MULTI-AGENT DECISION S4: LEVERAGING STATE SPACE MODELS FOR OFFLINE MULTI-AGENT REIN-FORCEMENT LEARNING

Anonymous authors

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

037

Paper under double-blind review

ABSTRACT

Goal-conditioned sequence-based supervised learning with transformers has shown promise in offline reinforcement learning (RL) for single-agent settings. However, extending these methods to offline multi-agent RL (MARL) remains challenging. Existing transformer-based MARL approaches either train agents independently, neglecting multi-agent system dynamics, or rely on centralized transformer models, which face scalability issues. Moreover, transformers inherently struggle with long-term dependencies and computational efficiency. Building on the recent success of Structured State Space Sequence (S4) models, known for their parameter efficiency, faster inference, and superior handling of long context lengths, we propose a novel application of S4-based models to offline MARL tasks. Our method utilizes S4's efficient convolutional view for offline training and its recurrent dynamics for fast on-policy fine-tuning. To foster scalable cooperation between agents, we sequentially expand the decision-making process, allowing agents to act one after another at each time step. This design promotes bi-directional cooperation, enabling agents to share information via their S4 latent states or memory with minimal communication. Gradients also flow backward through this shared information, linking the current agent's learning to its predecessor. Experiments on challenging MARL benchmarks, including Multi-Robot Warehouse (RWARE) and StarCraft Multi-Agent Challenge (SMAC), demonstrate that our approach significantly outperforms state-of-the-art offline RL and transformer-based MARL baselines across most tasks.

- 034 035 1 INTRODUCTION
- 036

Multi-agent reinforcement learning (MARL) has demonstrated significant success in learning complex policies that require coordination among multiple agents to maximize a shared objective (Cao et al., 2012; Berner et al., 2019; Ye et al., 2015). However, this success often relies on a substantial number of interactions with the environment, which can be computationally expensive in high-fidelity simulations or prohibitively risky in real-world applications. To enhance sample efficiency, offline reinforcement learning (RL) algorithms (Lee et al., 2021; Fujimoto et al., 2019; Kumar et al., 2019; 2020; Kostrikov et al., 2021; Xu et al., 2022a; Li et al., 2022; Xu et al., 2023) have been developed, enabling learning from pre-collected offline datasets, thus reducing the need for extensive online interactions.

Offline RL is plagued by the well-known issue of distribution shift, which leads to extrapolation errors when encountering out-of-distribution (OOD) samples during policy training. This occurs when the learned policy deviates from the unknown behavior policy used to collect the training data. To mitigate this, various forms of regularization (Kumar et al., 2019) are introduced to ensure that the learned policy remains close to the behavior policy (Kumar et al., 2020; Xu et al., 2023; 2022a).
In multi-agent settings, the joint state-action space expands exponentially as the number of agents increases. This makes it challenging to apply these regularization constraints, especially when working with a limited and less diverse offline dataset.

054 Sequence-based supervised learning has been concurrently applied to address offline MARL, lever-055 aging the significant success of supervised learning in capturing complex patterns from large offline 056 datasets. This approach, first introduced by the Decision Transformer (DT) (Chen et al., 2021), has 057 demonstrated its ability to learn policies in an autoregressive fashion by predicting the next action 058 based on the current state, previous action and the desired return-to-go. While efforts have been made to extend DT-based architectures to offline MARL (Meng et al., 2021; Tseng et al., 2022), certain limitations persist. MADT (Meng et al., 2021) adapts DT independently for each agent 060 in the multi-agent settings, failing to explicitly model cooperation between agents. (Tseng et al., 061 2022) adopts a similar approach and trains a centralized teacher policy to capture agent interactions, 062 with individual agents learning through policy distillation. However, centralized transformers face 063 scalability issues, requiring training on information from all agents. Additionally, these approaches 064 inherit the inherent limitations of transformers, such as large model sizes, inefficient runtime infer-065 ence, and restricted ability to capture long-range dependencies due to fixed window size constraints. 066

Structured State Space Sequence (S4) models (Gu et al., 2021a) have recently been shown to outper-067 form transformer-based models in single-agent offline RL tasks (Bar-David et al., 2023). Building 068 on this success, we propose a sequence-learning-based offline MARL algorithm leveraging S4 vari-069 ants. These models provide superior parameter efficiency compared to transformers, effectively capture longer temporal contexts, and enable constant-time inference over the quadratic time com-071 plexity of transformers with respect to the sequence length. Unlike previous works, such as MADT, 072 which trains agents independently, our method explicitly models cooperation through a Sequentially 073 Expanded MDP (SE-MDP) paradigm. In this framework, recently used in online MARL settings 074 (Li et al., 2023), each decision step is divided into mini-steps, with agents acting sequentially based 075 on their predecessors' actions. Unlike (Li et al., 2023), we enable limited communication, requiring each agent to access only its immediate predecessor's information, shared through the latent state 076 representation of the S4 model. Utilizing this hidden state of the S4 module of the current agent, 077 information on all its prior agents is efficiently passed down to the next agent, and gradients flow backward from the current agent through this shared memory to the previous agents during training. 079 This design enables scalable training with constant memory communication overhead, unlike tra-080 ditional communication-based MARL algorithms, where memory overhead increases quadratically 081 with the number of agents. Additionally, this streamlined information-sharing mechanism helps 082 mitigate non-stationarity issues during online fine-tuning. This form of training also shares similar-083 ities with the way information is passed between segments of long sequences in Recurrent Memory 084 Transformer (RMT) (Bulatov et al., 2022). 085

The S4-based agents are trained directly on sequences or trajectories from the offline dataset in an efficient convolutional manner. The offline pre-trained models can be further used for sampleefficient online fine-tuning based on individual tuples instead of sequences leveraging the recurrent view of S4. We evaluate the performance of our developed algorithm, called Multi-Agent Decision S4 (MADS4), on the challenging offline MARL benchmarks of Multi-Robot Warehouse (RWARE) (Papoudakis et al., 2020) and StarCraft2 Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), where MADS4 achieves superior performance across many tasks over state-of-the-art offline RLbased and transformer-based baselines.

- 093
- 094

2 RELATED WORK

096

Offline Reinforcement Learning Offline RL allows for policy learning based on pre-collected 098 datasets without having access to active interactions with the environment (Levine et al., 2020), which is then directly used as the final policy or is used as a starting point for further improvement 100 (Uchendu et al., 2023). This learning paradigm however results in severe distribution shift and 101 extrapolation errors during policy evaluation on OOD samples not present in the offline dataset 102 (Kumar et al., 2019; Fujimoto et al., 2019). Several approaches have been developed to mitigate this 103 issue which typically involves various types of regularizations to be near the offline data distribution. 104 Policy-based regularizations implicitly or explicitly constrain the policy to be close to the behavior 105 policy of the dataset (Wu et al., 2019; Xu et al., 2021; Cheng et al., 2024; Li et al., 2022). Valuebased regularizations aim to learn conservative value functions on OOD samples (Kumar et al., 106 2020; Kostrikov et al., 2021; Xu et al., 2022b). Other approaches involve including uncertainty (Wu 107 et al., 2021; Bai et al., 2022) or penalizing OOD rewards (Yu et al., 2020).

