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ABSTRACT

Goal-conditioned sequence-based supervised learning with transformers has
shown promise in offline reinforcement learning (RL) for single-agent settings.
However, extending these methods to offline multi-agent RL (MARL) remains
challenging. Existing transformer-based MARL approaches either train agents in-
dependently, neglecting multi-agent system dynamics, or rely on centralized trans-
former models, which face scalability issues. Moreover, transformers inherently
struggle with long-term dependencies and computational efficiency. Building on
the recent success of Structured State Space Sequence (S4) models, known for
their parameter efficiency, faster inference, and superior handling of long con-
text lengths, we propose a novel application of S4-based models to offline MARL
tasks. Our method utilizes S4’s efficient convolutional view for offline training
and its recurrent dynamics for fast on-policy fine-tuning. To foster scalable co-
operation between agents, we sequentially expand the decision-making process,
allowing agents to act one after another at each time step. This design promotes
bi-directional cooperation, enabling agents to share information via their S4 latent
states or memory with minimal communication. Gradients also flow backward
through this shared information, linking the current agent’s learning to its prede-
cessor. Experiments on challenging MARL benchmarks, including Multi-Robot
Warehouse (RWARE) and StarCraft Multi-Agent Challenge (SMAC), demon-
strate that our approach significantly outperforms state-of-the-art offline RL and
transformer-based MARL baselines across most tasks.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has demonstrated significant success in learning com-
plex policies that require coordination among multiple agents to maximize a shared objective (Cao
et al., 2012; Berner et al., 2019; Ye et al., 2015). However, this success often relies on a substantial
number of interactions with the environment, which can be computationally expensive in high-
fidelity simulations or prohibitively risky in real-world applications. To enhance sample efficiency,
offline reinforcement learning (RL) algorithms (Lee et al., 2021; Fujimoto et al., 2019; Kumar et al.,
2019; 2020; Kostrikov et al., 2021; Xu et al., 2022a; Li et al., 2022; Xu et al., 2023) have been de-
veloped, enabling learning from pre-collected offline datasets, thus reducing the need for extensive
online interactions.

Offline RL is plagued by the well-known issue of distribution shift, which leads to extrapolation
errors when encountering out-of-distribution (OOD) samples during policy training. This occurs
when the learned policy deviates from the unknown behavior policy used to collect the training data.
To mitigate this, various forms of regularization (Kumar et al., 2019) are introduced to ensure that
the learned policy remains close to the behavior policy (Kumar et al., 2020; Xu et al., 2023; 2022a).
In multi-agent settings, the joint state-action space expands exponentially as the number of agents
increases. This makes it challenging to apply these regularization techniques globally on the joint
state-action space, leading to sparse and less effective regularization constraints, especially when
working with a limited and less diverse offline dataset.
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Sequence-based supervised learning has been concurrently applied to address offline MARL, lever-
aging the significant success of supervised learning in capturing complex patterns from large offline
datasets. This approach, first introduced by the Decision Transformer (DT) (Chen et al., 2021), has
demonstrated its ability to learn policies in an autoregressive fashion by predicting the next action
based on the current state, previous action and the desired return-to-go. While efforts have been
made to extend DT-based architectures to offline MARL (Meng et al., 2021; Tseng et al., 2022),
certain limitations persist. MADT (Meng et al., 2021) adapts DT independently for each agent
in the multi-agent settings, failing to explicitly model cooperation between agents. (Tseng et al.,
2022) adopts a similar approach and trains a centralized teacher policy to capture agent interactions,
with individual agents learning through policy distillation. However, centralized transformers face
scalability issues, requiring training on information from all agents. Additionally, these approaches
inherit the inherent limitations of transformers, such as large model sizes, inefficient runtime infer-
ence, and restricted ability to capture long-range dependencies due to fixed window size constraints.

Structured State Space Sequence (S4) models (Gu et al., 2021a) have recently been shown to outper-
form transformer-based models in single-agent offline RL tasks (Bar-David et al., 2023). Building
on this success, we propose a sequence-learning-based offline MARL algorithm leveraging S4 vari-
ants. These models provide superior parameter efficiency compared to transformers, effectively
capture longer temporal contexts, and enable constant-time inference over the quadratic time com-
plexity of transformers with respect to the sequence length. Unlike previous works, such as MADT,
which trains agents independently, our method explicitly models cooperation through a Sequentially
Expanded MDP (SE-MDP) paradigm. In this framework, recently used in online MARL settings
(Li et al., 2023), each decision step is divided into mini-steps, with agents acting sequentially based
on their predecessors’ actions. Unlike (Li et al., 2023), we enable limited communication, requiring
each agent to access only its immediate predecessor’s information, shared through the latent state
representation of the S4 model. Utilizing this hidden state of the S4 module of the current agent,
information on all its prior agents is efficiently passed down to the next agent, and gradients flow
backward from the current agent through this shared memory to the previous agents during training.
This design enables scalable training with constant memory communication overhead, unlike tra-
ditional communication-based MARL algorithms, where memory overhead increases quadratically
with the number of agents. Additionally, this streamlined information-sharing mechanism helps
mitigate non-stationarity issues during online fine-tuning. This form of training also shares similar-
ities with the way information is passed between segments of long sequences in Recurrent Memory
Transformer (RMT) (Bulatov et al., 2022).

The S4-based agents are trained directly on sequences or trajectories from the offline dataset in
an efficient convolutional manner. The offline pre-trained models can be further used for sample-
efficient online fine-tuning based on individual tuples instead of sequences leveraging the recurrent
view of S4. We evaluate the performance of our developed algorithm, called Multi-Agent Decision
S4 (MADS4), on the challenging offline MARL benchmarks of Multi-Robot Warehouse (RWARE)
(Papoudakis et al., 2020) and StarCraft2 Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019),
where MADS4 achieves superior performance across many tasks over state-of-the-art offline RL-
based and transformer-based baselines.

