1 score, accuracy, and AUROC (the
latter being particularly relevant for imbalanced problems).
The statistical analysis results are presented in Table 4 with
statistically significant results (p < 0.05) in bold. The F1
score showed significant improvement only for LR, while
accuracy demonstrated significant improvements for both
Logistic Regression and XGBoost. Notably, the Decision
Tree Classifier showed no significant improvements across
any metrics. Regarding recall, we observed significant im-
provements across all selected Logistic Regression models,
though for XGBoost, significant improvement was limited
to models with the best F1 score. In terms of precision, we
found a statistically significant decrease only in LR with best
AUROC, suggesting no strong evidence of precision degra-
dation in most models when using TabOOD.

Our comprehensive evaluation demonstrates that
TabOOD offers significant improvements over TabSyn in
detecting out-of-distribution samples, particularly when
used with Logistic Regression and XGBoost classifiers.
Statistical validation through t-tests confirms that TabOOD
achieves enhanced performance across multiple metrics,
notably in accuracy and recall, while maintaining compet-
itive precision levels in most model configurations. The
only observed trade-off was a minor precision decrease
in a single model setup (Logistic Regression with best
AUROC), suggesting that TabOOD successfully balances
the generation of synthetic data with out-of-distribution
detection capabilities. These results establish TabOOD as a
robust framework for synthetic data generation in scenarios
where out-of-distribution detection is crucial.