Figure 1: Multi-Agent MDP (MMDP) is restructured into a Sequentially-Expanded MDP (SE-MDP) where the multi-agent state transition at each timestep is decomposed into *n* intermediate states. In this framework, each agent processes its input alongside information received from its preceding agent, then takes an action and passes updated information to the next agent in the sequence. During training, gradient flows backward, enabling earlier agents to receive updates based on the information passed by later agents.

On the other hand, Decision Transformer (DT) (Chen et al., 2021) takes a goal-conditioned supervised learning (GCSL) approach to formulate offline RL as a sequence modeling task and outperforms many state-of-the-art offline RL algorithms. Following the success of this training regime, Decision S4 (Bar-David et al., 2023) proposes using S4 model variants for higher parameter efficiency, capturing longer sequences and faster inference.

138 139

131 132

Offline MARL Extending single-agent RL methods to multi-agent settings presents significant 140 challenges due to the exponential growth of the joint state-action space. Most MARL algorithms 141 adopt the Centralized Training with Decentralized Execution (CTDE) paradigm. In CTDE, global 142 information is shared during training, and local, decoupled policies are used for execution (Oliehoek 143 et al., 2008; Sunehag et al., 2017; Rashid et al., 2020; Son et al., 2019; Wang et al., 2020; Foerster 144 et al., 2017; Lowe et al., 2017; Yu et al., 2021). Recently, offline RL-based MARL algorithms 145 have emerged, typically applying regularizations on local policies or value functions (Yang et al., 146 2021; Jiang & Lu, 2023; Pan et al., 2022). On the other hand, (Meng et al., 2021) extends the 147 Decision Transformer (DT) (Chen et al., 2021) to a multi-agent setting, where agents are trained 148 independently by sharing weights within a goal-conditioned supervised learning framework.

However, these algorithms do not provide guarantees of global-level regularizations and fail to explicitly or implicitly learn cooperative behavior. Only a few recent works have tried to tackle these limitations. For example, (Wang et al., 2024) uses an implicit global to-local regularization, and (Tseng et al., 2022) uses knowledge distillation to distill cooperation in the local policies.

153

154

S4 S4(Gu et al., 2021a;b) and their variants (Gupta et al., 2022; Smith et al., 2022), which are developed on time-invariant linear state space layers, have outperformed transformers in capturing long-range contexts. These models require far fewer parameters and have constant time inference; hence, they have been suitably utilized in reinforcement learning domains in single-agent learning (Bar-David et al., 2023) and in-context learning (Lu et al., 2024). Commonly, the model uses the convolutional mode for efficient parallelizable training (where the whole input sequence is seen ahead of time) and switched into a recurrent mode for efficient autoregressive inference (where the inputs are seen one timestep at a time).

162 3 METHODOLOGY

163 164

167

Sequentially Expanded MDP In this section, we present our approach based on sequence learning with state-space layers. In this work, the Multi-agent Markov Decision Process (MMDP) 166 is transformed into a Sequentially Expanded Markov Decision Process (SE-MDP), where each timestep is divided into n mini timesteps and a multi-agent decision by n agents is expanded into a 168 sequence of n individual decisions, with only one agent acting during each mini-timestep. Thus, a single-step transition in the original MMDP (s^t, a^t, s^{t+1}) resulting in a shared reward $r(s^t, a^t)$ is 169 composed of a sequence of n intermediate transitions, which in turn result in the same shared reward 170 $r(s^t, a^t)$, as shown in Figure 1. 171

172 173

174

180

$$(s^{t}, \boldsymbol{a}^{t}, s^{t+1}) = \{(s^{t}, a^{t}_{1}, s^{t}_{a_{1}}), (s^{t}_{a_{1}}, a^{t}_{2}, s^{t}_{a_{1:2}}), \dots, (s^{t}_{a_{1:n-1}}, a^{t}_{n}, s^{t}_{a_{1:n}} = s^{t+1})\}$$
(1)

175 Within this framework, at each timestep, an agent's action is based on information passed by the 176 immediately preceding agent in the sequence. This creates a bidirectional dependency between the agents as shown in Figure 1: in the forward direction, an agent's action is influenced by the actions 177 of its predecessors, while in the backward direction, gradients can propagate from the current agent 178 back to the previous agents. 179

Sequence-based reinforcement learning Offline RL is formulated as a supervised learning prob-181 lem by predicting actions in an autoregressive manner typically conditioned on current states, pre-182 viously executed actions, and desired returns to go. This paradigm was introduced in (Chen et al., 183 2021), where the DT is trained to predict current actions based on returns to go instead of current 184 rewards in order to have better actions that are correlated with better future rewards. This work 185 utilizes this supervised learning setting, where the state, action, and reward of i^{th} agent at each 186 timestep are denoted as s_i, a_i, r_i , and its trajectories $\tau : (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_L, a_L, r_L)$ consist 187 of sequences of state, action, and reward tuples. Since the models are trained on returns-to-go, the 188 trajectories are restructured as τ : $(R_0, s_0, a_0, R_1, s_1, a_1, \dots, R_L, s_L, a_L)$ where $R_i = \sum_{t=i}^{N} r_i$ is 189 the returns to go from i^{th} time step. 190

(2)

191 **S4-based Agent** At each time step, the 192 model takes u(t) as input and updates the 193 latent state/memory x(t) and, in turn, re-194 turns an output y(t) by following the first-195 order differential equation parameterized 196 by linear and time-invariant dynamics:

197

199

200

201

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$

$$y(t) = \boldsymbol{C}x(t) + \boldsymbol{D}u(t)$$

202 The SSM operates on continuous time sequences where A, B, C, D are matrices 203 of appropriate sizes. To model discrete se-204 quences, the continuous SSM can be dis-205 cretized with a fixed step size Δ following 206 any discretization scheme, such as the bi-207 linear method (Tustin, 1947), to obtain the 208 following discretized linear recurrence re-209 lations: 210

$$= \bar{A}x_{k-1} + \bar{B}u_k(t)$$

 x_k

$$y_k = \bar{C}x_k + \bar{D}u_k \tag{3}$$

213 214 215

where $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ are calculated based on A, B, C, D and Δ .

Figure 2: MADS4 Agent Actor Network. In addition to the state, action, and reward encoder, the memory/ S4 state representation from the previous agent (H_{n-1}) is encoded through a memory encoder. The updated S4 states and outputs from the S4 blocks pass through separate projection layers.

(Gu et al., 2020) showed that the initialization of *A* by the HIPPO matrix enables the SSM model to capture better long-range contexts. Various techniques have since been developed to improve the model's performance, stability, and training efficiency (Gu et al., 2021a; Gupta et al., 2022). Similar to these works, *D* is represented here by a skip connection.