2 RELATED WORK

Offline Reinforcement Learning Offline RL allows for policy learning based on pre-collected
datasets without having access to active interactions with the environment (Levine et al., 2020),
which is then directly used as the final policy or is used as a starting point for further improvement
(Uchendu et al., 2023). This learning paradigm however results in severe distribution shift and
extrapolation errors during policy evaluation on OOD samples not present in the offline dataset
(Kumar et al., 2019; Fujimoto et al., 2019). Several approaches have been developed to mitigate this
issue which typically involves various types of regularizations to be near the offline data distribution.
Policy-based regularizations implicitly or explicitly constrain the policy to be close to the behavior
policy of the dataset (Wu et al., 2019; Xu et al., 2021; Cheng et al., 2024; Li et al., 2022). Value-
based regularizations aim to learn conservative value functions on OOD samples (Kumar et al.,
2020; Kostrikov et al., 2021; Xu et al., 2022b). Other approaches involve including uncertainty (Wu
et al., 2021; Bai et al., 2022) or penalizing OOD rewards (Yu et al., 2020).
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Figure 1: Multi-Agent MDP (MMDP) is restructured into a Sequentially-Expanded MDP (SE-MDP)
where the multi-agent state transition at each timestep is decomposed into n intermediate states. In
this framework, each agent processes its input alongside information received from its preceding
agent, then takes an action and passes updated information to the next agent in the sequence. During
training, gradient flows backward, enabling earlier agents to receive updates based on the informa-
tion passed by later agents.

On the other hand, Decision Transformer (DT) (Chen et al., 2021) takes a goal-conditioned super-
vised learning (GCSL) approach to formulate offline RL as a sequence modeling task and outper-
forms many state-of-the-art offline RL algorithms. Following the success of this training regime,
Decision S4 (Bar-David et al., 2023) proposes using S4 model variants for higher parameter effi-
ciency, capturing longer sequences and faster inference.

Offline MARL Extending single-agent RL methods to multi-agent settings presents significant
challenges due to the exponential growth of the joint state-action space. Most MARL algorithms
adopt the Centralized Training with Decentralized Execution (CTDE) paradigm. In CTDE, global
information is shared during training, and local, decoupled policies are used for execution (Oliehoek
et al., 2008; Sunehag et al., 2017; Rashid et al., 2020; Son et al., 2019; Wang et al., 2020; Foerster
et al., 2017; Lowe et al., 2017; Yu et al., 2021). Recently, offline RL-based MARL algorithms
have emerged, typically applying regularizations on local policies or value functions (Yang et al.,
2021; Jiang & Lu, 2023; Pan et al., 2022). On the other hand, (Meng et al., 2021) extends the
Decision Transformer (DT) (Chen et al., 2021) to a multi-agent setting, where agents are trained
independently by sharing weights within a goal-conditioned supervised learning framework.

However, these algorithms do not provide guarantees of global-level regularizations and fail to ex-
plicitly or implicitly learn cooperative behavior. Only a few recent works have tried to tackle these
limitations. For example, (Wang et al., 2024) uses an implicit global to-local regularization, and
(Tseng et al., 2022) uses knowledge distillation to distill cooperation in the local policies.

S4 S4(Gu et al., 2021a;b) and their variants (Gupta et al., 2022; Smith et al., 2022), which are
developed on time-invariant linear state space layers, have outperformed transformers in capturing
long-range contexts. These models require far fewer parameters and have constant time inference;
hence, they have been suitably utilized in reinforcement learning domains in single-agent learning
(Bar-David et al., 2023) and in-context learning (Lu et al., 2024). Commonly, the model uses the
convolutional mode for efficient parallelizable training (where the whole input sequence is seen
ahead of time) and switched into a recurrent mode for efficient autoregressive inference (where the
inputs are seen one timestep at a time).
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3 METHODOLOGY

Sequentially Expanded MDP In this section, we present our approach based on sequence learn-
ing with state-space layers. In this work, the Multi-agent Markov Decision Process (MMDP)
is transformed into a Sequentially Expanded Markov Decision Process (SE-MDP), where each
timestep is divided into n mini timesteps and a multi-agent decision by n agents is expanded into a
sequence of n individual decisions, with only one agent acting during each mini-timestep. Thus, a
single-step transition in the original MMDP (st,at, st+1) resulting in a shared reward r(st,at) is
composed of a sequence of n intermediate transitions, which in turn result in the same shared reward
r(st,at), as shown in Figure 1.

(st,at, st+1) = {(st, at1, sta1
), (sta1

, at2, s
t
a1:2

), ..., (sta1:n−1
, atn, s

t
a1:n

= st+1)} (1)

Within this framework, at each timestep, an agent’s action is based on information passed by the
immediately preceding agent in the sequence. This creates a bidirectional dependency between the
agents as shown in Figure 1: in the forward direction, an agent’s action is influenced by the actions
of its predecessors, while in the backward direction, gradients can propagate from the current agent
back to the previous agents.

Sequence-based reinforcement learning Offline RL is formulated as a supervised learning prob-
lem by predicting actions in an autoregressive manner typically conditioned on current states, pre-
viously executed actions, and desired returns to go. This paradigm was introduced in (Chen et al.,
2021), where the DT is trained to predict current actions based on returns to go instead of current
rewards in order to have better actions that are correlated with better future rewards. This work
utilizes this supervised learning setting, where the state, action, and reward of ith agent at each
timestep are denoted as si, ai, ri, and its trajectories τ : (s0, a0, r0, s1, a1, r1, ..., sL, aL, rL) consist
of sequences of state, action, and reward tuples. Since the models are trained on returns-to-go, the
trajectories are restructured as τ : (R0, s0, a0, R1, s1, a1, ..., RL, sL, aL) where Ri =

∑N
t=i ri is

the returns to go from ith time step.
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Figure 2: MADS4 Agent Actor Network. In addition
to the state, action, and reward encoder, the memory/
S4 state representation from the previous agent (Hn−1)
is encoded through a memory encoder. The updated
S4 states and outputs from the S4 blocks pass through
separate projection layers.

S4-based Agent At each time step, the
model takes u(t) as input and updates the
latent state/memory x(t) and, in turn, re-
turns an output y(t) by following the first-
order differential equation parameterized
by linear and time-invariant dynamics:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2)

The SSM operates on continuous time se-
quences where A,B,C,D are matrices
of appropriate sizes. To model discrete se-
quences, the continuous SSM can be dis-
cretized with a fixed step size ∆ following
any discretization scheme, such as the bi-
linear method (Tustin, 1947), to obtain the
following discretized linear recurrence re-
lations:

xk = Āxk−1 + B̄uk(t)

yk = C̄xk + D̄uk

(3)

where Ā, B̄, C̄, D̄ are calculated based on A, B, C, D and ∆.
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(Gu et al., 2020) showed that the initialization of A by the HIPPO matrix enables the SSM model
to capture better long-range contexts. Various techniques have since been developed to improve the
model’s performance, stability, and training efficiency (Gu et al., 2021a; Gupta et al., 2022). Similar
to these works, D is represented here by a skip connection.

Since Eq. 3 is linear and time-invariant, the output sequence y(t) can be computed directly in
parallel based on input sequence u(t) by convolution as follows:

yk = C̄ĀkB̄u0 + C̄Āk−1B̄u1 + ...+ C̄ĀB̄uk−1 + C̄B̄uk

y = K̄ ∗ u
(4)

where K̄ is the SSM convolution kernel or filter which is a function of Ā, B̄, C̄, D̄ and context
length L which is pre-fixed during training. This non-circular convolution can be computed effi-
ciently across all time steps, allowing for parallelizable training. The recurrent view of the SSM
also allows for faster inference with low memory. This is a key advantage over transformers, which
makes the use of SSMs very effective in reinforcement learning settings, which require faster infer-
ence for the collection of online interactions with the environment. Additional details can be found
in Appendix A.

Information sharing with limited communication To enable scalable cooperation among S4-
based agents, we design a communication mechanism limited to consecutive agents in the SE-MDP
sequence. Each agent’s memory, represented by the hidden state of its S4 module, encodes informa-
tion about all prior agents in the sequence. A projection of this latent state, ht

i−1, is passed as input
to the next agent along with other inputs ût

i, influencing its action ati and its memory ht
i:

ati, h
t
i = πi(û

t
i, h

t
i−1; θi) (5)

During training, gradients flow backward through the shared latent states, enabling the entire system
to learn cooperative strategies:

∂J

∂θi
=

∂J

∂ati
· ∂a

t
i

∂θi
+

∂J

∂ati+1

·
∂ati+1

∂ht
i

· ∂h
t
i

∂θi
. (6)

where J represents the supervised loss function computed across all agents in the system. This
sequential flow of information eliminates the need for an agent to communicate with more than one
peer or identify useful collaborators, a challenge that grows with the number of agents. In contrast
to typical communication-based MARL algorithms, which scale poorly due to the quadratic growth
in memory requirements during training and execution, our mechanism is highly efficient, requiring
only constant memory per agent.

We first adapt Decision S4 (DS4) for each agent with parameter sharing, similar to the Multi-Agent
Decision Transformer (MADT) (Meng et al., 2021). Unlike MADT, however, the Multi-Agent
Decision S4 (MADS4) is trained in a sequentially dependent manner, where agents can share accu-
mulated memory information with the next agent in the sequence. The offline version of MADS4,
trained on pre-collected trajectories, is detailed in the next section. These pre-trained models can be
further fine-tuned in an on-policy setting using MAPPO (Yu et al., 2021).

3.1 MADS4: OFFLINE TRAINING

Input Formulation In the offline training setup of MADS4, each agent is trained over the offline
trajectories consisting of sequences of previously seen observations, its own previously executed
actions, the latent state representation of its preceding agent, and returns to go from the current
time step. Similar to MADT, the state of each agent at each time step sti is composed of global
environment state stgi and its local observation oti. However, our model performs very similarly
without using the global state information in the input, as shown in Appendix C.5. Thus, a trajectory
for the ith agent, which is taken as input to the S4-based model, consists of the following:

5
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τi = (u1, u2, ..., uT ) where ut = {Rt, stgi, o
t
i, a

t−1
i , ht

i−1} (7)

where Rt is the returns-to-go from current time step t, stgi is the current shared global state, oti is
the current local observation, at−1

i is the previously executed action of the ith agent, ht
i−1 is the

current hidden state representation of the preceding agent. The model is trained to predict actions
(action logits) at time step t in an autoregressive manner based on the data seen so far. The output of
the S4-based model is used as the action probabilities which are sampled after applying the action
availability masks.

âti = argmax
a

P (ati|τ<=t
i ; θ) (8)

where θ are the parameters of the MADS4. In this work, parameter sharing is allowed across the
agents for training stability, and thus, essentially, a single model is trained, which takes into account
different inputs for different agents along with their specific one-hot agent IDs.

Network Architecture and Training The MADS4 architecture consists of three key components,
as illustrated in Figure 2: (i) Input, state, and output projection layers: each of these consists of a
fully connected layer followed by ReLU activations; (ii) Input encoder layers: These layers han-
dle states, actions, and rewards/returns, each implemented as fully connected linear layers; (iii)
Sequence modeling component: This component consists of stacked S4 blocks, where each block
consists of Batch Normalization layer followed by S4 layer, linear mixing layer with GELU activa-
tion, and a dropout layer. We employed various kernels for S4, with the ”Normal Plus Low Rank”
kernel initialized using HIPPO, achieving the best performance. In all experiments, we set the input
channel size to H = 96 and the S4 state size to N = 96. An ablation study detailing the effects of
varying state and input sizes is provided in Appendix C.1.