Since Eq. 3 is linear and time-invariant, the output sequence y(t) can be computed directly in parallel based on input sequence u(t) by convolution as follows:

225 226 $y_k = \bar{C}\bar{A}^k\bar{B}u_0 + \bar{C}\bar{A}^{k-1}\bar{B}u_1 + \dots + \bar{C}\bar{A}\bar{B}u_{k-1} + \bar{C}\bar{B}u_k$ $y = \bar{K} * u$ (4)

where \bar{K} is the SSM convolution kernel or filter which is a function of $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ and context length *L* which is pre-fixed during training. This non-circular convolution can be computed efficiently across all time steps, allowing for parallelizable training. The recurrent view of the SSM also allows for faster inference with low memory. This is a key advantage over transformers, which makes the use of SSMs very effective in reinforcement learning settings, which require faster inference for the collection of online interactions with the environment. Additional details can be found in Appendix A.

Information sharing with limited communication To enable scalable cooperation among S4based agents, we design a communication mechanism limited to consecutive agents in the SE-MDP sequence. Each agent's memory, represented by the hidden state of its S4 module, encodes information about all prior agents in the sequence. A projection of this latent state, h_{i-1}^t , is passed as input to the next agent along with other inputs \hat{u}_i^t , influencing its action a_i^t and its memory h_i^t :

$$a_{i}^{t}, h_{i}^{t} = \pi_{i}(\hat{u}_{i}^{t}, h_{i-1}^{t}; \theta_{i})$$
(5)

During training, gradients flow backward through the shared latent states, enabling the entire system to learn cooperative strategies:

244 245

239 240 241

242 243

246 247

248 249 $\frac{\partial J}{\partial \theta_i} = \frac{\partial J}{\partial a_i^t} \cdot \frac{\partial a_i^t}{\partial \theta_i} + \frac{\partial J}{\partial a_{i+1}^t} \cdot \frac{\partial a_{i+1}^t}{\partial h_i^t} \cdot \frac{\partial h_i^t}{\partial \theta_i}.$ (6)

where *J* represents the supervised loss function computed across all agents in the system. This sequential flow of information eliminates the need for an agent to communicate with more than one peer or identify useful collaborators, a challenge that grows with the number of agents. In contrast to typical communication-based MARL algorithms, which scale poorly due to the quadratic growth in memory requirements during training and execution, our mechanism is highly efficient, requiring only constant memory per agent.

We first adapt Decision S4 (DS4) for each agent with parameter sharing, similar to the Multi-Agent
Decision Transformer (MADT) (Meng et al., 2021). Unlike MADT, however, the Multi-Agent
Decision S4 (MADS4) is trained in a sequentially dependent manner, where agents can share accumulated memory information with the next agent in the sequence. The offline version of MADS4, trained on pre-collected trajectories, is detailed in the next section. These pre-trained models can be further fine-tuned in an on-policy setting using MAPPO (Yu et al., 2021).

261 262 263

3.1 MADS4: OFFLINE TRAINING

Input Formulation In the offline training setup of MADS4, each agent is trained over the offline trajectories consisting of sequences of previously seen observations, its own previously executed actions, the latent state representation of its preceding agent, and returns to go from the current time step. Similar to MADT, the state of each agent at each time step s_i^t is composed of global environment state s_{gi}^t and its local observation o_i^t . However, our model performs very similarly without using the global state information in the input, as shown in Appendix C.5. Thus, a trajectory for the i^{th} agent, which is taken as input to the S4-based model, consists of the following:

272

$$\tau_i = (u^1, u^2, \dots, u^T) \quad \text{where} \quad u^t = \{R^t, s^t_{qi}, o^t_i, a^{t-1}_i, h^t_{i-1}\}$$
(7)

where R^t is the returns-to-go from current time step t, s_{gi}^t is the current shared global state, o_i^t is the current local observation, a_i^{t-1} is the previously executed action of the i^{th} agent, h_{i-1}^t is the current hidden state representation of the preceding agent. The model is trained to predict actions (action logits) at time step t in an autoregressive manner based on the data seen so far. The output of the S4-based model is used as the action probabilities which are sampled after applying the action availability masks.

279

281

282 283

284

285

 $\hat{a}_i^t = \arg\max_a P(a_i^t | \tau_i^{<=t}; \theta)$ (8)

where θ are the parameters of the MADS4. In this work, parameter sharing is allowed across the agents for training stability, and thus, essentially, a single model is trained, which takes into account different inputs for different agents along with their specific one-hot agent IDs.

Network Architecture and Training The MADS4 architecture consists of three key components, 287 as illustrated in Figure 2: (i) Input, state, and output projection layers: each of these consists of a fully connected layer followed by ReLU activations; (ii) Input encoder layers: These layers han-289 dle states, actions, and rewards/returns, each implemented as fully connected linear layers; (iii) 290 Sequence modeling component: This component consists of stacked S4 blocks, where each block 291 consists of Batch Normalization layer followed by S4 layer, linear mixing layer with GELU activa-292 tion, and a dropout layer. We employed various kernels for S4, with the "Normal Plus Low Rank" 293 kernel initialized using HIPPO, achieving the best performance. In all experiments, we set the input channel size to H = 96 and the S4 state size to N = 96. An ablation study detailing the effects of varying state and input sizes is provided in Appendix C.1. 295

296 In the offline setting, the S4 model is trained efficiently using the convolutional view on entire tra-297 jectories sampled randomly from the offline dataset. The trajectories are zero-padded to a constant 298 context length. Unlike transformers, which face limitations on context length due to the expensive 299 quadratic time and space complexity of self-attention, S4-based models can be trained on complete trajectories that are often much longer than those typically used for transformers in most environ-300 ments. The impact of truncating trajectory lengths has significant implications for model perfor-301 mance, as detailed in Appendix C.2. Actions are predicted based on the action logit outputs of the 302 model, and the model is trained based on loss computed using cross-entropy between the true action 303 labels and the predicted actions. 304

305 306

3.2 MADS4: ONLINE FINETUNING

307 For online fine-tuning, the offline pre-trained agent is used to interact with the online environment 308 and is further updated based on an on-policy training scheme. The agent interacts with the environment while creating the buffer, which stores the local observations and actions of the individual 310 agents, shared global states of the environment, rewards, returns-to-go, and also the latent states of 311 the S4 modules of the agents. Within the well-known MAPPO-based (Yu et al., 2021) actor-critic 312 framework, the offline-pretrained S4-based model is used as actor networks of the agents which predict actions via the recurrent view based on latent states and other inputs as used in the pretraining 313 stage. The critic network is conditioned on both the global states of the environment as well as the 314 encoded latent S4 states to evaluate the state value function. 315

316

Network Architecture and Training The pre-trained model is loaded as the actor network, which
 predicts action probabilities and next states as:

321

$$p_i^t, h_i^t = \pi(u_i^t, h_i^{t-1}; \theta) \quad \text{where} \quad u_i^t = \{R_i^t, s_{qi}^t, o_i^t, a_i^{t-1}, h_{i-1}^t\}$$
(9)

The critic network is parameterized by fully connected layers with ReLU activations, which take the shared global state of the environment and encoded latent states and evaluate the value function, which is used to update the S4-based actor parameters (θ) using the policy gradient theorem. For