In the offline setting, the S4 model is trained efficiently using the convolutional view on entire tra-
jectories sampled randomly from the offline dataset. The trajectories are zero-padded to a constant
context length. Unlike transformers, which face limitations on context length due to the expensive
quadratic time and space complexity of self-attention, S4-based models can be trained on complete
trajectories that are often much longer than those typically used for transformers in most environ-
ments. The impact of truncating trajectory lengths has significant implications for model perfor-
mance, as detailed in Appendix C.2. Actions are predicted based on the action logit outputs of the
model, and the model is trained based on loss computed using cross-entropy between the true action
labels and the predicted actions.

3.2 MADS4: ONLINE FINETUNING

For online fine-tuning, the offline pre-trained agent is used to interact with the online environment
and is further updated based on an on-policy training scheme. The agent interacts with the envi-
ronment while creating the buffer, which stores the local observations and actions of the individual
agents, shared global states of the environment, rewards, returns-to-go, and also the latent states of
the S4 modules of the agents. Within the well-known MAPPO-based (Yu et al., 2021) actor-critic
framework, the offline-pretrained S4-based model is used as actor networks of the agents which pre-
dict actions via the recurrent view based on latent states and other inputs as used in the pretraining
stage. The critic network is conditioned on both the global states of the environment as well as the
encoded latent S4 states to evaluate the state value function.

Network Architecture and Training The pre-trained model is loaded as the actor network, which
predicts action probabilities and next states as:

pti, h
t
i = π(ut

i, h
t−1
i ; θ) where ut

i = {Rt
i, s

t
gi, o

t
i, a

t−1
i , ht

i−1} (9)

The critic network is parameterized by fully connected layers with ReLU activations, which take
the shared global state of the environment and encoded latent states and evaluate the value function,
which is used to update the S4-based actor parameters (θ) using the policy gradient theorem. For
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Algorithm 1 MADS4-Offline Training
Input: Offline dataset D : {τi : ⟨stgi, oti, ati, vti , dti, Rt

i⟩Tt=1}ni=1, where n is the number of agents,
and vti denotes the available actions for the ith agent at time t; dti denotes the done signal for an
episode
Initialize α as the learning rate, K as the context length
Initialize θ for the S4 models based on HIPPO initialization

1: for i = 1 : n do ▷ Iterate over each agent
2: From τi and ht

i−1, create Xi : {Rt
i, s

t
gi, o

t
i, a

t−1
i , ht

i−1}Tt=1, where ht
i−1 is the latent state

representation of the previous agent, assuming ht
−1 = 0

3: Zero-pad the trajectory to a constant length K when dti is true ▷ Pad when the agent is done
4: Compute action output sequence âi = {â1i , . . . , âTi } and latent state projections hi =
{h1

i , . . . , h
T
i }

5: for t = 1 : T do ▷ Loss calculation over time steps
6: Mask illegal actions via P (âtij |τ<t

i ; θ) = 0 if vtij is False, where j is the unavailable
action index

7: Predict the action âti = argmaxj P (âij |τ<t
i ; θ)

8: Update θ:

θ ← argmax
θ

1

K

K∑
t=1

P (ati) logP (âti|τ<t
i ; θ)

9: end for
10: end for
Return: θ

more stable training. the actor network is kept frozen initially, and the critic is solely trained on the
recorded data collected using the pre-trained actor. After sufficient training of the critic, the actor
and critics are simultaneously trained. During exploration, the desired returns-to-go is set at 10%
higher than the current model’s highest return. Additional details on the experimental setup and
training are provided in Appendix A.4.

4 EXPERIMENTS

Datasets We evaluate the performance of MADS4 on challenging cooperative MARL benchmarks
of Multi-Robot Warehouse (RWARE) (Papoudakis et al., 2020) and StarCraft2 Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al., 2019). The offline datasets in the RWARE domain are obtained
from (Matsunaga et al., 2023), which consists of diverse trajectories collected by training Multi-
Agent Transformer (MAT) (Wen et al., 2022). The RWARE datasets consist of expert policies
trained on 2 maps (tiny and small) with different numbers of agents. For the SMAC domain, the
datasets provided by (Meng et al., 2021) have been used, which consists of trajectories collected
with online trained MAPPO agents. The datasets consist of three trained quality levels of the agents,
good, medium, and poor, tested on the different SMAC maps. For this work, we chose four rep-
resentative maps consisting of two hard (5m vs. 6m, 2c vs. 64zg) and two super hard (6h vs. 8z,
corridor) maps for evaluating MADS4. Additional statistics on the offline datasets can be found in
Appendix B.

Baselines For comparisons on both domains, we compare with several recent offline MARL al-
gorithms from the paradigms of both offline reinforcement learning and sequence-based supervised
learning. The offline RL baselines considered for comparison are Behaviour Cloning (BC) (Fuji-
moto et al., 2019), OptiDICE (Lee et al., 2021), AlberDICE (Matsunaga et al., 2023), ICQ (Yang
et al., 2021), OMAR(Pan et al., 2022) and OMIGA(Wang et al., 2024). The sequence-based learning
algorithms considered in this work include MADT (Meng et al., 2021) and MADTKD (Tseng et al.,
2022), which are based on transformers. MADT policies do not involve any cooperation during
learning, whereas MADTKD incorporates a degree of cooperation distilled into the agents from the
centralized teacher model.

7
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Algorithm 2 MADS4: On-policy finetuning

1: Copy the model weights θ to the actor or policy network π : π(ui), where ui =
{Rt

i, s
t
gi, o

t
i, a

t−1
i , ht

i−1}; Initialize ϕ, the parameters for critic V
2: Set learning rates απ, αV for actor and critic
3: for iterations = 1,M do
4: Set data buffer D = {}
5: for i = 1 to batch size do
6: τ = [] ▷ Empty list
7: Initialize h

(1)
0 , . . . , h

(n)
0 actor S4 states

8: for each timestep t in the environment do
9: for agent = 1 : n do

10: pti, h
t
i = π(ut

i, h
t
i−1; θ)

11: Sample ati ∼ pti
12: end for
13: Execute actions at, observe rt, st+1

g , ot+1

14: τ+ = [st,ot,ht,at, rt, Rt, st+1,ot+1]
15: end for
16: Calculate advantage At via GAE on τ and store τ with At in the buffer D
17: end for
18: for k = 1, . . . ,K training steps do
19: Sample batch from replay-buffer B = {(stg, ot, at−1, Rt−1, ht−1, st+1

g , ot+1, at, ht, rt, Rt, At)} ⊂
D for each agent

20: Calculate Bellman target estimate: y = rt + γV (st+1, ht)
21: Update critic: ϕV = ϕV − αV∇ϕV

(V (st, ht−1)− y)2

22: If actor freezing is over, update actor:

θπ ← argmax
θπ

Es∼ρθold ,a∼πθold

[
clip(w, 1− ϵ, 1 + ϵ)At

]
where the importance weight w = πθ(ai|oi)

πθold (ai|oi)
23: end for
24: end for

Offline training Here, we compare the performance of offline trained MADS4, where the agents
share information in the form of their latent state projections. The trained agents are deployed on
the online RWARE and StarCraft2 environments for evaluation. Tables 1 and 2 show the mean and
standard deviation of average returns in RWARE and SMAC domains, respectively, evaluated over
30 episodes and 5 different training seeds. During evaluation, the desired returns-to-go is set at 10%
higher than the highest returns encountered in the offline datasets.

RWARE environment is a warehouse simulation consisting of agents moving and delivering goods
to workstations in partially observable settings while avoiding collisions. This domain poses chal-
lenges due to high-dimensional observations and the need for strong cooperation, especially in high-
density settings where agents must navigate narrow passages. In this domain, MADS4 outperforms
all baselines across the maps, with a larger performance gap on the small and tiny maps involving
6 agents, where tight coordination is crucial to avoid collisions in confined spaces. MADS4 also
outperforms transformer-based baselines like MADTKD, likely due to the long trajectories in the
RWARE datasets (up to 500 timesteps), which are often truncated to reduce transformer training
costs. In contrast, MADS4 processes full trajectories, capturing longer contexts with fewer parame-
ters.

In the SMAC domain, MADS4 demonstrates consistent performance that is similar to or better than
the considered baselines across all studied maps. Notably, the model outperforms all baselines in
the hard and superhard maps, specifically in the 2c vs. 64zg and 6h vs. 8z scenarios.

On-policy fine-tuning We evaluate whether the performance of offline pre-trained models can be
enhanced through on-policy fine-tuning. During this phase, MADS4 interacts with the environment,
collecting trajectories that are stored in a buffer and used to update the S4-based models via recur-
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Table 1: Average returns and standard deviations over 5 random seeds on the Warehouse domain.

Method Tiny (11x11) Small (11x20)
(N = 2) (N = 4) (N = 6) (N = 2) (N = 4) (N = 6)

BC 8.80 ± 0.25 11.12 ± 0.19 14.06 ± 0.32 5.54 ± 0.06 7.88 ± 0.14 8.90 ± 0.13
ICQ 9.38 ± 0.75 12.13 ± 0.44 14.59 ± 0.16 5.43 ± 0.19 7.93 ± 0.19 8.87 ± 0.22

OMAR 6.77 ± 0.64 14.39 ± 0.91 16.13 ± 1.21 4.40 ± 0.34 7.12 ± 0.38 8.41 ± 0.49
MADTKD 6.24 ± 0.60 9.90 ± 0.21 13.06 ± 0.19 3.65 ± 0.34 6.85 ± 0.36 7.85 ± 0.52
OptiDICE 8.70 ± 0.06 11.13 ± 0.44 14.02 ± 0.36 4.84 ± 0.32 7.68 ± 0.09 8.47 ± 0.26
AlberDICE 11.15 ± 0.35 13.11 ± 0.32 15.72 ± 0.36 5.97 ± 0.11 8.18 ± 0.19 9.65 ± 0.13

MADS4 (ours) 11.79 ± 0.61 15.52 ± 0.20 17.29 ± 0.76 6.58 ± 0.28 9.47 ± 0.15 10.87 ± 0.55

Table 2: Average returns and standard deviations over 5 random seeds on the SMAC domain.

SMAC Map Data
RL-based Sequence-based

ICQ OMAR OMIGA MADT MADS4 (ours)

5m vs 6m (H)
G 7.87 ± 0.30 7.40 ± 0.63 8.25 ± 0.37 8.15 ± 0.63 8.00 ± 0.45
M 7.77 ± 0.30 7.08 ± 0.51 7.92 ± 0.57 7.80 ± 0.56 7.85 ± 0.57
P 7.26 ± 0.19 7.27 ± 0.42 7.52 ± 0.21 7.23 ± 0.48 7.67 ± 0.15

2c vs 64zg (H)
G 18.82 ± 0.17 17.27 ± 0.78 19.15 ± 0.32 18.90 ± 0.78 19.40 ± 0.55
M 15.57 ± 0.61 10.20 ± 0.20 16.03 ± 0.19 16.92 ± 0.20 17.27 ± 0.15
P 12.56 ± 0.18 11.33 ± 0.50 13.02 ± 0.66 13.33 ± 0.50 14.67 ± 0.32

6h vs 8z (SH)
G 11.81 ± 0.12 9.85 ± 0.28 12.54 ± 0.21 12.55 ± 0.67 12.75 ± 0.15
M 11.13 ± 0.33 10.36 ± 0.16 12.31 ± 0.22 12.36 ± 0.16 12.57 ± 0.25
P 10.55 ± 0.10 10.63 ± 0.25 11.67 ± 0.19 11.63 ± 0.25 11.89 ± 0.43

corridor (SH)
G 15.54 ± 1.12 6.74 ± 0.69 15.88 ± 0.89 17.81 ± 1.14 16.02 ± 0.97
M 11.30 ± 1.57 7.26 ± 0.71 11.66 ± 1.30 12.75 ± 1.18 12.80 ± 1.12
P 4.47 ± 0.33 4.28 ± 0.49 5.61 ± 0.35 8.76 ± 0.49 8.57 ± 0.54

rence. As shown in Figure 3, on-policy training builds upon and improves the offline pretraining
results. Furthermore, on-policy training without pretraining consistently results in sub-optimal per-
formance across all tasks, underscoring the importance of pretraining for achieving superior results.