24	Algorithm 1 MADS4-Offline Training
25 26	Input: Offline dataset $\mathcal{D}: \{\tau_i: \langle s_{ai}^t, o_i^t, a_i^t, v_i^t, d_i^t, R_i^t \rangle_{i=1}^T \}_{i=1}^n$, where <i>n</i> is the number of agents,
27	and v_i^t denotes the available actions for the i^{th} agent at time t ; d_i^t denotes the done signal for an
28	episode
29	Initialize α as the learning rate, K as the context length
30	Initialize <i>b</i> for the S4 models based on HIPPO initialization
31	1: for $i = 1 : n$ do
32	2: From τ_i and h_{i-1}^t , create $X_i : \{R_i^t, s_{a_i}^t, o_i^t, a_i^{t-1}, h_{i-1}^t\}_{t-1}^T$, where h_{i-1}^t is the latent state
33	representation of the previous agent, assuming $h_{-1}^t = 0$
34	3: Zero-pad the trajectory to a constant length K when d_i^t is true \triangleright Pad when the agent is done
35	4: Compute action output sequence $\hat{a}_i = \{\hat{a}_i^1, \dots, \hat{a}_i^T\}$ and latent state projections $h_i =$
50 27	$\{h_i^1,\ldots,h_i^T\}$
2	5: for $t = 1 : T$ do \triangleright Loss calculation over time steps
9	6: Mask illegal actions via $P(\hat{a}_{ij}^{\iota} \tau_i^{\iota};\theta) = 0$ if v_{ij}^{ι} is False, where j is the unavailable
0	action index 7: Predict the action $\hat{a}^t = \arg \max_{i} P(\hat{a}_{ii} \sigma^{\leq t}; \theta)$
1	8: Update θ :
2	1 <u><i>K</i></u>
3	$\theta \leftarrow \arg \max_{a} \frac{1}{K} \sum P(a_i^t) \log P(\hat{a}_i^t \tau_i^{< t}; \theta)$
1	$\theta \Lambda \frac{1}{t=1}$
5	9: end for
6	10: end for
7	Return: θ

more stable training. the actor network is kept frozen initially, and the critic is solely trained on the
 recorded data collected using the pre-trained actor. After sufficient training of the critic, the actor
 and critics are simultaneously trained. During exploration, the desired returns-to-go is set at 10%
 higher than the current model's highest return. Additional details on the experimental setup and
 training are provided in Appendix A.4.

355 356

348 349

4 EXPERIMENTS

357

358 **Datasets** We evaluate the performance of MADS4 on challenging cooperative MARL benchmarks 359 of Multi-Robot Warehouse (RWARE) (Papoudakis et al., 2020) and StarCraft2 Multi-Agent Chal-360 lenge (SMAC) (Samvelyan et al., 2019). The offline datasets in the RWARE domain are obtained from (Matsunaga et al., 2023), which consists of diverse trajectories collected by training Multi-361 Agent Transformer (MAT) (Wen et al., 2022). The RWARE datasets consist of expert policies 362 trained on 2 maps (tiny and small) with different numbers of agents. For the SMAC domain, the 363 datasets provided by (Meng et al., 2021) have been used, which consists of trajectories collected 364 with online trained MAPPO agents. The datasets consist of three trained quality levels of the agents, 365 good, medium, and poor, tested on the different SMAC maps. For this work, we chose four rep-366 resentative maps consisting of two hard (5m vs. 6m, 2c vs. 64zg) and two super hard (6h vs. 8z, 367 corridor) maps for evaluating MADS4. Additional statistics on the offline datasets can be found in 368 Appendix B. 369

370 Baselines For comparisons on both domains, we compare with several recent offline MARL al-371 gorithms from the paradigms of both offline reinforcement learning and sequence-based supervised 372 learning. The offline RL baselines considered for comparison are Behaviour Cloning (BC) (Fuji-373 moto et al., 2019), OptiDICE (Lee et al., 2021), AlberDICE (Matsunaga et al., 2023), ICQ (Yang 374 et al., 2021), OMAR(Pan et al., 2022) and OMIGA(Wang et al., 2024). The sequence-based learning algorithms considered in this work include MADT (Meng et al., 2021) and MADTKD (Tseng et al., 375 2022), which are based on transformers. MADT policies do not involve any cooperation during 376 learning, whereas MADTKD incorporates a degree of cooperation distilled into the agents from the 377 centralized teacher model.

378 Algorithm 2 MADS4: On-policy finetuning 379 1: Copy the model weights θ to the actor or policy network π : $\pi(u_i)$, where u_i = 380 $\{R_i^t, s_{gi}^t, o_i^t, a_i^{t-1}, h_{i-1}^t\}$; Initialize ϕ , the parameters for critic V 381 2: Set learning rates α_{π}, α_{V} for actor and critic 382 3: for iterations = 1, M do Set data buffer $D = \{\}$ 4: 384 5: for i = 1 to $batch_size$ do 6: $\tau = []$ ⊳ Empty list 386 Initialize $h_0^{(1)}, \ldots, h_0^{(n)}$ actor S4 states 7: 387 for each timestep t in the environment do 8: 388 9: for agent = 1 : n do 389 $p_i^{\overline{t}}, h_i^t = \pi(u_i^t, h_{i-1}^t; \theta)$ 10: 390 Sample $a_i^t \sim p_i^t$ 11: 391 end for 12: Execute actions a^t , observe r^t , s_q^{t+1} , o^{t+1} 392 13: 393 14: $\tau + = [s_t, o_t, h_t, a_t, r_t, R_t, s_{t+1}, o_{t+1}]$ end for 394 15: Calculate advantage A^t via GAE on τ and store τ with A^t in the buffer D 395 16: 17: end for for $k = 1, \ldots, K$ training steps do 18: 397 Sample batch from replay-buffer $B = \{(s_g^t, o^t, a^{t-1}, R^{t-1}, h^{t-1}, s_g^{t+1}, o^{t+1}, a^t, h^t, r^t, R^t, A^t)\} \subset \mathbb{C}$ 19: 398 D for each agent 399 Calculate Bellman target estimate: $y = r^t + \gamma V(s^{t+1}, h^t)$ Update critic: $\phi_V = \phi_V - \alpha_V \nabla_{\phi_V} (V(s^t, h^{t-1}) - y)^2$ 20: 400 21: 401 If actor freezing is over, update actor: 22: 402 $\theta_{\pi} \leftarrow \arg\max_{\theta_{\pi}} \mathbb{E}_{s \sim \rho_{\theta_{\text{old}}}, a \sim \pi_{\theta_{\text{old}}}} \left[\text{clip}(w, 1 - \epsilon, 1 + \epsilon) A^t \right]$ 403 404 where the importance weight $w = \frac{\pi_{\theta}(a_i|o_i)}{\pi_{\theta_{\text{old}}}(a_i|o_i)}$ 405 406 23: end for 407 24: end for 408 409

Offline training Here, we compare the performance of offline trained MADS4, where the agents share information in the form of their latent state projections. The trained agents are deployed on the online RWARE and StarCraft2 environments for evaluation. Tables 1 and 2 show the mean and standard deviation of average returns in RWARE and SMAC domains, respectively, evaluated over 30 episodes and 5 different training seeds. During evaluation, the desired returns-to-go is set at 10% higher than the highest returns encountered in the offline datasets.