However, prolonged on-policy training can sometimes degrade the performance of pre-trained mod-
els, as shown in Appendix C.2. This degradation likely arises from the inherent instability of training
S4 modules in a recurrent setup, compared to the more stable convolution-based operations em-
ployed during offline pretraining, leading to error accumulation. To address this, we mitigate the
issue by freezing the S4 kernel parameter A, which governs state-to-state transitions independent of
inputs, and fine-tuning only the input-dependent parameters B and C.

The effect of sharing information The sharing of information between agents leads to signifi-
cantly improved cooperative behavior, as reflected in the higher average rewards shown in Figure
4. This performance boost is particularly pronounced in more complex tasks that involve a greater
number of agents and demand precise coordination. Importantly, this method of sharing information
is scalable, where an agent only needs to communicate with the next agent, minimizing overhead
while ensuring efficient coordination. Information can be shared in multiple forms, namely by pass-

RWARE small 6 agents RWARE tiny 6 agents SMAC 2c vs 64zg SMAC 6h vs 8z

Figure 3: Training curves of on-policy training of MADS4 with and without offline pretraining.
Mean and standard deviations of average returns are plotted over 5 independent runs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

RWARE small 6 agents RWARE tiny 4 agents SMAC 2c vs 64zg SMAC 6h vs 8z

Figure 4: Training curves of MADS4 with information sharing between consecutive agents and
IDS4 where agents are trained independently. Mean and standard deviations of average returns are
plotted over 5 independent runs.

RWARE small 6 agents SMAC 2c vs 64zg RWARE small 6 agents SMAC 2c vs 64zg

(a) (b)

Figure 5: (a) The effect of having a shuffled random order vs. a fixed sorted order of the agents in
the SE-MDP framework on the RWARE domain in the small 6 agents scenario and SMAC domain
in the 2c vs. 64zg map. (b) The comparison of the performance of MADS4 vs. MADS4-dec
(decentralized MADS4) on RWARE small map with 6 agents and SMAC map 2c vs 64 zg.

ing the action logit outputs from the S4 model, the latent state representations, or a combination of
both from the preceding agent. A more detailed analysis of how different types of shared information
impact performance is provided in Appendix A.2.

Effect of order of agents We evaluated the impact of agent ordering on MADS4’s performance by
comparing two settings: (1) Random Order, where agents are shuffled during training, and (2) Sorted
Order, where the dataset order is preserved. Figure 5(a) shows similar performance, demonstrating
MADS4’s robustness to agent ordering in the SE-MDP framework. Notably, our approach only
requires each agent to communicate with one unique peer which can be selected randomly to ensure
that every agent’s information is passed across the network without the need for any centralized
optimization or sophisticated coordination.

MADS4 in decentralized setting To adapt MADS4 for a decentralized setting, where agents act
in parallel, we leverage the hidden state information of each agent from the previous timestep as a
proxy for the current timestep. This approach removes the sequential dependency in updating agent
memory, as all agents’ memory information from the previous timestep is available when making
decisions at the current timestep. Since memory accumulates over multiple timesteps, relying on
the previous timestep’s information does not compromise performance, as demonstrated in Figure
5(b). This modification enables our algorithm to function effectively in decentralized policy settings
without performance degradation.

5 CONCLUSIONS

In this work, we showcase the effectiveness of S4-based models in surpassing transformer-based ar-
chitectures for sequence-to-sequence offline multi-agent reinforcement learning (MARL) tasks. By
restricting communication to the exchange of information between unique, arbitrarily selected pairs
of agents, MADS4 fosters superior cooperation compared to state-of-the-art offline RL and central-
ized transformer-based baselines, which require complete access to all agents’ information during
training. MADS4 offers a low-latency and lightweight model that can be trained more efficiently
than transformers and fine-tuned online using recurrent computations.
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A ADDITIONAL BACKGROUND, EXPERIMENTAL SETUP AND TRAINING
DETAILS

A.1 S4 LAYER

S4Gu et al. (2021a) layer is a variant of linear and time-invariant (LTI) state-space model (SSM)Gu
et al. (2021b) which adopts the HIPPO Gu et al. (2020)-based initializations in order to better capture
longer contexts, and proposes efficient ways for kernel computations and parallel training.

A.1.1 RECURRENT VIEW

Given an input scalar function u(t) : R → R, the continuous LTI SSM is defined by the following
first-order differential equation:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (10)

The model maps the input stream u(t) to y(t). It was shown that initializing A by the HIPPO matrix
Gu et al. (2020) grants the state-space model (SSM) the ability to capture long-range dependencies.
Similar to previous works Gu et al. (2021a); Gupta et al. (2022), D is replaced by parameter-based
skip-connection and is omitted from the SSM by assuming D = 0.

This SSM operates on continuous sequences, and it is discretized by a step size ∆ to operate on
discrete sequences. Let the discretization matrices be Ā, B̄, C̄:

Ā = (I −∆A/2)−1(I +∆A/2), B̄ = (I −∆A/2)−1∆B, C̄ = C (11)

These matrices allow us to rewrite Eq. 10:

xk = Āxk−1 + B̄uk, yk = C̄xk (12)

Using the recurrent Eq.12, SSM asymptotically allows for constant O(1) time and memory inference
for each token/ timestep, as compared to O(L2) inference for transformers. SSM can be interpreted
as a linear RNN in which Ā is the state-transition matrix, and B̄, C̄ are the input and output matrices.
Thus, it essentially requires O(L) training, L being the sequence length, as compared to O(L2)
(parallelizable) training complexity for transformers.

A.1.2 CONVOLUTIONAL VIEW

The recurrent SSM view is not practical for training over long sequences, as the training cannot be
parallelized across the sequence dimension and results in instabilities from vanishing gradient issues.
However, the LTI SSM can be rewritten as a convolution, which allows for efficient parallelizable
training. The S4 convolutional view is obtained as follows:

Given a sequence of scalars u = (u0, u1, ..., uL−1) of length L, the S4 recurrent view can be
unrolled to the following closed form:

∀i ∈ [L− 1] : xi ∈ RN , x0 = B̄u0, x1 = ĀB̄u0 + B̄u1, ..., xL−1 =

L−1∑
i=0

ĀL−1−iB̄ui

yi ∈ R, y0 = C̄B̄u0, y1 = C̄ĀB̄u0 + C̄B̄u1, ..., yL−1 =

L−1∑
i=0

C̄ĀL−1−iB̄ui

Where N is the state size. Inputs and outputs are scalars.

Since the recurrent rule is linear, it can be computed in closed form with matrix multiplication or
non-circular convolution:
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Figure 6: Average Returns obtained in SMAC tasks by passing S4 output versus S4 latent states.
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u0

u1

...
uL−1

 (13)

i.e., y = k̄ ∗ u for some kernel k̄, which can be calculated by fixing the sequence length L before
training. This kernel can be efficiently computed using FFT operations; for example, Gu et al.
(2021a) computes the kernel via inverse FFT on the spectrum of k̄, which is calculated via Cauchy
kernel and the Woodbury Identity. This benefits from the ”Normal Plus Low Rank” parameterization
of the HIPPO-initialized state transition matrix A, and other more efficient parameterizations are
proposed in Gupta et al. (2022).

The SSM, as represented above, operates on scalars or one channel of inputs. To handle vector
inputs ∈ RH , H copies of the 1-D SSM layer are stacked, one for each input channel, and a linear
mixing layer in the after block of the S4 layer mixes the information from different channels to
produce outputs ∈ RH .

A.2 SHARING HIDDEN STATE REPRESENTATIONS

The raw outputs from the S4 layer consist of yk = C̄xk, where yk ∈ RH and the latent states
xk ∈ RN×H for H input channels. Since the outputs are linear projections and offer a compact
representation of the latent states (or, memory of the agent), this has been used as the message that
is transmitted from one agent to the next in the SE-MDP. This offers several advantages: i) results in
better team performance; ii) offers scalable cooperation between agents, which eliminates the need
for a centralized transformer or a critic, which requires access to information from all agents; one
agent needs access to only its immediate neighbor in the sequence; (iii) allows parallel training via
convolution.

We also experimented with passing the raw hidden states xk ∈ RN×H from one agent to another.
The hidden states can be complex, depending on the parameterization of the S4 kernel. Therefore,
before passing the latent states directly, we first linearly mix the hidden states across the H channels
to obtain xk ∈ CN . Then, we linearly project the real and imaginary parts of xk after concatenation.
This mode of information transfer, however, has notable drawbacks: i) it requires computing the
S4 hidden state at every timestep, which requires recurrent rollouts of the S4 kernel, and ii) it fails
to outperform the method of passing the S4 outputs; possibly due to errors accumulated during
recurrent training. A comparison of performance using S4 output representation versus S4 latent
state representation is shown in Figure6, where passing S4 outputs resulted in better performance
across all tasks.
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It is, however, noted that hidden states at each timestep may be efficiently obtained utilizing the
parallel (associate) scan operation as done in Smith et al. (2022); Lu et al. (2024), but this requires
JAX implementation and is currently not supported by PyTorch.

A.3 PRELIMINARY STUDY USING MAMBA

We also explored Mamba as an alternative to LTI S4-based models. Mamba allows time-variant pa-
rameters to be considered in the SSM equations. Though convolution cannot be applied here since
the kernel cannot be computed apriori since the parameters B,C are input-dependent, efficient par-
allel scan operation allows for parallelizable O(logL) complexity. However, preliminary analysis
utilizing Mamba resulted in suboptimal performance, and it requires more extensive analysis.

A.4 EXPERIMENTAL SETUP AND TRAINING

In all experiments, we set the input channel size to H = 96 and the S4 state size to N = 96. Offline
training is conducted on batches of 64 trajectories, with the maximum trajectory length in the offline
dataset used as the length for each batch. The shorter trajectories are zero-padded to a constant
length. The training was performed using Adam optimizer with a learning rate of 10−4.

The offline trained model is fine-tuned online using on-policy MAPPO. During the initial stage
of fine-tuning, the actor network is kept frozen, and the critic is first trained for the first 50,000
iterations. After this, both the actor and critic are trained simultaneously, with a slower learning
rate for the actor network (10−5) compared to the critic (10−4). During on-policy fine-tuning, the
returns-to-go is set at 10% higher than the highest returns encountered during training. On-policy
training is conducted in batches of 64. To mitigate the issue of deteriorating performance with
prolonged on-policy training, the S4 kernel A can be kept frozen. All experiments were run on a
single NVIDIA RTX 2080Ti GPU. Experiments on the RWARE domain take less than 2 hrs to reach
optimal performance, and experiments on the SMAC domain take less than 6hrs, 12 hrs, 12 hrs, and
30 hrs for maps 2c vs. 64zg, 5m vs. 6m, 6h vs. 8z and Corridor, respectively.

B DATASETS AND BASELINES

B.1 MULTI-ROBOTWAREHOUSE (RWARE)

The offline dataset on RWARE (Papoudakis et al., 2020) is obtained from (Matsunaga et al., 2023),
which contains an expert dataset with diverse behaviors obtained by training MAT on small and tiny
maps. The dataset consists of 1000 trajectories, each trajectory consisting of 500 timesteps. The
dataset statistics are in Table 3. The longest trajectories consist of timesteps in the range of 500 in
all the datasets.

The baseline results are obtained from (Matsunaga et al., 2023), which currently holds the state-of-
the-art results of the baselines listed on this dataset.