416 **RWARE** environment is a warehouse simulation consisting of agents moving and delivering goods 417 to workstations in partially observable settings while avoiding collisions. This domain poses chal-418 lenges due to high-dimensional observations and the need for strong cooperation, especially in highdensity settings where agents must navigate narrow passages. In this domain, MADS4 outperforms 419 all baselines across the maps, with a larger performance gap on the small and tiny maps involving 420 6 agents, where tight coordination is crucial to avoid collisions in confined spaces. MADS4 also 421 outperforms transformer-based baselines like MADTKD, likely due to the long trajectories in the 422 RWARE datasets (up to 500 timesteps), which are often truncated to reduce transformer training 423 costs. In contrast, MADS4 processes full trajectories, capturing longer contexts with fewer parame-424 ters. 425

In the SMAC domain, MADS4 demonstrates consistent performance that is similar to or better than
 the considered baselines across all studied maps. Notably, the model outperforms all baselines in
 the hard and superhard maps, specifically in the 2c vs. 64zg and 6h vs. 8z scenarios.

429

On-policy fine-tuning We evaluate whether the performance of offline pre-trained models can be
 enhanced through on-policy fine-tuning. During this phase, MADS4 interacts with the environment,
 collecting trajectories that are stored in a buffer and used to update the S4-based models via recur-

Method	Tiny (11x11)			Small (11x20)			
Wiethou	(N = 2)	(N = 4)	(N = 6)	(N = 2)	(N = 4)	(N = 6)	
BC	8.80 ± 0.25	11.12 ± 0.19	14.06 ± 0.32	5.54 ± 0.06	7.88 ± 0.14	8.90 ± 0.13	
ICQ	9.38 ± 0.75	12.13 ± 0.44	14.59 ± 0.16	5.43 ± 0.19	7.93 ± 0.19	8.87 ± 0.22	
OMAR	6.77 ± 0.64	14.39 ± 0.91	16.13 ± 1.21	4.40 ± 0.34	7.12 ± 0.38	8.41 ± 0.49	
MADTKD	6.24 ± 0.60	9.90 ± 0.21	13.06 ± 0.19	3.65 ± 0.34	6.85 ± 0.36	7.85 ± 0.52	
OptiDICE	8.70 ± 0.06	11.13 ± 0.44	14.02 ± 0.36	4.84 ± 0.32	7.68 ± 0.09	8.47 ± 0.26	
AlberDICE	11.15 ± 0.35	13.11 ± 0.32	15.72 ± 0.36	5.97 ± 0.11	8.18 ± 0.19	9.65 ± 0.13	
MADS4 (ours)	11.79 ± 0.61	15.52 ± 0.20	17.29 ± 0.76	6.58 ± 0.28	9.47 ± 0.15	10.87 ± 0.55	

Table 1: Average returns and standard deviations over 5 random seeds on the Warehouse domain.

Table 2: Average returns and standard deviations over 5 random seeds on the SMAC domain.

			RL-based	Sequence-based		
SMAC Map	Data	ICQ	OMAR	OMIGA	MADT	MADS4 (ours)
	G	7.87 ± 0.30	7.40 ± 0.63	8.25 ± 0.37	8.15 ± 0.63	8.00 ± 0.45
5m vs 6m (H)	Μ	7.77 ± 0.30	7.08 ± 0.51	7.92 ± 0.57	7.80 ± 0.56	7.85 ± 0.57
	Р	7.26 ± 0.19	7.27 ± 0.42	7.52 ± 0.21	7.23 ± 0.48	7.67 ± 0.15
	G	18.82 ± 0.17	17.27 ± 0.78	19.15 ± 0.32	18.90 ± 0.78	19.40 ± 0.55
2c vs 64zg (H)	Μ	15.57 ± 0.61	10.20 ± 0.20	16.03 ± 0.19	16.92 ± 0.20	17.27 ± 0.15
	Р	12.56 ± 0.18	11.33 ± 0.50	13.02 ± 0.66	13.33 ± 0.50	14.67 ± 0.32
	G	11.81 ± 0.12	9.85 ± 0.28	12.54 ± 0.21	12.55 ± 0.67	12.75 ± 0.15
6h vs 8z (SH)	М	11.13 ± 0.33	10.36 ± 0.16	12.31 ± 0.22	12.36 ± 0.16	12.57 ± 0.25
	Р	10.55 ± 0.10	10.63 ± 0.25	11.67 ± 0.19	11.63 ± 0.25	11.89 ± 0.43
	G	15.54 ± 1.12	6.74 ± 0.69	15.88 ± 0.89	17.81 ± 1.14	16.02 ± 0.97
corridor (SH)	М	11.30 ± 1.57	7.26 ± 0.71	11.66 ± 1.30	12.75 ± 1.18	12.80 ± 1.12
	Р	4.47 ± 0.33	4.28 ± 0.49	5.61 ± 0.35	8.76 ± 0.49	8.57 ± 0.54

rence. As shown in Figure 3, on-policy training builds upon and improves the offline pretraining results. Furthermore, on-policy training without pretraining consistently results in sub-optimal performance across all tasks, underscoring the importance of pretraining for achieving superior results.

However, prolonged on-policy training can sometimes degrade the performance of pre-trained models, as shown in Appendix C.2. This degradation likely arises from the inherent instability of training S4 modules in a recurrent setup, compared to the more stable convolution-based operations employed during offline pretraining, leading to error accumulation. To address this, we mitigate the issue by freezing the S4 kernel parameter A, which governs state-to-state transitions independent of inputs, and fine-tuning only the input-dependent parameters B and C.

The effect of sharing information The sharing of information between agents leads to significantly improved cooperative behavior, as reflected in the higher average rewards shown in Figure 4. This performance boost is particularly pronounced in more complex tasks that involve a greater number of agents and demand precise coordination. Importantly, this method of sharing information is scalable, where an agent only needs to communicate with the next agent, minimizing overhead while ensuring efficient coordination. Information can be shared in multiple forms, namely by pass-

Figure 3: Training curves of on-policy training of MADS4 with and without offline pretraining. Mean and standard deviations of average returns are plotted over 5 independent runs.

Figure 4: Training curves of MADS4 with information sharing between consecutive agents and IDS4 where agents are trained independently. Mean and standard deviations of average returns are plotted over 5 independent runs.

Figure 5: (a) The effect of having a shuffled random order vs. a fixed sorted order of the agents in the SE-MDP framework on the RWARE domain in the small 6 agents scenario and SMAC domain in the 2c vs. 64zg map. (b) The comparison of the performance of MADS4 vs. MADS4-dec (decentralized MADS4) on RWARE small map with 6 agents and SMAC map 2c vs 64 zg.

ing the action logit outputs from the S4 model, the latent state representations, or a combination of both from the preceding agent. A more detailed analysis of how different types of shared information impact performance is provided in Appendix A.2.

Effect of order of agents We evaluated the impact of agent ordering on MADS4's performance by comparing two settings: (1) Random Order, where agents are shuffled during training, and (2) Sorted Order, where the dataset order is preserved. Figure 5(a) shows similar performance, demonstrating MADS4's robustness to agent ordering in the SE-MDP framework. Notably, our approach only requires each agent to communicate with one unique peer which can be selected randomly to ensure that every agent's information is passed across the network without the need for any centralized optimization or sophisticated coordination.

MADS4 in decentralized setting To adapt MADS4 for a decentralized setting, where agents act in parallel, we leverage the hidden state information of each agent from the previous timestep as a proxy for the current timestep. This approach removes the sequential dependency in updating agent memory, as all agents' memory information from the previous timestep is available when making decisions at the current timestep. Since memory accumulates over multiple timesteps, relying on the previous timestep's information does not compromise performance, as demonstrated in Figure 5(b). This modification enables our algorithm to function effectively in decentralized policy settings without performance degradation.

5 CONCLUSIONS

In this work, we showcase the effectiveness of S4-based models in surpassing transformer-based ar chitectures for sequence-to-sequence offline multi-agent reinforcement learning (MARL) tasks. By
 restricting communication to the exchange of information between unique, arbitrarily selected pairs
 of agents, MADS4 fosters superior cooperation compared to state-of-the-art offline RL and central ized transformer-based baselines, which require complete access to all agents' information during
 training. MADS4 offers a low-latency and lightweight model that can be trained more efficiently
 that transformers and fine-tuned online using recurrent computations.

540 REFERENCES

565

- Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
 Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. *arXiv preprint arXiv:2202.11566*, 2022.
- Shmuel Bar-David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision s4: Efficient sequence-based rl via state spaces layers. *arXiv preprint arXiv:2306.05167*, 2023.
- Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
 Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
 scale deep reinforcement learning. *arXiv preprint arXiv:1912.06680*, 2019.
- Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in Neural Information Processing Systems, 35:11079–11091, 2022.
- Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the study of distributed multi-agent coordination. *IEEE Transactions on Industrial informatics*, 9(1): 427–438, 2012.
- Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.
- Peng Cheng, Xianyuan Zhan, Wenjia Zhang, Youfang Lin, Han Wang, Li Jiang, et al. Look beneath
 the surface: Exploiting fundamental symmetry for sample-efficient offline rl. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy gradients (2017). *arXiv preprint arXiv:1705.08926*, 2017.
- Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.
- Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
 with optimal polynomial projections. *Advances in neural information processing systems*, 33: 1474–1487, 2020.
- Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. *arXiv preprint arXiv:2111.00396*, 2021a.
- Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com bining recurrent, convolutional, and continuous-time models with linear state space layers. *Advances in neural information processing systems*, 34:572–585, 2021b.
- Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured state spaces. *Advances in Neural Information Processing Systems*, 35:22982–22994, 2022.
- Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. In *ECAI*, pp. 1148–1155, 2023.
- Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
 with fisher divergence critic regularization. In *International Conference on Machine Learning*,
 pp. 5774–5783. PMLR, 2021.
- Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 q-learning via bootstrapping error reduction. *Advances in neural information processing systems*, 32, 2019.
- Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

614

622

632

633

634

635

639

640

- Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
 policy optimization via stationary distribution correction estimation. In *International Conference* on Machine Learning, pp. 6120–6130. PMLR, 2021.
- Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.
- Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli
 Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 8536–8544, 2023.
- Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang. When
 data geometry meets deep function: Generalizing offline reinforcement learning. *arXiv preprint arXiv:2205.11027*, 2022.
- Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multiagent actor-critic for mixed cooperative-competitive environments. *Advances in neural information processing systems*, 30, 2017.
- Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
 Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
 in Neural Information Processing Systems, 36, 2024.
- Daiki E Matsunaga, Jongmin Lee, Jaeseok Yoon, Stefanos Leonardos, Pieter Abbeel, and Kee-Eung Kim. Alberdice: addressing out-of-distribution joint actions in offline multi-agent rl via alternating stationary distribution correction estimation. *Advances in Neural Information Processing Systems*, 36:72648–72678, 2023.
- Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen, Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One big sequence model tackles all smac tasks. *arXiv preprint arXiv:2112.02845*, 2021.
- Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions for decentralized pomdps. *Journal of Artificial Intelligence Research*, 32:289–353, 2008.
- Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline multi-agent reinforcement learning with actor rectification. In *International conference on machine learning*, pp. 17221–17237. PMLR, 2022.
- Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmark ing multi-agent deep reinforcement learning algorithms in cooperative tasks. *arXiv preprint arXiv:2006.07869*, 2020.
 - Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.
- Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
 Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
 The starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.
 - Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence modeling. *arXiv preprint arXiv:2208.04933*, 2022.
- Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to factorize with transformation for cooperative multi-agent reinforcement learning. In *International conference on machine learning*, pp. 5887–5896. PMLR, 2019.
- Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
 Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
 networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

648	Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillin Isola. Offline multi-agent
649	reinforcement learning with knowledge distillation. Advances in Neural Information Processing
650	Systems, 35:226–237, 2022.
651	

- Arnold Tustin. A method of analysing the behaviour of linear systems in terms of time series. Journal of the Institution of Electrical Engineers-Part IIA: Automatic Regulators and Servo Mechanisms, 94(1):130–142, 1947.
- Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
 Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In *Inter- national Conference on Machine Learning*, pp. 34556–34583. PMLR, 2023.
- Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multi-agent q-learning. *arXiv preprint arXiv:2008.01062*, 2020.
- Kiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent reinforcement
 learning with implicit global-to-local value regularization. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-agent reinforcement learning is a sequence modeling problem. *Advances in Neural Information Processing Systems*, 35:16509–16521, 2022.
- Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 arXiv preprint arXiv:1911.11361, 2019.
- Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. *arXiv preprint arXiv:2105.08140*, 2021.
- Haoran Xu, Xianyuan Zhan, Jianxiong Li, and Honglei Yin. Offline reinforcement learning with
 soft behavior regularization. *arXiv preprint arXiv:2110.07395*, 2021.
- Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach for
 offline reinforcement learning. *Advances in Neural Information Processing Systems*, 35:4085–4098, 2022a.
- Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein forcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8753–8760, 2022b.
- Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization. *arXiv preprint arXiv:2303.15810*, 2023.
- Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
 Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
 reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312, 2021.
- Dayon Ye, Minji Zhang, and Yu Yang. A multi-agent framework for packet routing in wireless
 sensor networks. *sensors*, 15(5):10026–10047, 2015.
- Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness of ppo in cooperative, multi-agent games (2021). *arXiv preprint arXiv:2103.01955*, 2021.
- Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. *Advances in Neural Information Processing Systems*, 33:14129–14142, 2020.
- 700

665

666

667

A Additional Background, Experimental Setup and Training Details

A.1 S4 LAYER

S4Gu et al. (2021a) layer is a variant of linear and time-invariant (LTI) state-space model (SSM)Gu et al. (2021b) which adopts the HIPPO Gu et al. (2020)-based initializations in order to better capture longer contexts, and proposes efficient ways for kernel computations and parallel training.