Map Name Maximum Minimum Average
small 2 agents 12.37 1.13 7.12
small 4 agents 12.08 3.93 9.49
small 6 agents 12.69 7.59 10.76
tiny 2 agents 16.81 1.97 12.77
tiny 4 agents 18.63 10.40 15.67
tiny 6 agents 19.97 11.88 17.45

Table 3: RWARE datasets

B.2 SMAC

The offline SMAC (Samvelyan et al., 2019) dataset is obtained from (Wang et al., 2024). This
dataset is obtained by randomly sampling 1000 trajectories from the original dataset provided by
(Meng et al., 2021). We consider 4 representative battle maps, including 2 hard maps (5m vs 6m,
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2c vs 64zg) and 2 super hard maps (6h vs 8z, corridor), which are detailed in Table 4. The average
returns for the dataset are listed in Table 5. The longest trajectories are encountered in the Corridor
map, which typically comprises about 100 timesteps.

Map Name Ally Units Enemy Units Type
5m vs 6m 5 Marines 6 Marines homogeneous & asymmetric
2c vs 64zg 2 Colossi 64 Zerglings micro-trick: positioning
6h vs 8z 6 Hydralisks 8 Zealots micro-trick: focus fire
corridor 6 Zealots 24 Zerglings micro-trick: wall off

Table 4: SMAC maps for experiments.

Map Name Quality Average Return
5m vs 6m good 20.00

medium 11.03
poor 8.50

2c vs 64zg good 19.94
medium 13.00

poor 8.89
6h vs 8z good 17.84

medium 11.96
poor 9.12

corridor good 19.88
medium 13.07

poor 4.93

Table 5: SMAC datasets.

The offline RL-based baseline results are obtained from (Wang et al., 2024), and MADT results are
obtained by running the code available with (Meng et al., 2021).

C HYPERPARAMETERS AND ADDITIONAL ANALYSIS

C.1 S4 MODEL SIZE PARAMETERS

We analyze the impact of the S4 model size parameters, specifically the number of input channels
(H) and the latent state size (N ), on the model performance, as shown in Table 6. We compare the
total number of parameters against the 1.8 million parameters reported for MADTKD in Tseng et al.
(2022). Our biggest model with N=96 and H=96 was used in all our experiments, which consists
of about 200k parameters.

C.2 THE EFFECT OF CONTEXT LENGTH AND S4 PARAMETERS

The context length used for pretraining significantly impacts performance, which is also evident for
transformer-based models. In our experiments, we used the maximum trajectory lengths encoun-
tered in the offline datasets for pretraining. Representative results are shown in Figure 7, which
illustrates the effects of truncating the trajectory lengths to various percentages of the maximum
length in the offline dataset for the SMAC map 2c vs 64zg.

Table 6: Results of smaller models on the RWARE small map. Each of the smaller models is denoted
by (i) N , the S4 state size, and (ii) H , the number of input/output channels.

Environments (N=96,H=96) (N=64,H=64) (N=32,H=32) (N=64,H=96) (N=96,H=64) (N=32,H=64) MADTKD
2 agents 6.58 6.21 5.53 6.53 6.25 5.87 3.65
4 agents 9.47 8.86 8.57 9.15 8.88 8.64 6.85
6 agents 10.87 10.31 9.55 10.76 9.97 9.85 7.85

% Parameters (Ours) 100 60 40 81 82 55 100
% Parameters (MADTKD) 12 7 5 8 8 6 100
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Figure 7: The effect of truncating the trajectory length during training. The average returns are
normalized with the maximum returns encountered in the offline dataset.

Figure 8: The effect of freezing S4 kernel parameter A in the SMAC 6h vs 8z map. Freezing A in
the right Figure results in more stable performance during the on-policy recurrent finetuning.

C.3 EFFECT OF FREEZING A DURING ON-POLICY FINETUNING

The degrading effect on MADS4 performance during recurrent on-policy finetuning can be mitigated
by freezing the S4 kernel parameter A while updating only parameters B and C, as illustrated in
Figure 8. A similar observation has also been reported in Bar-David et al. (2023).

C.4 EFFECT OF ORDER OF AGENTS

To assess the impact of agent ordering on MADS4’s performance, we compared two training set-
tings: (1) Random Order, where the agent order is randomly shuffled during training, and (2) Fixed
Order, where agents are trained in the same sorted order as in the offline dataset. The results in Fig-
ure 9 indicate minimal to no performance difference between the two settings, demonstrating that
MADS4 is robust to agent ordering within the SE-MDP framework. Nonetheless, we recommend
using a random order during training to avoid introducing potential biases into the learning process.

C.5 EFFECT OF GLOBAL STATES AS INPUTS

Building on prior work such as MADT, the proposed S4-based MADS4 agents utilize global states as
inputs. However, in certain environments, access to the global state may be restricted or unavailable.

Figure 9: The effect of having a shuffled random order vs. a fixed sorted order of the agents in the
SE-MDP framework on the SMAC domain in the 2c vs. 64zg map (left) and RWARE domain in the
small 6 agents scenario (right).
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Figure 10: Performance comparison on RWARE small map with 6 agents (left) and SMAC map 2c
vs 64 zg (right). The results demonstrate that excluding global states as inputs in MADS4 agents
has minimal impact on performance.

Figure 11: The comparison of performance of MADS4 vs. MADS4-dec (decentralized MADS4) on
RWARE small map with 6 agents (left) and SMAC map 2c vs 64 zg (right).

To address this, we present an ablation study (Figure 10) evaluating the impact of using global state
variables as inputs. The results indicate that omitting the global state does not lead to a significant
drop in performance.

C.6 MADS4 VS. DECENTRALIZED MADS4

When decisions are made at the current timestep, all decisions from the previous timestep will al-
ready be finalized. As a result, the memory information of all agents is readily available for use.
This eliminates the need for any agent to wait for its peer to decide the current timestep. By utiliz-
ing the memory information from the previous timestep, agents can make decisions without relying
on sequential dependencies during the current timestep. Since memory accumulates over multi-
ple timesteps, relying on the previous timestep’s information does not compromise performance,
as demonstrated in Figure 11. This modification enables our algorithm to function effectively in
decentralized policy settings without performance degradation.
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