711 A.1.1 RECURRENT VIEW

Given an input scalar function $u(t) : \mathbb{R} \to \mathbb{R}$, the continuous LTI SSM is defined by the following first-order differential equation:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$
 (10)

The model maps the input stream u(t) to y(t). It was shown that initializing A by the HIPPO matrix Gu et al. (2020) grants the state-space model (SSM) the ability to capture long-range dependencies. Similar to previous works Gu et al. (2021a); Gupta et al. (2022), D is replaced by parameter-based skip-connection and is omitted from the SSM by assuming D = 0.

This SSM operates on continuous sequences, and it is discretized by a step size Δ to operate on discrete sequences. Let the discretization matrices be $\bar{A}, \bar{B}, \bar{C}$:

$$\bar{A} = (I - \Delta A/2)^{-1} (I + \Delta A/2), \quad \bar{B} = (I - \Delta A/2)^{-1} \Delta B, \quad \bar{C} = C$$
 (11)

(12)

These matrices allow us to rewrite Eq. 10:

728

731

732

724 725 726

705

706

708

709

710

715 716

729 730

Using the recurrent Eq.12, SSM asymptotically allows for constant O(1) time and memory inference for each token/ timestep, as compared to $O(L^2)$ inference for transformers. SSM can be interpreted

 $x_k = \bar{A}x_{k-1} + \bar{B}u_k, \quad y_k = \bar{C}x_k$

as a linear RNN in which \overline{A} is the state-transition matrix, and $\overline{B}, \overline{C}$ are the input and output matrices. Thus, it essentially requires O(L) training, L being the sequence length, as compared to $O(L^2)$ (parallelizable) training complexity for transformers.

736 737 A.1.2 CONVOLUTIONAL VIEW

The recurrent SSM view is not practical for training over long sequences, as the training cannot be
parallelized across the sequence dimension and results in instabilities from vanishing gradient issues.
However, the LTI SSM can be rewritten as a convolution, which allows for efficient parallelizable
training. The S4 convolutional view is obtained as follows:

Given a sequence of scalars $u = (u_0, u_1, ..., u_{L-1})$ of length L, the S4 recurrent view can be unrolled to the following closed form:

745 746

$$\forall i \in [L-1] : x_i \in \mathbb{R}^N, \quad x_0 = \bar{B}u_0, \quad x_1 = \bar{A}\bar{B}u_0 + \bar{B}u_1, \quad \dots, \quad x_{L-1} = \sum_{i=0}^{L-1} \bar{A}^{L-1-i}\bar{B}u_i$$

748 749 750

747

$$y_i \in \mathbb{R}, \quad y_0 = \bar{C}\bar{B}u_0, \quad y_1 = \bar{C}\bar{A}\bar{B}u_0 + \bar{C}\bar{B}u_1, \quad ..., \quad y_{L-1} = \sum_{i=0}^{L-1} \bar{C}\bar{A}^{L-1-i}\bar{B}u_i$$

751 752 753

Where N is the state size. Inputs and outputs are scalars.

755 Since the recurrent rule is linear, it can be computed in closed form with matrix multiplication or non-circular convolution:

Figure 6: Average Returns obtained in SMAC tasks by passing S4 output versus S4 latent states.

i.e., $y = \bar{k} * u$ for some kernel \bar{k} , which can be calculated by fixing the sequence length L before training. This kernel can be efficiently computed using FFT operations; for example, Gu et al. (2021a) computes the kernel via inverse FFT on the spectrum of \bar{k} , which is calculated via Cauchy kernel and the Woodbury Identity. This benefits from the "Normal Plus Low Rank" parameterization of the HIPPO-initialized state transition matrix A, and other more efficient parameterizations are proposed in Gupta et al. (2022).

The SSM, as represented above, operates on scalars or one channel of inputs. To handle vector inputs $\in \mathbb{R}^{H}$, *H* copies of the 1-D SSM layer are stacked, one for each input channel, and a linear mixing layer in the after block of the S4 layer mixes the information from different channels to produce outputs $\in \mathbb{R}^{H}$.

A.2 SHARING HIDDEN STATE REPRESENTATIONS

The raw outputs from the S4 layer consist of $y_k = \bar{C}x_k$, where $y_k \in \mathbb{R}^H$ and the latent states $x_k \in \mathbb{R}^{N \times H}$ for H input channels. Since the outputs are linear projections and offer a compact representation of the latent states (or, memory of the agent), this has been used as the message that is transmitted from one agent to the next in the SE-MDP. This offers several advantages: i) results in better team performance; ii) offers scalable cooperation between agents, which eliminates the need for a centralized transformer or a critic, which requires access to information from all agents; one agent needs access to only its immediate neighbor in the sequence; (iii) allows parallel training via convolution.

We also experimented with passing the raw hidden states $x_k \in \mathbb{R}^{N \times H}$ from one agent to another. The hidden states can be complex, depending on the parameterization of the S4 kernel. Therefore, before passing the latent states directly, we first linearly mix the hidden states across the H channels to obtain $x_k \in \mathbb{C}^N$. Then, we linearly project the real and imaginary parts of x_k after concatenation. This mode of information transfer, however, has notable drawbacks: i) it requires computing the S4 hidden state at every timestep, which requires recurrent rollouts of the S4 kernel, and ii) it fails to outperform the method of passing the S4 outputs; possibly due to errors accumulated during recurrent training. A comparison of performance using S4 output representation versus S4 latent state representation is shown in Figure 6, where passing S4 outputs resulted in better performance across all tasks.

It is, however, noted that hidden states at each timestep may be efficiently obtained utilizing the parallel (associate) scan operation as done in Smith et al. (2022); Lu et al. (2024), but this requires JAX implementation and is currently not supported by PyTorch.

814 A.3 PRELIMINARY STUDY USING MAMBA 815

We also explored Mamba as an alternative to LTI S4-based models. Mamba allows time-variant parameters to be considered in the SSM equations. Though convolution cannot be applied here since the kernel cannot be computed apriori since the parameters B, C are input-dependent, efficient parallel scan operation allows for parallelizable $O(\log L)$ complexity. However, preliminary analysis utilizing Mamba resulted in suboptimal performance, and it requires more extensive analysis.

821 822

A.4 EXPERIMENTAL SETUP AND TRAINING

In all experiments, we set the input channel size to H = 96 and the S4 state size to N = 96. Offline training is conducted on batches of 64 trajectories, with the maximum trajectory length in the offline dataset used as the length for each batch. The shorter trajectories are zero-padded to a constant length. The training was performed using Adam optimizer with a learning rate of 10^{-4} .

The offline trained model is fine-tuned online using on-policy MAPPO. During the initial stage 828 of fine-tuning, the actor network is kept frozen, and the critic is first trained for the first 50,000 829 iterations. After this, both the actor and critic are trained simultaneously, with a slower learning 830 rate for the actor network (10^{-5}) compared to the critic (10^{-4}) . During on-policy fine-tuning, the 831 returns-to-go is set at 10% higher than the highest returns encountered during training. On-policy 832 training is conducted in batches of 64. To mitigate the issue of deteriorating performance with 833 prolonged on-policy training, the S4 kernel A can be kept frozen. All experiments were run on a 834 single NVIDIA RTX 2080Ti GPU. Experiments on the RWARE domain take less than 2 hrs to reach optimal performance, and experiments on the SMAC domain take less than 6hrs, 12 hrs, 12 hrs, and 835 30 hrs for maps 2c vs. 64zg, 5m vs. 6m, 6h vs. 8z and Corridor, respectively. 836

837 838

839 840

841

B DATASETS AND BASELINES

B.1 MULTI-ROBOTWAREHOUSE (RWARE)

The offline dataset on RWARE (Papoudakis et al., 2020) is obtained from (Matsunaga et al., 2023),
which contains an expert dataset with diverse behaviors obtained by training MAT on small and tiny
maps. The dataset consists of 1000 trajectories, each trajectory consisting of 500 timesteps. The
dataset statistics are in Table 3. The longest trajectories consist of timesteps in the range of 500 in
all the datasets.

The baseline results are obtained from (Matsunaga et al., 2023), which currently holds the state-of the-art results of the baselines listed on this dataset.

Map Name	Maximum	Minimum	Average
small 2 agents	12.37	1.13	7.12
small 4 agents	12.08	3.93	9.49
small 6 agents	12.69	7.59	10.76
tiny 2 agents	16.81	1.97	12.77
tiny 4 agents	18.63	10.40	15.67
tiny 6 agents	19.97	11.88	17.45

Table 3: RWARE datasets

858 859

000

861

B.2 SMAC

The offline SMAC (Samvelyan et al., 2019) dataset is obtained from (Wang et al., 2024). This dataset is obtained by randomly sampling 1000 trajectories from the original dataset provided by (Meng et al., 2021). We consider 4 representative battle maps, including 2 hard maps (5m vs 6m,

2c vs 64zg) and 2 super hard maps (6h vs 8z, corridor), which are detailed in Table 4. The average returns for the dataset are listed in Table 5. The longest trajectories are encountered in the Corridor map, which typically comprises about 100 timesteps.

Map Name	Ally Units	Enemy Units	Туре
5m_vs_6m	5 Marines	6 Marines	homogeneous & asymmetric
2c_vs_64zg	2 Colossi	64 Zerglings	micro-trick: positioning
6h_vs_8z	6 Hydralisks	8 Zealots	micro-trick: focus fire
corridor	6 Zealots	24 Zerglings	micro-trick: wall off

Map Name	Quality	Average Return
5m_vs_6m	good	20.00
	medium	11.03
	poor	8.50
2c_vs_64zg	good	19.94
	medium	13.00
	poor	8.89
6h_vs_8z	good	17.84
	medium	11.96
	poor	9.12
corridor	good	19.88
	medium	13.07
	poor	4.93

Table 4: SMAC maps for experiments.

Table 5: SMAC datasets.

The offline RL-based baseline results are obtained from (Wang et al., 2024), and MADT results are obtained by running the code available with (Meng et al., 2021).

C HYPERPARAMETERS AND ADDITIONAL ANALYSIS

C.1 S4 MODEL SIZE PARAMETERS

We analyze the impact of the S4 model size parameters, specifically the number of input channels (*H*) and the latent state size (*N*), on the model performance, as shown in Table 6. We compare the total number of parameters against the 1.8 million parameters reported for MADTKD in Tseng et al. (2022). Our biggest model with N=96 and H=96 was used in all our experiments, which consists of about 200k parameters.

C.2 The effect of context length and S4 parameters

The context length used for pretraining significantly impacts performance, which is also evident for transformer-based models. In our experiments, we used the maximum trajectory lengths encountered in the offline datasets for pretraining. Representative results are shown in Figure 7, which illustrates the effects of truncating the trajectory lengths to various percentages of the maximum length in the offline dataset for the SMAC map 2c vs 64zg.

Table 6: Results of smaller models on the RWARE small map. Each of the smaller models is denoted by (i) N, the S4 state size, and (ii) H, the number of input/output channels.

913								MADTER
01/	Environments	(N=96,H=96)	(N=64,H=64)	(N=32, H=32)	(N=64,H=96)	(N=96,H=64)	(N=32, H=64)	MADIKD
914	2 agents	6.58	6.21	5.53	6.53	6.25	5.87	3.65
915	4 agents	9.47	8.86	8.57	9.15	8.88	8.64	6.85
916	6 agents	10.87	10.31	9.55	10.76	9.97	9.85	7.85
017	% Parameters (Ours)	100	60	40	81	82	55	100
511	% Parameters (MADTKD)	12	7	5	8	8	6	100

Figure 7: The effect of truncating the trajectory length during training. The average returns are normalized with the maximum returns encountered in the offline dataset.

Figure 8: The effect of freezing S4 kernel parameter A in the SMAC 6h vs 8z map. Freezing A in the right Figure results in more stable performance during the on-policy recurrent finetuning.

C.3 EFFECT OF FREEZING A DURING ON-POLICY FINETUNING

The degrading effect on MADS4 performance during recurrent on-policy finetuning can be mitigated by freezing the S4 kernel parameter A while updating only parameters B and C, as illustrated in Figure 8. A similar observation has also been reported in Bar-David et al. (2023).

C.4 EFFECT OF ORDER OF AGENTS

To assess the impact of agent ordering on MADS4's performance, we compared two training settings: (1) Random Order, where the agent order is randomly shuffled during training, and (2) Fixed Order, where agents are trained in the same sorted order as in the offline dataset. The results in Figure 9 indicate minimal to no performance difference between the two settings, demonstrating that MADS4 is robust to agent ordering within the SE-MDP framework. Nonetheless, we recommend using a random order during training to avoid introducing potential biases into the learning process.

C.5 EFFECT OF GLOBAL STATES AS INPUTS

Building on prior work such as MADT, the proposed S4-based MADS4 agents utilize global states as inputs. However, in certain environments, access to the global state may be restricted or unavailable.

Figure 9: The effect of having a shuffled random order vs. a fixed sorted order of the agents in the SE-MDP framework on the SMAC domain in the 2c vs. 64zg map (left) and RWARE domain in the small 6 agents scenario (right).

...

Figure 10: Performance comparison on RWARE small map with 6 agents (left) and SMAC map 2c vs 64 zg (right). The results demonstrate that excluding global states as inputs in MADS4 agents has minimal impact on performance.

Figure 11: The comparison of performance of MADS4 vs. MADS4-dec (decentralized MADS4) on RWARE small map with 6 agents (left) and SMAC map 2c vs 64 zg (right).

To address this, we present an ablation study (Figure 10) evaluating the impact of using global state variables as inputs. The results indicate that omitting the global state does not lead to a significant drop in performance.

C.6 MADS4 vs. Decentralized MADS4

When decisions are made at the current timestep, all decisions from the previous timestep will al-ready be finalized. As a result, the memory information of all agents is readily available for use. This eliminates the need for any agent to wait for its peer to decide the current timestep. By utiliz-ing the memory information from the previous timestep, agents can make decisions without relying on sequential dependencies during the current timestep. Since memory accumulates over multi-ple timesteps, relying on the previous timestep's information does not compromise performance, as demonstrated in Figure 11. This modification enables our algorithm to function effectively in decentralized policy settings without performance degradation.